1
|
Daiy K, Wiley K, Allen J, Bailey MT, Dettmer AM. Associations among rearing environment and the infant gut microbiome with early-life neurodevelopment and cognitive development in a nonhuman primate model ( Macaca mulatta). J Dev Orig Health Dis 2025; 16:e1. [PMID: 39781670 DOI: 10.1017/s2040174424000400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Early gut microbiome development may impact brain and behavioral development. Using a nonhuman primate model (Macaca mulatta), we investigated the association between social environments and the gut microbiome on infant neurodevelopment and cognitive function. Infant rhesus monkeys (n = 33) were either mother-peer-reared (MPR) or nursery-reared (NR). Neurodevelopmental outcomes, namely emotional responsivity, visual orientation, and motor maturity, were assessed with the Primate Neonatal Neurobehavioral Assessment (PNNA) at 14-30 days. Cognitive development was assessed through tasks evaluating infant reward association, cognitive flexibility, and impulsivity at 6-8 months. The fecal microbiome was quantified from rectal swabs via 16S rRNA sequencing. Factor analysis was used to identify "co-abundance factors" describing patterns of microbial composition. We used multiple linear regressions with AIC Model Selection and differential abundance analysis (MaAsLin2) to evaluate relationships between co-abundance factors, microbiome diversity, and neuro-/cognitive development outcomes. At 30 days of age, a gut microbiome co-abundance factor, or pattern, with high Prevotella and Lactobacillus (β = -0.88, p = 0.04, AIC Weight = 68%) and gut microbiome alpha diversity as measured by Shannon diversity (β = -1.33, p = 0.02, AIC Weight = 80%) were both negatively associated with infant emotional responsivity. At 30 days of age, being NR was also associated with lower emotional responsivity (Factor 1 model: β = -3.13, p < 0.01; Shannon diversity model: β = -3.77, p < 0.01). The infant gut microbiome, along with early-rearing environments, may shape domains of neuro-/cognitive development related to temperament.
Collapse
Affiliation(s)
- Katherine Daiy
- Department of Anthropology, Yale University, New Haven, CT, USA
| | - Kyle Wiley
- Department of Sociology and Anthropology, University of Texas at El Paso, El Paso, TX, USA
| | - Jacob Allen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael T Bailey
- The Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Amanda M Dettmer
- Yale School of Medicine, Yale Child Study Center, New Haven, CT, USA
| |
Collapse
|
2
|
Kleymann A, Karaaslan E, Scholte FEM, Sorvillo TE, Welch SR, Bergeron É, Elser S, Almanzar-Jordan MR, Velazquez E, Genzer SC, Jean SM, Spiropoulou CF, Spengler JR. Crimean-Congo hemorrhagic fever virus replicon particle vaccine is safe and elicits functional, non-neutralizing anti-nucleoprotein antibodies and T cell activation in rhesus macaques. Antiviral Res 2025; 233:106045. [PMID: 39626793 DOI: 10.1016/j.antiviral.2024.106045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 12/15/2024]
Abstract
Advancement of vaccine candidates that demonstrate protective efficacy in screening studies necessitates detailed safety and immunogenicity investigations in pre-clinical models. A non-spreading Crimean-Congo hemorrhagic fever virus (CCHFV) viral replicon particle (VRP) vaccine was developed for single-dose administration to protect against disease. To date, several studies have supported safety, immunogenicity, and efficacy of the CCHF VRP in multiple highly sensitive murine models of lethal disease, but the VRP had yet to be evaluated in large animals. Here, we performed studies in non-human primates to further evaluate clinical utility of the VRP vaccine. Twelve adult male and female rhesus macaques were vaccinated intramuscularly and clinical monitoring was performed daily for 28 days. At 3, 7, 14, 21, and 28 days post vaccination, animals were sedated for more detailed clinical assessment; for quantification of vaccine presence in blood and mucosal samples; and for evaluation of hematology, plasma inflammatory markers, and immunogenicity. Consistent with findings in mice, vaccination was well tolerated, with no clinical alterations nor indication of vaccine spread or shedding. In addition, vaccination induced both humoral and cell-mediated responses, with immune profile and kinetics also corroborating data from small animal models. These studies provide key data in non-human primates further supporting development of the VRP for human clinical use.
Collapse
Affiliation(s)
- Alyssa Kleymann
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elif Karaaslan
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Florine E M Scholte
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Teresa E Sorvillo
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA; Infectious Disease Department, CDC Foundation, Atlanta, GA, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephanie Elser
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Melvyn R Almanzar-Jordan
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric Velazquez
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sarah C Genzer
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sherrie M Jean
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
3
|
Marinho LDSS, Andrade MCR, Lopes CADA, Coelho da Silva KVG, Gama E Souza KDM, Machado-Santos C. Immunohistochemical identification of ACE-2 (SARS-COV II entry mechanism) in the gastrointestinal tract, kidney and lung of rhesus monkeys (Macaca mulatta) and squirrel monkeys (Saimiri sciureus). Tissue Cell 2024; 93:102711. [PMID: 39787940 DOI: 10.1016/j.tice.2024.102711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/15/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
SARS-Cov-2 is a corona virus that causes COVID-19 disease, a viral infection responsible for the pandemic decreed by the World Health Organization in March 2020. Angiotensin-converting enzyme 2 (ACE-2) functions as the main receptor for SARS-Cov-2. The study aimed to detect the expression of ACE-2 in the gastrointestinal tract, kidney, and lung in the rhesus monkeys and squirrel monkeys. The sections from 18 rhesus monkey and 17 squirrel monkeys were incubated with rabbit polyclonal antibody to ACE2 (ab65863). In the lung of the rhesus monkeys, the presence of ACE-2 was noted in the bronchial mucosa of the respiratory epithelium. In the kidney, there was irregular in the proximal convoluted tubules. In the pyloric stomach, duodenum and in the large intestine it was observed on the surface of the lining epithelium. In the lung of the squirrel monkeys, this marking was present in both the ciliated cylindrical and goblet cell sof the bronchi. In the kidney light marking was observed along the surfasse of the cubic epithelium of the proximal convoluted tubules and in the renal glomerulus. No markings were observed throughout the stomach and intense staining was observed along the surfasse of the intestinal epithelium of the duodenum, jejunum and ileum, as well as in the intestinal glands. In our study, we can observe not able differences in the distribution of ACE2 between the two species of primates analysed. These differences must be considered in experimental studies on this disease, which continues to be a topic of notable importance for Public Health.
