1
|
D-Amino Acids as a Biomarker in Schizophrenia. Diseases 2022; 10:diseases10010009. [PMID: 35225861 PMCID: PMC8883943 DOI: 10.3390/diseases10010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
D-amino acids may play key roles for specific physiological functions in different organs including the brain. Importantly, D-amino acids have been detected in several neurological disorders such as schizophrenia, amyotrophic lateral sclerosis, and age-related disorders, reflecting the disease conditions. Relationships between D-amino acids and neurophysiology may involve the significant contribution of D-Serine or D-Aspartate to the synaptic function, including neurotransmission and synaptic plasticity. Gut-microbiota could play important roles in the brain-function, since bacteria in the gut provide a significant contribution to the host pool of D-amino acids. In addition, the alteration of the composition of the gut microbiota might lead to schizophrenia. Furthermore, D-amino acids are known as a physiologically active substance, constituting useful biomarkers of several brain disorders including schizophrenia. In this review, we wish to provide an outline of the roles of D-amino acids in brain health and neuropsychiatric disorders with a focus on schizophrenia, which may shed light on some of the superior diagnoses and/or treatments of schizophrenia.
Collapse
|
2
|
Chong CS, Kunze M, Hochreiter B, Krenn M, Berger J, Maurer-Stroh S. Rare Human Missense Variants can affect the Function of Disease-Relevant Proteins by Loss and Gain of Peroxisomal Targeting Motifs. Int J Mol Sci 2019; 20:E4609. [PMID: 31533369 PMCID: PMC6770196 DOI: 10.3390/ijms20184609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/06/2019] [Accepted: 09/14/2019] [Indexed: 12/30/2022] Open
Abstract
Single nucleotide variants (SNVs) resulting in amino acid substitutions (i.e., missense variants) can affect protein localization by changing or creating new targeting signals. Here, we studied the potential of naturally occurring SNVs from the Genome Aggregation Database (gnomAD) to result in the loss of an existing peroxisomal targeting signal 1 (PTS1) or gain of a novel PTS1 leading to mistargeting of cytosolic proteins to peroxisomes. Filtering down from 32,985 SNVs resulting in missense mutations within the C-terminal tripeptide of 23,064 human proteins, based on gene annotation data and computational prediction, we selected six SNVs for experimental testing of loss of function (LoF) of the PTS1 motif and five SNVs in cytosolic proteins for gain in PTS1-mediated peroxisome import (GoF). Experimental verification by immunofluorescence microscopy for subcellular localization and FRET affinity measurements for interaction with the receptor PEX5 demonstrated that five of the six predicted LoF SNVs resulted in loss of the PTS1 motif while three of five predicted GoF SNVs resulted in de novo PTS1 generation. Overall, we showed that a complementary approach incorporating bioinformatics methods and experimental testing was successful in identifying SNVs capable of altering peroxisome protein import, which may have implications in human disease.
Collapse
Affiliation(s)
- Cheng-Shoong Chong
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.
- National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore 119077, Singapore.
| | - Markus Kunze
- Medical University of Vienna, Center for Brain Research, Department of Pathobiology of the Nervous System, 1090 Vienna, Austria.
| | - Bernhard Hochreiter
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, 1090 Vienna, Austria.
| | - Martin Krenn
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria.
- Institute of Human Genetics, Technical University Munich, 81675 Munich, Germany.
| | - Johannes Berger
- Medical University of Vienna, Center for Brain Research, Department of Pathobiology of the Nervous System, 1090 Vienna, Austria.
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.
- National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore 119077, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
- Innovations in Food and Chemical Safety Programme (IFCS), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.
| |
Collapse
|
3
|
Chu CS, Chow PCK, Cohen-Woods S, Gaysina D, Tang KY, McGuffin P. The DAOA gene is associated with schizophrenia in the Taiwanese population. Psychiatry Res 2017; 252:201-207. [PMID: 28285246 DOI: 10.1016/j.psychres.2017.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 01/15/2017] [Accepted: 03/06/2017] [Indexed: 11/28/2022]
Abstract
The gene D-amino acid oxidase activator (DAOA), which has a former name of G72, and the D-amino acid oxidase (DAO) gene have been suggested as candidate genes of schizophrenia. However, association studies have so far yielded equivocal results. We analyzed one single nucleotide polymorphism (SNP) for DAO (rs3741775) and seven SNPs for G72 (rs3916956, rs2391191, rs9558562, rs947267, rs778292, rs3918342, and rs1421292) in this study enrolling 248 schizophrenia cases and 267 controls in the Taiwanese samples. In SNP-based single locus association analyses, the rs778292 in the DAOA gene showed significant association with schizophrenia. The rs3741775 in the DAO gene could not withstand statistically significant after multiple corrections. Additionally, a three-SNP haplotype (rs778292-rs3918342-rs1421292) in the DAOA gene were observed to be significantly associated with schizophrenia. Among them, the TCT haplotype presented higher prevalence in controls than in cases whereas the TTT and CTT haplotype were significantly more frequent in cases than in controls. The study also provides significant evidence for epistatic interactions among DAOA and DAO gene in the development of schizophrenia. These results provide additional evidence and indicate that the DAOA gene and DAOA-DAO gene-gene interactions might play a role for schizophrenia in a Taiwanese sample.
Collapse
Affiliation(s)
- Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Philip Chik-Keung Chow
- Department of Child & Adolescent Psychiatry, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung, Taiwan.
| | | | | | - Kwong-Yui Tang
- Department of Psychiatry, Conde de São Januário Central Hospital, Macau, China
| | - Peter McGuffin
- MRC Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
4
|
Jagannath V, Marinova Z, Monoranu CM, Walitza S, Grünblatt E. Expression of D-Amino Acid Oxidase ( DAO/ DAAO) and D-Amino Acid Oxidase Activator ( DAOA/G72) during Development and Aging in the Human Post-mortem Brain. Front Neuroanat 2017; 11:31. [PMID: 28428746 PMCID: PMC5382383 DOI: 10.3389/fnana.2017.00031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/24/2017] [Indexed: 12/30/2022] Open
Abstract
In the brain, D-amino acid oxidase (DAO/DAAO) mainly oxidizes D-serine, a co-agonist of the N-methyl-D-aspartate (NMDA) receptors. Thus, DAO can regulate the function of NMDA receptors via D-serine breakdown. Furthermore, DAO activator (DAOA)/G72 has been reported as both DAOA and repressor. The co-expression of DAO and DAOA genes and proteins in the human brain is not yet elucidated. The aim of this study was to understand the regional and age span distribution of DAO and DAOA (mRNA and protein) in a concomitant manner. We determined DAO and DAOA mRNA and protein expression across six brain regions in normal human post-mortem brain samples (16 weeks of gestation to 91 years) using quantitative real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. We found higher expression of DAO mRNA in the cerebellum, whereas lower expression of DAO protein in the cerebellum compared to the other brain regions studied, which suggests post-transcriptional regulation. We detected DAOA protein but not DAOA mRNA in all brain regions studied, suggesting a tightly regulated expression. To understand this regulation at the transcriptional level, we analyzed DNA methylation levels at DAO and DAOA CpG sites in the cerebellum and frontal cortex of control human post-mortem brain obtained from Gene Expression Omnibus datasets. Indeed, DAO and DAOA CpG sites in the cerebellum were significantly more methylated than those in the frontal cortex. While investigating lifespan effects, we found that DAO mRNA levels were positively correlated with age <2 years in the cerebellum and amygdala. We also detected a significant positive correlation (controlled for age) between DAO and DAOA protein in all of the brain regions studied except for the frontal cortex. In summary, DAO and DAOA expression in the human brain are both age and brain region dependent.
