1
|
Severin J, Kim D, Campbell R. Tethered cord syndrome in a paediatric patient with KBG syndrome. BMJ Case Rep 2025; 18:e264503. [PMID: 40044484 DOI: 10.1136/bcr-2024-264503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
KBG syndrome is a rare genetic condition caused by ANKRD11 mutations, often presenting with distinctive syndromic features, including macrodontia and skeletal anomalies. This case highlights a teenage boy with KBG syndrome presenting with tethered cord syndrome (TCS)-a progressive condition where spinal cord fixation restricts movement-causing motor, sensory and urological symptoms.The patient presented with leg stiffness, gait changes and bowel and bladder symptoms, initially misdiagnosed as catatonia. Genetic testing confirmed KBG syndrome and further family-led research suggested TCS. Targeted MRI revealed a low-lying conus medullaris and thickened filum terminale, supporting the clinically suspected diagnosis. Surgical detethering led to complete symptom resolution, allowing the patient to resume normal activities.This case demonstrates a detailed symptomatic presentation of TCS in KBG syndrome, which underscores the importance of recognising such associations. Clinicians should consider dynamic imaging and early intervention to prevent long-term morbidity in similar patients.
Collapse
Affiliation(s)
- Julian Severin
- Radiology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Griffith University, Gold Coast, Queensland, Australia
| | - David Kim
- Radiology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Robert Campbell
- Neurosurgery, Queensland Childrens Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Serra G, Elefante P, Gazzitano Y, Memo L, Mineo V, Morando C, Nardello R, Piro E, Travan L, Corsello G. KBG syndrome: report and follow-up on three unrelated patients observed at different ages. Ital J Pediatr 2025; 51:54. [PMID: 39985057 PMCID: PMC11846256 DOI: 10.1186/s13052-025-01884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/30/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND KBG syndrome (MIM #148050) is a rare genetic disease, showing an autosomal dominant pattern of inheritance. It was first described by Herrmann et al. in 1975 in three affected families, whose initial letters gave origin to the acronym. A peculiar facies including triangular face, synophrys, macrodontia of the upper central incisors, as well as short stature, skeletal defects and neurodevelopmental disorders (developmental delay, intellectual disability, epilepsy) are the main features of the syndrome. Mutations of the ankirin repeat domain 11 gene (ANKRD11), which harbors at chromosome 16q24.3, have been associated to the syndrome. The encoded protein inhibits ligand-dependent activation of transcription. Due to the growing number of detected ANKRD11 variants associated to phenotypes with various degree of severity, the precise definition of the clinical and genomic profiles of patients is important, also in the perspective of a better understanding of the molecular bases of the disease, genotype-phenotype correlation, and management of affected subjects. CASES PRESENTATION We report on three unrelated patients, observed in as many different Italian (Sicily, Veneto and Friuli-Venezia-Giulia regions) Pediatric Neurology and Medical Genetics outpatient services, showing variously present typical dysmorphic features (e.g., triangular face, macrodontia of upper incisors, brachydactyly), growth retardation and impaired neurodevelopmental profiles (i.e. developmental delay, EEG abnormalities/epilepsy) compatible with KBG syndrome diagnosis. In Patient 1, next generation sequencing analysis of a panel of genes involved in developmental delay and autism spectrum disorders detected two mutations, a pathogenic heterozygous frameshift variant of the ANKRD11 gene (already described in the literature), and a heterozygous missense one in EHMT1 (previously reported as well, and associated with Kleefstra syndrome); in Patient 2, array comparative genomic hybridization (a-CGH) analysis identified a 634 Kb 16q24.3-24.3 deletion involving several genes (CDT1, APRT, GALNS, TRAPPC2L, ACSF3, CDH15), besides ANKRD11, some of which are related with developmental disorders. Finally in Patient 3, Sanger sequencing of the ANKRD11 gene, performed due to the specific diagnostic suspicion raised for precocious teething observed at age 3 months, evidenced an intragenic deletion allowing thus an early diagnosis of disease. CONCLUSIONS We underline similarities and differences among our patients, and their specific genetic and clinical features, in addition to the variable diagnostic tests used for the diagnosis, reached at different developmental age, i.e. infancy, childhood and adolescence. Pediatricians must be aware of KBG syndrome and should be able, as well, to raise the diagnostic suspicion, especially in the presence of peculiar dysmorphic features, short stature, developmental delay, intellectual disability and epilepsy. Prompt diagnosis may allow to better address any associated emerging neuropsychological and behavioral issues improving the quality of life of the patient and the whole family.
Collapse
Affiliation(s)
- Gregorio Serra
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy.
| | - Pierandrea Elefante
- IRCCS Institute for Maternal and Child Health "Burlo Garofolo", Trieste, Italy
| | - Ylenia Gazzitano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Luigi Memo
- IRCCS Institute for Maternal and Child Health "Burlo Garofolo", Trieste, Italy
| | - Valeria Mineo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Carla Morando
- Department of Pediatrics, "San Bortolo" Hospital, Vicenza, Italy
| | - Rosaria Nardello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Ettore Piro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Laura Travan
- IRCCS Institute for Maternal and Child Health "Burlo Garofolo", Trieste, Italy
| | - Giovanni Corsello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Sarino KP, Guo L, Yi E, Park J, Kierzkowska O, Carter D, Marchi E, Lyon GJ. Assessment of Adaptive Functioning and the Impact of Seizures in KBG Syndrome. Am J Med Genet A 2025; 197:e63896. [PMID: 39364636 DOI: 10.1002/ajmg.a.63896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
This study aimed to examine the adaptive functioning status and the impact of epileptic seizures on neurocognitive outcomes in KBG syndrome, a rare genetic neurodevelopmental disorder characterized by pathogenic variants in ANKRD11. A single clinician interviewed individuals and families with genetically confirmed cases of KBG syndrome. Trained professionals also conducted assessments using the Vineland-3 Adaptive Behavior Scales. The assessment covered the domains of communication, daily living skills, socialization, and maladaptive behaviors, and then compared individuals with and without epilepsy. Further comparisons were made with data from interviews and participants' medical records. Thirty-nine individuals (22 males, 17 females) with KBG syndrome, confirmed through genetic analysis, were interviewed via videoconferencing, followed by Vineland-3 assessment by trained raters. Individuals with KBG syndrome came from 36 unique families spanning 11 countries. While the KBG cohort displayed lower overall adaptive behavior composite scores compared with the average population, several members displayed standard scores at or higher than average, as well as higher scores compared with those with the neurodevelopmental disorder Ogden syndrome. Within the KBG cohort, males consistently scored lower than females across all domains, but none of these categories reached statistical significance. While the group with epilepsy exhibited overall lower scores than the nonseizure group in every category, statistical significance was only reached in the written communication subdomain. Our research provides insights that can aid in epilepsy screening and inform assessment strategies for neurocognitive functioning in those with this condition. The cohort performed overall higher than expected, with outliers existing in both directions. Although our results suggest that seizures might influence the trajectory of KBG syndrome, the approaching but overall absence of statistical significance between study groups underscores the need for a more extensive cohort to discern subtle variations in functioning.
Collapse
Affiliation(s)
- Kathleen P Sarino
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Lily Guo
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Edward Yi
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Jiyeon Park
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Ola Kierzkowska
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Drake Carter
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Elaine Marchi
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Gholson J Lyon
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
- George A. Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
- Biology PhD Program, The Graduate Center, The City University of New York, New York, New York, USA
| |
Collapse
|
4
|
Liu H, Li H, Cai Q, Zhang J, Zhong H, Hu G, Zhao S, Lu Y, Mao Y, Lu Y, Yao H, Zhang M. ANKRD11 binding to cohesin suggests a connection between KBG syndrome and Cornelia de Lange syndrome. Proc Natl Acad Sci U S A 2025; 122:e2417346122. [PMID: 39847329 PMCID: PMC11789155 DOI: 10.1073/pnas.2417346122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Ankyrin Repeat Domain-containing Protein 11 (ANKRD11) is a causative gene for KBG syndrome, a significant risk factor for Cornelia de Lange syndrome (CdLS), and a highly confident autism spectrum disorder gene. Mutations of ANKRD11 lead to developmental abnormalities in multiple organs/tissues including the brain, craniofacial and skeletal bones, and tooth structures with unknown mechanism(s). Here, we find that ANKRD11, via a short peptide fragment in its N-terminal region, binds to the cohesin complex with a high affinity, implicating why ANKRD11 mutation can cause CdLS. The crystal structure of the ANKRD11 peptide in complex with cohesin, together with biochemical experiments, revealed that ANKRD11 competes with CCCTC-binding factor in binding to the cohesin complex. Importantly, a single point mutation in ANKRD11 (Tyr347 to Ala) specifically disrupted the interaction between ANKRD11 and cohesin and perturbed gene expressions in a mouse embryonic stem cell model. Mice carrying the ANKRD11 Y347A mutation display neural and craniofacial anomalies, which mirror clinical phenotypes observed in KBG syndrome patients. Thus, our study reveals how ANKRD11 functions together with cohesin to regulate gene expression and also provides insights into the molecular mechanisms underpinning developmental disorders caused by ANKRD11 mutations.
Collapse
Affiliation(s)
- Haiyang Liu
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen518036, China
| | - Hao Li
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan430030, China
| | - Qixu Cai
- Department of Laboratory Medicine, State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian361102, China
| | - Jie Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou510530, China
| | - Hongxin Zhong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou510530, China
- Guangzhou National Laboratory, Guangzhou510005, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Gongcheng Hu
- Guangzhou National Laboratory, Guangzhou510005, China
| | - Shuaizhu Zhao
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan430030, China
| | - Yuli Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou510530, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yudi Mao
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen518036, China
| | - Youming Lu
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan430030, China
| | - Hongjie Yao
- Guangzhou National Laboratory, Guangzhou510005, China
| | - Mingjie Zhang
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen518036, China
| |
Collapse
|
5
|
He D, Zhang M, Li Y, Liu F, Ban B. Insights into the ANKRD11 variants and short-stature phenotype through literature review and ClinVar database search. Orphanet J Rare Dis 2024; 19:292. [PMID: 39135054 PMCID: PMC11318275 DOI: 10.1186/s13023-024-03301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Ankyrin repeat domain containing-protein 11 (ANKRD11), a transcriptional factor predominantly localized in the cell nucleus, plays a crucial role in the expression regulation of key genes by recruiting chromatin remodelers and interacting with specific transcriptional repressors or activators during numerous biological processes. Its pathogenic variants are strongly linked to the pathogenesis and progression of multisystem disorder known as KBG syndrome. With the widespread application of high-throughput DNA sequencing technologies in clinical medicine, numerous pathogenic variants in the ANKRD11 gene have been reported. Patients with KBG syndrome usually exhibit a broad phenotypic spectrum with a variable degree of severity, even if having identical variants. In addition to distinctive dental, craniofacial and neurodevelopmental abnormalities, patients often present with skeletal anomalies, particularly postnatal short stature. The relationship between ANKRD11 variants and short stature is not well-understood, with limited knowledge regarding its occurrence rate or underlying biological mechanism involved. This review aims to provide an updated analysis of the molecular spectrum associated with ANKRD11 variants, investigate the prevalence of the short stature among patients harboring these variants, evaluate the efficacy of recombinant human growth hormone in treating children with short stature and ANKRD11 variants, and explore the biological mechanisms underlying short stature from both scientific and clinical perspectives. Our investigation indicated that frameshift and nonsense were the most frequent types in 583 pathogenic or likely pathogenic variants identified in the ANKRD11 gene. Among the 245 KBGS patients with height data, approximately 50% displayed short stature. Most patients showed a positive response to rhGH therapy, although the number of patients receiving treatment was limited. ANKRD11 deficiency potentially disrupts longitudinal bone growth by affecting the orderly differentiation of growth plate chondrocytes. Our review offers crucial insights into the association between ANKRD11 variants and short stature and provides valuable guidance for precise clinical diagnosis and treatment of patients with KBG syndrome.
Collapse
Affiliation(s)
- Dongye He
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China.
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, China.
| | - Mei Zhang
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Yanying Li
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Fupeng Liu
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, China
| | - Bo Ban
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China.
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, China.
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China.
| |
Collapse
|
6
|
Bayat A, Grimes H, de Boer E, Herlin MK, Dahl RS, Lund ICB, Bayat M, Bolund ACS, Gjerulfsen CE, Gregersen PA, Zilmer M, Juhl S, Cebula K, Rahikkala E, Maystadt I, Peron A, Vignoli A, Alfano RM, Stanzial F, Benedicenti F, Currò A, Luk HM, Jouret G, Zurita E, Heuft L, Schnabel F, Busche A, Veenstra-Knol HE, Tkemaladze T, Vrielynck P, Lederer D, Platzer K, Ockeloen CW, Goel H, Low KJ. Natural history of adults with KBG syndrome: A physician-reported experience. Genet Med 2024; 26:101170. [PMID: 38818797 DOI: 10.1016/j.gim.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
PURPOSE KBG syndrome (KBGS) is a rare neurodevelopmental syndrome caused by haploinsufficiency of ANKRD11. The childhood phenotype is extensively reported but limited for adults. Thus, we aimed to delineate the clinical features of KBGS. METHODS We collected physician-reported data of adults with molecularly confirmed KBGS through an international collaboration. Moreover, we undertook a systematic literature review to determine the scope of previously reported data. RESULTS The international collaboration identified 36 adults from 31 unrelated families with KBGS. Symptoms included mild/borderline intellectual disability (n = 22); gross and/or fine motor difficulties (n = 15); psychiatric and behavioral comorbidities including aggression, anxiety, reduced attention span, and autistic features (n = 26); nonverbal (n = 3), seizures with various seizure types and treatment responses (n = 10); ophthalmological comorbidities (n = 20). Cognitive regression during adulthood was reported once. Infrequent features included dilatation of the ascending aorta (n = 2) and autoimmune conditions (n = 4). Education, work, and residence varied, and the diversity of professional and personal roles highlighted the range of abilities seen. The literature review identified 154 adults reported across the literature, and we have summarized the features across both data sets. CONCLUSION Our study sheds light on the long-term neurodevelopmental outcomes, seizures, behavioral and psychiatric features, and education, work, and living arrangements for adults with KBGS.
Collapse
Affiliation(s)
- Allan Bayat
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark; Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Hannah Grimes
- Department of Clinical Genetics, University Hospital Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Elke de Boer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands; Department of Clinical Genetics, Erasmus Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Morten Krogh Herlin
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Rebekka Staal Dahl
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | - Ida Charlotte Bay Lund
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael Bayat
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; Center for Rare Diseases, Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Pernille Axél Gregersen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Center for Rare Diseases, Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Monica Zilmer
- Department of Child Neurology, Danish Epilepsy Center, Dianalund, Denmark
| | - Stefan Juhl
- Department of Neurology, Danish Epilepsy Center, Dianalund, Denmark
| | - Katarzyna Cebula
- Department of Neurology, Danish Epilepsy Center, Dianalund, Denmark
| | - Elisa Rahikkala
- Dept of Clinical Genetics, Research Unit of Clinical Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Isabelle Maystadt
- Center for Human Genetics, Institute for Pathology and Genetics, Gosselies, Belgium; URPhyM, Faculty of Medicine, University of Namur, Namur, Belgium
| | - Angela Peron
- Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy; Division of Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio," Università degli Studi di Firenze, Florence, Italy
| | - Aglaia Vignoli
- Child Neuropsychiatry Unit, Grande Ospedale Metropolitano Niguarda, University of Milan, Milan, Italy
| | - Rosa Maria Alfano
- Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy
| | - Franco Stanzial
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Francesco Benedicenti
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Aurora Currò
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Ho-Ming Luk
- Clinical Genetics Service Unit, Hong Kong Children's Hospital, HKSAR, Hong Kong
| | - Guillaume Jouret
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Ella Zurita
- Hunter Genetics, New South Wales Health, Waratah, NSW, Australia
| | - Lara Heuft
- Institute for Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Franziska Schnabel
- Institute for Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Andreas Busche
- Department of Medical Genetics, University Hospital Münster, Germany
| | | | - Tinatin Tkemaladze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia; Givi Zhvania Pediatric Academic Clinic, Tbilisi State Medical University, Tbilisi, Georgia
| | - Pascal Vrielynck
- Reference Center for Refractory Epilepsy, Catholic University of Louvain, William Lennox Neurological Hospital, Ottignies, Belgium
| | - Damien Lederer
- Institute for Pathology and Genetics, 6040, Gosselies, Belgium
| | - Konrad Platzer
- Institute for Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Himanshu Goel
- Hunter Genetics, New South Wales Health, Waratah, NSW, Australia
| | - Karen Jaqueline Low
- Department of Clinical Genetics, University Hospital Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom; Centre for Academic Child Health, Bristol Medical School, University of Bristol, United Kingdom
| |
Collapse
|
7
|
Carrara A, Mangiarotti C, Pasca L, Politano D, Abrusco FD', Barbero VC, Carpani A, Borgatti R, Pichiecchio A, Valente EM, Romaniello R. Cerebellar Heterotopia: Broadening the Neuroradiological Spectrum of KBG Syndrome. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1736-1740. [PMID: 38334877 PMCID: PMC11269488 DOI: 10.1007/s12311-024-01661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
KBG syndrome is a rare genetic disorder caused by heterozygous pathogenic variants in ANKRD11. Affected individuals have developmental delay, short stature, characteristic facial features, and other dysmorphic findings. To date, a spectrum of unspecific neuroradiological defects has been reported in KBG patients, such as cortical defects, white matter abnormalities, corpus callosum, and cerebellar vermis hypoplasia.Deep clinical and neuroradiological phenotyping and genotype of a patient presenting with mild cognitive and behavioral problems were obtained after written informed consent.We herein describe the first KBG patient presenting with cerebellar heterotopia, a heterogeneous malformation characterized by the presence of clusters of neurons within the white matter of cerebellar hemispheres.This novel association broadens the neuroradiological spectrum of KBG syndrome, and further prompts to investigate the potential functions of ANKRD11 in cerebellar development.