Collapse
Affiliation(s)
- Larissa Dos Santos Sebould Marinho
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Biomedical Institute, Fluminense Federal University, Niterói, RJ CEP 24210-130, Brazil
| | | | | | - Kassia Valéria Gomes Coelho da Silva
- Department of Pathology and Veterinary Clinic, Faculty of Veterinary, Fluminense Federal University, Vital Brazil/Santa Rosa, Niterói, RJ 24230-340, Brazil
| | - Kauet de Matos Gama E Souza
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Biomedical Institute, Fluminense Federal University, Niterói, RJ CEP 24210-130, Brazil
| | - Clarice Machado-Santos
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Biomedical Institute, Fluminense Federal University, Niterói, RJ CEP 24210-130, Brazil.
| |
Collapse
|
4
|
Campos FA, Wikberg EC, Orkin JD, Park Y, Snyder-Mackler N, Cheves Hernandez S, Lopez Navarro R, Fedigan LM, Gurven M, Higham JP, Jack KM, Melin AD. Wild capuchin monkeys as a model system for investigating the social and ecological determinants of ageing. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230482. [PMID: 39463253 PMCID: PMC11513648 DOI: 10.1098/rstb.2023.0482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 10/29/2024] Open
Abstract
Studying biological ageing in animal models can circumvent some of the confounds exhibited by studies of human ageing. Ageing research in non-human primates has provided invaluable insights into human lifespan and healthspan. Yet data on patterns of ageing from wild primates remain relatively scarce, centred around a few populations of catarrhine species. Here, we introduce the white-faced capuchin, a long-lived platyrrhine primate, as a promising new model system for ageing research. Like humans, capuchins are highly social, omnivorous generalists, whose healthspan and lifespan relative to body size exceed that of other non-human primate model species. We review recent insights from capuchin ageing biology and outline our expanding, integrative research programme that combines metrics of the social and physical environments with physical, physiological and molecular hallmarks of ageing across the natural life courses of multiple longitudinally tracked individuals. By increasing the taxonomic breadth of well-studied primate ageing models, we generate new insights, increase the comparative value of existing datasets to geroscience and work towards the collective goal of developing accurate, non-invasive and reliable biomarkers with high potential for standardization across field sites and species, enhancing the translatability of primate studies.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Fernando A. Campos
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX78249, USA
| | - Eva C. Wikberg
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX78249, USA
| | - Joseph D. Orkin
- Département d’anthropologie, Université de Montréal, Montréal, QuébecH3T 1N8, Canada
- Département de sciences biologiques, Université de Montréal, Montréal, QuébecH2V 0B3, Canada
| | - Yeonjoo Park
- Department of Management Science and Statistics, University of Texas at San Antonio, San Antonio, TX78249, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, School of Life Sciences, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ85287, USA
| | | | | | - Linda M. Fedigan
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AlbertaT2N 1N4, Canada
| | - Michael Gurven
- Department of Anthropology, University of California, Santa Barbara, CA93106, USA
| | - James P. Higham
- Department of Anthropology, New York University, NY10003, USA
| | - Katharine M. Jack
- Department of Anthropology, Tulane University, New Orleans, LA70118, USA
| | - Amanda D. Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AlbertaT2N 1N4, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AlbertaT2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AlbertaT2N 4N1, Canada
| |
Collapse
|
5
|
Mandalaywala TM, Coyne SP. Threat perception and behavioral reactivity in response to an acute stressor in infant rhesus macaques. Acta Psychol (Amst) 2024; 252:104647. [PMID: 39662358 DOI: 10.1016/j.actpsy.2024.104647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024] Open
Abstract
Attentional bias to threat is an adaptive response to the presence of threat and danger in the environment (Haselton et al., 2009; Pollak, 2008). Attentional bias to threat is present in both human and nonhuman primates (e.g., Mandalaywala, Parker, & Maestripieri, 2014) and attentional bias to threat is exacerbated during periods of acute stress in rhesus macaque adults (Bethell et al., 2012a,b). Here, we build on this extant work to assess whether 5-month-old infant rhesus macaques, previously believed to be too young to express attentional bias to threat, might actually demonstrate attentional bias in response to an acute stressor. At approximately 5 months of age, free-ranging rhesus macaque infants on Cayo Santiago, Puerto Rico (N = 44) were briefly separated from their social group and underwent a maternal separation test, a validated stressor shown to induce anxiety in infant monkeys (Sánchez et al., 2001). We assessed their behavioral (Temperament Task) and cognitive (Threat perception/Vigilance for Threat task) reactivity. Across these two reactivity tests, infants could be classified as "vigilant-fighters"-trying to escape and paying more attention to a threatening than a neutral stimulus-or as "avoidant-freezers"-staying still and quiet and avoiding looking at the threatening stimulus in favor of the neutral stimulus. This behavioral and cognitive phenotype was related to infants' early life experiences, including exposure to early life adversity, and suggests both that attention to threat can be present as young as 5 months of age, and that infants quickly learn behavioral and cognitive strategies for coping with their particular circumstances.
Collapse
Affiliation(s)
- Tara M Mandalaywala
- Department of Comparative Human Development, The University of Chicago, Chicago, IL, USA; Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
| | - Sean P Coyne
- Department of Comparative Human Development, The University of Chicago, Chicago, IL, USA; Department of Psychology, Washington & Jefferson College, Washington, PA, USA.
| |
Collapse
|
6
|
Li Y, Sun Q, Zhu S, Chu C, Wang J. Cross-species alignment along the chronological axis reveals evolutionary effect on structural development of the human brain. eLife 2024; 13:e96020. [PMID: 39652384 PMCID: PMC11627501 DOI: 10.7554/elife.96020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/10/2024] [Indexed: 12/12/2024] Open
Abstract
Disentangling the evolution mysteries of the human brain has always been an imperative endeavor in neuroscience. Although many previous comparative studies revealed genetic, brain structural and connectivity distinctness between human and other nonhuman primates, the brain evolutional mechanism is still largely unclear. Here, we proposed to embed the brain anatomy of human and macaque in the developmental chronological axis to construct cross-species predictive model to quantitatively characterize brain evolution using two large public human and macaque datasets. We observed that applying the trained models within-species could well predict the chronological age. Interestingly, we found the model trained in macaque showed a higher accuracy in predicting the chronological age of human than the model trained in human in predicting the chronological age of macaque. The cross-application of the trained model introduced an individual brain cross-species age gap index to quantify the cross-species discrepancy along the temporal axis of brain development and was found to be associated with the behavioral performance in visual acuity test and picture vocabulary test in human. Taken together, our study situated the cross-species brain development along the chronological axis, which highlighted the disproportionately anatomical development in human brain to extend our understanding of the potential evolutionary effects.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
- School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
| | - Qinyao Sun
- School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
| | - Shunli Zhu
- School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
| | - Congying Chu
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| |
Collapse
|
7
|
Cogo PR, Moadab G, Bliss-Moreau E, Pittet F. Prenatal Zika Virus Exposure Alters the Interaction Between Affective Processing and Decision-Making in Juvenile Rhesus Macaques (Macaca mulatta). Dev Psychobiol 2024; 66:e70002. [PMID: 39508455 DOI: 10.1002/dev.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 11/15/2024]
Abstract
Many challenges during pregnancy can disrupt fetal development and have varying consequences on the subsequent psychological development of infants. Notably, exposure to infectious pathogens during fetal development, such as those encountered in viral pandemics, has been associated with persistent developmental consequences on infants' brains and behavior. However, the underlying mechanisms and the degree to which neural plasticity over infancy may accommodate fetal insults remain unclear. To address this gap, we investigated the interaction between affective processing and decision-making in a cohort of rhesus monkey juveniles exposed to Zika virus (ZIKV) during fetal development, a pathogen known to profoundly disrupt central nervous system development. Ten juveniles exposed to ZIKV during their fetal development and nine procedure-matched controls (CONs) completed a judgment bias task with and without a negative mood induction. Although ZIKV exposure did not impact the monkeys' decision-making processes during the task or the magnitude of their behavioral responses to the mood induction procedure, it did alter the influence of mood induction on decision-making. Although CON monkeys exhibited significantly more conservative decision-making following negative mood induction, the decision-making of Zika-exposed monkeys remained consistent among conditions. These findings suggest that fetal exposure to ZIKV impacts the neural systems involved in integrating affective and cognitive information, with potential long-term implications for learning, memory, and emotion regulation.