Collapse
Affiliation(s)
- Vinita Jagannath
- Molecular and Neurobiochemistry Laboratory, Centre for Child and Adolescent Psychiatry Research, Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of ZurichZurich, Switzerland
| | - Zoya Marinova
- Molecular and Neurobiochemistry Laboratory, Centre for Child and Adolescent Psychiatry Research, Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of ZurichZurich, Switzerland
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of WürzburgWürzburg, Germany
| | - Susanne Walitza
- Molecular and Neurobiochemistry Laboratory, Centre for Child and Adolescent Psychiatry Research, Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of ZurichZurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH ZurichZurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of ZurichZurich, Switzerland
| | - Edna Grünblatt
- Molecular and Neurobiochemistry Laboratory, Centre for Child and Adolescent Psychiatry Research, Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of ZurichZurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH ZurichZurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of ZurichZurich, Switzerland
| |
Collapse
|
5
|
Liu YL, Wang SC, Hwu HG, Fann CSJ, Yang UC, Yang WC, Hsu PC, Chang CC, Wen CC, Tsai-Wu JJ, Hwang TJ, Hsieh MH, Liu CC, Chien YL, Fang CP, Faraone SV, Tsuang MT, Chen WJ, Liu CM. Haplotypes of the D-Amino Acid Oxidase Gene Are Significantly Associated with Schizophrenia and Its Neurocognitive Deficits. PLoS One 2016; 11:e0150435. [PMID: 26986737 PMCID: PMC4795637 DOI: 10.1371/journal.pone.0150435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/13/2016] [Indexed: 01/01/2023] Open
Abstract
D-amino acid oxidase (DAO) has been reported to be associated with schizophrenia. This study aimed to search for genetic variants associated with this gene. The genomic regions of all exons, highly conserved regions of introns, and promoters of this gene were sequenced. Potentially meaningful single-nucleotide polymorphisms (SNPs) obtained from direct sequencing were selected for genotyping in 600 controls and 912 patients with schizophrenia and in a replicated sample consisting of 388 patients with schizophrenia. Genetic associations were examined using single-locus and haplotype association analyses. In single-locus analyses, the frequency of the C allele of a novel SNP rs55944529 located at intron 8 was found to be significantly higher in the original large patient sample (p = 0.016). This allele was associated with a higher level of DAO mRNA expression in the Epstein-Barr virus-transformed lymphocytes. The haplotype distribution of a haplotype block composed of rs11114083-rs2070586-rs2070587-rs55944529 across intron 1 and intron 8 was significantly different between the patients and controls and the haplotype frequencies of AAGC were significantly higher in patients, in both the original (corrected p < 0.0001) and replicated samples (corrected p = 0.0003). The CGTC haplotype was specifically associated with the subgroup with deficits in sustained attention and executive function and the AAGC haplotype was associated with the subgroup without such deficits. The DAO gene was a susceptibility gene for schizophrenia and the genomic region between intron 1 and intron 8 may harbor functional genetic variants, which may influence the mRNA expression of DAO and neurocognitive functions in schizophrenia.
Collapse
Affiliation(s)
- Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli 35053, Taiwan
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Sheng-Chang Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | | | - Ueng-Cheng Yang
- Institute of Bioinformatics, National Yang-Ming University, Taipei 112, Taiwan
| | - Wei-Chih Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Pei-Chun Hsu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10051, Taiwan
| | - Chien-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Chiang Wen
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Jyy-Jih Tsai-Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei 10051, Taiwan
| | - Tzung-Jeng Hwang
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Ming H. Hsieh
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Chen-Chung Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Chiu-Ping Fang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Stephen V. Faraone
- Medical Genetics Research Center and Department of Psychiatry and Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, United States of America
| | - Ming T. Tsuang
- Harvard Institute of Psychiatric Epidemiology and Genetics, and Departments of Epidemiology and Psychiatry, Harvard University, Boston, Massachusetts, 02115, United States of America
- Institute of Behavioral Genomics, University of California San Diego, San Diego, California 92093, United States of America
| | - Wei J. Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10051, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- * E-mail:
| |
Collapse
|
6
|
Williams SM. Epistasis in the risk of human neuropsychiatric disease. Methods Mol Biol 2015; 1253:71-93. [PMID: 25403528 DOI: 10.1007/978-1-4939-2155-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Neuropsychiatric disease represents the ideal class of disease to assess the role of epistasis, as more genes are expressed in the brain than in any other tissue. In this chapter, two well-studied neuropsychiatric diseases are examined, Alzheimer's disease (AD) and schizophrenia, which have been shown to have multiple and, often, replicated interactions that associate with clinical endpoints or related phenotypes. In each case, a single gene is represented in a plurality of epistatic interactions, apolipoprotein E (APOE) for AD and catechol-O-methyltransferase for schizophrenia. Interestingly, of the two, only APOE has clear-cut and consistent evidence for a marginal association. Unraveling the underlying reasons is important in understanding both genetic etiology and architecture as well as how to use genetics to provide better personalized treatments.
Collapse
Affiliation(s)
- Scott M Williams
- Department of Genetics, Institute of Quantitative Biomedical Sciences, Geisel School of Medicine, Dartmouth College, 78 College ST, HB 6044, Hanover, NH, 03755, USA,
| |
Collapse
|
7
|
Tan J, Lin Y, Su L, Yan Y, Chen Q, Jiang H, Wei Q, Gu L. Association between DAOA gene polymorphisms and the risk of schizophrenia, bipolar disorder and depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2014; 51:89-98. [PMID: 24447945 DOI: 10.1016/j.pnpbp.2014.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Schizophrenia (SCZ), bipolar disorder (BD) and depressive disorder (DD) are common psychiatric disorders, which show common genetic vulnerability. Previous gene-disease association studies have reported correlations between d-amino acid oxidase activator (DAOA) gene polymorphisms and the three psychiatric disorders. However, the findings were contradictory. A meta-analysis was therefore conducted to provide more robust investigations into DAOA polymorphisms and the risk of SCZ, BD and DD. METHODS This meta-analysis recruited 46 published studies up to July 2013, including 17,515 cases and 25,189 controls. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the association between three specific DAOA SNPs and SCZ, BD and DD. Publication bias was tested by Begg's test and funnel plot, and heterogeneity was assessed by the Cochran's chi-square-based Q statistic and the inconsistency index (I(2)). Moreover, the robustness of the findings was estimated by cumulative meta-analysis. RESULTS DAOA genetic polymorphisms (M15, M18 and M23) were not found to confer a statistically significant increased risk of SCZ, BD or DD in the overall sample, or in Caucasians and Asians following subgroup analysis. CONCLUSION The current study indicated that M15, M18 and M23 might not be the risk factor for SCZ, BD or DD. However, further studies are required to provide robust evidence to estimate the association between DAOA polymorphisms and psychiatric disorders.
Collapse
Affiliation(s)
- Jinjing Tan
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi, China
| | - Yu Lin
- School of Preclinical Medicine of Guangxi Medical University, Nanning, Guangxi, China
| | - Li Su
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Yan
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi, China
| | - Qing Chen
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi, China
| | - Haiyun Jiang
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi, China
| | - Qiugui Wei
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi, China
| | - Lian Gu
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi, China.
| |
Collapse
|
8
|
Berridge MJ. Calcium signalling and psychiatric disease: bipolar disorder and schizophrenia. Cell Tissue Res 2014; 357:477-92. [PMID: 24577622 DOI: 10.1007/s00441-014-1806-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/10/2014] [Indexed: 12/21/2022]
Abstract
Neurons have highly developed Ca(2+) signalling systems responsible for regulating many neural functions such as the generation of brain rhythms, information processing and the changes in synaptic plasticity that underpins learning and memory. The signalling mechanisms that regulate neuronal excitability are particularly important for processes such as sensory perception, cognition and consciousness. The Ca(2+) signalling pathway is a key component of the mechanisms responsible for regulating neuronal excitability, information processing and cognition. Alterations in gene transcription are particularly important as they result in subtle alterations in the neuronal signalling mechanisms that have been implicated in many neural diseases. In particular, dysregulation of the Ca(2+) signalling pathway has been implicated in the development of some of the major psychiatric diseases such as bipolar disorder (BPD) and schizophrenia.
Collapse
|
9
|
Abstract
Schizophrenia is a severe neuropsychiatric disorder without adequate current treatment. Recent theories of schizophrenia focus on disturbances of glutamatergic neurotransmission particularly at N-methyl-D-aspartate (NMDA)-type glutamate receptors. NMDA receptors are regulated in vivo by the amino acids glycine and D-serine. Glycine levels, in turn, are regulated by glycine type I (GlyT1) transporters, which serve to maintain low subsaturating glycine levels in the vicinity of the NMDA receptor. A proposed approach to treatment of schizophrenia, therefore, is inhibition of GlyT1-mediated transport. Over the past decade, several well tolerated, high affinity GlyT1 inhibitors have been developed and shown to potentiate NMDA receptor-mediated neurotransmission in animal models relevant to schizophrenia. In addition, clinical trials have been conducted with sarcosine (N-methylglycine), a naturally occurring GlyT1 inhibitor, and with the high affinity compound RG1678. Although definitive trials remain ongoing, encouraging results to date have been reported.
Collapse
Affiliation(s)
- Daniel C Javitt
- Nathan S Kline Institute for Psychiatric Research, Columbia University, Orangeburg, NY 10962, USA.
| |
Collapse
|
10
|
Nunes EA, MacKenzie EM, Rossolatos D, Perez-Parada J, Baker GB, Dursun SM. D-serine and schizophrenia: an update. Expert Rev Neurother 2012; 12:801-12. [PMID: 22853788 DOI: 10.1586/ern.12.65] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Considering the lengthy history of pharmacological treatment of schizophrenia, the development of novel antipsychotic agents targeting the glutamatergic system is relatively new. A glutamatergic deficit has been proposed to underlie many of the symptoms typically observed in schizophrenia, particularly the negative and cognitive symptoms (which are less likely to respond to current treatments). D-serine is an important coagonist of the glutamate NMDA receptor, and accumulating evidence suggests that D-serine levels and/or activity may be dysfunctional in schizophrenia and that facilitation of D-serine transmission could provide a significant therapeutic breakthrough, especially where conventional treatments have fallen short. A summary of the relevant animal data, as well as genetic studies and clinical trials examining D-serine as an adjunct to standard antipsychotic therapy, is provided in this article. Together, the evidence suggests that research on the next generation of antipsychotic agents should include studies on increasing brain levels of D-serine or mimicking its action on the NMDA receptor.