Collapse
Affiliation(s)
| | - Camilla Mangiarotti
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavior Neuroscience, University of Pavia, Pavia, Italy
| | - Ludovica Pasca
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy.
- Department of Brain and Behavior Neuroscience, University of Pavia, Pavia, Italy.
| | - Davide Politano
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavior Neuroscience, University of Pavia, Pavia, Italy
| | | | | | - Adriana Carpani
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Renato Borgatti
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavior Neuroscience, University of Pavia, Pavia, Italy
| | - Anna Pichiecchio
- Department of Brain and Behavior Neuroscience, University of Pavia, Pavia, Italy
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Romina Romaniello
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
8
|
Kibalnyk Y, Afanasiev E, Noble RMN, Watson AES, Poverennaya I, Dittmann NL, Alexiou M, Goodkey K, Greenwell AA, Ussher JR, Adameyko I, Massey J, Graf D, Bourque SL, Stratton JA, Voronova A. The chromatin regulator Ankrd11 controls cardiac neural crest cell-mediated outflow tract remodeling and heart function. Nat Commun 2024; 15:4632. [PMID: 38951500 PMCID: PMC11217281 DOI: 10.1038/s41467-024-48955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/17/2024] [Indexed: 07/03/2024] Open
Abstract
ANKRD11 (Ankyrin Repeat Domain 11) is a chromatin regulator and a causative gene for KBG syndrome, a rare developmental disorder characterized by multiple organ abnormalities, including cardiac defects. However, the role of ANKRD11 in heart development is unknown. The neural crest plays a leading role in embryonic heart development, and its dysfunction is implicated in congenital heart defects. We demonstrate that conditional knockout of Ankrd11 in the murine embryonic neural crest results in persistent truncus arteriosus, ventricular dilation, and impaired ventricular contractility. We further show these defects occur due to aberrant cardiac neural crest cell organization leading to outflow tract septation failure. Lastly, knockout of Ankrd11 in the neural crest leads to impaired expression of various transcription factors, chromatin remodelers and signaling pathways, including mTOR, BMP and TGF-β in the cardiac neural crest cells. In this work, we identify Ankrd11 as a regulator of neural crest-mediated heart development and function.
Collapse
Affiliation(s)
- Yana Kibalnyk
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
| | - Elia Afanasiev
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Ronan M N Noble
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Adrianne E S Watson
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
| | - Irina Poverennaya
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Nicole L Dittmann
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Maria Alexiou
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Kara Goodkey
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
| | - Amanda A Greenwell
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Edmonton, AB, T6G 2H1, Canada
| | - John R Ussher
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden
| | | | - Daniel Graf
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Stephane L Bourque
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada.
- Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
9
|
Babunovska M, Cepreganova Cangovska T, Kuzmanovski I, Noveski P, Plaseska-Karanfilska D, Cvetkovska E. Novel Variant ANKRD11 Gene Mutation Associated With Drug-Resistant Epilepsy in KBG Syndrome Phenotype. Pediatr Neurol 2024; 155:51-54. [PMID: 38593730 DOI: 10.1016/j.pediatrneurol.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/04/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Affiliation(s)
- Marija Babunovska
- Faculty of Medicine, University Clinic for Neurology, Ss. Cyril and Methodius University, Skopje, North Macedonia.
| | | | - Igor Kuzmanovski
- Faculty of Medicine, University Clinic for Neurology, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Predrag Noveski
- Research Centre for Genetic Engineering and Biotechnology Georgi D. Efremov, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology Georgi D. Efremov, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Emilija Cvetkovska
- Faculty of Medicine, University Clinic for Neurology, Ss. Cyril and Methodius University, Skopje, North Macedonia
| |
Collapse
|
10
|
Goodkey K, Wischmeijer A, Perrin L, Watson AES, Qureshi L, Cordelli DM, Toni F, Gnazzo M, Benedicenti F, Elmaleh-Bergès M, Low KJ, Voronova A. Olfactory bulb anomalies in KBG syndrome mouse model and patients. BMC Med 2024; 22:158. [PMID: 38616269 PMCID: PMC11017579 DOI: 10.1186/s12916-024-03363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/18/2024] [Indexed: 04/16/2024] Open
Abstract
ANKRD11 (ankyrin repeat domain 11) is a chromatin regulator and the only gene associated with KBG syndrome, a rare neurodevelopmental disorder. We have previously shown that Ankrd11 regulates murine embryonic cortical neurogenesis. Here, we show a novel olfactory bulb phenotype in a KBG syndrome mouse model and two diagnosed patients. Conditional knockout of Ankrd11 in murine embryonic neural stem cells leads to aberrant postnatal olfactory bulb development and reduced size due to reduction of the olfactory bulb granule cell layer. We further show that the rostral migratory stream has incomplete migration of neuroblasts, reduced cell proliferation as well as aberrant differentiation of neurons. This leads to reduced neuroblasts and neurons in the olfactory bulb granule cell layer. In vitro, Ankrd11-deficient neural stem cells from the postnatal subventricular zone display reduced migration, proliferation, and neurogenesis. Finally, we describe two clinically and molecularly confirmed KBG syndrome patients with anosmia and olfactory bulb and groove hypo-dysgenesis/agenesis. Our report provides evidence that Ankrd11 is a novel regulator of olfactory bulb development and neuroblast migration. Moreover, our study highlights a novel clinical sign of KBG syndrome linked to ANKRD11 perturbations in mice and humans.
Collapse
Affiliation(s)
- Kara Goodkey
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women and Children's Health Research Institute, University of Alberta, 5-083 Edmonton Clinic Health Academy, Edmonton, AB, T6G 1C9, Canada
| | - Anita Wischmeijer
- Clinical Genetics Service and Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | | | - Adrianne E S Watson
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women and Children's Health Research Institute, University of Alberta, 5-083 Edmonton Clinic Health Academy, Edmonton, AB, T6G 1C9, Canada
| | - Leenah Qureshi
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Duccio Maria Cordelli
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, UOC Neuropsichiatria Dell'età Pediatrica, Bologna, Italy
| | - Francesco Toni
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Programma Di Neuroradiologia Con Tecniche Ad Elevata Complessità (PNTEC), Bologna, Italy
| | - Maria Gnazzo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Francesco Benedicenti
- Clinical Genetics Service and Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | | | - Karen J Low
- Department of Academic Child Health, Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- Clinical Genetics Service, St. Michaels Hospital, Bristol, UK
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
- Women and Children's Health Research Institute, University of Alberta, 5-083 Edmonton Clinic Health Academy, Edmonton, AB, T6G 1C9, Canada.
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
11
|
Whitney R, Komar M, Yoganathan S, Costain G, Jain P. Epilepsy in KBG Syndrome: Report of Additional Cases. Pediatr Neurol 2024; 151:138-142. [PMID: 38157719 DOI: 10.1016/j.pediatrneurol.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND KBG syndrome is a genetic disorder characterized by short stature, dysmorphic features, macrodontia, cognitive impairment, and limb anomalies. Epilepsy is an important comorbidity associated with KBG syndrome, although the entire phenotypic spectrum may not be fully appreciated. METHODS We identified five new patients with KBG syndrome-related epilepsy and compared their phenotype to previously reported cases in the literature. RESULTS Five patients with KBG syndrome-related epilepsy were identified. Three patients (60%) were male. Median age of seizure onset was 18 months (interquartile range 5, 32). The epilepsy type was generalized in three patients (60%); in two, the epilepsy type was combined (40%), with focal and generalized seizures. In one patient (20%), the epilepsy syndrome was classifiable and the child was diagnosed with myoclonic-atonic epilepsy. All five patients had pathogenic variants in the ANKRD11 gene. Epilepsy was refractory in two patients (40%). No specific antiseizure medication (ASM) was found to be superior. Literature review yielded 134 cases, median age of seizure onset was 4 years, and seizures were generalized (n = 60, 44%), focal (n = 26, 19%), or combined (n = 13, 10%). An epilepsy syndrome was diagnosed in 12 patients (8.8%). In those with documented response to ASM (n = 49), 22.4% were refractory (n = 11). CONCLUSIONS Our study confirms that few patients with epilepsy and KBG syndrome have an identifiable epilepsy syndrome and generalized seizures are most common. We highlight that epilepsy associated with KBG syndrome may occur before age one year and should be an important diagnostic consideration in this age group.
Collapse
Affiliation(s)
- Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Madeline Komar
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Sangeetha Yoganathan
- Division of Pediatric Neurology, Department of Neurological Sciences, Christian Medical College (CMC), Vellore, Tamil Nadu, India
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, and Program in Genetics & Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Donnellan EP, Gorman KM, Shahwan A, Allen NM. Epileptic dyskinetic encephalopathy in KBG syndrome: Expansion of the phenotype. Epilepsy Behav Rep 2024; 25:100647. [PMID: 38317675 PMCID: PMC10839861 DOI: 10.1016/j.ebr.2024.100647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
KBG syndrome is characterised by developmental delay, dental (macrodontia of upper central incisors), craniofacial and skeletal anomalies. Since the identification of variants in the gene (ANKRD11) responsible for KBG syndrome, wider phenotypes are emerging. While there is phenotypic variability within many features of KBG syndrome, epilepsy is not usually markedly severe and movement disorders largely undocumented. Here we describe a novel early onset phenotype of dyskinetic epileptic encephalopathy in a male, who presented during infancy with a florid hyperkinetic movement disorder and developmental regression. Initially he had epileptic spasms and tonic seizures, and EEGs revealed a modified hypsarrhythmia. The epilepsy phenotype evolved to Lennox-Gastaut syndrome with seizures resistant to multiple anti-seizure therapies and the movement disorder evolved to choreoathetosis of limbs and head with oro-lingual dyskinesias. Previous extensive neurometabolic and imaging investigations, including panel-based exome sequencing were unremarkable. Later trio exome sequencing identified a de novo pathogenic heterozygous frameshift deletion of ANKRD11 (c.6792delC; p.Ala2265Profs*72). Review of the literature did not identify any individuals with such a hyperkinetic movement disorder presentation in combination with early-onset epileptic encephalopathy. This report expands the phenotype of ANKRD11-related KBG syndrome to include epileptic dyskinetic encephalopathy.
Collapse
Affiliation(s)
- Eoin P. Donnellan
- Dept. of Paediatrics, Galway University Hospital, Ireland
- Dept. of Paediatrics, School of Medicine, University of Galway, Ireland
| | - Kathleen M. Gorman
- Dept of Paediatric Neurology and Neurophysiology, Children’s Health Ireland at Temple St., Dublin 1, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Amre Shahwan
- Dept of Paediatric Neurology and Neurophysiology, Children’s Health Ireland at Temple St., Dublin 1, Ireland
- School of Medicine, Royal College of Surgeons in Ireland, Ireland
| | - Nicholas M. Allen
- Dept. of Paediatrics, Galway University Hospital, Ireland
- Dept. of Paediatrics, School of Medicine, University of Galway, Ireland
| |
Collapse
|
13
|
Amllal N, Elalaoui SC, Zerkaoui M, Chiguer A, Afif L, Izgua AT, Sefiani A, Lyahyai J. Identification of Two Novel ANKRD11 Mutations: Highlighting Incomplete Penetrance in KBG Syndrome. Ann Lab Med 2024; 44:110-117. [PMID: 37665295 PMCID: PMC10485853 DOI: 10.3343/alm.2024.44.1.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/08/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Affiliation(s)
- Nada Amllal
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health, Rabat, Morocco
| | - Siham Chafai Elalaoui
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
- Medical Genetics Unit, CHU Ibn Sina, Rabat, Morocco
| | | | - Amal Chiguer
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health, Rabat, Morocco
| | - Lamia Afif
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health, Rabat, Morocco
| | - Amal Thimou Izgua
- Center of Consultations and External Explorations, HER, CHU Ibn Sina, Rabat, Morocco
| | - Abdelaziz Sefiani
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health, Rabat, Morocco
| | - Jaber Lyahyai
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| |
Collapse
|
14
|
Magistrelli L, Contaldi E, Caushi F, Spano A, Cantello R, D'Alfonso S, Corrado L. A case of early-onset Parkinson's disease in a patient with KBG syndrome. Neurol Sci 2023; 44:4537-4539. [PMID: 37540342 DOI: 10.1007/s10072-023-06988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Affiliation(s)
- Luca Magistrelli
- Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale and "Maggiore della Carità" University Hospital, Novara, Italy.
| | - Elena Contaldi
- PhD Program in Medical Sciences and Biotechnology, University of Piemonte Orientale, 28100, Novara, Italy
| | - Fjorilda Caushi
- Department of Health Sciences, Centre on Autoimmune and Allergic Diseases (CAAD), UPO, University of Eastern Piedmont, 28100, Novara, Italy
| | - Alice Spano
- Laboratory of Genetics, Clinical Biochemistry, University Hospital Maggiore della Carità, Novara, Italy
| | - Roberto Cantello
- Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale and "Maggiore della Carità" University Hospital, Novara, Italy
| | - Sandra D'Alfonso
- Department of Health Sciences, Centre on Autoimmune and Allergic Diseases (CAAD), UPO, University of Eastern Piedmont, 28100, Novara, Italy
| | - Lucia Corrado
- Department of Health Sciences, Centre on Autoimmune and Allergic Diseases (CAAD), UPO, University of Eastern Piedmont, 28100, Novara, Italy
| |
Collapse
|
15
|
Buijsse N, Jansen FE, Ockeloen CW, van Kempen MJA, Zeidler S, Willemsen MH, Scarano E, Monticone S, Zonneveld‐Huijssoon E, Low KJ, Bayat A, Sisodiya SM, Samanta D, Lesca G, de Jong D, Giltay JC, Verbeek NE, Kleefstra T, Brilstra EH, Vlaskamp DRM. Epilepsy is an important feature of KBG syndrome associated with poorer developmental outcome. Epilepsia Open 2023; 8:1300-1313. [PMID: 37501353 PMCID: PMC10690702 DOI: 10.1002/epi4.12799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVE The aim of this study was to describe the epilepsy phenotype in a large international cohort of patients with KBG syndrome and to study a possible genotype-phenotype correlation. METHODS We collected data on patients with ANKRD11 variants by contacting University Medical Centers in the Netherlands, an international network of collaborating clinicians, and study groups who previously published about KBG syndrome. All patients with a likely pathogenic or pathogenic ANKRD11 variant were included in our patient cohort and categorized into an "epilepsy group" or "non-epilepsy group". Additionally, we included previously reported patients with (likely) pathogenic ANKRD11 variants and epilepsy from the literature. RESULTS We included 75 patients with KBG syndrome of whom 26 had epilepsy. Those with epilepsy more often had moderate to severe intellectual disability (42.3% vs 9.1%, RR 4.6 [95% CI 1.7-13.1]). Seizure onset in patients with KBG syndrome occurred at a median age of 4 years (range 12 months - 20 years), and the majority had generalized onset seizures (57.7%) with tonic-clonic seizures being most common (23.1%). The epilepsy type was mostly classified as generalized (42.9%) or combined generalized and focal (42.9%), not fulfilling the criteria of an electroclinical syndrome diagnosis. Half of the epilepsy patients (50.0%) were seizure free on anti-seizure medication (ASM) for at least 1 year at the time of last assessment, but 26.9% of patients had drug-resistant epilepsy (failure of ≥2 ASM). No genotype-phenotype correlation could be identified for the presence of epilepsy or epilepsy characteristics. SIGNIFICANCE Epilepsy in KBG syndrome most often presents as a generalized or combined focal and generalized type. No distinctive epilepsy syndrome could be identified. Patients with KBG syndrome and epilepsy had a significantly poorer neurodevelopmental outcome compared with those without epilepsy. Clinicians should consider KBG syndrome as a causal etiology of epilepsy and be aware of the poorer neurodevelopmental outcome in individuals with epilepsy.