Collapse
Affiliation(s)
- Patrick R Cogo
- California National Primate Research Center, University of California, Davis, California, USA
| | - Gilda Moadab
- California National Primate Research Center, University of California, Davis, California, USA
- Department of Psychology, University of California, Davis, California, USA
| | - Eliza Bliss-Moreau
- California National Primate Research Center, University of California, Davis, California, USA
- Department of Psychology, University of California, Davis, California, USA
| | - Florent Pittet
- California National Primate Research Center, University of California, Davis, California, USA
| |
Collapse
|
8
|
Drysdale SB, Thwaites RS, Price J, Thakur D, McGinley J, McPherson C, Öner D, Aerssens J, Openshaw PJ, Pollard AJ. What have we learned from animal studies of immune responses to respiratory syncytial virus infection? J Clin Virol 2024; 175:105731. [PMID: 39368446 DOI: 10.1016/j.jcv.2024.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024]
Abstract
Respiratory syncytial virus (RSV) is a common cause of severe respiratory tract infection at the extremes of age and in vulnerable populations. However, it is difficult to predict the clinical course and most infants who develop severe disease have no pre-existing risk factors. With the recent licencing of RSV vaccines and monoclonal antibodies, it is important to identify high-risk individuals in order to prioritise those who will most benefit from prophylaxis. The immune response to RSV and the mechanisms by which the virus prevents the establishment of immunological memory have been extensively investigated but remain incompletely characterised. In animal models, beneficial and harmful immune responses have both been demonstrated. While only chimpanzees are fully permissive for human RSV replication, most research has been conducted in rodents, or in calves infected with bovine RSV. Based on these studies, components of innate and adaptive immune systems, cytokines, chemokines and metabolites, and specific genetic and transcriptomic signatures are identified as potential predictive indicators of RSV disease severity. These findings may inform the development of future human studies and contribute to the early identification of patients at high risk of severe infection. This narrative review summarises the factors involved in the immune response to RSV infection in these models and highlights the relationship between potential biomarkers and disease severity.
Collapse
Affiliation(s)
- Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom and the NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Devika Thakur
- St George's University Hospitals NHS Foundation Trust, London, UK
| | - Joseph McGinley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Calum McPherson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Deniz Öner
- Infectious Diseases Translational Biomarkers, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jeroen Aerssens
- Infectious Diseases Translational Biomarkers, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Peter Jm Openshaw
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
9
|
Kamboj S, Carlson EL, Ander BP, Hanson KL, Murray KD, Fudge JL, Bauman MD, Schumann CM, Fox AS. Translational Insights From Cell Type Variation Across Amygdala Subnuclei in Rhesus Monkeys and Humans. Am J Psychiatry 2024; 181:1086-1102. [PMID: 39473267 DOI: 10.1176/appi.ajp.20230602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
OBJECTIVE Theories of amygdala function are central to our understanding of psychiatric and neurodevelopmental disorders. However, limited knowledge of the molecular and cellular composition of the amygdala impedes translational research aimed at developing new treatments and interventions. The aim of this study was to characterize and compare the composition of amygdala cells to help bridge the gap between preclinical models and human psychiatric and neurodevelopmental disorders. METHODS Tissue was dissected from multiple amygdala subnuclei in both humans (N=3, male) and rhesus macaques (N=3, male). Single-nucleus RNA sequencing was performed to characterize the transcriptomes of individual nuclei. RESULTS The results reveal substantial heterogeneity between regions, even when restricted to inhibitory or excitatory neurons. Consistent with previous work, the data highlight the complexities of individual marker genes for uniquely targeting specific cell types. Cross-species analyses suggest that the rhesus monkey model is well-suited to understanding the human amygdala, but also identify limitations. For example, a cell cluster in the ventral lateral nucleus of the amygdala (vLa) is enriched in humans relative to rhesus macaques. Additionally, the data describe specific cell clusters with relative enrichment of disorder-related genes. These analyses point to the human-enriched vLa cell cluster as relevant to autism spectrum disorder, potentially highlighting a vulnerability to neurodevelopmental disorders that has emerged in recent primate evolution. Further, a cluster of cells expressing markers for intercalated cells is enriched for genes reported in human genome-wide association studies of neuroticism, anxiety disorders, and depressive disorders. CONCLUSIONS Together, these findings shed light on the composition of the amygdala and identify specific cell types that can be prioritized in basic science research to better understand human psychopathology and guide the development of potential treatments.
Collapse
Affiliation(s)
- Shawn Kamboj
- Department of Psychology (Kamboj, Fox), California National Primate Research Center (Kamboj, Bauman, Fox), and MIND Institute (Carlson, Ander, Hanson, Bauman, Schumann), University of California, Davis; Department of Psychiatry and Behavioral Sciences (Carlson, Hanson, Schumann), Department of Neurology (Ander), and Department of Physiology and Membrane Biology (Murray, Bauman), School of Medicine, University of California, Davis; Department of Neuroscience and Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY (Fudge)
| | - Erin L Carlson
- Department of Psychology (Kamboj, Fox), California National Primate Research Center (Kamboj, Bauman, Fox), and MIND Institute (Carlson, Ander, Hanson, Bauman, Schumann), University of California, Davis; Department of Psychiatry and Behavioral Sciences (Carlson, Hanson, Schumann), Department of Neurology (Ander), and Department of Physiology and Membrane Biology (Murray, Bauman), School of Medicine, University of California, Davis; Department of Neuroscience and Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY (Fudge)
| | - Bradley P Ander
- Department of Psychology (Kamboj, Fox), California National Primate Research Center (Kamboj, Bauman, Fox), and MIND Institute (Carlson, Ander, Hanson, Bauman, Schumann), University of California, Davis; Department of Psychiatry and Behavioral Sciences (Carlson, Hanson, Schumann), Department of Neurology (Ander), and Department of Physiology and Membrane Biology (Murray, Bauman), School of Medicine, University of California, Davis; Department of Neuroscience and Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY (Fudge)
| | - Kari L Hanson
- Department of Psychology (Kamboj, Fox), California National Primate Research Center (Kamboj, Bauman, Fox), and MIND Institute (Carlson, Ander, Hanson, Bauman, Schumann), University of California, Davis; Department of Psychiatry and Behavioral Sciences (Carlson, Hanson, Schumann), Department of Neurology (Ander), and Department of Physiology and Membrane Biology (Murray, Bauman), School of Medicine, University of California, Davis; Department of Neuroscience and Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY (Fudge)
| | - Karl D Murray
- Department of Psychology (Kamboj, Fox), California National Primate Research Center (Kamboj, Bauman, Fox), and MIND Institute (Carlson, Ander, Hanson, Bauman, Schumann), University of California, Davis; Department of Psychiatry and Behavioral Sciences (Carlson, Hanson, Schumann), Department of Neurology (Ander), and Department of Physiology and Membrane Biology (Murray, Bauman), School of Medicine, University of California, Davis; Department of Neuroscience and Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY (Fudge)
| | - Julie L Fudge
- Department of Psychology (Kamboj, Fox), California National Primate Research Center (Kamboj, Bauman, Fox), and MIND Institute (Carlson, Ander, Hanson, Bauman, Schumann), University of California, Davis; Department of Psychiatry and Behavioral Sciences (Carlson, Hanson, Schumann), Department of Neurology (Ander), and Department of Physiology and Membrane Biology (Murray, Bauman), School of Medicine, University of California, Davis; Department of Neuroscience and Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY (Fudge)
| | - Melissa D Bauman