Collapse
Affiliation(s)
- Emerson A Nunes
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Drews E, Otte DM, Zimmer A. Involvement of the primate specific gene G72 in schizophrenia: From genetic studies to pathomechanisms. Neurosci Biobehav Rev 2012; 37:2410-7. [PMID: 23092656 DOI: 10.1016/j.neubiorev.2012.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 09/03/2012] [Accepted: 10/15/2012] [Indexed: 12/28/2022]
Abstract
Schizophrenia is a human mental disorder that affects an individual's thoughts, perception, affect and behavior, which is caused by a complex interaction of genetic and environmental factors. Genetic studies have implicated the evolutionary novel, anthropoid primate-specific gene locus G72/G30 in the etiology of schizophrenia and other psychiatric disorders. This gene encodes the protein LG72, which has been discussed as a modulator of the peroxisomal enzyme d-amino-acid-oxidase (DAO), or, alternatively as a mitochondrial protein. Recently, G72 transgenic (G72Tg) mice were generated that express the protein throughout the brain. These mice show several behavioral deficits that are related to schizophrenia. Further, G72Tg mice have a reduced activity of mitochondrial complex I, with a concomitantly increased production of reactive oxygen species, as well as deficits in short-term plasticity. Results from these studies demonstrate that expression of the human G72/G30 gene locus in mice produces behavioral phenotypes that are relevant to schizophrenia. They implicate LG72-induced mitochondrial and synaptic defects as a possible pathomechanism of this disease.
Collapse
Affiliation(s)
- Eva Drews
- Institute of Molecular Psychiatry, University of Bonn, Germany.
| | | | | |
Collapse
|
12
|
Yamanaka M, Miyoshi Y, Ohide H, Hamase K, Konno R. d-Amino acids in the brain and mutant rodents lacking d-amino-acid oxidase activity. Amino Acids 2012; 43:1811-21. [DOI: 10.1007/s00726-012-1384-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 07/30/2012] [Indexed: 12/27/2022]
|
13
|
Chen J, Xu Y, Zhang J, Liu Z, Xu C, Zhang K, Shen Y, Xu Q. Genotypic association of the DAOA gene with resting-state brain activity in major depression. Mol Neurobiol 2012; 46:361-73. [PMID: 22851402 DOI: 10.1007/s12035-012-8294-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/21/2012] [Indexed: 11/25/2022]
Abstract
Compelling evidence suggests that the glutamatergic system may contribute to the pathophysiology of major depression (MDD). While the D-amino acid oxidase activator (DAOA) gene can affect glutamatergic function, its genetic associations with MDD and abnormal resting-state brain activity have yet to be elucidated. A total of 488 patients with MDD and 480 controls were recruited to examine MDD association for the DAOA gene in a Chinese population, of whom 53 medication-free patients and 46 well-matched controls underwent resting-state functional magnetic resonance imaging for regional homogeneity (ReHo) analysis. The differences in ReHo between genotypes of interest were initially tested by the Student's t test, and the 2 × 2 (genotypes × disease status) ANOVA was then performed to identify the main effects of genotypes, disease status, and their interactions in MDD. Allelic association of the DAOA gene with MDD was observed for rs2391191, rs3918341, and rs778294 and haplotypic association for 2- and 3-SNP haplotypes. Six clusters in the cerebellum, right middle frontal gyrus and left middle temporal gyrus showed genotypic association between altered ReHo and rs2391191. The main effects of rs2391191 genotypes were found in the right culmen and right middle frontal gyrus. The left uvula and left middle temporal gyrus showed a genotypes × disease status interaction. Our results suggest that the DAOA gene may confer genetic risk of MDD. Genotypic effect of rs2391191 and its interaction with disease status may contribute to the altered ReHo in patients with MDD. Glutamatergic modulation may play an important role in alteration of the resting-state brain activities.
Collapse
Affiliation(s)
- Jun Chen
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Peking Union Medical College, Tsinghua University, No.5 Dong Dan San Tiao, Beijing 100005, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Prata DP, Papagni SA, Mechelli A, Fu CHY, Kambeitz J, Picchioni M, Kane F, Kalidindi S, McDonald C, Kravariti E, Toulopoulou T, Bramon E, Walshe M, Murray R, Collier DA, McGuire PK. Effect of D-amino acid oxidase activator (DAOA; G72) on brain function during verbal fluency. Hum Brain Mapp 2012; 33:143-53. [PMID: 21391259 PMCID: PMC6870192 DOI: 10.1002/hbm.21198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/17/2010] [Accepted: 10/18/2010] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The D-Amino acid oxidase activator (G72 or DAOA) is believed to play a key role in the regulation of central glutamatergic transmission which is seen to be altered in psychosis. It is thought to regulate D-amino acid oxidase (DAO), which metabolizes D-serine, a co-agonist of NMDA-type glutamate receptors and to be involved in dendritic arborization. Linkage, genetic association and expression studies have implicated the G72 gene in both schizophrenia and bipolar disorder. AIMS To examine the influence of G72 variation on brain function in the healthy population. METHOD Fifty healthy volunteers were assessed using functional magnetic resonance imaging while performing a verbal fluency task. Regional brain activation and task-dependent functional connectivity during word generation was compared between different rs746187 genotypes. RESULTS G72 rs746187 genotype had a significant effect on activation in the left postcentral and supramarginal gyri (FWE P < 0.05), and on the task-dependent functional coupling of this region with the retrosplenial cingulate gyrus (FWE P < 0.05). CONCLUSIONS Our results may reflect an effect of G72 on glutamatergic transmission, mediated by an influence on D-amino acid oxidase activity, on brain areas particularly relevant to the hypoglutamatergic model of psychosis.
Collapse
Affiliation(s)
- Diana P Prata
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Schizophrenia affects approximately 1% of the population and continues to be associated with poor outcome because of the limited efficacy of and noncompliance with existing antipsychotic medications. An alternative hypothesis invoking the excitatory neurotransmitter, glutamate, arose out of clinical observations that NMDA receptor antagonists, the dissociative anesthetics like ketamine, can replicate in normal individuals the full range of symptoms of schizophrenia including psychosis, negative symptoms, and cognitive impairments. Low dose ketamine can also re-create a number of physiologic abnormalities characteristic of schizophrenia. Postmortem studies have revealed abnormalities in endogenous modulators of NMDA receptors in schizophrenia as well as components of a postsynaptic density where NMDA receptors are localized. Gene association studies have revealed several genes that affect NMDA receptor function whose allelic variants are associated with increased risk for schizophrenia including genes encoding D-amino acid oxidase, its modulator G72, dysbindin, and neuregulin. The parvalbumin-positive, fast-firing GABAergic interneurons that provide recurrent inhibition to cortical-limbic pyramidal neurons seem to be most sensitive to NMDA receptor hypofunction. As a consequence, disinhibition of glutamatergic efferents disrupts cortical processing, causing cognitive impairments and negative symptoms, and drives subcortical dopamine release, resulting in psychosis. Drugs designed to correct the cortical-limbic dysregulated glutamatergic neurotransmission show promise for reducing negative and cognitive symptoms of schizophrenia as well as its positive symptoms.
Collapse
|
16
|
d-Amino acid metabolism in mammals: Biosynthesis, degradation and analytical aspects of the metabolic study. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3162-8. [DOI: 10.1016/j.jchromb.2011.06.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 12/28/2022]
|
17
|
The association of schizophrenia risk D-amino acid oxidase polymorphisms with sensorimotor gating, working memory and personality in healthy males. Neuropsychopharmacology 2011; 36:1677-88. [PMID: 21471957 PMCID: PMC3138651 DOI: 10.1038/npp.2011.49] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is evidence supporting a role for the D-amino acid oxidase (DAO) locus in schizophrenia. This study aimed to determine the relationship of five single-nucleotide polymorphisms (SNPs) within the DAO gene identified as promising schizophrenia risk genes (rs4623951, rs2111902, rs3918346, rs3741775, and rs3825251) to acoustic startle, prepulse inhibition (PPI), working memory, and personality dimensions. A highly homogeneous study entry cohort (n = 530) of healthy, young male army conscripts (n = 703) originating from the Greek LOGOS project (Learning On Genetics Of Schizophrenia Spectrum) underwent PPI of the acoustic startle reflex, working memory, and personality assessment. The QTPHASE from the UNPHASED package was used for the association analysis of each SNP or haplotype data, with p-values corrected for multiple testing by running 10,000 permutations of the data. The rs4623951_T-rs3741775_G and rs4623951_T-rs2111902_T diplotypes were associated with reduced PPI and worse performance in working memory tasks and a personality pattern characterized by attenuated anxiety. Median stratification analysis of the risk diplotype group (ie, those individuals homozygous for the T and G alleles (TG+)) showed reduced PPI and working memory performance only in TG+ individuals with high trait anxiety. The rs4623951_T allele, which is the DAO polymorphism most strongly associated with schizophrenia, might tag a haplotype that affects PPI, cognition, and personality traits in general population. Our findings suggest an influence of the gene in the neural substrate mediating sensorimotor gating and working memory, especially when combined with high anxiety and further validate DAO as a candidate gene for schizophrenia and spectrum disorders.