Collapse
Affiliation(s)
- Nathan Buijsse
- Department of Medical GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Floor E. Jansen
- Department of Pediatric Neurology, Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Charlotte W. Ockeloen
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Shimriet Zeidler
- Department of Clinical GeneticsErasmus Medical CenterRotterdamThe Netherlands
| | | | - Emanuela Scarano
- Department of PediatricsSt. Orsola‐Malpighi HospitalBolognaItaly
| | - Sonia Monticone
- Department of PediatricsAzienda Ospedaliero Universitaria Maggiore della CaritàNovaraItaly
| | | | - Karen J. Low
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS trustUniversity of BristolBristolUK
| | - Allan Bayat
- Department for Genetics and Personalized MedicineDanish Epilepsy CentreDianalundDenmark
- Institute for Regional Health ServicesUniversity of Southern DenmarkOdenseDenmark
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology and Chalfont Centre for EpilepsyChalfont St PeterUK
| | - Debopam Samanta
- Child Neurology Section, Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Gaetan Lesca
- Department of GeneticsUniversity Hospitals of LyonLyonFrance
| | - Danielle de Jong
- Department of NeurologyAcademic Center for Epileptology Kempenhaeghe/MUMC+HeezeThe Netherlands
| | - Jaqcues C. Giltay
- Department of Medical GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Nienke E. Verbeek
- Department of Medical GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Tjitske Kleefstra
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Eva H. Brilstra
- Department of Medical GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | |
Collapse
|
16
|
St John M, Tripathi T, Morgan AT, Amor DJ. To speak may draw on epigenetic writing and reading: Unravelling the complexity of speech and language outcomes across chromatin-related neurodevelopmental disorders. Neurosci Biobehav Rev 2023; 152:105293. [PMID: 37353048 DOI: 10.1016/j.neubiorev.2023.105293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Speech and language development are complex neurodevelopmental processes that are incompletely understood, yet current evidence suggests that speech and language disorders are prominent in those with disorders of chromatin regulation. This review aimed to unravel what is known about speech and language outcomes for individuals with chromatin-related neurodevelopmental disorders. A systematic literature search following PRISMA guidelines was conducted on 70 chromatin genes, to identify reports of speech/language outcomes across studies, including clinical reports, formal subjective measures, and standardised/objective measures. 3932 studies were identified and screened and 112 were systematically reviewed. Communication impairment was core across chromatin disorders, and specifically, chromatin writers and readers appear to play an important role in motor speech development. Identification of these relationships is important because chromatin disorders show promise as therapeutic targets due to the capacity for epigenetic modification. Further research is required using standardised and formal assessments to understand the nuanced speech/language profiles associated with variants in each gene, and the influence of chromatin dysregulation on the neurobiology of speech and language development.
Collapse
Affiliation(s)
- Miya St John
- Speech and Language, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Audiology and Speech Pathology, University of Melbourne, VIC, Australia.
| | - Tanya Tripathi
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Angela T Morgan
- Speech and Language, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Audiology and Speech Pathology, University of Melbourne, VIC, Australia; Speech Genomics Clinic, Royal Children's Hospital, Parkville, VIC, Australia.
| | - David J Amor
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, VIC, Australia; Speech Genomics Clinic, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, VIC, Australia.
| |
Collapse
|
17
|
Rhamati L, Marcolla A, Guerrot AM, Lerosey Y, Goldenberg A, Serey-Gaut M, Rio M, Cormier Daire V, Baujat G, Lyonnet S, Rubinato E, Jonard L, Rondeau S, Rouillon I, Couloignier V, Jacquemont ML, Dupin Deguine D, Moutton S, Vincent M, Isidor B, Ziegler A, Marie JP, Marlin S. Audiological phenotyping evaluation in KBG syndrome: Description of a multicenter review. Int J Pediatr Otorhinolaryngol 2023; 171:111606. [PMID: 37336020 DOI: 10.1016/j.ijporl.2023.111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVES Our objective was to reinforce clinical knowledge of hearing impairment in KBG syndrome. KBG syndrome is a rare genetic disorder due to monoallelic pathogenic variations of ANKRD11.The typical phenotype includes facial dysmorphism, costal and spinal malformation and developmental delay. Hearing loss in KBG patients has been reported for many years, but no study has evaluated audiological phenotyping from a clinical and an anatomical point of view. METHODS This French multicenter study included 32 KBG patients with retrospective collection of data on audiological features, ear imaging and genetic investigations. RESULTS We identified a typical audiological profil in KBG syndrome: conductive (71%), bilateral (81%), mild to moderate (84%) and stable (69%) hearing loss, with some audiological heterogeneity. Among patients with an abnormality on CT imaging (55%), ossicular chain impairment (67%), fixation of the stapes footplate (33%) and inner-ear malformations (33%) were the most common abnormalities. CONCLUSION We recommend a complete audiological and radiological evaluation and an ENT-follow up in all patients presenting with KBG Syndrome. Imaging evaluation is necessary to determine the nature of lesions in the middle and inner ear.
Collapse
Affiliation(s)
- L Rhamati
- Service d'ORL et Chirurgie Cervicofaciale et Audiophonologie, CHU Rouen, France
| | - A Marcolla
- Service d'ORL et Chirurgie Cervicofaciale et Audiophonologie, CHU Rouen, France; UR 3830 GRHVN, Université de Rouen Normandie, France
| | - A M Guerrot
- Département de Génétique, Centre de Référence des anomalies du Développement, Inserm U1245, FHU G4 Génomique, Normandie Université, UNIROUEN, CHU Rouen, France
| | - Y Lerosey
- Service d'ORL et Chirurgie Cervicofaciale et Audiophonologie, CHU Rouen, France; UR 3830 GRHVN, Université de Rouen Normandie, France
| | - A Goldenberg
- Département de Génétique, Centre de Référence des anomalies du Développement, Inserm U1245, FHU G4 Génomique, Normandie Université, UNIROUEN, CHU Rouen, France
| | - M Serey-Gaut
- Centre de Recherche en Audiologie, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France; Centre de Référence Surdités Génétiques, UF Développement et Morphogénèse, Service de Médecine génomique des Maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France
| | - M Rio
- UF Neurodeveloppement-Neurologie Mitochondries-Métabolisme, Service de Médecine génomique des Maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France
| | - V Cormier Daire
- Institut Imagine, UMR-1163 INSERM, Université Paris Cité, Paris, France; Centre de Référence Maladies Osseuses Constitutionnels, UF Développement et Morphogénèse, Service de Médecine génomique des Maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France
| | - G Baujat
- Centre de Référence Maladies Osseuses Constitutionnels, UF Développement et Morphogénèse, Service de Médecine génomique des Maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France
| | - S Lyonnet
- Institut Imagine, UMR-1163 INSERM, Université Paris Cité, Paris, France; Centre de Référence Anomalies du Développement, UF Développement et Morphogénèse, Service de Médecine génomique des Maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France
| | - E Rubinato
- Centre de Référence Surdités Génétiques, UF Développement et Morphogénèse, Service de Médecine génomique des Maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France; Medical Genetics, Institute for Maternal and Child Health -IRCCS "Burlo Garofolo", Trieste, Italy
| | - L Jonard
- UF Développement et Morphogénèse, Service de Médecine génomique des Maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France
| | - S Rondeau
- UF Développement et Morphogénèse, Service de Médecine génomique des Maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France
| | - I Rouillon
- Service d'ORL pédiatrique, Hopital Universitaire Necker Enfants-Malades, AP-HP.CUP, Paris, France
| | - V Couloignier
- Service d'ORL pédiatrique, Hopital Universitaire Necker Enfants-Malades, AP-HP.CUP, Paris, France
| | - M L Jacquemont
- Génétique Médicale, Pôle femme-mère-enfant, CHU la Réunion, Saint Pierre, France
| | - D Dupin Deguine
- Service ORL, Otoneurologie et ORL pédiatrique, Hôpital Pierre Paul Riquet, CHU Purpan, Toulouse, France
| | - S Moutton
- Centre Pluridisciplinaire de Diagnostic PréNatal, Pôle mère enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence, France
| | - M Vincent
- Service de Génétique Médicale, CHU Nantes, Institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - B Isidor
- Service de Génétique Médicale, CHU Nantes, Institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - A Ziegler
- Service de Génétique, CHU d'Angers, Angers, France
| | - J P Marie
- Service d'ORL et Chirurgie Cervicofaciale et Audiophonologie, CHU Rouen, France; UR 3830 GRHVN, Université de Rouen Normandie, France
| | - S Marlin
- Centre de Référence Surdités Génétiques, UF Développement et Morphogénèse, Service de Médecine génomique des Maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP.CUP, Paris, France; Institut Imagine, UMR-1163 INSERM, Université Paris Cité, Paris, France.
| |
Collapse
|
18
|
Borja N, Zafeer MF, Rodriguez JA, Morel Swols D, Thorson W, Bademci G, Tekin M. Deletion of first noncoding exon in ANKRD11 leads to KBG syndrome. Am J Med Genet A 2023; 191:1044-1049. [PMID: 36628575 DOI: 10.1002/ajmg.a.63119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023]
Abstract
Phenotypic features of KBG syndrome include craniofacial anomalies, short stature, cognitive disability and behavioral findings. The syndrome is caused by heterozygous pathogenic single nucleotide variants and indels in ANKRD11, or a heterozygous deletion of 16q24.3 that includes ANKRD11. We performed genome sequencing on a patient with clinical manifestations of KBG syndrome including distinct craniofacial features as well as a history of mild intellectual disability and attention-deficit hyperactivity disorder. This led to the identification of a 43 kb intragenic deletion of ANKRD11 affecting the first noncoding exon while leaving the coding regions intact. Review of the literature shows that this is the smallest 5' deletion affecting only the noncoding exons of ANKRD11. Real-time polymerase chain reaction demonstrated that the copy number variant was not present in either of the proband's parents, suggesting it occurred de novo. RNA expression analysis demonstrated significantly decreased transcript abundance compared to controls. This provides new evidence for haploinsufficiency as a mechanism of disease in KBG syndrome.
Collapse
Affiliation(s)
- Nicholas Borja
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Mohammad Faraz Zafeer
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jeimy Alfonso Rodriguez
- John P. Hussmann Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Dayna Morel Swols
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Willa Thorson
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Guney Bademci
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Mustafa Tekin
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, USA.,John P. Hussmann Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
19
|
Chui MMC, Mak CCY, Yu MHC, Wong SYY, Lun KS, Yung TC, Kwong AKY, Chow PC, Chung BHY. Evaluating High-Confidence Genes in Conotruncal Cardiac Defects by Gene Burden Analyses. J Am Heart Assoc 2023; 12:e028226. [PMID: 36789878 PMCID: PMC10111484 DOI: 10.1161/jaha.122.028226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background In nonsyndromic conotruncal cardiac defects, the use of next-generation sequencing for clinical diagnosis is increasingly adopted, but gene-disease associations in research are only partially translated to diagnostic panels, suggesting a need for evidence-based consensus. Methods and Results In an exome data set of 245 patients with conotruncal cardiac defects, we performed burden analysis on a high-confidence congenital heart disease gene list (n=132) with rare (<0.01%) and ultrarare (absent in the Genome Aggregation Database) protein-altering variants. Overall, we confirmed an excess of rare variants compared with ethnicity-matched controls and identified 2 known genes (GATA6, NOTCH1) and 4 candidate genes supported by the literature (ANKRD11, DOCK6, NPHP4, and STRA6). Ultrarare variant analysis was performed in combination with 3 other published studies (n=1451) and identified 3 genes (FLT4, NOTCH1, TBX1) to be significant, whereas a subgroup analysis involving 391 Chinese subjects identified only GATA6 as significant. Conclusions We suggest that these significant genes in our rare and ultrarare burden analyses warrant prioritization for clinical testing implied for rare inherited and de novo variants. Additionally, associations on ClinVar for these genes were predominantly variants of uncertain significance. Therefore, a more stringent assessment of gene-disease associations in a larger and ethnically diverse cohort is required to be prudent for future curation of conotruncal cardiac defect genes.
Collapse
Affiliation(s)
- Martin M C Chui
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Christopher C Y Mak
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Mullin H C Yu
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Sandra Y Y Wong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Kin-Shing Lun
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China
| | - Tak-Cheung Yung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China
| | - Anna K Y Kwong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Pak-Cheong Chow
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine Queen Mary Hospital Hong Kong SAR China
| |
Collapse
|
20
|
Choi Y, Choi J, Do H, Hwang S, Seo GH, Choi IH, Keum C, Choi JH, Kang M, Kim GH, Yoo HW, Lee BH. KBG syndrome: Clinical features and molecular findings in seven unrelated Korean families with a review of the literature. Mol Genet Genomic Med 2022; 11:e2127. [PMID: 36564961 PMCID: PMC10094073 DOI: 10.1002/mgg3.2127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/27/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND KBG syndrome is a rare genetic disorder involving macrodontia of the upper central incisors, craniofacial, skeletal, and neurologic symptoms, caused either by a heterozygous variant in ANKRD11 or deletion of 16q24.3, including ANKRD11. Diagnostic criteria were proposed in 2007 based on 50 cases, but KBG syndrome remains underdiagnosed. METHODS Whole exome sequencing (WES) and array comparative genomic hybridization (array CGH) were conducted for genetic analysis and patient phenotypes were characterized based on medical records. RESULTS Eight patients from seven unrelated families were confirmed with KBG syndrome. All patients (8/8, 100%) had some degree of craniofacial dysmorphism and developmental delay or intellectual disabilities. Triangular face, synophrys, anteverted nostril, prominent ears, long philtrum, and tented upper lip, which are typical facial dysmorphism findings in patients with KBG syndrome, were uniformly identified in the eight patients participating in this study, with co-occurrence rates of 4/8 (50%), 4/8 (50%), 4/8 (50%), 4/8 (50%), 5/8 (62.5%), and 5/8 (62.5%), respectively. Various clinical manifestations not included in the diagnostic criteria were observed. Six patients had point mutations in ANKRD11, one had an exonic deletion of ANKRD11, and one had a 16q24.3 microdeletion. According to the ACMG guidelines, all mutations were classified as pathogenic. The c.2454dup (p.Asn819fs*1) mutation in Pt 4 was reported previously. The remaining variants (c.397 + 1G>A, c.226 + 1G>A, c.2647del (p.Glu883Argfs*94), and c.4093C>T (p.Arg1365Ter)) were novel. CONCLUSION The clinical and molecular features of eight patients from seven unrelated Korean families with KBG syndrome described here will assist physicians in understanding this rare genetic condition.