- Department of Psychology (Kamboj, Fox), California National Primate Research Center (Kamboj, Bauman, Fox), and MIND Institute (Carlson, Ander, Hanson, Bauman, Schumann), University of California, Davis; Department of Psychiatry and Behavioral Sciences (Carlson, Hanson, Schumann), Department of Neurology (Ander), and Department of Physiology and Membrane Biology (Murray, Bauman), School of Medicine, University of California, Davis; Department of Neuroscience and Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY (Fudge)
| | - Cynthia M Schumann
- Department of Psychology (Kamboj, Fox), California National Primate Research Center (Kamboj, Bauman, Fox), and MIND Institute (Carlson, Ander, Hanson, Bauman, Schumann), University of California, Davis; Department of Psychiatry and Behavioral Sciences (Carlson, Hanson, Schumann), Department of Neurology (Ander), and Department of Physiology and Membrane Biology (Murray, Bauman), School of Medicine, University of California, Davis; Department of Neuroscience and Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY (Fudge)
| | - Andrew S Fox
- Department of Psychology (Kamboj, Fox), California National Primate Research Center (Kamboj, Bauman, Fox), and MIND Institute (Carlson, Ander, Hanson, Bauman, Schumann), University of California, Davis; Department of Psychiatry and Behavioral Sciences (Carlson, Hanson, Schumann), Department of Neurology (Ander), and Department of Physiology and Membrane Biology (Murray, Bauman), School of Medicine, University of California, Davis; Department of Neuroscience and Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY (Fudge)
| |
Collapse
|
10
|
Nippert KE, Rowland CP, Vazey EM, Moorman DE. Alcohol, flexible behavior, and the prefrontal cortex: Functional changes underlying impaired cognitive flexibility. Neuropharmacology 2024; 260:110114. [PMID: 39134298 PMCID: PMC11694314 DOI: 10.1016/j.neuropharm.2024.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Cognitive flexibility enables individuals to alter their behavior in response to changing environmental demands, facilitating optimal behavior in a dynamic world. The inability to do this, called behavioral inflexibility, is a pervasive behavioral phenotype in alcohol use disorder (AUD), driven by disruptions in cognitive flexibility. Research has repeatedly shown that behavioral inflexibility not only results from alcohol exposure across species but can itself be predictive of future drinking. Like many high-level executive functions, flexible behavior requires healthy functioning of the prefrontal cortex (PFC). The scope of this review addresses two primary themes: first, we outline tasks that have been used to investigate flexibility in the context of AUD or AUD models. We characterize these based on the task features and underlying cognitive processes that differentiate them from one another. We highlight the neural basis of flexibility measures, focusing on the PFC, and how acute or chronic alcohol in humans and non-human animal models impacts flexibility. Second, we consolidate findings on the molecular, physiological and functional changes in the PFC elicited by alcohol, that may contribute to cognitive flexibility deficits seen in AUD. Collectively, this approach identifies several key avenues for future research that will facilitate effective treatments to promote flexible behavior in the context of AUD, to reduce the risk of alcohol related harm, and to improve outcomes following AUD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Kathryn E Nippert
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Courtney P Rowland
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Elena M Vazey
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - David E Moorman
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
11
|
Subbiahanadar Chelladurai K, Selvan Christyraj JD, Rajagopalan K, Vadivelu K, Chandrasekar M, Das P, Kalimuthu K, Balamurugan N, Subramanian V, Selvan Christyraj JRS. Ex vivo functional whole organ in biomedical research: a review. J Artif Organs 2024:10.1007/s10047-024-01478-4. [PMID: 39592544 DOI: 10.1007/s10047-024-01478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/29/2024] [Indexed: 11/28/2024]
Abstract
Model systems are critical in biomedical and preclinical research. Animal and in vitro models serve an important role in our current understanding of human physiology, disease pathophysiology, and therapy development. However, if the system is between cell culture and animal models, it may be able to overcome the knowledge gap that exists in the current system. Studies employing ex vivo organs as models have not been thoroughly investigated. Though the integration of other organs and systems has an impact on many biological mechanisms and disorders, it can add a new dimension to modeling and aid in the identification of new possible therapeutic targets. Here, we have discussed why the ex vivo organ model is desirable and the importance of the inclusion of organs from diverse species, described its historical aspects, studied organs as models in scientific research, and its ex vivo stability. We also discussed, how an ex vivo organ model might help researchers better understand organ physiology, as well as organ-specific diseases and therapeutic targets. We emphasized how this ex vivo organ dynamics will be more competent than existing models, as well as what tissues or organs would have potentially viable longevity for ex vivo modeling including human tissues, organs, and/or at least biopsies and its possible advantage in clinical medicine including organ transplantation procedure and precision medicine.
Collapse
Affiliation(s)
- Karthikeyan Subbiahanadar Chelladurai
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Jackson Durairaj Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India.
| | - Kamarajan Rajagopalan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Kayalvizhi Vadivelu
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Meikandan Chandrasekar
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Puja Das
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Kalishwaralal Kalimuthu
- Rajiv Gandhi Centre for Biotechnology, Department of Biotechnology, Thiruvananthapuram, Kerala, India
| | - Nivedha Balamurugan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Vijayalakshmi Subramanian
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
12
|
Yeon J, Kim S, Kong J, Park G. Protective effect of helmet use on mortality in bicycle crashes: A matched case-control study. TRAFFIC INJURY PREVENTION 2024; 25:S217-S256. [PMID: 39541201 DOI: 10.1080/15389588.2024.2415263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
INTRODUCTION In 2022; South Korea had 3.3 million daily bicycle users and around 13,000 crashes with 190 fatalities annually. While helmets are known to prevent head injuries, research on their effectiveness in preventing fatalities is lacking. This study explores factors influencing bicycle-related fatalities and examines if helmets reduce the risk of death in road traffic incidents. METHODS This case-control study used data from the Emergency Department-based Injury In-depth Surveillance (EDIIS) from 2011 to 2021; analyzing 76,983 bicycle injury cases. Of these, 282 fatalities were identified as the case group, and 1,112 controls were randomly selected based on gender, age, and year of visit. The study examined risk factors for bicycle fatalities and used conditional logistic regression to assess the impact of helmet use on traumatic brain injury and in-hospital mortality. RESULTS In this study of 1,394 patients (282 cases and 1,112 controls), 11.1% were wearing helmets at the time of the crash. The majority of cases involved males (88%) and individuals aged 60-79 years (58.6%). Cases were more likely to occur between 00:00-06:00 and 18:00-00:00 and involved a higher proportion of non-helmeted riders (96.1% vs. 87.1%). Bicycle fatalities were more often due to collisions with automobiles (67.7%), while non-fatal injuries were mainly from crashes without a collision (45.8%). Head injuries were common in both groups, but traumatic brain injury (TBI) was significantly higher among cases (41.5% vs. 11.9%). Key factors associated with ED mortality included the time of injury, alcohol use, crashes on national highways, no helmet use, and collisions with automobiles. Helmet use was associated with a non-significant 35% lower risk of TBI and a significant 63% lower risk of ED mortality. CONCLUSIONS Key risk factors for fatal bicycle injuries included being aged 60-79, male, involved in nighttime crashes, collisions with automobiles, not wearing a helmet, and sustaining a traumatic brain injury (TBI). Helmet use was linked to lower rates of TBIs and reduced mortality. To decrease bicycle-related deaths, stronger legal regulations, educational efforts, and improved infrastructure are essential, along with further interventions and research to effectively tackle these issues.