Collapse
|
18
|
Popiolek M, Ross JF, Charych E, Chanda P, Gundelfinger ED, Moss SJ, Brandon NJ, Pausch MH. D-amino acid oxidase activity is inhibited by an interaction with bassoon protein at the presynaptic active zone. J Biol Chem 2011; 286:28867-28875. [PMID: 21700703 DOI: 10.1074/jbc.m111.262063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia is a highly heritable neuropsychiatric disorder affecting ∼1% of the world's population. Linkage and association studies have identified multiple candidate schizophrenia susceptibility genes whose functions converge on the glutamatergic neurotransmitter system. One such susceptibility gene encoding D-amino acid oxidase (DAO), an enzyme that metabolizes the NMDA receptor (NMDAR) co-agonist D-serine, has the potential to modulate NMDAR function in the context of schizophrenia. To further investigate its cellular regulation, we sought to identify DAO-interacting proteins that participate in its functional regulation in rat cerebellum, where DAO expression is especially high. Immunoprecipitation with DAO-specific antibodies and subsequent mass spectrometric analysis of co-precipitated proteins yielded 24 putative DAO-interacting proteins. The most robust interactions occurred with known components of the presynaptic active zone, such as bassoon (BSN) and piccolo (PCLO). The interaction of DAO with BSN was confirmed through co-immunoprecipitation assays using DAO- and BSN-specific antibodies. Moreover, DAO and BSN colocalized with one another in cultured cerebellar granule cells and in synaptic junction membrane protein fractions derived from rat cerebellum. The functional consequences of this interaction were studied through enzyme assay experiments, where DAO enzymatic activity was significantly inhibited as a result of its interaction with BSN. Taking these results together, we hypothesize that synaptic D-serine concentrations may be under tight regulation by a BSN-DAO complex. We therefore predict that this mechanism plays a role in the modulation of glutamatergic signaling through NMDARs. It also furthers our understanding of the biology underlying this potential therapeutic entry point for schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Michael Popiolek
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - John F Ross
- Aileron Therapeutics, Cambridge, Massachusetts, Germany
| | - Erik Charych
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Pranab Chanda
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut 06340
| | | | | | - Nicholas J Brandon
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut 06340,.
| | - Mark H Pausch
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut 06340,; Merck, West Point, Pennsylvania 19486
| |
Collapse
|
19
|
Papagni SA, Mechelli A, Prata DP, Kambeitz J, Fu CH, Picchioni M, Walshe M, Toulopoulou T, Bramon E, Murray RM, Collier DA, Bellomo A, McGuire P. Differential effects of DAAO on regional activation and functional connectivity in schizophrenia, bipolar disorder and controls. Neuroimage 2011; 56:2283-91. [DOI: 10.1016/j.neuroimage.2011.03.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/10/2011] [Accepted: 03/14/2011] [Indexed: 01/02/2023] Open
|
20
|
Müller DJ, Zai CC, Shinkai T, Strauss J, Kennedy JL. Association between the DAOA/G72 gene and bipolar disorder and meta-analyses in bipolar disorder and schizophrenia. Bipolar Disord 2011; 13:198-207. [PMID: 21443574 DOI: 10.1111/j.1399-5618.2011.00905.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The D-amino acid oxidase activator (DAOA, or G72) is involved in the oxidation of D-serine, an endogenous modulator of N-methyl-D-aspartate receptors and thus represents an important candidate in psychotic disorders. Several studies reported the DAOA/G72 gene to be associated with schizophrenia (SZ) and bipolar disorder (BD); however, the associated polymorphisms varied between SZ and BD. This study attempts to replicate the DAOA/G72 findings in BD and to conduct subgroup analyses based on the presence or absence of psychotic symptoms. METHODS Five polymorphisms of the DAOA/G72 gene (rs1341402, rs1935062, rs2391191, rs947267, and rs778294) were analysed for association with BD in a family-based study design (303 core families including 916 individuals). We also conducted a meta-analysis of DAOA/G72 polymorphisms in BD and SZ. RESULTS Marker rs1935062 was significantly associated with BD diagnosis in our sample (Z-score for C-allele= -2.33, p=0.02, uncorrected for genome-wide multiple comparisons). When we examined the subset of BD patients with psychotic symptoms (157 families), no significant results were obtained. Our meta-analysis yielded negative findings for DAOA/G72 markers in BD and positive findings for marker rs2391191 in SZ in East Asians. However, significant heterogeneity across studies limits interpretation. CONCLUSIONS Our results provide evidence that suggests a possible role of the DAOA/G72 gene in BD and SZ. Marker rs1935062 may be specifically associated with BD, while marker rs2391191 may be associated with SZ but not with BD. Together with previous studies, these findings suggest that the DAOA/G72 gene confers susceptibility to both BD and SZ, but that different polymorphisms may potentially differentiate between these two disorders.
Collapse
Affiliation(s)
- Daniel J Müller
- Neurogenetics Section, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
21
|
Labrie V, Wong AHC, Roder JC. Contributions of the D-serine pathway to schizophrenia. Neuropharmacology 2011; 62:1484-503. [PMID: 21295046 DOI: 10.1016/j.neuropharm.2011.01.030] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 01/16/2011] [Accepted: 01/19/2011] [Indexed: 01/30/2023]
Abstract
The glutamate neurotransmitter system is one of the major candidate pathways for the pathophysiology of schizophrenia, and increased understanding of the pharmacology, molecular biology and biochemistry of this system may lead to novel treatments. Glutamatergic hypofunction, particularly at the NMDA receptor, has been hypothesized to underlie many of the symptoms of schizophrenia, including psychosis, negative symptoms and cognitive impairment. This review will focus on D-serine, a co-agonist at the NMDA receptor that in combination with glutamate, is required for full activation of this ion channel receptor. Evidence implicating D-serine, NMDA receptors and related molecules, such as D-amino acid oxidase (DAO), G72 and serine racemase (SRR), in the etiology or pathophysiology of schizophrenia is discussed, including knowledge gained from mouse models with altered D-serine pathway genes and from preliminary clinical trials with D-serine itself or compounds modulating the D-serine pathway. Abnormalities in D-serine availability may underlie glutamatergic dysfunction in schizophrenia, and the development of new treatments acting through the D-serine pathway may significantly improve outcomes for many schizophrenia patients.
Collapse
Affiliation(s)
- Viviane Labrie
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, 250 College St, Toronto, ON M5T 1R8, Canada.
| | | | | |
Collapse
|
22
|
Zhang R, Zhong NN, Liu XG, Yan H, Qiu C, Han Y, Wang W, Hou WK, Liu Y, Gao CG, Guo TW, Lu SM, Deng HW, Ma J. Is the EFNB2 locus associated with schizophrenia? Single nucleotide polymorphisms and haplotypes analysis. Psychiatry Res 2010; 180:5-9. [PMID: 20483485 DOI: 10.1016/j.psychres.2010.04.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 04/10/2010] [Accepted: 04/25/2010] [Indexed: 12/18/2022]
Abstract
Recently, evidence of linkage of schizophrenia to chromosome 13q22-q34 has been demonstrated in multiple studies. Based on structure and function, EFNB2 may be considered as a compelling candidate gene for schizophrenia on chromosome 13q33. We genotyped three single-nucleotide polymorphisms (SNPs: rs9520087, rs11069646, and rs8000078) in this region in 846 Han Chinese subjects (477 cases and 369 controls). Significant association between an allele of marker rs9520087 and schizophrenia was found. Furthermore, since no LD was observed in the three SNPs linkage disequilibrium estimation, all three SNPs were used in multiple SNPs haplotype analysis, and a strongly significant difference was found for the common haplotype TTC. Overall our findings indicate that EFNB2 gene may be a candidate susceptibility gene for schizophrenia in the Han Chinese population, and also provide further support for the potential importance of the NMDA receptor pathway in the etiology of schizophrenia.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Genetics and Molecular Biology, and First Affliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
O'Connell G, Lawrie SM, McIntosh AM, Hall J. Schizophrenia risk genes: Implications for future drug development and discovery. Biochem Pharmacol 2010; 81:1367-73. [PMID: 21093417 DOI: 10.1016/j.bcp.2010.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/07/2010] [Accepted: 11/08/2010] [Indexed: 02/04/2023]
Abstract
Present-day development of improved treatments for schizophrenia is hindered by uncertain models of disease, inter-individual response variability in clinical trials and a paucity of sensitive measures of treatment effects. Findings from genetic research emphasize the potential for schizophrenia risk genes to help develop focused treatments, discover new drug targets and provide markers of clinical subtypes. Advances in genetic technologies also provide novel modes of drug discovery in schizophrenia such as transcriptomics, epigenetics and transgenic animal models. In this review, we discuss proven and proposed ways risk genes can be used to enhance the development and discovery of treatments for schizophrenia and highlight key studies in these approaches.