Collapse
Affiliation(s)
- Yunha Choi
- Department of Pediatrics, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Jungmin Choi
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyosang Do
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Soojin Hwang
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - In Hee Choi
- Department of Genetic Counseling, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Minji Kang
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Han-Wook Yoo
- Department of Pediatrics, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Beom Hee Lee
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Martinez-Cayuelas E, Blanco-Kelly F, Lopez-Grondona F, Swafiri ST, Lopez-Rodriguez R, Losada-Del Pozo R, Mahillo-Fernandez I, Moreno B, Rodrigo-Moreno M, Casas-Alba D, Lopez-Gonzalez A, García-Miñaúr S, Ángeles Mori M, Pacio-Minguez M, Rikeros-Orozco E, Santos-Simarro F, Cruz-Rojo J, Quesada-Espinosa JF, Sanchez-Calvin MT, Sanchez-del Pozo J, Bernado Fonz R, Isidoro-Garcia M, Ruiz-Ayucar I, Alvarez-Mora MI, Blanco-Lago R, De Azua B, Eiris J, Garcia-Peñas JJ, Gil-Fournier B, Gomez-Lado C, Irazabal N, Lopez-Gonzalez V, Madrigal I, Malaga I, Martinez-Menendez B, Ramiro-Leon S, Garcia-Hoyos M, Prieto-Matos P, Lopez-Pison J, Aguilera-Albesa S, Alvarez S, Fernández-Jaén A, Llano-Rivas I, Gener-Querol B, Ayuso C, Arteche-Lopez A, Palomares-Bralo M, Cueto-González A, Valenzuela I, Martinez-Monseny A, Lorda-Sanchez I, Almoguera B. Clinical description, molecular delineation and genotype–phenotype correlation in 340 patients with KBG syndrome: addition of 67 new patients. J Med Genet 2022:jmg-2022-108632. [DOI: 10.1136/jmg-2022-108632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/06/2022] [Indexed: 11/30/2022]
Abstract
BackgroundKBG syndrome is a highly variable neurodevelopmental disorder and clinical diagnostic criteria have changed as new patients have been reported. Both loss-of-function sequence variants and large deletions (copy number variations, CNVs) involvingANKRD11cause KBG syndrome, but no genotype–phenotype correlation has been reported.Methods67 patients with KBG syndrome were assessed using a custom phenotypical questionnaire. Manifestations present in >50% of the patients and a ‘phenotypical score’ were used to perform a genotype–phenotype correlation in 340 patients from our cohort and the literature.ResultsNeurodevelopmental delay, macrodontia, triangular face, characteristic ears, nose and eyebrows were the most prevalentf (eatures. 82.8% of the patients had at least one of seven main comorbidities: hearing loss and/or otitis media, visual problems, cryptorchidism, cardiopathy, feeding difficulties and/or seizures. Associations found included a higher phenotypical score in patients with sequence variants compared with CNVs and a higher frequency of triangular face (71.1% vs 42.5% in CNVs). Short stature was more frequent in patients with exon 9 variants (62.5% inside vs 27.8% outside exon 9), and the prevalence of intellectual disability/attention deficit hyperactivity disorder/autism spectrum disorder was lower in patients with the c.1903_1907del variant (70.4% vs 89.4% other variants). Presence of macrodontia and comorbidities were associated with larger deletion sizes and hand anomalies with smaller deletions.ConclusionWe present a detailed phenotypical description of KBG syndrome in the largest series reported to date of 67 patients, provide evidence of a genotype–phenotype correlation between some KBG features and specificANKRD11variants in 340 patients, and propose updated clinical diagnostic criteria based on our findings.
Collapse
|
22
|
Auconi M, Serino D, Digilio MC, Gnazzo M, Conti M, Vigevano F, Fusco L. Epilepsy in KBG syndrome. Dev Med Child Neurol 2022; 65:712-720. [PMID: 36196002 DOI: 10.1111/dmcn.15428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022]
Abstract
AIM To illustrate the epileptological and electroencephalographic (EEG) characteristics of a cohort of patients with KBG syndrome and epilepsy. METHOD Clinical history, age at epilepsy onset, seizure types, EEG findings, duration of epilepsy, and response to therapies were retrospectively reviewed in 11 patients (three females, eight males) with KBG syndrome. RESULTS All detected genetic mutations were pathogenic and affected the C-terminal region at exon 9 of ANKRD11. One patient had 16q24.3 microdeletion including the ANKRD11 gene. Mean age at onset was 67 months. Epilepsy type was focal in five patients and generalized in four. Two patients had developmental and epileptic encephalopathies. Seizure freedom was obtained after a period varying between 15 days and 6 years. INTERPRETATION In our patients, epilepsy appeared to respond well to treatment and, in some cases, to be self-limiting. The molecular characteristics of our patients' genetic abnormalities did not point towards any specific epilepsy hot spot. Epilepsy should be considered in the diagnostic work-up of patients with KBG syndrome.
Collapse
Affiliation(s)
- Marina Auconi
- Child Neurology Unit, Systems Medicine Department, Tor Vergata University Hospital of Rome, Rome, Italy.,Child Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, Italy
| | - Domenico Serino
- Paediatric Neurology Department, Royal Aberdeen Children's Hospital, Aberdeen, UK
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Maria Gnazzo
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Marta Conti
- Child Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, Italy
| | - Federico Vigevano
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Lucia Fusco
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| |
Collapse
|
23
|
de Boer E, Ockeloen CW, Kampen RA, Hampstead JE, Dingemans AJM, Rots D, Lütje L, Ashraf T, Baker R, Barat-Houari M, Angle B, Chatron N, Denommé-Pichon AS, Devinsky O, Dubourg C, Elmslie F, Elloumi HZ, Faivre L, Fitzgerald-Butt S, Geneviève D, Goos JAC, Helm BM, Kini U, Lasa-Aranzasti A, Lesca G, Lynch SA, Mathijssen IMJ, McGowan R, Monaghan KG, Odent S, Pfundt R, Putoux A, van Reeuwijk J, Santen GWE, Sasaki E, Sorlin A, van der Spek PJ, Stegmann APA, Swagemakers SMA, Valenzuela I, Viora-Dupont E, Vitobello A, Ware SM, Wéber M, Gilissen C, Low KJ, Fisher SE, Vissers LELM, Wong MMK, Kleefstra T. Missense variants in ANKRD11 cause KBG syndrome by impairment of stability or transcriptional activity of the encoded protein. Genet Med 2022; 24:2051-2064. [PMID: 35833929 DOI: 10.1016/j.gim.2022.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/01/2022] Open
Abstract
PURPOSE Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants. METHODS We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments. RESULTS We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity. CONCLUSION Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping.
Collapse
Affiliation(s)
- Elke de Boer
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | | | - Rosalie A Kampen
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Juliet E Hampstead
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Alexander J M Dingemans
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Dmitrijs Rots
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Lukas Lütje
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Tazeen Ashraf
- Department of Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom; Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | | | - Mouna Barat-Houari
- Genetic Laboratory of Rare and Autoinflammatory Diseases, Department of Medical Genetics, Rare Diseases and Personalized Medicine, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Brad Angle
- Advocate Children's Hospital, Park Ridge, IL
| | - Nicolas Chatron
- Service de Génétique, Hospices Civils de Lyon, Bron, France; Institut NeuroMyoGene, CNRS UMR5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Anne-Sophie Denommé-Pichon
- Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR1231-Inserm, Dijon, France; Laboratoire de Génétique Chromosomique et Moléculaire, UF6254 Innovation en Diagnostic Génomique des Maladies Rares, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Christèle Dubourg
- Service de Génétique Moléculaire et Génomique Médicale, CHU de Rennes, Rennes, France; University of Rennes, CNRS, IGDR, UMR 6290, Rennes, France
| | - Frances Elmslie
- South West Thames Regional Clinical Genetics Service, St George's Hospital, University of London, London, United Kingdom
| | | | - Laurence Faivre
- Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR1231-Inserm, Dijon, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France; Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Sarah Fitzgerald-Butt
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indiana University, Indianapolis, IN
| | - David Geneviève
- Medical Genetic Department, Rare Diseases and Personalized Medicine, Montpellier University, Inserm U1183, CHU Montpellier, Montpellier, France
| | - Jacqueline A C Goos
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Dutch Craniofacial Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Benjamin M Helm
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indiana University, Indianapolis, IN; Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Amaia Lasa-Aranzasti
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital and Medicine Genetics Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de Lyon, Bron, France; Institut NeuroMyoGene, CNRS UMR5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Sally A Lynch
- Department of Clinical Genetics, Children's Health Ireland at Crumlin and Temple Street, Dublin, Ireland
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Dutch Craniofacial Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ruth McGowan
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Scottish Genomes Partnership, Glasgow, United Kingdom
| | | | - Sylvie Odent
- CHU Rennes, Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN ITHACA, Hôpital Sud, Rennes, France
| | - Rolph Pfundt
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Audrey Putoux
- Service de Génétique - Centre de Référence Anomalies du Développement, Hospices Civils de Lyon, Bron, France; Équipe GENDEV, Centre de Recherche en Neurosciences de Lyon, INSERM U1028 CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Jeroen van Reeuwijk
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Erina Sasaki
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Arthur Sorlin
- Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR1231-Inserm, Dijon, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Peter J van der Spek
- Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alexander P A Stegmann
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht University, Maastricht, The Netherlands
| | - Sigrid M A Swagemakers
- Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital and Medicine Genetics Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Eléonore Viora-Dupont
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Antonio Vitobello
- Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR1231-Inserm, Dijon, France; Laboratoire de Génétique Chromosomique et Moléculaire, UF6254 Innovation en Diagnostic Génomique des Maladies Rares, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Stephanie M Ware
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indiana University, Indianapolis, IN; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Mathys Wéber
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Christian Gilissen
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Karen J Low
- Department of Clinical Genetics, University Hospital Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Simon E Fisher
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Maggie M K Wong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
| |
Collapse
|
24
|
Loberti L, Bruno LP, Granata S, Doddato G, Resciniti S, Fava F, Carullo M, Rahikkala E, Jouret G, Menke LA, Lederer D, Vrielynck P, Ryba L, Brunetti-Pierri N, Lasa-Aranzasti A, Cueto-González AM, Trujillano L, Valenzuela I, Tizzano EF, Spinelli AM, Bruno I, Currò A, Stanzial F, Benedicenti F, Lopergolo D, Santorelli FM, Aristidou C, Tanteles GA, Maystadt I, Tkemaladze T, Reimand T, Lokke H, Õunap K, Haanpää MK, Holubová A, Zoubková V, Schwarz M, Žordania R, Muru K, Roht L, Tihveräinen A, Teek R, Thomson U, Atallah I, Superti-Furga A, Buoni S, Canitano R, Scandurra V, Rossetti A, Grosso S, Battini R, Baldassarri M, Mencarelli MA, Rizzo CL, Bruttini M, Mari F, Ariani F, Renieri A, Pinto AM. Natural history of KBG syndrome in a large European cohort. Hum Mol Genet 2022; 31:4131-4142. [PMID: 35861666 PMCID: PMC9759332 DOI: 10.1093/hmg/ddac167] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023] Open
Abstract
KBG syndrome (KBGS) is characterized by distinctive facial gestalt, short stature and variable clinical findings. With ageing, some features become more recognizable, allowing a differential diagnosis. We aimed to better characterize natural history of KBGS. In the context of a European collaborative study, we collected the largest cohort of KBGS patients (49). A combined array- based Comparative Genomic Hybridization and next generation sequencing (NGS) approach investigated both genomic Copy Number Variants and SNVs. Intellectual disability (ID) (82%) ranged from mild to moderate with severe ID identified in two patients. Epilepsy was present in 26.5%. Short stature was consistent over time, while occipitofrontal circumference (median value: -0.88 SD at birth) normalized over years. Cerebral anomalies, were identified in 56% of patients and thus represented the second most relevant clinical feature reinforcing clinical suspicion in the paediatric age when short stature and vertebral/dental anomalies are vague. Macrodontia, oligodontia and dental agenesis (53%) were almost as frequent as skeletal anomalies, such as brachydactyly, short fifth finger, fifth finger clinodactyly, pectus excavatum/carinatum, delayed bone age. In 28.5% of individuals, prenatal ultrasound anomalies were reported. Except for three splicing variants, leading to a premature termination, variants were almost all frameshift. Our results, broadening the spectrum of KBGS phenotype progression, provide useful tools to facilitate differential diagnosis and improve clinical management. We suggest to consider a wider range of dental anomalies before excluding diagnosis and to perform a careful odontoiatric/ear-nose-throat (ENT) evaluation in order to look for even submucosal palate cleft given the high percentage of palate abnormalities. NGS approaches, following evidence of antenatal ultrasound anomalies, should include ANKRD11.
Collapse
Affiliation(s)
| | | | - Stefania Granata
- Medical Genetics, University of Siena, Siena 53100, Italy,Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Gabriella Doddato
- Medical Genetics, University of Siena, Siena 53100, Italy,Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Sara Resciniti
- Medical Genetics, University of Siena, Siena 53100, Italy,Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Francesca Fava
- Medical Genetics, University of Siena, Siena 53100, Italy,Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Michele Carullo
- Medical Genetics, University of Siena, Siena 53100, Italy,Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Elisa Rahikkala
- Department of Clinical Genetics, PEDEGO Research Unit, and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu 90014, Finland
| | - Guillaume Jouret
- National Center of Genetics (NCG), Laboratoire national de santé (LNS), L-3555 Dudelange, Luxembourg
| | - Leonie A Menke
- Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Amsterdam 1100, The Netherlands
| | - Damien Lederer
- Institut de Pathologie et de Génétique; Centre de Génétique Humaine, Gosselies 6041, Belgium
| | - Pascal Vrielynck
- William Lennox Neurological Hospital, Reference Center for Refractory Epilepsy UCLouvain, Ottignies 1340, Belgium
| | - Lukáš Ryba
- Department of Biology and Medical Genetics, Charles University – 2 Faculty of Medicine and University Hospital Motol, Prague 150 00, Czech Republic
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, University of Naples "Federico II", Naples 80125, Italy
| | - Amaia Lasa-Aranzasti
- Area of Clinical and Molecular Genetics, Vall d’Hebron University Hospital, Barcellona 08035, Spain
| | | | - Laura Trujillano
- Area of Clinical and Molecular Genetics, Vall d’Hebron University Hospital, Barcellona 08035, Spain
| | - Irene Valenzuela
- Area of Clinical and Molecular Genetics, Vall d’Hebron University Hospital, Barcellona 08035, Spain
| | - Eduardo F Tizzano
- Area of Clinical and Molecular Genetics, Vall d’Hebron University Hospital, Barcellona 08035, Spain
| | | | - Irene Bruno
- Institute for Maternal and Child Health, Trieste 34100, Italy
| | - Aurora Currò
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano 39100, Italy
| | - Franco Stanzial
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano 39100, Italy
| | - Francesco Benedicenti
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano 39100, Italy
| | - Diego Lopergolo
- IRCCS Stella Maris Foundation, Molecular Medicine for Neurodegenerative and Neuromuscular Disease Unit, Pisa 98125, Italy
| | - Filippo Maria Santorelli
- IRCCS Stella Maris Foundation, Molecular Medicine for Neurodegenerative and Neuromuscular Disease Unit, Pisa 98125, Italy
| | - Constantia Aristidou
- Department of Clinical Genetics and Genomics, The Cyprus Institute of Neurology & Genetics, Nicosia 1683, Cyprus
| | - George A Tanteles
- Department of Clinical Genetics and Genomics, The Cyprus Institute of Neurology & Genetics, Nicosia 1683, Cyprus
| | - Isabelle Maystadt
- Institut de Pathologie et de Génétique; Centre de Génétique Humaine, Gosselies 6041, Belgium
| | - Tinatin Tkemaladze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi 0162, Georgia
| | - Tiia Reimand
- Department of Clinical Genetics, Genetic and Personalized Medicine Clinic, Tartu University Hospital, Tartu 50406, Estonia,Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia
| | - Helen Lokke
- Department of Clinical Genetics, Genetic and Personalized Medicine Clinic, Tartu University Hospital, Tartu 50406, Estonia,Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia
| | - Katrin Õunap
- Department of Clinical Genetics, Genetic and Personalized Medicine Clinic, Tartu University Hospital, Tartu 50406, Estonia,Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia
| | - Maria K Haanpää
- Department of Genomics and Clinical Genetics, Turku University Hospital, Turku 20500, Finland
| | - Andrea Holubová
- Department of Biology and Medical Genetics, Charles University – 2 Faculty of Medicine and University Hospital Motol, Prague 150 00, Czech Republic
| | - Veronika Zoubková
- Department of Biology and Medical Genetics, Charles University – 2 Faculty of Medicine and University Hospital Motol, Prague 150 00, Czech Republic
| | - Martin Schwarz
- Department of Biology and Medical Genetics, Charles University – 2 Faculty of Medicine and University Hospital Motol, Prague 150 00, Czech Republic
| | - Riina Žordania
- Department of Clinical Genetics, Genetic and Personalized Medicine Clinic, Tartu University Hospital, Tartu 50406, Estonia
| | - Kai Muru
- Department of Clinical Genetics, Genetic and Personalized Medicine Clinic, Tartu University Hospital, Tartu 50406, Estonia,Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia
| | - Laura Roht
- Department of Clinical Genetics, Genetic and Personalized Medicine Clinic, Tartu University Hospital, Tartu 50406, Estonia,Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia
| | - Annika Tihveräinen
- Department of Child Neurology, Turku University Hospital, Turku 20500, Finland
| | - Rita Teek
- Department of Clinical Genetics, Genetic and Personalized Medicine Clinic, Tartu University Hospital, Tartu 50406, Estonia
| | - Ulvi Thomson
- Centre for Neurological Diseases, West-Tallinn Central Hospital, Tallinn 10617, Estonia
| | - Isis Atallah
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland
| | - Sabrina Buoni
- Division of Child and Adolescent Neuropsychiatry, University of Siena, Siena 53100, Italy
| | - Roberto Canitano
- Division of Child and Adolescent Neuropsychiatry, University of Siena, Siena 53100, Italy
| | - Valeria Scandurra
- Division of Child and Adolescent Neuropsychiatry, University of Siena, Siena 53100, Italy
| | - Annalisa Rossetti
- Clinical Paediatrics, Department of Molecular Medicine and Development, University of Siena, Siena 53100, Italy
| | - Salvatore Grosso
- Clinical Paediatrics, Department of Molecular Medicine and Development, University of Siena, Siena 53100, Italy
| | - Roberta Battini
- IRCCS Stella Maris Foundation, Department of Developmental Neuroscience, Pisa 98125, Italy,Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56122, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena 53100, Italy,Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | | | - Caterina Lo Rizzo
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Mirella Bruttini
- Medical Genetics, University of Siena, Siena 53100, Italy,Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Siena 53100, Italy,Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Francesca Ariani
- Medical Genetics, University of Siena, Siena 53100, Italy,Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Alessandra Renieri
- To whom correspondence should be addressed at: Medical Genetics Unit, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci, 2, 53100 Siena, Italy. Tel: 39 0577 233303; Fax: 39 0577 233325;
| | - Anna Maria Pinto
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| |
Collapse
|
25
|
Geckinli BB, Alavanda C, Arslan Ates E, Yildirim O, Arman A. Enostosis in a patient with KBG syndrome caused by a novel missense ANKRD11 variant. Clin Dysmorphol 2022; 31:153-156. [PMID: 35394473 DOI: 10.1097/mcd.0000000000000421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
| | - Ceren Alavanda
- Department of Medical Genetics, School of Medicine, Marmara University
| | - Esra Arslan Ates
- Department of Medical Genetics, Marmara University Pendik Training and Research Hospital
| | - Ozlem Yildirim
- Department of Molecular Biology and Genetics, Institute of Science, Istanbul University, Istanbul, Turkey
| | - Ahmet Arman
- Department of Medical Genetics, School of Medicine, Marmara University
| |
Collapse
|
26
|
Deng T, Liu Q, Xie J, Li X, Yao B. A case of prenatal diagnosis of 16q24.3 microdeletion KBG syndrome and review of the literature. Clin Case Rep 2022; 10:e5958. [PMID: 35765297 PMCID: PMC9207229 DOI: 10.1002/ccr3.5958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/30/2022] [Accepted: 05/28/2022] [Indexed: 12/04/2022] Open
Abstract
Here we report a case of a 16q24.3 microdeletion KBG syndrome (KBGS) in a fetus. The absence of a well-defined phenotype poses a challenge for genetic diagnosis. This report demonstrated that the high-risk chromosome 21 trisomy could be the first manifestation of KBGS, as observed in this case.