Collapse
Affiliation(s)
- Jeseon Yeon
- Chungbuk National University Hospital, Cheongju-si Chungchoenbuk-do, Korea
| | - Sangchul Kim
- Chungbuk National University Hospital, Cheongju-si Chungchoenbuk-do, Korea
| | - Joyce Kong
- Laerdal Medical, Laerdal Medical Stavanger, Norway
| | - Gwanjin Park
- Chungbuk National University Hospital, Cheongju-si Chungchoenbuk-do, Korea
| |
Collapse
|
13
|
Pearce CS, Bukovsky D, Douchant K, Katoch A, Greenlaw J, Gale DJ, Nashed JY, Brien D, Kuhlmeier VA, Sabbagh MA, Blohm G, De Felice FG, Pare M, Cook DJ, Scott SH, Munoz DP, Sjaarda CP, Tusche A, Sheth PM, Winterborn A, Boehnke S, Gallivan JP. Changes in social environment impact primate gut microbiota composition. Anim Microbiome 2024; 6:66. [PMID: 39538341 PMCID: PMC11562706 DOI: 10.1186/s42523-024-00355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The gut microbiota (GM) has proven to be essential for both physical health and mental wellbeing, yet the forces that ultimately shape its composition remain opaque. One critical force known to affect the GM is the social environment. Prior work in humans and free-ranging non-human primates has shown that cohabitation and frequent social interaction can lead to changes in GM composition. However, it is difficult to assess the direction of causation in these studies, and interpretations are complicated by the influence of uncontrolled but correlated factors, such as shared diet. RESULTS We performed a 15-month longitudinal investigation wherein we disentangled the impacts of diet and social living conditions on GM composition in a captive cohort of 13 male cynomolgus macaques. The animals were in single housing for the first 3 months of the study initially with a variable diet. After baseline data collection they were placed on a controlled diet for the remainder of the study. Following this diet shift the animals were moved to paired housing for 6 months, enabling enhanced social interaction, and then subsequently returned to single housing at the end of our study. This structured sequencing of diet and housing changes allowed us to assess their distinct impacts on GM composition. We found that the early dietary adjustments led to GM changes in both alpha and beta diversity, whereas changes in social living conditions only altered beta diversity. With respect to the latter, we found that two particular bacterial families - Lactobacillaceae and Clostridiaceae - demonstrated significant shifts in abundance during the transition from single housing to paired housing, which was distinct from the shifts we observed based on a change in diet. Conversely, we found that other bacteria previously associated with sociality were not altered based on changes in social living conditions but rather only by changes in diet. CONCLUSIONS Together, these findings decouple the influences that diet and social living have on GM composition and reconcile previous observations in the human and animal literatures. Moreover, the results indicate biological alterations of the gut that may, in part, mediate the relationship between sociality and wellbeing.
Collapse
Affiliation(s)
- Colleen S Pearce
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | | | - Katya Douchant
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Abhay Katoch
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Jill Greenlaw
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Joseph Y Nashed
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Don Brien
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Valerie A Kuhlmeier
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Mark A Sabbagh
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Gunnar Blohm
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Fernanda G De Felice
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Martin Pare
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Neurosurgery, Queen's University, Kingston, ON, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Calvin P Sjaarda
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Anita Tusche
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Prameet M Sheth
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Andrew Winterborn
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Susan Boehnke
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
- Department of Psychology, Queen's University, Kingston, ON, Canada.
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
14
|
Dewi FN, Permanawati, Saputro S, Azhar AD, Putriyani W, Wyatt JD, Suparto IH, Darusman HS. Social Housing of Previously Single-Caged Adult Male Cynomolgus Macaques ( Macaca fascicularis). Vet Sci 2024; 11:538. [PMID: 39591312 PMCID: PMC11599010 DOI: 10.3390/vetsci11110538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Cynomolgus macaques (Macaca fascicularis; Mf) serve an essential role in the advancement of biomedical research. Aged macaques, in particular, are highly valued as animal models for the study of geriatric diseases. While social housing has become the default for nonhuman primates (NHPs), socially housing sexually mature males poses a unique challenge. Moreover, socially housing aged males that have been previously kept in single housing may pose even greater challenge and risk due to a higher likelihood of aggression. Temperament assessment plays an integral part in determining the success of social housing arrangements of NHPs. In this paper, we report our work at the Primate Research Center of IPB University in integrating behavior observation and veterinary management to socially house adult, male Mf. We describe our experience in successfully housing young-adult, male Mf (n = 8-10, aged 6 years) for over 2.5 years, and the multiple efforts to socially house a small group of previously singly housed aged, male Mf (n = 6, aged >15 years). The temperament of each Mf was considered in the planning and implementation of social housing attempts. While a simplified behavioral observation was performed for the young adults, a more rigorous PAIR-T assessment was performed on the aged Mf. A group formation was initially attempted, aiming to achieve a small group of six aged, male Mf. While this group at first showed promising outcomes, significant incidents of aggression required regrouping as pairs or triads wherein the subject combinations were determined based on temperament and dominance. A total of three attempts were made to house these aged Mf in a small group throughout the course of 17 months, and the results showed that at our facility, aged, male Mf are best housed as triads or pairs, with selections based on their temperament and dominance compatibility. We concluded that behavioral assessments and veterinary management are pivotal in supporting the social housing efforts of adult, male Mf in order to optimize their well-being.