Collapse
Affiliation(s)
- Garret O'Connell
- Division of Psychiatry, University of Edinburgh, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
24
|
Konno R, Hamase K, Maruyama R, Zaitsu K. Mutant mice and rats lacking D-amino acid oxidase. Chem Biodivers 2010; 7:1450-8. [PMID: 20564563 DOI: 10.1002/cbdv.200900303] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
D-amino acid oxidase (DAO) catalyzes oxidative deamination of D-amino acids. Since D-amino acids are considered to be rare in eukaryotes, physiological function of this enzyme has been enigmatic for a long time. Mutant mice lacking DAO were found, and their strain was established. The urine of the mutant mice contained large amounts of D-amino acids. D-Amino acids were also present in their organs and blood. The origin of these D-amino acids was pursued. The results indicate that one of the physiological functions of DAO is the metabolism of D-amino acids of internal and external origin. A large amount of D-serine is shown to exist in the brain of mammals. It binds to the coagonist-binding site of N-methyl-D-aspartate (NMDA) subtype of glutamate receptors and enhances the neurotransmission. DAO metabolizes this D-serine and, therefore, modulates neurotransmission. Mutant mice displayed phenotypes resulting from the enhanced NMDA receptor function. Recent studies have shown that DAO is associated with schizophrenia. Mutant mice were resistant to the drugs which act on NMDA receptors and elicit schizophrenia-like symptoms. Recently, mutant rats lacking DAO have also been found. They were free from D-serine-induced nephrotoxicity, indicating involvement of DAO in this toxicity. The mutant mice and rats lacking DAO would be useful for the elucidation of the physiological functions of DAO and the etiology of neuronal diseases associated with DAO.
Collapse
Affiliation(s)
- Ryuichi Konno
- Graduate School of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan.
| | | | | | | |
Collapse
|
25
|
Ohnuma T, Shibata N, Baba H, Ohi K, Yasuda Y, Nakamura Y, Okochi T, Naitoh H, Hashimoto R, Iwata N, Ozaki N, Takeda M, Arai H. No association between DAO and schizophrenia in a Japanese patient population: a multicenter replication study. Schizophr Res 2010; 118:300-2. [PMID: 20178891 DOI: 10.1016/j.schres.2010.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 01/13/2010] [Accepted: 01/29/2010] [Indexed: 11/27/2022]
|
26
|
Abstract
D-amino acid oxidase (DAO) is a flavoenzyme that metabolizes certain D-amino acids, notably the endogenous N-methyl D-aspartate receptor (NMDAR) co-agonist, D-serine. As such, it has the potential to modulate the function of NMDAR and to contribute to the widely hypothesized involvement of NMDAR signalling in schizophrenia. Three lines of evidence now provide support for this possibility: DAO shows genetic associations with the disorder in several, although not all, studies; the expression and activity of DAO are increased in schizophrenia; and DAO inactivation in rodents produces behavioural and biochemical effects, suggestive of potential therapeutic benefits. However, several key issues remain unclear. These include the regional, cellular and subcellular localization of DAO, the physiological importance of DAO and its substrates other than D-serine, as well as the causes and consequences of elevated DAO in schizophrenia. Herein, we critically review the neurobiology of DAO, its involvement in schizophrenia, and the therapeutic value of DAO inhibition. This review also highlights issues that have a broader relevance beyond DAO itself: how should we weigh up convergent and cumulatively impressive, but individually inconclusive, pieces of evidence regarding the role that a given gene may have in the aetiology, pathophysiology and pharmacotherapy of schizophrenia?
Collapse
|
27
|
Cherlyn SYT, Woon PS, Liu JJ, Ong WY, Tsai GC, Sim K. Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance. Neurosci Biobehav Rev 2010; 34:958-77. [PMID: 20060416 DOI: 10.1016/j.neubiorev.2010.01.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 01/01/2010] [Accepted: 01/04/2010] [Indexed: 12/31/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are debilitating neurobehavioural disorders likely influenced by genetic and non-genetic factors and which can be seen as complex disorders of synaptic neurotransmission. The glutamatergic and GABAergic neurotransmission systems have been implicated in both diseases and we have reviewed extensive literature over a decade for evidence to support the association of glutamate and GABA genes in SZ and BD. Candidate-gene based population and family association studies have implicated some ionotrophic glutamate receptor genes (GRIN1, GRIN2A, GRIN2B and GRIK3), metabotropic glutamate receptor genes (such as GRM3), the G72/G30 locus and GABAergic genes (e.g. GAD1 and GABRB2) in both illnesses to varying degrees, but further replication studies are needed to validate these results. There is at present no consensus on specific single nucleotide polymorphisms or haplotypes associated with the particular candidate gene loci in these illnesses. The genetic architecture of glutamate systems in bipolar disorder need to be better studied in view of recent data suggesting an overlap in the genetic aetiology of SZ and BD. There is a pressing need to integrate research platforms in genomics, epistatic models, proteomics, metabolomics, neuroimaging technology and translational studies in order to allow a more integrated understanding of glutamate and GABAergic signalling processes and aberrations in SZ and BD as well as their relationships with clinical presentations and treatment progress over time.
Collapse
Affiliation(s)
- Suat Ying Tan Cherlyn
- Institute of Mental Health/Woodbridge Hospital, 10 Buangkok View, Singapore 539747, Singapore
| | | | | | | | | | | |
Collapse
|
28
|
Kirby BP, Waddington JL, O'Tuathaigh CMP. Advancing a functional genomics for schizophrenia: psychopathological and cognitive phenotypes in mutants with gene disruption. Brain Res Bull 2009; 83:162-76. [PMID: 19800398 DOI: 10.1016/j.brainresbull.2009.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 08/18/2009] [Accepted: 09/21/2009] [Indexed: 12/19/2022]
Abstract
Schizophrenia is a complex, heritable psychotic disorder in which numerous genes and environmental adversities appear to interact in determining disease phenotype. In addition to genes regulating putative pathophysiological mechanisms, a new generation of molecular studies has indicated numerous candidate genes to be associated with risk for schizophrenia. The present review focuses on studies in mice mutant for genes associated with putative pathophysiological mechanisms and candidate risk genes for the disorder. It seeks to evaluate the extent to which each mutation of a schizophrenia-related gene accurately models multiple aspects of the schizophrenia phenotype or more circumscribed, distinct endophenotypes in terms of psychopathology and pathobiology; in doing so, it places particular emphasis on positive symptoms, negative symptoms and cognitive dysfunction. To further this goal, it juxtaposes continually evolving mutant genomics with emergent clinical genomic studies. Opportunities and challenges associated with the use of such mutants, including diagnostic specificity and the translational barrier associated with modelling schizophrenia, are discussed. The potential value of genetic models for exploring gene-gene and gene-environment interactions relating to schizophrenia is highlighted. Elucidation of the contribution of genetic variation to specific symptom clusters and underlying aspects of pathobiology will have important implications for identifying treatments that target distinct domains of psychopathology and dysfunction on an individual patient basis.
Collapse
Affiliation(s)
- Brian P Kirby
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | | |
Collapse
|
29
|
Nagai Y, Ohnuma T, Karibe J, Shibata N, Maeshima H, Baba H, Hatano T, Hanzawa R, Arai H. No genetic association between the SLC1A2 gene and Japanese patients with schizophrenia. Neurosci Lett 2009; 463:223-7. [DOI: 10.1016/j.neulet.2009.07.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 07/18/2009] [Accepted: 07/30/2009] [Indexed: 01/18/2023]
|
30
|
Evidence for transmission disequilibrium at the DAOA gene locus in a schizophrenia family sample. Neurosci Lett 2009; 462:105-8. [DOI: 10.1016/j.neulet.2009.06.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 05/24/2009] [Accepted: 06/19/2009] [Indexed: 01/09/2023]
|
31
|
Candidate genes and their interactions with other genetic/environmental risk factors in the etiology of schizophrenia. Brain Res Bull 2009; 83:86-92. [PMID: 19729054 DOI: 10.1016/j.brainresbull.2009.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 08/04/2009] [Accepted: 08/25/2009] [Indexed: 11/21/2022]
Abstract
Identification of causative factors for common, chronic disorders is a major focus of current human health science research. These disorders are likely to be caused by multiple etiological agents. Available evidence also suggests that interactions between the risk factors may explain some of their pathogenic effects. While progress in genomics and allied biological research has brought forth powerful analytic techniques, the predicted complexity poses daunting analytic challenges. The search for pathogenesis of schizophrenia shares most of these challenges. We have reviewed the analytic and logistic problems associated with the search for pathogenesis. Evidence for pathogenic interactions is presented for selected diseases and for schizophrenia. We end by suggesting 'recursive analyses' as a potential design to address these challenges. This scheme involves initial focused searches for interactions motivated by available evidence, typically involving identified individual risk factors, such as candidate gene variants. Putative interactions are tested rigorously for replication and for biological plausibility. Support for the interactions from statistical and functional analyses motivates a progressively larger array of interactants that are evaluated recursively. The risk explained by the interactions is assessed concurrently and further elaborate searches may be guided by the results of such analyses. By way of example, we summarize our ongoing analyses of dopaminergic polymorphisms, as well as infectious etiological factors in schizophrenia genesis.