Collapse
Affiliation(s)
- Tianqin Deng
- Reproductive Medical Center, Nanjing School of Clinical MedicineSouthern Medical University (General Hospital of Eastern Military Region)Xuanwu District, NanjingChina
- Reproductive Medical Center, Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical University (Shenzhen Maternity & Child Healthcare Hospital)Futian District, ShenzhenChina
| | - Qingzhi Liu
- Reproductive Medical Center, Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical University (Shenzhen Maternity & Child Healthcare Hospital)Futian District, ShenzhenChina
| | - Jiansheng Xie
- Reproductive Medical Center, Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical University (Shenzhen Maternity & Child Healthcare Hospital)Futian District, ShenzhenChina
| | - Xuemei Li
- Reproductive Medical Center, Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical University (Shenzhen Maternity & Child Healthcare Hospital)Futian District, ShenzhenChina
| | - Bing Yao
- Reproductive Medical Center, Nanjing School of Clinical MedicineSouthern Medical University (General Hospital of Eastern Military Region)Xuanwu District, NanjingChina
| |
Collapse
|
27
|
Bestetti I, Crippa M, Sironi A, Tumiatti F, Masciadri M, Smeland MF, Naik S, Murch O, Bonati MT, Spano A, Cattaneo E, Mariani M, Gotta F, Crosti F, Cavalli P, Pantaleoni C, Natacci F, Bedeschi MF, Milani D, Maitz S, Selicorni A, Spaccini L, Peron A, Russo S, Larizza L, Low K, Finelli P. Expanding the Molecular Spectrum of ANKRD11 Gene Defects in 33 Patients with a Clinical Presentation of KBG Syndrome. Int J Mol Sci 2022; 23:5912. [PMID: 35682590 PMCID: PMC9180463 DOI: 10.3390/ijms23115912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
KBG syndrome (KBGS) is a neurodevelopmental disorder caused by the Ankyrin Repeat Domain 11 (ANKRD11) haploinsufficiency. Here, we report the molecular investigations performed on a cohort of 33 individuals with KBGS clinical suspicion. By using a multi-testing genomic approach, including gene sequencing, Chromosome Microarray Analysis (CMA), and RT-qPCR gene expression assay, we searched for pathogenic alterations in ANKRD11. A molecular diagnosis was obtained in 22 out of 33 patients (67%). ANKRD11 sequencing disclosed pathogenic or likely pathogenic variants in 18 out of 33 patients. CMA identified one full and one terminal ANKRD11 pathogenic deletions, and one partial duplication and one intronic microdeletion, with both possibly being pathogenic. The pathogenic effect was established by RT-qPCR, which confirmed ANKRD11 haploinsufficiency only for the three deletions. Moreover, RT-qPCR applied to six molecularly unsolved KBGS patients identified gene downregulation in a clinically typical patient with previous negative tests, and further molecular investigations revealed a cryptic deletion involving the gene promoter. In conclusion, ANKRD11 pathogenic variants could also involve the regulatory regions of the gene. Moreover, the application of a multi-test approach along with the innovative use of RT-qPCR improved the diagnostic yield in KBGS suspected patients.
Collapse
Affiliation(s)
- Ilaria Bestetti
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20142 Milan, Italy
| | - Milena Crippa
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20142 Milan, Italy
| | - Alessandra Sironi
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20142 Milan, Italy
| | - Francesca Tumiatti
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
| | - Maura Masciadri
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
| | | | - Swati Naik
- Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham B15 2TG, UK;
| | - Oliver Murch
- All Wales Medical Genomics Service, University Hospital of Wales, Cardiff CF14 4XW, UK;
| | - Maria Teresa Bonati
- Clinic of Medical Genetics, San Luca Hospital, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy;
| | - Alice Spano
- Clinical Pediatric Genetic Unit, Pediatric Clinic, Fondazione MBBM, San Gerardo Hospital, 20900 Monza, Italy; (A.S.); (S.M.)
| | - Elisa Cattaneo
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, “V. Buzzi” Children’s Hospital, University of Milan, 20142 Milan, Italy; (E.C.); (L.S.)
| | - Milena Mariani
- Pediatric Unit, ASST Lariana, 22100 Como, Italy; (M.M.); (A.S.)
| | - Fabio Gotta
- Clinical Genetics, ASST Cremona, Via Concordia 1, 26100 Cremona, Italy; (F.G.); (P.C.)
| | - Francesca Crosti
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy;
| | - Pietro Cavalli
- Clinical Genetics, ASST Cremona, Via Concordia 1, 26100 Cremona, Italy; (F.G.); (P.C.)
| | - Chiara Pantaleoni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20142 Milan, Italy;
| | - Federica Natacci
- Medical Genetic Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20142 Milan, Italy; (F.N.); (M.F.B.)
| | - Maria Francesca Bedeschi
- Medical Genetic Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20142 Milan, Italy; (F.N.); (M.F.B.)
| | - Donatella Milani
- Pediatric Highly Intensive Care, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20142 Milan, Italy;
| | - Silvia Maitz
- Clinical Pediatric Genetic Unit, Pediatric Clinic, Fondazione MBBM, San Gerardo Hospital, 20900 Monza, Italy; (A.S.); (S.M.)
- Service of Medical Genetics, Oncologic Institute of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | | | - Luigina Spaccini
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, “V. Buzzi” Children’s Hospital, University of Milan, 20142 Milan, Italy; (E.C.); (L.S.)
| | - Angela Peron
- Child Neuropsychiatry Unit-Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, 20142 Milan, Italy;
- Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, 20142 Milan, Italy
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Silvia Russo
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
| | - Lidia Larizza
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
| | - Karen Low
- University Hospitals Bristol NHS Trust, University of Bristol, Bristol BS1 3NU, UK;
| | - Palma Finelli
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20142 Milan, Italy
| |
Collapse
|
28
|
Sun L, Huang Y, Zhao S, Zhong W, Shi J, Guo Y, Zhao J, Xiong G, Yin Y, Chen Z, Zhang N, Zhao Z, Li Q, Chen D, Niu Y, Li X, Qiu G, Wu Z, Zhang TJ, Tian W, Wu N. Identification of Novel FBN2 Variants in a Cohort of Congenital Contractural Arachnodactyly. Front Genet 2022; 13:804202. [PMID: 35360850 PMCID: PMC8960307 DOI: 10.3389/fgene.2022.804202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
Congenital contractural arachnodactyly (CCA) is a rare autosomal dominant disorder of connective tissue characterized by crumpled ears, arachnodactyly, camptodactyly, large joint contracture, and kyphoscoliosis. The nature course of CCA has not been well-described. We aim to decipher the genetic and phenotypic spectrum of CCA. The cohort was enrolled in Beijing Jishuitan Hospital and Peking Union Medical College Hospital, Beijing, China, based on Deciphering disorders Involving Scoliosis and COmorbidities (DISCO) study (http://www.discostudy.org/). Exome sequencing was performed on patients’ blood DNA. A recent published CCA scoring system was validated in our cohort. Seven novel variants and three previously reported FBN2 variants were identified through exome sequencing. Two variants outside of the neonatal region of FBN2 gene were found. The phenotypes were comparable between patients in our cohort and previous literature, with arachnodactyly, camptodactyly and large joints contractures found in almost all patients. All patients eligible for analysis were successfully classified into likely CCA based on the CCA scoring system. Furthermore, we found a double disease-causing heterozygous variant of FBN2 and ANKRD11 in a patient with blended phenotypes consisting of CCA and KBG syndrome. The identification of seven novel variants broadens the mutational and phenotypic spectrum of CCA and may provide implications for genetic counseling and clinical management.
Collapse
Affiliation(s)
- Liying Sun
- Department of Hand Surgery, Clinical and Research Center for Congenital Hand Deformities and Rare Diseases, Beijing Jishuitan Hospital, Beijing, China
| | - Yingzhao Huang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenyao Zhong
- Department of Hand Surgery, Clinical and Research Center for Congenital Hand Deformities and Rare Diseases, Beijing Jishuitan Hospital, Beijing, China
| | - Jile Shi
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Guo
- Department of Hand Surgery, Clinical and Research Center for Congenital Hand Deformities and Rare Diseases, Beijing Jishuitan Hospital, Beijing, China
| | - Junhui Zhao
- Department of Hand Surgery, Clinical and Research Center for Congenital Hand Deformities and Rare Diseases, Beijing Jishuitan Hospital, Beijing, China
| | - Ge Xiong
- Department of Hand Surgery, Clinical and Research Center for Congenital Hand Deformities and Rare Diseases, Beijing Jishuitan Hospital, Beijing, China
| | - Yuehan Yin
- Department of Hand Surgery, Clinical and Research Center for Congenital Hand Deformities and Rare Diseases, Beijing Jishuitan Hospital, Beijing, China
| | - Zefu Chen
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Zhang
- Department of Hand Surgery, Clinical and Research Center for Congenital Hand Deformities and Rare Diseases, Beijing Jishuitan Hospital, Beijing, China
| | - Zongxuan Zhao
- Department of Hand Surgery, Clinical and Research Center for Congenital Hand Deformities and Rare Diseases, Beijing Jishuitan Hospital, Beijing, China
| | - Qingyang Li
- Department of Hand Surgery, Clinical and Research Center for Congenital Hand Deformities and Rare Diseases, Beijing Jishuitan Hospital, Beijing, China
| | - Dan Chen
- Department of Hand Surgery, Clinical and Research Center for Congenital Hand Deformities and Rare Diseases, Beijing Jishuitan Hospital, Beijing, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Terry Jianguo Zhang, ; Wen Tian, ; Nan Wu,
| | - Wen Tian
- Department of Hand Surgery, Clinical and Research Center for Congenital Hand Deformities and Rare Diseases, Beijing Jishuitan Hospital, Beijing, China
- *Correspondence: Terry Jianguo Zhang, ; Wen Tian, ; Nan Wu,
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Terry Jianguo Zhang, ; Wen Tian, ; Nan Wu,
| |
Collapse
|
29
|
Gao F, Zhao X, Cao B, Fan X, Li X, Li L, Sui S, Su Z, Gong C. Genetic and Phenotypic Spectrum of KBG Syndrome: A Report of 13 New Chinese Cases and a Review of the Literature. J Pers Med 2022; 12:jpm12030407. [PMID: 35330407 PMCID: PMC8948816 DOI: 10.3390/jpm12030407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
KBG syndrome (KBGS) is a rare autosomal dominant inherited disease that involves multiple systems and is associated with variations in the ankyrin repeat domain 11 (ANKRD11) gene. We report the clinical and genetic data for 13 Chinese KBGS patients diagnosed by genetic testing and retrospectively analyse the genotypes and phenotypes of previously reported KBGS patients. The 13 patients in this study had heterozygous variations in the ANKRD11 gene, including seven frameshift variations, three nonsense variations, and three missense variations. They carried 11 variation sites, of which eight were previously unreported. The clinical phenotype analysis of these 13 patients and 240 previously reported patients showed that the occurrence rates of craniofacial anomalies, dental anomalies, global developmental delays, intellectual disability/learning difficulties, limb anomalies, and behavioural anomalies were >70%. The occurrence rates of short stature, delayed bone age, and spinal vertebral body anomalies were >50%. The frequency of global developmental delays and intellectual disability/learning difficulties in patients with truncated ANKRD11 gene variation was higher than that in patients with missense variation in the ANKRD11 gene (p < 0.05). Collectively, this study reported the genotypic and phenotypic characteristics of the largest sample of KBGS patients from China and discovered eight new ANKRD11 gene variations, which enriched the variation spectrum of the ANKRD11 gene. Variation in the ANKRD11 gene mainly caused craniofacial anomalies, growth and developmental anomalies, skeletal system anomalies, and nervous system anomalies. Truncated variation in the ANKRD11 gene is more likely to lead to global growth retardation and intellectual disability/learning difficulties than missense variation in ANKRD11.
Collapse
Affiliation(s)
- Fenqi Gao
- Department of Endocrinology, Genetics, Metabolism and Adolescent Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China; (F.G.); (B.C.); (X.L.); (L.L.); (S.S.)
| | - Xiu Zhao
- Department of Endocrinology, Shenzhen Children’s Hospital, Shenzhen 518000, China;
| | - Bingyan Cao
- Department of Endocrinology, Genetics, Metabolism and Adolescent Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China; (F.G.); (B.C.); (X.L.); (L.L.); (S.S.)
| | - Xin Fan
- Pediatric Dapartment, The Second Affiliated Hospital of Guangxi Medical University, Nanning 510000, China;
| | - Xiaoqiao Li
- Department of Endocrinology, Genetics, Metabolism and Adolescent Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China; (F.G.); (B.C.); (X.L.); (L.L.); (S.S.)
| | - Lele Li
- Department of Endocrinology, Genetics, Metabolism and Adolescent Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China; (F.G.); (B.C.); (X.L.); (L.L.); (S.S.)
| | - Shengbin Sui
- Department of Endocrinology, Genetics, Metabolism and Adolescent Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China; (F.G.); (B.C.); (X.L.); (L.L.); (S.S.)
| | - Zhe Su
- Department of Endocrinology, Shenzhen Children’s Hospital, Shenzhen 518000, China;
- Correspondence: (Z.S.); (C.G.)
| | - Chunxiu Gong
- Department of Endocrinology, Genetics, Metabolism and Adolescent Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China; (F.G.); (B.C.); (X.L.); (L.L.); (S.S.)
- Correspondence: (Z.S.); (C.G.)
| |
Collapse
|
30
|
Ho S, Luk HM, Lo IFM. KBG syndrome in a Chinese population: A case series. Am J Med Genet A 2022; 188:1693-1699. [PMID: 35174959 DOI: 10.1002/ajmg.a.62688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 01/12/2023]
Abstract
KBG syndrome (OMIM #148050) is an autosomal dominant neurodevelopmental disorder characterized by the presence of macrodontia of the permanent central upper incisors, characteristic facial features, delay in development, intellectual disability, short stature, and various skeletal abnormalities. Over 200 affected individuals have been described worldwide, though underdiagnosis is suspected because the characteristic features are variably present and affected individuals can have a mild phenotype. This case series provides a summary of the clinical and molecular characteristics of 10 Chinese KBG syndrome patients recruited from a single center. To our knowledge, this is the first case series for Chinese KBG patients. This case series aimed at exploring potential ethnicity-related variability in KBG syndrome.