Collapse
Affiliation(s)
- Fitriya N. Dewi
- School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia;
- Primate Research Center, IPB University, Bogor 16151, Indonesia; (P.); (S.S.); (A.D.A.); (W.P.); (I.H.S.)
| | - Permanawati
- Primate Research Center, IPB University, Bogor 16151, Indonesia; (P.); (S.S.); (A.D.A.); (W.P.); (I.H.S.)
| | - Suryo Saputro
- Primate Research Center, IPB University, Bogor 16151, Indonesia; (P.); (S.S.); (A.D.A.); (W.P.); (I.H.S.)
| | - Adinda D. Azhar
- Primate Research Center, IPB University, Bogor 16151, Indonesia; (P.); (S.S.); (A.D.A.); (W.P.); (I.H.S.)
| | - Wahyu Putriyani
- Primate Research Center, IPB University, Bogor 16151, Indonesia; (P.); (S.S.); (A.D.A.); (W.P.); (I.H.S.)
| | - Jeffrey D. Wyatt
- Department of Comparative Medicine, University of Rochester, Rochester, NY 14642, USA;
| | - Irma H. Suparto
- Primate Research Center, IPB University, Bogor 16151, Indonesia; (P.); (S.S.); (A.D.A.); (W.P.); (I.H.S.)
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Huda S. Darusman
- School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia;
- Primate Research Center, IPB University, Bogor 16151, Indonesia; (P.); (S.S.); (A.D.A.); (W.P.); (I.H.S.)
| |
Collapse
|
15
|
Dettmer AM, Slonecker EM, Clouse S, Ozturkoglu Y, Meyer JS. No Effect of Infant Nursery Rearing on Laboratory Rhesus Monkey Dams' Social Behavior or Long-Term Cortisol Profiles. Appl Anim Behav Sci 2024; 280:106428. [PMID: 39650804 PMCID: PMC11619073 DOI: 10.1016/j.applanim.2024.106428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
While the behavioral and physiological impacts of nursery rearing in laboratory-housed infant monkeys have been well characterized, to date no studies have examined the impact on nonhuman primate dams of their infants being removed for rearing in the nursery. Despite the lack of evidence on the topic, anti-animal research groups often cite mother-infant separation and infant nursery rearing (NR) as a welfare concern for laboratory monkey mothers. As such, important policy decisions regarding research activities may result without adequate evidence. Therefore, we designed this study to examine behavioral and hormonal responses in laboratory monkey dams, who were part of independent long-term longitudinal studies, in response to their infants being NR or mother-peer-reared (MPR). We assessed social, self-care, environmental exploration, and abnormal behaviors for 30 days before and 30 days after parturition in rhesus monkey dams (Macaca mulatta, N=49). Infants were randomly assigned to be either NR (N = 27) or MPR (N = 22). We also analyzed hair samples for cortisol concentrations three times across the study period (Pregnancy, Neonatal Period, Peak Lactation). Dams of NR infants showed no gross behavioral differences relative to dams of MPR infants (all p's>0.05). Dams of MPR infants showed expected increases in social grooming and social contact, and concomitant decreases in foraging and locomotion, in the 30 days post-partum compared to the 30 days pre-partum (p<0.01). Dams whose infants were NR or MPR showed no differences in hair cortisol concentrations across the study period (p>0.05). We conclude that, with respect to the behavioral and endocrine measures we assessed, nursery rearing of their infants is not detrimental to the welfare of laboratory-housed macaque dams.
Collapse
Affiliation(s)
- Amanda M. Dettmer
- Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Emily M. Slonecker
- Department of Psychological and Brain Sciences, Villanova University, Villanova, PA, USA
| | - Sylvia Clouse
- College of Arts & Sciences, University of Vermont, Burlington, VT, USA
| | - Yagmur Ozturkoglu
- Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Jerrold S. Meyer
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
16
|
Charbonneau JA, Davis B, Raven EP, Patwardhan B, Grebosky C, Halteh L, Bennett JL, Bliss-Moreau E. Evaluation of registration-based vs. manual segmentation of rhesus macaque brain MRIs. Brain Struct Funct 2024; 229:2029-2043. [PMID: 39136727 PMCID: PMC11483197 DOI: 10.1007/s00429-024-02848-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/01/2024] [Indexed: 10/18/2024]
Abstract
With increasing numbers of magnetic resonance imaging (MRI) datasets becoming publicly available, researchers and clinicians alike have turned to automated methods of segmentation to enable population-level analyses of these data. Although prior research has evaluated the extent to which automated methods recapitulate "gold standard" manual segmentation methods in the human brain, such an evaluation has not yet been carried out for segmentation of MRIs of the macaque brain. Macaques offer the important opportunity to bridge gaps between microanatomical studies using invasive methods like tract tracing, neural recordings, and high-resolution histology and non-invasive macroanatomical studies using methods like MRI. As such, it is important to evaluate whether automated tools derive data of sufficient quality from macaque MRIs to bridge these gaps. We tested the relationship between automated registration-based segmentation using an open source and actively maintained NHP imaging analysis pipeline (AFNI) and gold standard manual segmentation of 4 structures (2 cortical: anterior cingulate cortex and insula; 2 subcortical: amygdala and caudate) across 37 rhesus macaques (Macaca mulatta). We identified some variability in the strength of correlation between automated and manual segmentations across neural regions and differences in relationships with demographic variables like age and sex between the two techniques.
Collapse
Affiliation(s)
- Joey A Charbonneau
- Neuroscience Graduate Program, University of California Davis, Davis, CA, USA.
- California National Primate Research Center, University of California Davis, Davis, CA, USA.
| | - Brittany Davis
- Neuroscience Graduate Program, University of California Davis, Davis, CA, USA
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Erika P Raven
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Bhakti Patwardhan
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Carson Grebosky
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Lucas Halteh
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Jeffrey L Bennett
- California National Primate Research Center, University of California Davis, Davis, CA, USA
- Department of Psychology, University of California Davis, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, Sacramento, CA, USA
- The MIND Institute, University of California Davis, Sacramento, CA, USA
| | - Eliza Bliss-Moreau
- California National Primate Research Center, University of California Davis, Davis, CA, USA.
- Department of Psychology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
17
|
Leishman DJ, Oppler SH, Graham ML, Jahansouz C. Laparoscopic sigmoid colectomy with primary anastomosis for experimental modeling in the nonhuman primate. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:93. [PMID: 39507443 PMCID: PMC11534753 DOI: 10.21037/atm-24-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/23/2024] [Indexed: 11/08/2024]
Abstract
Laparoscopic colon surgery is performed frequently in the clinical setting for a multitude of reasons including cancer, infection, and autoimmune disease. As a result, extensive research has been conducted in relation to clinical outcomes after surgery, but more recently, in relation to the impact of surgery and other patient factors on physiologic homeostasis including the host microbiome. Despite this, experimental surgical models for laparoscopic colon surgery are scarce in the literature with most studies utilizing rodents. While rodent studies provide valuable insights into basic mechanistic processes, the translation of novel therapeutic approaches to clinical practice often requires the use of large animal models. In exploring the intricate systems biology linking surgery and medicine, sophisticated models such as nonhuman primates (NHPs) play a pivotal role. By closely resembling human anatomical, physiological, and behavioral characteristics, NHPs facilitate the development and refinement of complex surgical techniques and peri-operative practices. Furthermore, they enable longitudinal studies that comprehensively assess both immediate and long-term outcomes. The availability and utilization of multiple robust models enhance the validity of surgical research, leading to more successful translation to human clinical practice. Here we describe our technique for performing a laparoscopic sigmoid colectomy with a primary anastomosis in an NHP. The entire procedure was well tolerated without significant ventilation or hemodynamic issue. To our knowledge, this represents the first laparoscopic sigmoid colectomy with primary anastomosis performed in an NHP. Furthermore, this demonstrates the feasibility of the technique and provides a relevant, preclinical model for the study of surgical colon disease. Although the surgical colectomy model in NHPs closely resembles the clinical scenario, it is crucial to recognize that a 'model' inherently comes with limitations. The intended use of any model should be carefully evaluated concerning the target patient population with the consideration of potential disparities in anatomy, physiology, environmental factors, and disease to properly interpret results. This model provides an opportunity to study mechanisms, from a systems biology perspective, underlying both innovative surgical treatments and their effects on diseases such as colon cancer, as well as benign conditions like inflammatory bowel disease, diverticulitis, and anastomotic leak, offering high predictive value.