Collapse
|
32
|
Pedrosa E, Locker J, Lachman HM. Survey of Schizophrenia and Bipolar Disorder Candidate Genes using Chromatin Immunoprecipitation and Tiled Microarrays (ChIP-chip). J Neurogenet 2009; 23:341-52. [DOI: 10.1080/01677060802669766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Labrie V, Roder JC. The involvement of the NMDA receptor D-serine/glycine site in the pathophysiology and treatment of schizophrenia. Neurosci Biobehav Rev 2009; 34:351-72. [PMID: 19695284 DOI: 10.1016/j.neubiorev.2009.08.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/10/2009] [Accepted: 08/11/2009] [Indexed: 01/11/2023]
Abstract
Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) has been implicated in the pathophysiology of schizophrenia. The NMDAR contains a D-serine/glycine site on the NR1 subunit that may be a promising therapeutic target for psychiatric illness. This review outlines the complex regulation of endogenous NMDAR D-serine/glycine site agonists and explores their contribution to schizophrenia pathogenesis and their potential clinical utility. Genetic studies have associated genes influencing NMDAR D-serine/glycine site activation with an increased susceptibility to schizophrenia. Postmortem studies have identified abnormalities in several transcripts affecting D-serine/glycine site activity, consistent with in vivo reports of alterations in levels of endogenous D-serine/glycine site agonists and antagonists. Genetically modified mice with aberrant NMDAR D-serine/glycine site function model certain features of the negative and cognitive symptoms of schizophrenia, and similar behavioral abnormalities have been observed in other candidate genes models. Compounds that directly activate the NMDAR D-serine/glycine site or inhibit glycine transport have demonstrated beneficial effects in preclinical models and clinical trials. Future pharmacological approaches for schizophrenia treatment may involve targeting enzymes that affect D-serine synthesis and metabolism.
Collapse
Affiliation(s)
- Viviane Labrie
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada.
| | | |
Collapse
|
34
|
Labrie V, Wang W, Barger SW, Baker GB, Roder JC. Genetic loss of D-amino acid oxidase activity reverses schizophrenia-like phenotypes in mice. GENES BRAIN AND BEHAVIOR 2009; 9:11-25. [PMID: 19751394 DOI: 10.1111/j.1601-183x.2009.00529.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reduced function of the N-methyl-d-aspartate receptor (NMDAR) has been implicated in the pathophysiology of schizophrenia. The NMDAR contains a glycine binding site in its NR1 subunit that may be a useful target for the treatment of schizophrenia. In this study, we assessed the therapeutic potential of long-term increases in the brain levels of the endogenous NMDAR glycine site agonist D-serine, through the genetic inactivation of its catabolic enzyme D-amino acid oxidase (DAO) in mice. The effects of eliminating DAO function were investigated in mice that display schizophrenia-related behavioral deficits due to a mutation (Grin 1(D481N)) in the NR1 subunit that results in a reduction in NMDAR glycine affinity. Grin 1(D481N) mice show deficits in sociability, prolonged latent inhibition, enhanced startle reactivity and impaired spatial memory. The hypofunctional Dao 1(G181R) mutation elevated brain levels of D-serine, but alone it did not affect performance in the behavioral measures. Compared to animals with only the Grin 1(D481N) mutation, mice with both the Dao1(G181R) and Grin 1(D481N) mutations displayed an improvement in social approach and spatial memory retention, as well as a reversal of abnormally persistent latent inhibition and a partial normalization of startle responses. Thus, an increased level of D-serine resulting from decreased catalysis corrected the performance of mice with deficient NMDAR glycine site activation in behavioral tasks relevant to the negative and cognitive symptoms of schizophrenia. Diminished DAO activity and elevations in D-serine may serve as an effective therapeutic intervention for the treatment of psychiatric symptoms.
Collapse
Affiliation(s)
- V Labrie
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | |
Collapse
|
35
|
Bass NJ, Datta SR, McQuillin A, Puri V, Choudhury K, Thirumalai S, Lawrence J, Quested D, Pimm J, Curtis D, Gurling HM. Evidence for the association of the DAOA (G72) gene with schizophrenia and bipolar disorder but not for the association of the DAO gene with schizophrenia. Behav Brain Funct 2009; 5:28. [PMID: 19586533 PMCID: PMC2717980 DOI: 10.1186/1744-9081-5-28] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 07/08/2009] [Indexed: 01/25/2023] Open
Abstract
Background Previous linkage and association studies have implicated the D-amino acid oxidase activator gene (DAOA)/G30 locus or neighbouring region of chromosome 13q33.2 in the genetic susceptibility to both schizophrenia and bipolar disorder. Four single nucleotide polymorphisms (SNPs) within the D-amino acid oxidase (DAO) gene located at 12q24.11 have also been found to show allelic association with schizophrenia. Methods We used the case control method to test for genetic association with variants at these loci in a sample of 431 patients with schizophrenia, 303 patients with bipolar disorder and 442 ancestrally matched supernormal controls all selected from the UK population. Results Ten SNPs spanning the DAOA locus were genotyped in these samples. In addition three SNPs were genotyped at the DAO locus in the schizophrenia sample. Allelic association was detected between the marker rs3918342 (M23), 3' to the DAOA gene and both schizophrenia (χ2 = 5.824 p = 0.016) and bipolar disorder (χ2 = 4.293 p = 0.038). A trend towards association with schizophrenia was observed for two other DAOA markers rs3916967 (M14, χ2 = 3.675 p = 0.055) and rs1421292 (M24; χ2 = 3.499 p = 0.062). A test of association between a three marker haplotype comprising of the SNPs rs778293 (M22), rs3918342 (M23) and rs1421292 (M24) and schizophrenia gave a global empirical significance of p = 0.015. No evidence was found to confirm the association of genetic markers at the DAO gene with schizophrenia. Conclusion Our results provide some support for a role for DAOA in susceptibility to schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Nicholas J Bass
- Molecular Psychiatry Laboratory, Research Department of Mental Health Sciences, University College London Medical School, Windeyer Institute of Medical Sciences, 46 Cleveland Street, London, W1T 4JF, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Labrie V, Fukumura R, Rastogi A, Fick LJ, Wang W, Boutros PC, Kennedy JL, Semeralul MO, Lee FH, Baker GB, Belsham DD, Barger SW, Gondo Y, Wong AHC, Roder JC. Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 2009; 18:3227-43. [PMID: 19483194 DOI: 10.1093/hmg/ddp261] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abnormal N-methyl-d-aspartate receptor (NMDAR) function has been implicated in the pathophysiology of schizophrenia. d-serine is an important NMDAR modulator, and to elucidate the role of the d-serine synthesis enzyme serine racemase (Srr) in schizophrenia, we identified and characterized mice with an ENU-induced mutation that results in a complete loss of Srr activity and dramatically reduced d-serine levels. Mutant mice displayed behaviors relevant to schizophrenia, including impairments in prepulse inhibition, sociability and spatial discrimination. Behavioral deficits were exacerbated by an NMDAR antagonist and ameliorated by d-serine or the atypical antipsychotic clozapine. Expression profiling revealed that the Srr mutation influenced several genes that have been linked to schizophrenia and cognitive ability. Transcript levels altered by the Srr mutation were also normalized by d-serine or clozapine treatment. Furthermore, analysis of SRR genetic variants in humans identified a robust association with schizophrenia. This study demonstrates that aberrant Srr function and diminished d-serine may contribute to schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Viviane Labrie
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ohnuma T, Shibata N, Maeshima H, Baba H, Hatano T, Hanzawa R, Arai H. Association analysis of glycine- and serine-related genes in a Japanese population of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:511-8. [PMID: 19223009 DOI: 10.1016/j.pnpbp.2009.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 01/28/2009] [Accepted: 02/03/2009] [Indexed: 12/01/2022]
Abstract
Differences in the levels of the glutamate-related amino acids glycine and serine in brain/plasma between schizophrenic patients and normal subjects and changes in the plasma concentrations of these amino acids according to the clinical course have been reported. It has been hypothesized that glycine and serine metabolism may be altered in schizophrenia. In fact, some genes related to the metabolism of these amino acids have been suggested to be candidate genes for schizophrenia. Thus, we performed a genomic case-control analysis of amino acid metabolism-related genes in Japanese patients with schizophrenia. Case-control genetic association analysis of PHGDH, SHMT1, SRR, and DAO was performed. In addition, the effect of the various genotypes resulting from these four genes on changes in plasma amino acid levels in schizophrenia was assessed. The genetic case-control analysis showed that no individual single-nucleotide polymorphism (SNP) in any of the four genes was associated with schizophrenia; only the two (rs3918347-rs4964770, P=0.0009) and three (rs3825251-rs3918347-rs4964770, P=0.002) SNP-based haplotype analysis of the DAO gene showed an association with schizophrenia even after correction for multiple testing. None of the genotypes studied was associated with changes in the plasma glycine and l- and d-serine levels during the schizophrenic clinical course. The DAO gene may be a susceptibility locus for schizophrenia.