Collapse
Affiliation(s)
- Stephanie Ho
- Clinical Genetic Service, Department of Health, HKSAR, Hong Kong
| | - Ho-Ming Luk
- Clinical Genetic Service, Department of Health, HKSAR, Hong Kong
| | - Ivan F M Lo
- Clinical Genetic Service, Department of Health, HKSAR, Hong Kong
| |
Collapse
|
31
|
Ashraf T, Harrison M, Irving M. Ear lobe creases: A novel phenotypic feature in KBG syndrome. Am J Med Genet A 2022; 188:1618-1622. [PMID: 35175682 DOI: 10.1002/ajmg.a.62675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Tazeen Ashraf
- Department of Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Mike Harrison
- Department of Paediatric Dentistry, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Melita Irving
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
32
|
Shangguan H, Chen R. Phenotypes of Cornelia de Lange syndrome caused by non-cohesion genes: Novel variants and literature review. Front Pediatr 2022; 10:940294. [PMID: 35935361 PMCID: PMC9355708 DOI: 10.3389/fped.2022.940294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cornelia de Lange syndrome (CdLS) is a genetic disorder caused by variants in cohesion genes including NIPBL, SMC1A, SMC3, RAD21, and HDAC8. According to the 2018 consensus statement, a patient with clinical scored ≥ 11 points could be diagnosed as CdLS. However, some variants in non-cohesion genes rather than cohesion genes can manifest as phenotypes of CdLS. OBJECTIVES This study describes six variants of non-cohesion genes (KDM6A, KMT2D, KMT2A ANKRD11, and UBE2A), and assesses the reliability of 11-points scale criteria in the clinical diagnosis of CdLS. METHODS Whole-exome sequencing (WES) was performed on six patients with features of CdLS. Phenotypic and genotypic spectra of 40 previously reported patients with features of CdLS caused by non-cohesion genes variants and 34 previously reported patients with NIPBL variants were summarized. Clinical score comparison among patients with NIPBL variants versus those with variants in non-cohesin genes was performed. RESULTS Variants in non-cohesion genes were found in six patients [KMT2A (n = 2), KMT2D, ANKRD11, KDM6A, and UBE2A]. Of them, four variants (KMT2A c.7789C > T, ANKRD11 c.1757_1776del, KDM6A c.655-1G > A, and UBE2A c.439C > T) were novel. Combining with previously reported cases, 46 patients with phenotypes of CdLS caused by variants in 20 non-cohesion genes are now reported. From this total cohort, the average clinical score of patients in ANKRD11 cohort, SETD5 cohort, and AFF4 cohort was statistically lower than those in NIPBL cohort (8.92 ± 1.77 vs. 12.23 ± 2.58, 7.33 ± 2.52 vs. 12.23 ± 2.58, 5.33 ± 1.53 vs. 12.23 ± 2.58; p < 0.05). The average clinical score of KMT2A cohort, EP300 cohort, and NIPBL cohort had not significantly different from (11 ± 2.19 vs. 12.23 ± 2.58, 10 ± 4.58 vs. 12.23 ± 2.58; p > 0.05). CONCLUSION We described 4 novel variants of non-cohesion genes in six Chinese patients with phenotypes of CdLS. Of note, three genes (KMT2D, KDM6A, and UBE2A) causing features of CdLS have never been reported. The proposed clinical criteria for CdLS needed to be updated and refined, insofar as WES was necessary to confirm the diagnosis of CdLS. Our study expanded the spectra of non-cohesion genetic variations in patients with features of CdLS.
Collapse
Affiliation(s)
- Huakun Shangguan
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, China
| | - Ruimin Chen
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
33
|
Digilio MC, Calcagni G, Gnazzo M, Versacci P, Dentici ML, Capolino R, Sinibaldi L, Baban A, Putotto C, Alfieri P, Unolt M, Lepri FR, Alesi V, Genovese S, Novelli A, Marino B, Dallapiccola B. Congenital heart defects in molecularly confirmed KBG syndrome patients. Am J Med Genet A 2021; 188:1149-1159. [PMID: 34971082 DOI: 10.1002/ajmg.a.62632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/30/2021] [Accepted: 12/11/2021] [Indexed: 11/11/2022]
Abstract
Congenital heart defects (CHDs) are known to occur in 9%-25% of patients with KBG syndrome. In this study we analyzed the prevalence and anatomic types of CHDs in 46 personal patients with KBG syndrome, carrying pathogenetic variants in ANKRD11 or 16q24.3 deletion, and reviewed CHDs in patients with molecular diagnosis of KBG syndrome from the literature. CHD was diagnosed in 15/40 (38%) patients with ANKRD11 variant, and in one patient with 16q24.3 deletion. Left ventricular outflow tract obstructions have been diagnosed in 9/15 (60%), subaortic or muscular ventricular septal defect in 5/15 (33%), dextrocardia in 1/15 (8%). The single patient with 16q24.3 deletion and CHD had complete atrioventricular septal defect (AVSD) with aortic coarctation. Review of KBG patients from the literature and present series showed that septal defects have been diagnosed in 44% (27/61) of the cases, left ventricular tract obstructions in 31% (19/61), AVSD in 18% (11/61). Septal defects have been diagnosed in 78% of total patients with 16q24.3 deletion. Valvar anomalies are frequently diagnosed, prevalently involving the left side of the heart. A distinctive association with AVSD is identifiable and could represent a marker to suggest the diagnosis in younger patients. In conclusion, after precise molecular diagnosis and systematic cardiological screening the prevalence of CHD in KBG syndrome seems to be higher than previously reported in clinical articles. In addition to septal defects, left-sided anomalies and AVSD should be considered. Clinical management of KBG syndrome should include accurate and detailed echocardiogram at time of diagnosis.
Collapse
Affiliation(s)
- Maria Cristina Digilio
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Giulio Calcagni
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Maria Gnazzo
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Paolo Versacci
- Pediatric Cardiology Unit, Department of Pediatrics and Urologic Sciences, "La Sapienza" University, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Rossella Capolino
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Lorenzo Sinibaldi
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Anwar Baban
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Carolina Putotto
- Pediatric Cardiology Unit, Department of Pediatrics and Urologic Sciences, "La Sapienza" University, Rome, Italy
| | - Paolo Alfieri
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Marta Unolt
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Francesca R Lepri
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Viola Alesi
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Silvia Genovese
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Bruno Marino
- Pediatric Cardiology Unit, Department of Pediatrics and Urologic Sciences, "La Sapienza" University, Rome, Italy
| | - Bruno Dallapiccola
- Medical Genetics Unit and Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| |
Collapse
|
34
|
Jiménez de la Peña M, Fernández-Mayoralas DM, López-Martín S, Albert J, Calleja-Pérez B, Fernández-Perrone AL, Jiménez de Domingo A, Tirado P, Álvarez S, Fernández-Jaén A. Abnormal frontal gyrification pattern and uncinate development in patients with KBG syndrome caused by ANKRD11 aberrations. Eur J Paediatr Neurol 2021; 35:8-15. [PMID: 34547584 DOI: 10.1016/j.ejpn.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/22/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022]
Abstract
KBG syndrome is characterized by dental, craniofacial and skeletal anomalies, short stature and global developmental delay or intellectual disability. It is caused by microdeletions or truncating mutations of ANKRD11. We report four unrelated probands with this syndrome due to de novo ANKRD11 aberrations that may contribute to a better understanding of the genetics and pathophysiology of this autosomal dominant syndrome. Clinical, cognitive and MRI assessments were performed. Three of the patients showed normal intellectual functioning, whereas the fourth had a borderline level of intellectual functioning. However, all of them showed deficits in various cognitive and socioemotional processes such as attention, executive functions, empathy or pragmatic language. Moreover, all probands displayed marked asymmetry of the uncinate fascicles and an abnormal gyrification pattern in the left frontal lobe. Thus, structural neuroimaging anomalies seem to have been overlooked in this syndrome. Disturbed frontal gyrification and/or lower structural integrity of the uncinate fascisulus might be unrecognized neuroimaging features of KBG syndrome caused by ANKRD11 aberrations. Present results also point out that this syndrome is not necessarily associated with global developmental delay and intellectual disability, but it can be related to other neurodevelopmental disorders or subclinical levels of attention-deficit hyperactivity disorder, autism, communication disorders or specific learning disabilities.
Collapse
Affiliation(s)
| | | | - Sara López-Martín
- Faculty of Psychology, Universidad Autónoma de Madrid, Spain; Neuromottiva, Madrid, Spain
| | - Jacobo Albert
- Faculty of Psychology, Universidad Autónoma de Madrid, Spain
| | | | | | | | - Pilar Tirado
- Department of Pediatric Neurology. Hospital Universitario La Paz, Madrid, Spain
| | - Sara Álvarez
- Genomics and Medicine, NIMGenetics, Madrid, Spain
| | - Alberto Fernández-Jaén
- Department of Pediatric Neurology. Hospital Universitario Quirónsalud, Madrid, Spain; School of Medicine, Universidad Europea de Madrid, Spain.
| |
Collapse
|
35
|
Wide Fontanels, Delayed Speech Development and Hoarse Voice as Useful Signs in the Diagnosis of KBG Syndrome: A Clinical Description of 23 Cases with Pathogenic Variants Involving the ANKRD11 Gene or Submicroscopic Chromosomal Rearrangements of 16q24.3. Genes (Basel) 2021; 12:genes12081257. [PMID: 34440431 PMCID: PMC8394041 DOI: 10.3390/genes12081257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/28/2022] Open
Abstract
KBG syndrome is a neurodevelopmental autosomal dominant disorder characterized by short stature, macrodontia, developmental delay, behavioral problems, speech delay and delayed closing of fontanels. Most patients with KBG syndrome are found to have a mutation in the ANKRD11 gene or a chromosomal rearrangement involving this gene. We hereby present clinical evaluations of 23 patients aged 4 months to 26 years manifesting clinical features of KBG syndrome. Mutation analysis in the patients was performed using panel or exome sequencing and array CGH. Besides possessing dysmorphic features typical of the KBG syndrome, nearly all patients had psychomotor hyperactivity (86%), 81% had delayed speech, 61% had poor weight gain, 56% had delayed closure of fontanel and 56% had a hoarse voice. Macrodontia and a height range of -1 SDs to -2 SDs were noted in about half of the patients; only two patients presented with short stature below -3 SDs. The fact that wide, delayed closing fontanels were observed in more than half of our patients with KBG syndrome confirms the role of the ANKRD11 gene in skull formation and suture fusion. This clinical feature could be key to the diagnosis of KBG syndrome, especially in young children. Hoarse voice is a previously undescribed phenotype of KBG syndrome and could further reinforce clinical diagnosis.
Collapse
|
36
|
Cruz Marino T, Tardif J, Leblanc J, Lavoie J, Morin P, Harvey M, Thomas MJ, Pratte A, Braverman N. First glance at the molecular etiology of hearing loss in French-Canadian families from Saguenay-Lac-Saint-Jean's founder population. Hum Genet 2021; 141:607-622. [PMID: 34387732 DOI: 10.1007/s00439-021-02332-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022]
Abstract
The French-Canadian population of Saguenay-Lac-Saint-Jean is known for its homogenous genetic background. The hereditary causes of hearing loss were previously unexplored in this population. Individuals with hearing loss were referred from the otorhinolaryngology, pediatrics and family physicians' clinics to the medical genetics service at the Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean between June 2015 and March 2021. A regional clinical evaluation strategy was developed. Samples from 63 individuals belonging to 41 families were sent independently to different molecular clinical laboratories and index cases were analyzed through comprehensive multigene panels, with a diagnostic rate of 54%. Sixteen hearing loss causal variants were identified in 12 genes, with eight of these variants not been previously reported in the literature. Recurrent variants were present in four genes, suggesting a possible founder effect, while GJB2 gene variants were scarce. A comprehensive multigene panel approach as part of the proposed clinical evaluation strategy offers a high diagnostic yield for this population.
Collapse
Affiliation(s)
- Tania Cruz Marino
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada.
| | - Jessica Tardif
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Josianne Leblanc
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Janie Lavoie
- Department of Otolaryngology-Head and Neck Surgery, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Pascal Morin
- Department of Otolaryngology-Head and Neck Surgery, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Michel Harvey
- Department of Otolaryngology-Head and Neck Surgery, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Marie-Jacqueline Thomas
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Annabelle Pratte
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Nancy Braverman
- Division of Medical Genetics, Department of Pediatrics and Human Genetics, McGill University, Montreal, Canada
| |
Collapse
|
37
|
Parenti I, Mallozzi MB, Hüning I, Gervasini C, Kuechler A, Agolini E, Albrecht B, Baquero-Montoya C, Bohring A, Bramswig NC, Busche A, Dalski A, Guo Y, Hanker B, Hellenbroich Y, Horn D, Innes AM, Leoni C, Li YR, Lynch SA, Mariani M, Medne L, Mikat B, Milani D, Onesimo R, Ortiz-Gonzalez X, Prott EC, Reutter H, Rossier E, Selicorni A, Wieacker P, Wilkens A, Wieczorek D, Zackai EH, Zampino G, Zirn B, Hakonarson H, Deardorff MA, Gillessen-Kaesbach G, Kaiser FJ. ANKRD11 variants: KBG syndrome and beyond. Clin Genet 2021; 100:187-200. [PMID: 33955014 DOI: 10.1111/cge.13977] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Mutations affecting the transcriptional regulator Ankyrin Repeat Domain 11 (ANKRD11) are mainly associated with the multisystem developmental disorder known as KBG syndrome, but have also been identified in individuals with Cornelia de Lange syndrome (CdLS) and other developmental disorders caused by variants affecting different chromatin regulators. The extensive functional overlap of these proteins results in shared phenotypical features, which complicate the assessment of the clinical diagnosis. Additionally, re-evaluation of individuals at a later age occasionally reveals that the initial phenotype has evolved toward clinical features more reminiscent of a developmental disorder different from the one that was initially diagnosed. For this reason, variants in ANKRD11 can be ascribed to a broader class of disorders that fall within the category of the so-called chromatinopathies. In this work, we report on the clinical characterization of 23 individuals with variants in ANKRD11. The subjects present primarily with developmental delay, intellectual disability and dysmorphic features, and all but two received an initial clinical diagnosis of either KBG syndrome or CdLS. The number and the severity of the clinical signs are overlapping but variable and result in a broad spectrum of phenotypes, which could be partially accounted for by the presence of additional molecular diagnoses and distinct pathogenic mechanisms.
Collapse
Affiliation(s)
- Ilaria Parenti
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Mark B Mallozzi
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Irina Hüning
- Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - Cristina Gervasini
- Genetica Medica, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Beate Albrecht
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Carolina Baquero-Montoya
- Department of Pediatrics, Hospital Pablo Tobón Uribe, Medellín, Colombia
- Genetics Unit, Sura Ayudas Diagnosticas, Medellín, Colombia
| | - Axel Bohring
- Institut für Humangenetik, Westfälische Wilhelms-Universität, Münster, Germany
| | - Nuria C Bramswig
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Andreas Busche
- Institut für Humangenetik, Westfälische Wilhelms-Universität, Münster, Germany
| | - Andreas Dalski
- Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - Yiran Guo
- Center for Applied Genomics and Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Britta Hanker
- Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | | | - Denise Horn
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Yun R Li
- Center for Applied Genomics and Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Medical Scientist Training Program, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sally Ann Lynch
- Department of Clinical Genetics, Children's Health Ireland (CHI) at Crumlin, Dublin, Ireland
| | - Milena Mariani
- Centro Fondazione Mariani per il Bambino Fragile ASST-Lariana Sant'Anna Hospital, Department of Pediatrics, San Fermo della Battaglia (Como), Italy
| | - Livija Medne
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Barbara Mikat
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Donatella Milani
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Xilma Ortiz-Gonzalez
- Department of Pediatrics, Division of Neurology, Epilepsy Neurogenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eva Christina Prott
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- Institut für Praenatale Medizin & Humangenetik, Wuppertal, Germany
| | - Heiko Reutter
- Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany
- Department of Neonatology and Pediatric Intensive Care, University Hospital of Bonn, Bonn, Germany
| | - Eva Rossier
- Institut für Medizinische Genetik und Angewandte Genomik, Universität Tübingen, Tübingen, Germany
- Genetikum Stuttgart, Genetic Counselling and Diagnostics, Stuttgart, Germany
| | - Angelo Selicorni
- Centro Fondazione Mariani per il Bambino Fragile ASST-Lariana Sant'Anna Hospital, Department of Pediatrics, San Fermo della Battaglia (Como), Italy
| | - Peter Wieacker
- Institut für Humangenetik, Westfälische Wilhelms-Universität, Münster, Germany
| | - Alisha Wilkens
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Birgit Zirn
- Genetikum Stuttgart, Genetic Counselling and Diagnostics, Stuttgart, Germany
| | - Hakon Hakonarson
- Center for Applied Genomics and Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew A Deardorff
- Department of Pathology and Laboratory Medicine and Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Frank J Kaiser
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- Essener Zentrum für Seltene Erkrankungen (EZSE), Universitätsmedizin Essen, Essen, Germany
| |
Collapse
|
38
|
Cognitive and Adaptive Characterization of Children and Adolescents with KBG Syndrome: An Explorative Study. J Clin Med 2021; 10:jcm10071523. [PMID: 33917340 PMCID: PMC8038739 DOI: 10.3390/jcm10071523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
KBG syndrome (KBGS) is a rare Mendelian condition caused by heterozygous mutations in ANKRD11 or microdeletions in chromosome 16q24.3 encompassing the gene. KBGS is clinically variable, which makes its diagnosis difficult in a significant proportion of cases. The present study aims at delineating the cognitive profile and adaptive functioning of children and adolescents with KBGS. Twenty-four Italian KBGS with a confirmed diagnosis by molecular testing of the causative ANKRD11 gene were recruited to define both cognitive profile as measured by the Wechsler Intelligence Scale and adaptive functioning as measured by Vineland Adaptive Behavior Scales-II Edition or the Adaptive Behavior Assessment System-II Edition. Among children and adolescents, 17 showed intellectual disability, six presented borderline intellectual functioning and only one child did not show cognitive defects. Concerning cognitive profile, results revealed significant differences between the four indexes of Wechsler Intelligence Scale. Namely, the verbal comprehension index was significantly higher than the perceptual reasoning index, working memory index and the processing speed index. Concerning adaptive functioning, no difference between the domains was found. In conclusion, in our cohort, a heterogeneous profile has been documented in cognitive profiles, with a spike on verbal comprehension, while a flat-trend has emerged in adaptive functioning. Our cognitive and adaptive characterization drives professionals to set the best clinical supports, capturing the complexity and heterogeneity of this rare condition.