Collapse
Affiliation(s)
- David J Leishman
- Preclinical Research Center, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Scott H Oppler
- Preclinical Research Center, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Melanie L Graham
- Preclinical Research Center, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Cyrus Jahansouz
- Division of Colon and Rectal Surgery, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
18
|
Nashed JY, Gale DJ, Gallivan JP, Cook DJ. Changes in cortical manifold structure following stroke and its relation to behavioral recovery in the male macaque. Nat Commun 2024; 15:9005. [PMID: 39424864 PMCID: PMC11489416 DOI: 10.1038/s41467-024-53365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Stroke, a major cause of disability, disrupts brain function and motor skills. Previous research has mainly focused on reorganization of the motor system post-stroke, but the effects on other brain areas and their influence on recovery is poorly understood. Here, we use functional neuroimaging in a nonhuman primate model (23 male Cynomolgus Macaques), we explore how ischemic stroke affects whole-brain cortical architecture and its relation to spontaneous behavioral recovery. By projecting patterns of cortical functional connectivity onto a low-dimensional manifold space, we find that several regions in both sensorimotor cortex and higher-order transmodal cortex exhibit significant shifts in their manifold embedding from pre- to post-stroke. Furthermore, we observe that changes in default mode and limbic network regions, and not preserved sensorimotor cortical regions, are associated with animal behavioral recovery post-stroke. These results establish the whole-brain functional changes associated with stroke, and suggest an important role for higher-order transmodal cortex in post-stroke outcomes.
Collapse
Affiliation(s)
- Joseph Y Nashed
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
- School of Medicine, Queen's University, Kingston, ON, Canada.
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- School of Medicine, Queen's University, Kingston, ON, Canada
- Division of Neurosurgery, Department of Surgery, Queen's University, Kingston, ON, Canada
| |
Collapse
|
19
|
Bronk G, Lardenoije R, Koolman L, Klengel C, Dan S, Howell BR, Morin EL, Meyer JS, Wilson ME, Ethun KF, Alvarado MC, Raper J, Bravo-Rivera H, Kenwood MM, Roseboom PH, Quirk GJ, Kalin NH, Binder EB, Sanchez MM, Klengel T. A novel epigenetic clock for rhesus macaques unveils an association between early life adversity and epigenetic age acceleration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617208. [PMID: 39416061 PMCID: PMC11482811 DOI: 10.1101/2024.10.08.617208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Because DNA methylation changes reliably with age, machine learning models called epigenetic clocks can estimate an individual's age based on their DNA methylation profile. This epigenetic measure of age can deviate from one's true age, and the difference between the epigenetic age and true age, known as epigenetic age acceleration (EAA), has been found to directly correlate with morbidity and mortality in adults. Emerging evidence suggests that EAA is also associated with aberrant health outcomes in children, making epigenetic clocks useful tools for studying aging and development. We developed two highly accurate epigenetic clocks for the rhesus macaque, utilizing 1,008 blood samples from 690 macaques between 2 days and 23.4 years of age with diverse genetic backgrounds and exposure to environmental conditions. The first clock, which is trained on all samples, achieves a Pearson correlation between true age and predicted age of 0.983 and median absolute error of 0.210 years. To study phenotypes during development, the second clock is optimized for macaques younger than 6 years and achieves a Pearson correlation of 0.974 and a median absolute error of 0.148 years. Using the latter clock, we investigated whether epigenetic aging is affected by early life adversity in the form of infant maltreatment. Our data suggests that maltreatment and increased hair cortisol levels are associated with epigenetic age acceleration right after the period of maltreatment.
Collapse
|
20
|
Florio MC, Fusini L, Tamborini G, Morrell C, McDonald A, Walcott M, Ridley K, Vaughan KL, Mattison JA, Pepi M, Lakatta EG, Capogrossi MC. Echocardiographic characterization of age- and sex-associated differences in cardiac function and morphometry in nonhuman primates. GeroScience 2024; 46:4615-4634. [PMID: 38689157 PMCID: PMC11335998 DOI: 10.1007/s11357-024-01172-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024] Open
Abstract
Aging per se is a major risk factor for cardiovascular diseases and is associated with progressive changes in cardiac structure and function. Rodent models are commonly used to study cardiac aging, but do not closely mirror differences as they occur in humans. Therefore, we performed a 2D echocardiographic study in non-human primates (NHP) to establish age- and sex-associated differences in cardiac function and morphometry in this animal model. M mode and 2D echocardiography and Doppler analyses were performed cross-sectionally in 38 healthy rhesus monkeys (20 females and 18 males), both young (age 7-12 years; n = 20) and old (age 19-30 years; n = 18). The diameters of the cardiac chambers did not differ significantly by age group, but males had larger left ventricular diameters (2.43 vs 2.06 cm in diastole and 1.91 vs 1.49 cm in systole, p = 0.0004 and p = 0.0001, respectively) and left atrial diameter (1.981 vs 1.732 cm; p = 0.0101). Left ventricular mass/body surface area did not vary significantly with age and sex. Ejection fraction did not differ by age and females presented a higher ejection fraction than males (54.0 vs 50.8%, p = 0.0237). Diastolic function, defined by early to late mitral peak flow velocity ratio (E/A), was significantly lower in old rhesus monkeys (2.31 vs 1.43, p = 0.0020) and was lower in females compared to males (1.595 vs 2.230, p = 0.0406). Right ventricular function, evaluated by measuring the Tricuspid Annular Plane Systolic Excursion, did not differ by age or sex, and Right Ventricular Free Wall Longitudinal Strain, did not differ with age but was lower in males than in females (-22.21 vs -17.95%, p = 0.0059). This is the first echocardiographic study to evaluate age- and sex-associated changes of cardiac morphometry and function in young and old NHP. The findings of this work will provide a reference to examine the effect of age and sex on cardiac diseases in NHP.
Collapse
Affiliation(s)
- Maria Cristina Florio
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute On Aging, NIH, Baltimore, MD, USA.
| | - Laura Fusini
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino - IRCCS, Milan, Italy
| | - Gloria Tamborini
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino - IRCCS, Milan, Italy
| | - Christopher Morrell
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute On Aging, NIH, Baltimore, MD, USA
| | - Alise McDonald
- Division of Cardiology, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Michelle Walcott
- Division of Cardiology, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Kenneth Ridley
- Division of Cardiology, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Kelli L Vaughan
- Translational Gerontology Branch, National Institute on Aging, NIH Animal Center, Dickerson, MD, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, NIH Animal Center, Dickerson, MD, USA
| | - Mauro Pepi
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino - IRCCS, Milan, Italy
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute On Aging, NIH, Baltimore, MD, USA
| | - Maurizio C Capogrossi
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute On Aging, NIH, Baltimore, MD, USA.