Collapse
Affiliation(s)
- Tohru Ohnuma
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Ohi K, Hashimoto R, Yasuda Y, Yoshida T, Takahashi H, Iike N, Fukumoto M, Takamura H, Iwase M, Kamino K, Ishii R, Kazui H, Sekiyama R, Kitamura Y, Azechi M, Ikezawa K, Kurimoto R, Kamagata E, Tanimukai H, Tagami S, Morihara T, Ogasawara M, Okochi M, Tokunaga H, Numata S, Ikeda M, Ohnuma T, Ueno SI, Fukunaga T, Tanaka T, Kudo T, Arai H, Ohmori T, Iwata N, Ozaki N, Takeda M. Association study of the G72 gene with schizophrenia in a Japanese population: a multicenter study. Schizophr Res 2009; 109:80-5. [PMID: 19237267 DOI: 10.1016/j.schres.2009.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 01/17/2009] [Accepted: 01/26/2009] [Indexed: 12/18/2022]
Abstract
G72 is one of the most widely tested genes for association with schizophrenia. As G72 activates the D-amino acid oxidase (DAO), G72 is termed D-amino acid oxidase activator (DAOA). The aim of this study is to investigate the association between G72 and schizophrenia in a Japanese population, using the largest sample size to date (1774 patients with schizophrenia and 2092 healthy controls). We examined eight single nucleotide polymorphisms (SNPs), which had been associated with schizophrenia in previous studies. We found nominal evidence for association of alleles, M22/rs778293, M23/rs3918342 and M24/rs1421292, and the genotype of M22/rs778293 with schizophrenia, although there was no association of allele or genotype in the other five SNPs. We also found nominal haplotypic association, including M15/rs2391191 and M19/rs778294 with schizophrenia. However, these associations were no longer positive after correction for multiple testing. We conclude that G72 might not play a major role in the risk for schizophrenia in the Japanese population.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Labrie V, Clapcote SJ, Roder JC. Mutant mice with reduced NMDA-NR1 glycine affinity or lack of d-amino acid oxidase function exhibit altered anxiety-like behaviors. Pharmacol Biochem Behav 2009; 91:610-20. [DOI: 10.1016/j.pbb.2008.09.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 11/16/2022]
|
40
|
Sodhi M, Wood KH, Meador-Woodruff J. Role of glutamate in schizophrenia: integrating excitatory avenues of research. Expert Rev Neurother 2008; 8:1389-406. [PMID: 18759551 DOI: 10.1586/14737175.8.9.1389] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Schizophrenia is a debilitating lifelong disorder affecting up to 1% of the population worldwide, producing significant financial and emotional hardship for patients and their families. As yet, the causes of schizophrenia and the mechanism of action of antipsychotic drugs are unknown, and many patients do not respond well to currently available medications. Attempts to find risk factors for the disorder using epidemiological methods have shown that schizophrenia is highly heritable, and path analyses predict that the disorder is caused by several genes in combination with nongenetic factors. Therefore, intensive research efforts have been made to identify genes creating vulnerability to schizophrenia and also genes predicting response to treatment. Interactions of the glutamatergic system with dopaminergic and serotonergic circuitry are crucial for normal brain function, and their disruption may be a mechanism by which the pathophysiology of schizophrenia is manifest. Genes within the glutamatergic system are therefore strong candidates for investigation, and these include the glutamate receptor genes in addition to genes encoding neuregulin, dysbindin, D-amino acid oxidase and G72/G30. These genetic studies could eventually reveal new targets for antipsychotic drug treatment, which currently focuses on inhibition of the dopaminergic system. However, a recent breakthrough indicates clinical efficacy of a drug stimulating the metabotropic glutamate receptor II, LY2140023, which has improved efficacy for negative and cognitive symptoms of schizophrenia. Studies of larger patient samples are required to consolidate these data. Further investigation of glutamatergic targets is likely to reinvigorate antipsychotic drug development.
Collapse
Affiliation(s)
- Monsheel Sodhi
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, 1720 7th Avenue Sth, Rm 590C CIRC, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
41
|
Ohnuma T, Sakai Y, Maeshima H, Hatano T, Hanzawa R, Abe S, Kida S, Shibata N, Suzuki T, Arai H. Changes in plasma glycine, L-serine, and D-serine levels in patients with schizophrenia as their clinical symptoms improve: results from the Juntendo University Schizophrenia Projects (JUSP). Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1905-12. [PMID: 18835577 DOI: 10.1016/j.pnpbp.2008.07.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/19/2008] [Accepted: 07/27/2008] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Based on the hypothesis of NMDA receptor hypofunction in schizophrenia, plasma glycine, L-serine, and D-serine levels have been studied, since they could serve as biological markers. However, changes over time in the levels of these amino acids in schizophrenic patients have not been investigated. To clarify the mean plasma glycine, L-serine, and D-serine levels in patients with schizophrenia, levels of these amino acids were compared between healthy controls and patients with schizophrenia. The plasma levels of these amino acids during the clinical course of schizophrenia were also compared. METHODS Eighty-nine Japanese patients with schizophrenia and 50 age- and gender-matched healthy controls were studied. Plasma glycine, L-serine, and D-serine levels and their ratios were measured twice, during the acute stage and during the remission stage, using high-performance liquid chromatography. RESULTS The admission plasma glycine, L-serine, and D-serine levels of schizophrenic patients were higher than those of healthy controls. There were no significant differences between drug-naïve patients and healthy controls in the admission levels of the plasma amino acids, but chronically medicated patients had higher admission plasma glycine and D-serine levels. Only the D-serine level and the D-/L-serine ratio were markedly significantly increased in schizophrenic patients from the time of admission to the time of discharge as their clinical symptoms improved. In addition, the increase in the plasma D-serine levels of drug-naïve patients was correlated with improvements in positive symptoms. CONCLUSIONS Plasma amino acid levels, especially D-serine levels, could be useful as a "therapeutic" or "clinical state" marker in patients with acute schizophrenia.
Collapse
Affiliation(s)
- Tohru Ohnuma
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Juntendo University, School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Edwards TL, Wang X, Chen Q, Wormly B, Riley B, O’Neill FA, Walsh D, Ritchie MD, Kendler KS, Chen X. Interaction between interleukin 3 and dystrobrevin-binding protein 1 in schizophrenia. Schizophr Res 2008; 106:208-17. [PMID: 18804346 PMCID: PMC2746913 DOI: 10.1016/j.schres.2008.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 07/25/2008] [Accepted: 07/28/2008] [Indexed: 10/21/2022]
Abstract
Schizophrenia is a common psychotic mental disorder that is believed to result from the effects of multiple genetic and environmental factors. In this study, we explored gene-gene interactions and main effects in both case-control (657 cases and 411 controls) and family-based (273 families, 1,350 subjects) datasets of English or Irish ancestry. Fifty three markers in 8 genes were genotyped in the family sample and 44 markers in 7 genes were genotyped in the case-control sample. The Multifactor Dimensionality Reduction Pedigree Disequilibrium Test (MDR-PDT) was used to examine epistasis in the family dataset and a 3-locus model was identified (permuted p=0.003). The 3-locus model involved the IL3 (rs2069803), RGS4 (rs2661319), and DTNBP1 (rs2619539) genes. We used MDR to analyze the case-control dataset containing the same markers typed in the RGS4, IL3 and DTNBP1 genes and found evidence of a joint effect between IL3 (rs31400) and DTNBP1 (rs760761) (cross-validation consistency 4/5, balanced prediction accuracy=56.84%, p=0.019). While this is not a direct replication, the results obtained from both the family and case-control samples collectively suggest that IL3 and DTNBP1 are likely to interact and jointly contribute to increase risk for schizophrenia. We also observed a significant main effect in DTNBP1, which survived correction for multiple comparisons, and numerous nominally significant effects in several genes.