Collapse
|
39
|
Li Q, Sun C, Yang L, Lu W, Luo F. Comprehensive analysis of clinical spectrum and genotype associations in Chinese and literature reported KBG syndrome. Transl Pediatr 2021; 10:834-842. [PMID: 34012832 PMCID: PMC8107870 DOI: 10.21037/tp-20-385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Patients with KBG Syndrome due to ANKRD11 mutations and 16q24.3 microdeletions including ANKRD11 were identified. Classical and most frequent phenotypes include various degrees of intelligence disability (ID), short stature (SS), delayed bone age, macrodontia, distinctive facial features and skeletal anomalies. The variable expressivity of KBG syndrome makes it challenging to establish genotype-phenotype correlations, which also affects further studies for this novel syndrome. We aim to report three unrelated patients with KBG syndrome caused by ANKRD11 gene pathological variants and to evaluate potential associations among ANKRD11 gene variant types, the 16q24.3 microdeletion, and the clinical spectrum of KBG syndrome. METHODS The genetic etiology of three unreported KBG patients was identified by whole exome sequencing and confirmed via Sanger sequencing. Literature review was conducted to summarize the phenotype-genotype relationship based on three unreported Chinese cases and 186 reported cases. RESULTS Two pathological variants (c.7407dupC, p.P2530Rfs*61; c.G3046A, p.D1016N) and one reported variant (c.6792dupC, p. P2271Pfs*8) were detected in our patients. Compared with the 16q24.3 microdeletion, patients harboring ANKRD11 gene mutations showed significantly higher frequency of malformations including macrodontia, long philtrum, abnormal eyebrows, widely spaced eyes, anteverted nares, eyelid ptosis, brachydactyly, brachycephaly (P<0.05), and significantly lower risk of congenital heart diseases and frontal bossing (P<0.05). The intellectual disability (ID) was significantly milder among patients carrying truncating variants located between repression domain 1 (RD1) and activation domain (AD) than those carrying mutations disrupting repression domain 2 (RD2) alone and disrupting all functional domain (RD1, AD or RD2) (P<0.05). CONCLUSIONS Novel pathological variants harbored in the ANKRD11 gene contribute to the KBG syndrome variant spectrum. ANKRD11 gene variants disrupting RD1 and RD2 or RD2 alone are more likely to have more severe ID, which warrants different intervention strategies for KBG syndrome.
Collapse
Affiliation(s)
- Qiuyue Li
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Chengjun Sun
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Wei Lu
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Feihong Luo
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
40
|
Chen J, Xia Z, Zhou Y, Ma X, Wang X, Guo Q. A de novo frameshift variant of ANKRD11 (c.1366_1367dup) in a Chinese patient with KBG syndrome. BMC Med Genomics 2021; 14:68. [PMID: 33653342 PMCID: PMC7927266 DOI: 10.1186/s12920-021-00920-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND KBG syndrome is a rare autosomal dominant genetic disease mainly caused by pathogenic variants of ankyrin repeat domain-containing protein 11 (ANKRD11) or deletions involving ANKRD11. Herein, we report a novel de novo heterozygous frameshift ANKRD11 variant via whole exome sequencing in a Chinese girl with KBG syndrome. CASE PRESENTATION A 2-year-2-month-old girl presented with a short stature and developmental delay. Comprehensive physical examinations, endocrine laboratory tests and imaging examination were performed. Whole-exome sequencing and Sanger sequencing were used to detect and confirm the variant associated with KBG in this patient, respectively. The pathogenicity of the variant was further predicted by several in silico prediction tools. The patient was diagnosed as KBG syndrome with a short stature and developmental delay, as well as characteristic craniofacial abnormalities, including a triangular face, long philtrum, wide eyebrows, a broad nasal bridge, prominent and protruding ears, macrodontia of the upper central incisors, dental crowding, and binocular refractive error. Her skeletal anomalies included brachydactyly, fifth finger clinodactyly, and left-skewed caudal vertebrae. Electroencephalographic results generally showed normal background activity with sporadic spikes and slow wave complexes, as well as multiple spikes and slow wave complexes in the bilateral parietal, occipital, and posterior temporal regions during non-rapid-eye-movement sleep. Brain MRI showed a distended change in the bilateral ventricles and third ventricle, as well as malformation of the sixth ventricle. Whole exome sequencing revealed a novel heterozygous frameshift variant in the patient, ANKRD11 c.1366_1367dup, which was predicted to be pathogenic through in silico analysis. The patient had received physical therapy since 4 months of age, and improvement of gross motor dysfunction was evident. CONCLUSIONS The results of this study expand the spectrum of ANKRD11 variants in KBG patients and provide clinical phenotypic data for KBG syndrome at an early age. Our study also demonstrates that whole exome sequencing is an effective method for the diagnosis of rare genetic disorders.
Collapse
Affiliation(s)
- Jing Chen
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Child Health, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhongmin Xia
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xiaomin Ma
- Department of Radiology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xudong Wang
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
41
|
Mattei D, Cavarzere P, Gaudino R, Antoniazzi F, Piacentini G. DYSMORPHIC features and adult short stature: possible clinical markers of KBG syndrome. Ital J Pediatr 2021; 47:15. [PMID: 33494799 PMCID: PMC7830821 DOI: 10.1186/s13052-021-00961-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth monitoring is an essential part of primary health care in children and short stature is frequently regarded as a relatively early sign of poor health. The association of short stature and dysmorphic features should always lead to exclude an underlying syndromic disorder. CASE PRESENTATION We report the case of an Indian school-aged boy with dysmorphic features, intellectual disability and a clinical history characterized by seizures and hearing problems. Although his height was always included in the normal range for age and sex throughout childhood, he presented a short near-adult stature in relation to his mid-parent sex-adjusted target height. This is probably due to a rapidly progressive pubertal development. CONCLUSIONS In the presence of characteristic dysmorphic features, intellectual disability, seizures and hearing problems, KBG syndrome should always be considered. This emergent condition presents a wide spectrum of clinical phenotypes and is often associated with adult short stature.
Collapse
Affiliation(s)
- Davide Mattei
- Department of Pediatrics, University Hospital of Verona, Verona, Italy
| | - Paolo Cavarzere
- Department of Pediatrics, University Hospital of Verona, Verona, Italy.
| | - Rossella Gaudino
- Department of Pediatrics, University Hospital of Verona, Verona, Italy.,Pediatric Clinic, Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Franco Antoniazzi
- Department of Pediatrics, University Hospital of Verona, Verona, Italy.,Pediatric Clinic, Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy.,Regional Center for the diagnosis and treatment of children and adolescents rare skeletal disorders. Pediatric Clinic, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Giorgio Piacentini
- Department of Pediatrics, University Hospital of Verona, Verona, Italy.,Pediatric Clinic, Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| |
Collapse
|
42
|
Wojciechowska K, Nurzyńska-Flak J, Styka B, Kacprzak M, Lejman M. Case Report: Two Newly Diagnosed Patients With KBG Syndrome-Two Different Molecular Changes. Front Pediatr 2021; 9:649043. [PMID: 34604130 PMCID: PMC8485045 DOI: 10.3389/fped.2021.649043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Mutations or deletions of ANKRD11 gene are responsible for the symptoms of KBG syndrome. The KBG syndrome is a rare genetic disorder which is inherited in an autosomal dominant manner. Affected patients usually have characteristic facial features, macrodontia of the upper central incisors, hand abnormalities, developmental delay and short stature. In the present article we would like to report a clinical and molecular case study of two patients affected by KBG syndrome. The diagnosis of the first patient was confirmed by the identification of the novel pathogenic variant in ANKRD11 gene by next-generation sequencing. The second patient was diagnosed after the detection of a 16q24.2q24.3 deletion encompassing the ANKRD11 gene microarray.
Collapse
Affiliation(s)
| | - Joanna Nurzyńska-Flak
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Borys Styka
- Laboratory of Genetic Diagnostic, Children's University Hospital, Lublin, Poland
| | | | - Monika Lejman
- Laboratory of Genetic Diagnostic, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
43
|
Kim SJ, Yang A, Park JS, Kwon DG, Lee JS, Kwon YS, Lee JE. Two Novel Mutations of ANKRD11 Gene and Wide Clinical Spectrum in KBG Syndrome: Case Reports and Literature Review. Front Genet 2020; 11:579805. [PMID: 33262785 PMCID: PMC7687677 DOI: 10.3389/fgene.2020.579805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Background KBG syndrome (OMIM #148050) is a rare, autosomal dominant inherited genetic disorder caused by heterozygous mutations in the ankyrin repeat domain-containing protein 11 (ANKRD11) gene or by microdeletion of chromosome 16q24.3. It is characterized by macrodontia of the upper central incisors, distinctive facial dysmorphism, short stature, vertebral abnormalities, hand anomaly including clinodactyly, and various degrees of developmental delay. KBG syndrome presents with variable clinical feature and severity among individuals. Here, we report two KBG patients who have different novel heterozygous mutations of ANKRD11 gene with wide range of clinical manifestations. Case presentation Two novel heterozygous mutations of ANKRD11 gene were identified in two unrelated Korean patients with variable clinical presentations. The first patient presented with short stature and early puberty and was treated with growth hormone and gonadotropin-releasing hormone agonist without adverse effects. He had mild intellectual disability. In targeted exome sequencing, a novel de novo frameshift variant was identified in ANKRD11, c.5889del, and p. (Ile1963MetfsX9). The second patient had severe intellectual disability with epilepsy. He had normal height and prepubertal stage at the age of 11 years. He had behavioral problems such as autism-like features, anxiety, and stereotypical movements. Whole exome sequencing (WES) was performed, and the novel heterozygous mutation, c3310dup, p. (Glu110GlyfsTer5) in ANKRD11 was identified. Conclusion KBG syndrome is often underdiagnosed because of its non-specific features and phenotypic variability. Performing a next—generation sequencing panel, including the ANKRD11 gene for cases of developmental delay with/without short stature may be helpful to identify hitherto undiagnosed KBG syndrome patients.
Collapse
Affiliation(s)
- Su Jin Kim
- Department of Pediatrics, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Aram Yang
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ji Sun Park
- Department of Pediatrics, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Dae Gyu Kwon
- Department of Orthopaedic Surgery, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Jeong-Seop Lee
- Department of Psychiatry, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Young Se Kwon
- Department of Pediatrics, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Ji Eun Lee
- Department of Pediatrics, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| |
Collapse
|
44
|
Sayed ISM, Abdel-Hamid MS, Abdel-Salam GMH. KBG syndrome in two patients from Egypt. Am J Med Genet A 2020; 182:1309-1312. [PMID: 32222090 DOI: 10.1002/ajmg.a.61552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/19/2020] [Accepted: 03/02/2020] [Indexed: 11/07/2022]
Abstract
KBG syndrome is an intellectual disability (ID) associated with multiple congenital anomalies in which the macrodontia could be the clue for the diagnosis. It is caused either by heterozygous variant in ANKRD11 gene or 16q24.3 microdeletions that involve the ANKRD11 gene. Here, we report on two unrelated male patients who presented with ID, short stature, webbing of neck, and cryptorchidism. Noonan syndrome was suspected first but the presence of macrodontia in both patients pointed to KBG syndrome which was confirmed thereafter by the identification of a novel pathogenic variant in ANKRD11 gene, c.5488G>T (p.E1830*). Macrodontia was noticed in all the deciduous anterior teeth in Patient 1. This observation was reported previously in few patients, but it seems to be a common feature that could be misdiagnosed as premature eruption of teeth. Therefore, our results confirm that maxillary permanent central incisors may not be the only teeth affected in KBG but also all the deciduous teeth. Interestingly, desquamative gingivitis was additionally noted in Patient 1, which has not been reported previously, however; it could be a coincidental finding. To the best of our knowledge, this is the first report from Egypt.
Collapse
Affiliation(s)
- Inas S M Sayed
- Orodental Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Ghada M H Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
45
|
Ge XY, Ge L, Hu WW, Li XL, Hu YY. Growth hormone therapy for children with KBG syndrome: A case report and review of literature. World J Clin Cases 2020; 8:1172-1179. [PMID: 32258089 PMCID: PMC7103963 DOI: 10.12998/wjcc.v8.i6.1172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The incidence of short stature in KBG syndrome is relatively high. Data on the therapeutic effects of growth hormone (GH) on children with KBG syndrome accompanied by short stature in the previous literature has not been summarized.
CASE SUMMARY Here we studied a girl with KBG syndrome and collected the data of children with KBG syndrome accompanied by short stature from previous studies before and after GH therapy. The girl was referred to our department because of short stature. Physical examination revealed mild dysmorphic features. The peak GH responses to arginine and clonidine were 6.22 and 5.40 ng/mL, respectively. The level of insulin-like growth factor 1 (IGF-1) was 42.0 ng/mL. Genetic analysis showed a c.2635 dupG (p.Glu879fs) mutation in the ANKRD11 gene. She received GH therapy. During the first year of GH therapy, her height increased by 0.92 standard deviation score (SDS). Her height increased from -1.95 SDS to -0.70 SDS after two years of GH therapy. There were ten children with KBG syndrome accompanied by short stature who received GH therapy in reported cases. Height SDS was improved in nine (9/10) of them. The mean height SDS in five children with KBG syndrome accompanied by short stature increased from -2.72 ± 0.44 to -1.95 ± 0.57 after the first year of GH therapy (P = 0.001). There were no adverse reactions reported after GH treatment.
CONCLUSION GH treatment is effective in our girl and most children with KBG syndrome accompanied by short stature during the first year of therapy.