Collapse
Affiliation(s)
- Todd L Edwards
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232 USA, Center for Genetic Epidemiology and Statistical Genetics, Miami Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xu Wang
- Department of Psychiatry and Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298 USA
| | - Qi Chen
- Department of Psychiatry and Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298 USA
| | - Brandon Wormly
- Department of Psychiatry and Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298 USA
| | - Brien Riley
- Department of Psychiatry and Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298 USA
| | - F. Anthony O’Neill
- The Department of Psychiatry, The Queens University, Belfast, Northern Ireland, UK
| | | | - Marylyn D. Ritchie
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Kenneth S. Kendler
- Department of Psychiatry and Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298 USA
| | - Xiangning Chen
- Department of Psychiatry and Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298 USA,Corresponding author: X. Chen, , Telephone: 804 828 8124, Fax: 804 828 1471
| |
Collapse
|
43
|
Abstract
This article provides an overview of the past year's literature on schizophrenia genetics. Quantitative genetics continues to be an important foundation in which family and twin studies have been used to evaluate potential endophenotypes. Research in molecular genetics has focused on detecting multiple genes of small effect, and developments relating to key positional and functional candidate genes are reviewed. Large-scale, multicenter studies are proving to be important in this quest. Research using neuroimaging and animal modeling studies continues to link genotype with phenotype. It is increasingly apparent that some candidate genes considered important in schizophrenia are likely to be relevant to the etiology of other psychotic disorders, including bipolar disorder. This notion may challenge traditional disease classifications, not only in research but potentially in clinical practice.
Collapse
|
44
|
Abstract
How can we best develop explanatory models for psychiatric disorders? Because causal factors have an impact on psychiatric illness both at micro levels and macro levels, both within and outside of the individual, and involving processes best understood from biological, psychological, and sociocultural perspectives, traditional models of science that strive for single broadly applicable explanatory laws are ill suited for our field. Such models are based on the incorrect assumption that psychiatric illnesses can be understood from a single perspective. A more appropriate scientific model for psychiatry emphasizes the understanding of mechanisms, an approach that fits naturally with a multicausal framework and provides a realistic paradigm for scientific progress, that is, understanding mechanisms through decomposition and reassembly. Simple subunits of complicated mechanisms can be usefully studied in isolation. Reassembling these constituent parts into a functioning whole, which is straightforward for simple additive mechanisms, will be far more challenging in psychiatry where causal networks contain multiple nonlinear interactions and causal loops. Our field has long struggled with the interrelationship between biological and psychological explanatory perspectives. Building from the seminal work of the neuronal modeler and philosopher David Marr, the author suggests that biology will implement but not replace psychology within our explanatory systems. The iterative process of interactions between biology and psychology needed to achieve this implementation will deepen our understanding of both classes of processes.
Collapse
Affiliation(s)
- Kenneth S Kendler
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University Medical School, Richmond, VA 23298-0126, USA.
| |
Collapse
|
45
|
Millan MJ, Brocco M. Cognitive Impairment in Schizophrenia: a Review of Developmental and Genetic Models, and Pro-cognitive Profile of the Optimised D3 > D2 Antagonist, S33138. Therapie 2008; 63:187-229. [DOI: 10.2515/therapie:2008041] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2008] [Indexed: 01/23/2023]
|
46
|
Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, Grace AA. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 2008; 16:e43-71. [PMID: 18395805 DOI: 10.1111/j.1755-5949.2010.00163.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many risk genes interact synergistically to produce schizophrenia and many neurotransmitter interactions have been implicated. We have developed a circuit-based framework for understanding gene and neurotransmitter interactions. NMDAR hypofunction has been implicated in schizophrenia because NMDAR antagonists reproduce symptoms of the disease. One action of antagonists is to reduce the excitation of fast-spiking interneurons, resulting in disinhibition of pyramidal cells. Overactive pyramidal cells, notably those in the hippocampus, can drive a hyperdopaminergic state that produces psychosis. Additional aspects of interneuron function can be understood in this framework, as follows. (i) In animal models, NMDAR antagonists reduce parvalbumin and GAD67, as found in schizophrenia. These changes produce further disinhibition and can be viewed as the aberrant response of a homeostatic system having a faulty activity sensor (the NMDAR). (ii) Disinhibition decreases the power of gamma oscillation and might thereby produce negative and cognitive symptoms. (iii) Nicotine enhances the output of interneurons, and might thereby contribute to its therapeutic effect in schizophrenia.
Collapse
Affiliation(s)
- John E Lisman
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, Grace AA. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 2008; 31:234-42. [PMID: 18395805 DOI: 10.1016/j.tins.2008.02.005] [Citation(s) in RCA: 762] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 02/12/2008] [Accepted: 02/19/2008] [Indexed: 10/22/2022]
Abstract
Many risk genes interact synergistically to produce schizophrenia and many neurotransmitter interactions have been implicated. We have developed a circuit-based framework for understanding gene and neurotransmitter interactions. NMDAR hypofunction has been implicated in schizophrenia because NMDAR antagonists reproduce symptoms of the disease. One action of antagonists is to reduce the excitation of fast-spiking interneurons, resulting in disinhibition of pyramidal cells. Overactive pyramidal cells, notably those in the hippocampus, can drive a hyperdopaminergic state that produces psychosis. Additional aspects of interneuron function can be understood in this framework, as follows. (i) In animal models, NMDAR antagonists reduce parvalbumin and GAD67, as found in schizophrenia. These changes produce further disinhibition and can be viewed as the aberrant response of a homeostatic system having a faulty activity sensor (the NMDAR). (ii) Disinhibition decreases the power of gamma oscillation and might thereby produce negative and cognitive symptoms. (iii) Nicotine enhances the output of interneurons, and might thereby contribute to its therapeutic effect in schizophrenia.
Collapse
Affiliation(s)
- John E Lisman
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Verrall L, Walker M, Rawlings N, Benzel I, Kew JNC, Harrison PJ, Burnet PWJ. d-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur J Neurosci 2007; 26:1657-69. [PMID: 17880399 PMCID: PMC2121142 DOI: 10.1111/j.1460-9568.2007.05769.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The N-methyl-D-aspartate receptor co-agonist d-serine is synthesized by serine racemase and degraded by D-amino acid oxidase. Both D-serine and its metabolizing enzymes are implicated in N-methyl-D-aspartate receptor hypofunction thought to occur in schizophrenia. We studied D-amino acid oxidase and serine racemase immunohistochemically in several brain regions and compared their immunoreactivity and their mRNA levels in the cerebellum and dorsolateral prefrontal cortex in schizophrenia. D-Amino acid oxidase immunoreactivity was abundant in glia, especially Bergmann glia, of the cerebellum, whereas in prefrontal cortex, hippocampus and substantia nigra, it was predominantly neuronal. Serine racemase was principally glial in all regions examined and demonstrated prominent white matter staining. In schizophrenia, D-amino acid oxidase mRNA was increased in the cerebellum, and as a trend for protein. Serine racemase was increased in schizophrenia in the dorsolateral prefrontal cortex but not in cerebellum, while serine racemase mRNA was unchanged in both regions. Administration of haloperidol to rats did not significantly affect serine racemase or D-amino acid oxidase levels. These findings establish the major cell types wherein serine racemase and D-amino acid oxidase are expressed in human brain and provide some support for aberrant D-serine metabolism in schizophrenia. However, they raise further questions as to the roles of D-amino acid oxidase and serine racemase in both physiological and pathophysiological processes in the brain.
Collapse
Affiliation(s)
- Louise Verrall
- Department of Psychiatry, Warneford Hospital, Warneford Lane, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Corvin A, Donohoe G, McGhee K, Murphy K, Kenny N, Schwaiger S, Nangle JM, Morris D, Gill M. d-Amino acid oxidase (DAO) genotype and mood symptomatology in schizophrenia. Neurosci Lett 2007; 426:97-100. [PMID: 17890006 DOI: 10.1016/j.neulet.2007.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 08/01/2007] [Accepted: 09/05/2007] [Indexed: 11/26/2022]
Abstract
A series of genetic studies have identified the D-amino acid oxidase (DAO) gene as potentially contributing to schizophrenia susceptibility. An interacting gene, D-amino acid oxidase activator (DAOA) has also been implicated and it has been suggested that variation at these genes may influence the efficiency of glutamate gating at N-methyl-D-aspartate-type (NMDA) receptors. However, recent data suggests that DAOA may influence susceptibility to mood episodes across the spectrum of psychotic disorders rather than contributing to a specific psychosis phenotype. The aim of this study was to determine whether risk variation at DAO is similarly associated with affective or other clinical symptoms in psychosis. We have previously reported association between risk variation at DAO and schizophrenia in an Irish case-control sample. In this study we investigated the relationship between a defined genetic risk variant at DAO and PANSS-derived clinical symptom factors in a sample of 249 patients using principal component and Kruskal-Wallis analyses. Carriers of the DAO risk variant scored significantly higher on the 'depression/anxiety' factor than non-carriers (H=9.02, d.f.=2, p=0.01). These data suggest a potential role for DAO in susceptibility to depressive symptoms in schizophrenia, but a more general role for DAO in affective disorders cannot be excluded.
Collapse
Affiliation(s)
- Aiden Corvin
- Neuropsychiatric Genetics Group, Institute of Molecular Medicine, Trinity College Dublin, St. James Hospital, James's Street, Dublin 8, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|