Collapse
Affiliation(s)
- Xiu-Ying Ge
- Department of Child Health, Maternal and Child Health Hospital of Linyi, Linyi 276000, Shandong Province, China
| | - Long Ge
- Department of Clinical Laboratory, Linyi People’s Hospital, Linyi 276000, Shandong Province, China
| | - Wen-Wen Hu
- Department of Pediatrics, The People's Hospital of Lanshan District, Linyi 276000, Shandong Province, China
| | - Xiao-Ling Li
- Department of Pediatrics, Linyi People’s Hospital, Linyi 276000, Shandong Province, China
| | - Yan-Yan Hu
- Department of Pediatrics, Linyi People’s Hospital, Linyi 276000, Shandong Province, China
| |
Collapse
|
46
|
Gnazzo M, Lepri FR, Dentici ML, Capolino R, Pisaneschi E, Agolini E, Rinelli M, Alesi V, Versacci P, Genovese S, Cesario C, Sinibaldi L, Baban A, Bartuli A, Marino B, Cappa M, Dallapiccola B, Novelli A, Digilio MC. KBG syndrome: Common and uncommon clinical features based on 31 new patients. Am J Med Genet A 2020; 182:1073-1083. [PMID: 32124548 DOI: 10.1002/ajmg.a.61524] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/08/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
Abstract
KBG syndrome (MIM #148050) is an autosomal dominant disorder characterized by developmental delay, intellectual disability, distinct craniofacial anomalies, macrodontia of permanent upper central incisors, skeletal abnormalities, and short stature. This study describes clinical features of 28 patients, confirmed by molecular testing of ANKRD11 gene, and three patients with 16q24 deletion encompassing ANKRD11 gene, diagnosed in a single center. Common clinical features are reported, together with uncommon findings, clinical expression in the first years of age, distinctive associations, and familial recurrences. Unusual manifestations emerging from present series include juvenile idiopathic arthritis, dysfunctional dysphonia, multiple dental agenesis, idiopathic precocious telarche, oral frenula, motor tics, and lipoma of corpus callosum, pilomatrixoma, and endothelial corneal polymorphic dystrophy. Facial clinical markers suggesting KBG syndrome before 6 years of age include ocular and mouth conformation, wide eyebrows, synophrys, long black eyelashes, long philtrum, thin upper lip. General clinical symptoms leading to early genetic evaluation include developmental delay, congenital malformations, hearing anomalies, and feeding difficulties. It is likely that atypical clinical presentation and overlapping features in patients with multiple variants are responsible for underdiagnosis in KBG syndrome. Improved knowledge of common and atypical features of this disorder improves clinical management.
Collapse
Affiliation(s)
- Maria Gnazzo
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Francesca R Lepri
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Maria Lisa Dentici
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Rossella Capolino
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Elisa Pisaneschi
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Martina Rinelli
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Viola Alesi
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Paolo Versacci
- Pediatric Cardiology, Department of Pediatrics, Sapienza University, Rome, Italy
| | - Silvia Genovese
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Claudia Cesario
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Lorenzo Sinibaldi
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Anwar Baban
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Andrea Bartuli
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Bruno Marino
- Pediatric Cardiology, Department of Pediatrics, Sapienza University, Rome, Italy
| | - Marco Cappa
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Bruno Dallapiccola
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Maria Cristina Digilio
- Laboratory of Medical Genetics, Medical Genetics, Rare Diseases, Pediatric Cardiology, and Endocrinology Units, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| |
Collapse
|
47
|
Obsessive Compulsive Symptoms and Psychopathological Profile in Children and Adolescents with KBG syndrome. Brain Sci 2019; 9:brainsci9110313. [PMID: 31703437 PMCID: PMC6895923 DOI: 10.3390/brainsci9110313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
KBG syndrome is a rare multisystem developmental disorder caused by ankyrin repeat domain-containing protein 11 (ANKRD11) gene haploinsufficiency, resulting from either intragenic loss-of-function mutations or microdeletions encompassing the gene. Concerning the behavioral phenotype, a limited amount of research has been focused on attention deficit and hyperactivity disorder, autistic-like features, anxiety and impairments in emotion regulation, and no study has provided a systematic assessment. The aim of the present work is to investigate the psychopathological profile in children, adolescents, and young adults with KBG syndrome. Seventeen subjects with molecularly confirmed diagnoses were evaluated to investigate cognitive abilities and psychopathological features. Parametric and nonparametric indexes were used to describe the patient cohort according to type and distribution of specific measures. The KBG subjects were characterized by a low mean IQ score, with a distribution characterized by a variability similar to that occurring in the general population. Prevalence of neuropsychiatric disorders were computed as well as the corresponding confidence intervals to compare their prevalence to that reported for the general population. The KBG subjects were characterized by higher prevalence of obsessive-compulsive, tic, depressive and attention deficit and hyperactivity disorders. Obsessive-compulsive disorder is a peculiar aspect characterizing the psychopathological profile of KBG patients, which does not seem to be related to the cognitive level. The present study provides new relevant information towards the definition of a psychopathological phenotype of KBG syndromes useful to plan a better treatment for patients.
Collapse
|
48
|
Kang Y, He D, Li Y, Zhang Y, Shao Q, Zhang M, Ban B. A heterozygous point mutation of the ANKRD11 (c.2579C>T) in a Chinese patient with idiopathic short stature. Mol Genet Genomic Med 2019; 7:e988. [PMID: 31566922 PMCID: PMC6900381 DOI: 10.1002/mgg3.988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/29/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Background Pathogenic variants of ANKRD11 have been reported to cause KBG syndrome characterized by short stature, characteristic facial appearance, intellectual disability, macrodontia, and skeletal anomalies. However, the direct clinical relevance of ANKRD11 mutation with short stature is yet unknown. Methods Here, we report a Chinese boy with idiopathic short stature (ISS) based on clinical and genetic characteristics. Comprehensive medical evaluations were performed including metabolic studies, endocrine function tests, bone X‐rays, and echocardiography. Whole‐exome and Sanger sequencing was used to detect and confirm genetic mutations associated with short stature in this patient, respectively. The pathogenicity of the variant was further predicted by several in silico prediction tools and repositories of sequence variation. Twenty‐four months follow‐up was performed to observe the growth rate of the patient treated with recombinant human growth hormone (GH). Results One heterozygous point mutation (c.2579C>T) was confirmed in the ANKRD11 gene of the patient and inherited from his mother. This mutation site was located within the highly conservative region of ANKRD11 protein and predicted to be possibly damaging in several in silico prediction programs and repositories of sequence variation. Additionally, patient underwent GH replacement therapy for 24 months exhibited good response to the treatment. Conclusion A heterozygous point mutation of AKNRD11 gene was identified in a Chinese patient with short stature phenotype. The patient was treated effectively with GH supplementation.
Collapse
Affiliation(s)
- Yabin Kang
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Dongye He
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Yanying Li
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Yanhong Zhang
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Qian Shao
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Mei Zhang
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Bo Ban
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| |
Collapse
|
49
|
Lord J, McMullan DJ, Eberhardt RY, Rinck G, Hamilton SJ, Quinlan-Jones E, Prigmore E, Keelagher R, Best SK, Carey GK, Mellis R, Robart S, Berry IR, Chandler KE, Cilliers D, Cresswell L, Edwards SL, Gardiner C, Henderson A, Holden ST, Homfray T, Lester T, Lewis RA, Newbury-Ecob R, Prescott K, Quarrell OW, Ramsden SC, Roberts E, Tapon D, Tooley MJ, Vasudevan PC, Weber AP, Wellesley DG, Westwood P, White H, Parker M, Williams D, Jenkins L, Scott RH, Kilby MD, Chitty LS, Hurles ME, Maher ER. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. Lancet 2019; 393:747-757. [PMID: 30712880 PMCID: PMC6386638 DOI: 10.1016/s0140-6736(18)31940-8] [Citation(s) in RCA: 431] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Fetal structural anomalies, which are detected by ultrasonography, have a range of genetic causes, including chromosomal aneuploidy, copy number variations (CNVs; which are detectable by chromosomal microarrays), and pathogenic sequence variants in developmental genes. Testing for aneuploidy and CNVs is routine during the investigation of fetal structural anomalies, but there is little information on the clinical usefulness of genome-wide next-generation sequencing in the prenatal setting. We therefore aimed to evaluate the proportion of fetuses with structural abnormalities that had identifiable variants in genes associated with developmental disorders when assessed with whole-exome sequencing (WES). METHODS In this prospective cohort study, two groups in Birmingham and London recruited patients from 34 fetal medicine units in England and Scotland. We used whole-exome sequencing (WES) to evaluate the presence of genetic variants in developmental disorder genes (diagnostic genetic variants) in a cohort of fetuses with structural anomalies and samples from their parents, after exclusion of aneuploidy and large CNVs. Women were eligible for inclusion if they were undergoing invasive testing for identified nuchal translucency or structural anomalies in their fetus, as detected by ultrasound after 11 weeks of gestation. The partners of these women also had to consent to participate. Sequencing results were interpreted with a targeted virtual gene panel for developmental disorders that comprised 1628 genes. Genetic results related to fetal structural anomaly phenotypes were then validated and reported postnatally. The primary endpoint, which was assessed in all fetuses, was the detection of diagnostic genetic variants considered to have caused the fetal developmental anomaly. FINDINGS The cohort was recruited between Oct 22, 2014, and June 29, 2017, and clinical data were collected until March 31, 2018. After exclusion of fetuses with aneuploidy and CNVs, 610 fetuses with structural anomalies and 1202 matched parental samples (analysed as 596 fetus-parental trios, including two sets of twins, and 14 fetus-parent dyads) were analysed by WES. After bioinformatic filtering and prioritisation according to allele frequency and effect on protein and inheritance pattern, 321 genetic variants (representing 255 potential diagnoses) were selected as potentially pathogenic genetic variants (diagnostic genetic variants), and these variants were reviewed by a multidisciplinary clinical review panel. A diagnostic genetic variant was identified in 52 (8·5%; 95% CI 6·4-11·0) of 610 fetuses assessed and an additional 24 (3·9%) fetuses had a variant of uncertain significance that had potential clinical usefulness. Detection of diagnostic genetic variants enabled us to distinguish between syndromic and non-syndromic fetal anomalies (eg, congenital heart disease only vs a syndrome with congenital heart disease and learning disability). Diagnostic genetic variants were present in 22 (15·4%) of 143 fetuses with multisystem anomalies (ie, more than one fetal structural anomaly), nine (11·1%) of 81 fetuses with cardiac anomalies, and ten (15·4%) of 65 fetuses with skeletal anomalies; these phenotypes were most commonly associated with diagnostic variants. However, diagnostic genetic variants were least common in fetuses with isolated increased nuchal translucency (≥4·0 mm) in the first trimester (in three [3·2%] of 93 fetuses). INTERPRETATION WES facilitates genetic diagnosis of fetal structural anomalies, which enables more accurate predictions of fetal prognosis and risk of recurrence in future pregnancies. However, the overall detection of diagnostic genetic variants in a prospectively ascertained cohort with a broad range of fetal structural anomalies is lower than that suggested by previous smaller-scale studies of fewer phenotypes. WES improved the identification of genetic disorders in fetuses with structural abnormalities; however, before clinical implementation, careful consideration should be given to case selection to maximise clinical usefulness. FUNDING UK Department of Health and Social Care and The Wellcome Trust.
Collapse
Affiliation(s)
| | - Dominic J McMullan
- West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham, UK
| | | | | | - Susan J Hamilton
- West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham, UK
| | - Elizabeth Quinlan-Jones
- West Midlands Fetal Medicine Centre, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham, UK; Centre for Women's and Newborn Health, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | | | - Rebecca Keelagher
- West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham, UK
| | - Sunayna K Best
- North East Thames Regional Genetics Service, UCL Great Ormond Street Institute of Child Health, Great Ormond Street NHS Foundation Trust, London UK
| | - Georgina K Carey
- West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham, UK
| | - Rhiannon Mellis
- North East Thames Regional Genetics Service, UCL Great Ormond Street Institute of Child Health, Great Ormond Street NHS Foundation Trust, London UK
| | - Sarah Robart
- North East Thames Regional Genetics Service, UCL Great Ormond Street Institute of Child Health, Great Ormond Street NHS Foundation Trust, London UK
| | - Ian R Berry
- The Leeds Genetics Laboratory, St James's University Hospital, Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Kate E Chandler
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Deirdre Cilliers
- Oxford Genomic Medicine Centre, Nuffield Orthopaedic Centre, Oxford, UK
| | - Lara Cresswell
- Department of Cytogenetics, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Sandra L Edwards
- Cytogenetics Service, Norfolk and Norwich University Hospital Foundation Trust, Norwich, UK
| | - Carol Gardiner
- West of Scotland Genetics Services, Queen Elizabeth University Hospital, Glasgow, UK
| | - Alex Henderson
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Simon T Holden
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Tessa Homfray
- South West Thames Regional Genetics Centre, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Tracy Lester
- Oxford Regional Genetics Services, The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rebecca A Lewis
- Bristol Genetics Laboratory, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Ruth Newbury-Ecob
- Department of Clinical Genetics, St Michael's Hospital, University Hospitals Bristol, Bristol, UK
| | - Katrina Prescott
- Chapel Allerton Hospital, Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Oliver W Quarrell
- Department of Clinical Genetics, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Simon C Ramsden
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Eileen Roberts
- Bristol Genetics Laboratory, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Dagmar Tapon
- Centre for Fetal Care, Queen Charlotte's and Chelsea Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Madeleine J Tooley
- Department of Clinical Genetics, St Michael's Hospital, University Hospitals Bristol, Bristol, UK
| | - Pradeep C Vasudevan
- Department of Clinical Genetics, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Astrid P Weber
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Diana G Wellesley
- Faculty of Medicine, University of Southampton, Southampton, UK; Wessex Regional Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Paul Westwood
- West of Scotland Genetics Services, Queen Elizabeth University Hospital, Glasgow, UK
| | - Helen White
- Faculty of Medicine, University of Southampton, Southampton, UK; Wessex Regional Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Michael Parker
- The Ethox Centre, Nuffield Department of Population Health and Wellcome Centre for Ethics and Humanities, University of Oxford, Oxford, UK
| | - Denise Williams
- West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham, UK
| | - Lucy Jenkins
- North East Thames Regional Genetics Service, UCL Great Ormond Street Institute of Child Health, Great Ormond Street NHS Foundation Trust, London UK
| | - Richard H Scott
- North East Thames Regional Genetics Service, UCL Great Ormond Street Institute of Child Health, Great Ormond Street NHS Foundation Trust, London UK
| | - Mark D Kilby
- West Midlands Fetal Medicine Centre, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham, UK; Centre for Women's and Newborn Health, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Lyn S Chitty
- North East Thames Regional Genetics Service, UCL Great Ormond Street Institute of Child Health, Great Ormond Street NHS Foundation Trust, London UK
| | | | - Eamonn R Maher
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Medical Genetics, University of Cambridge, Cambridge, UK; Cambridge Biomedical Research Centre, National Institute for Health Research, Cambridge, UK.
| |
Collapse
|
50
|
van Dongen LCM, Wingbermühle E, van der Veld WM, Vermeulen K, Bos-Roubos AG, Ockeloen CW, Kleefstra T, Egger JIM. Exploring the behavioral and cognitive phenotype of KBG syndrome. GENES BRAIN AND BEHAVIOR 2019; 18:e12553. [PMID: 30786142 PMCID: PMC6850621 DOI: 10.1111/gbb.12553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/24/2018] [Accepted: 12/31/2018] [Indexed: 12/11/2022]
Abstract
KBG syndrome is a neurodevelopmental disorder, caused by dominant mutations in ANKRD11, that is characterized by developmental delay/intellectual disability, mild craniofacial dysmorphisms, and short stature. Behavior and cognition have hardly been studied, but anecdotal evidence suggests higher frequencies of ADHD‐symptoms and social‐emotional impairments. In this study, the behavioral and cognitive profile of KBG syndrome will be investigated in order to examine if and how cognitive deficits contribute to behavioral difficulties. A total of 18 patients with KBG syndrome and a control group consisting of 17 patients with other genetic disorders with comparable intelligence levels, completed neuropsychological assessment. Age‐appropriate tasks were selected, covering overall intelligence, attention, memory, executive functioning, social cognition and visuoconstruction. Results were compared using Cohen's d effect sizes. As to behavior, fewer difficulties in social functioning and slightly more attentional problems, hyperactivity, oppositional defiant behavior and conduct problems were found in the KBG syndrome group. Regarding cognitive functioning, inspection of the observed differences shows that patients with KBG syndrome showed lower scores on sustained attention, cognitive flexibility, and visuoconstruction. In contrast, the KBG syndrome group demonstrated higher scores on visual memory, social cognition and emotion recognition. The cognitive profile of KBG syndrome in this sample indicates problems in attention and executive functioning that may underlie the behavior profile which primarily comprises impulsive behavior. Contrary to expectations based on previous (case) reports, no deficits were found in social cognitive functioning. These findings are important for counseling purposes, for tailored education planning, and for the development of personalized intervention.
Collapse
Affiliation(s)
- Linde C M van Dongen
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Ellen Wingbermühle
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands.,Stevig Specialized and Forensic Care for People with Intellectual Disabilities, Dichterbij, Oostrum, The Netherlands
| | | | - Karlijn Vermeulen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands.,Karakter Child and Adolescent Psychiatry, University Centre, Nijmegen, The Netherlands
| | - Anja G Bos-Roubos
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
| | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Jos I M Egger
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands.,Centre of Excellence for Korsakoff and Alcohol-Related Cognitive Disorders, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands.,Stevig Specialized and Forensic Care for People with Intellectual Disabilities, Dichterbij, Oostrum, The Netherlands
| |
Collapse
|