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Di Stadio A, Ralli M, De Luca P, Sossamon J, Frohman TC, Altieri M, La Mantia I, Ferlito S, Frohman EM, Brenner MJ. Combining early lower eyelid surgery with neuromuscular retraining for synkinesis prevention after facial palsy: the role of the eye in aberrant facial nerve regeneration. Front Neurol 2024; 15:1443591. [PMID: 39359872 PMCID: PMC11445145 DOI: 10.3389/fneur.2024.1443591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Background Facial synkinesis (FS) is a distressing sequela of facial palsy (FP) characterized by involuntary, simultaneous movements of facial muscles occurring during voluntary facial expressions. Treatment of synkinesis is challenging, and preventive methods are needed. Aim This study evaluated the efficacy of physical facial nerve rehabilitation (PFNR) therapy alone vs. PNFR with eyelid surgery to correct lagophthalmos and prevent the onset of synkinesis. Methods Twenty five outpatients were randomized to receive either PFNR alone (neuromuscular retraining and Kabat proprioceptive neuromuscular facilitation) or PNFR and early (90 days after FP onset) eyelid surgery (involving a conservative oculoplastic correction for lagophthalmos with epiphora or ectropion). Comprehensive otolaryngological assessments and Magnetic Resonance Imaging (MRI) were conducted. Synkinesis progression was measured using Another Disease Scale (ADS) at baseline, 3-, 6-, 12-, and 24-months post-treatment. The data were analyzed with ANOVA, τ-test, Chi-Square analyses. Results Patients undergoing eyelid surgery with PFNR showed faster (p < 0.001) and better recovery of facial movements (p < 0.05) than patients receiving PFNR alone comparing T0 and T12 (p < 0.0001). No synkinesis were observed in the PFNR plus surgery group while 37% of patients in PFNR alone had synkinesis (p = 0.03). At 24 months, none of the patients in the surgery group presented synkinesis. Conclusion Combining early surgical treatment of paralytic lagophthalmos or epiphora with PFNR accelerated functional recovery and reduced synkinesis in patients with FP compared to facial rehabilitation alone. Further investigations in larger populations with long-term follow-up are needed. Clinical trial registration https://clinicaltrials.gov/study/NCT06538103, NCT06538103.
Collapse
Affiliation(s)
- Arianna Di Stadio
- Otolaryngology Unit, Department GF Ingrassia, University of Catania, Catania, Italy
| | - Massimo Ralli
- Organ of Sense Department, University La Sapienza, Rome, Italy
| | - Pietro De Luca
- Otolaryngology Department, Fatebenefratelli-Isola Hospital, Rome, Italy
| | - Jake Sossamon
- Medical University of South Carolina, Charleston, SC, United States
| | - Teresa C. Frohman
- Distinguished Senior Fellows (Sabbatical) Neuroimmunology Laboratory of Professor Lawrence Steinman, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Marta Altieri
- Neurology Department, University La Sapienza, Rome, Italy
| | - Ignazio La Mantia
- Otolaryngology Unit, Department GF Ingrassia, University of Catania, Catania, Italy
| | - Salvatore Ferlito
- Otolaryngology Unit, Department GF Ingrassia, University of Catania, Catania, Italy
| | - Elliot M. Frohman
- Distinguished Senior Fellows (Sabbatical) Neuroimmunology Laboratory of Professor Lawrence Steinman, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Michael J. Brenner
- Department of Otolaryngology—Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
22
|
Briglia M, Allia F, Avola R, Signorini C, Cardile V, Romano GL, Giurdanella G, Malaguarnera R, Bellomo M, Graziano ACE. Diet and Nutrients in Rare Neurological Disorders: Biological, Biochemical, and Pathophysiological Evidence. Nutrients 2024; 16:3114. [PMID: 39339713 PMCID: PMC11435074 DOI: 10.3390/nu16183114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Rare diseases are a wide and heterogeneous group of multisystem life-threatening or chronically debilitating clinical conditions with reduced life expectancy and a relevant mortality rate in childhood. Some of these disorders have typical neurological symptoms, presenting from birth to adulthood. Dietary patterns and nutritional compounds play key roles in the onset and progression of neurological disorders, and the impact of alimentary needs must be enlightened especially in rare neurological diseases. This work aims to collect the in vitro, in vivo, and clinical evidence on the effects of diet and of nutrient intake on some rare neurological disorders, including some genetic diseases, and rare brain tumors. Herein, those aspects are critically linked to the genetic, biological, biochemical, and pathophysiological hallmarks typical of each disorder. Methods: By searching the major web-based databases (PubMed, Web of Science Core Collection, DynaMed, and Clinicaltrials.gov), we try to sum up and improve our understanding of the emerging role of nutrition as both first-line therapy and risk factors in rare neurological diseases. Results: In line with the increasing number of consensus opinions suggesting that nutrients should receive the same attention as pharmacological treatments, the results of this work pointed out that a standard dietary recommendation in a specific rare disease is often limited by the heterogeneity of occurrent genetic mutations and by the variability of pathophysiological manifestation. Conclusions: In conclusion, we hope that the knowledge gaps identified here may inspire further research for a better evaluation of molecular mechanisms and long-term effects.
Collapse
Affiliation(s)
- Marilena Briglia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Fabio Allia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Rosanna Avola
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Maria Bellomo
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| |
Collapse
|
23
|
Karanika S, Wang T, Yilma A, Castillo JR, Gordy JT, Bailey H, Quijada D, Fessler K, Tasneen R, Rouse Salcido EM, Harris HT, Bates RE, Ton H, Meza J, Li Y, Taylor AD, Zheng JJ, Zhang J, Peske JD, Karantanos T, Maxwell AR, Nuermberger E, Markham RB, Karakousis PC. Therapeutic DNA Vaccine Targeting Mycobacterium tuberculosis Persisters Shortens Curative Tuberculosis Treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611055. [PMID: 39282461 PMCID: PMC11398349 DOI: 10.1101/2024.09.03.611055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Mycobacterium tuberculosis ( Mtb) is one of the leading infectious causes of death worldwide. There is no available licensed therapeutic vaccine that shortens active tuberculosis (TB) disease drug treatment and prevents relapse, despite the World Health Organization's calls. Here, we show that an intranasal DNA vaccine containing a fusion of the stringent response rel Mtb gene with the gene encoding the immature dendritic cell-targeting chemokine, MIP-3α/CCL20, shortens the duration of curative TB treatment in immunocompetent mice. Compared to the first-line regimen for drug-susceptible TB alone, our novel adjunctive vaccine induced greater Rel Mtb -specific T-cell responses associated with optimal TB control in spleen, blood, lungs, mediastinal lymph nodes, and bronchoalveolar lavage (BAL) fluid. These responses were sustained, if not augmented, over time. It also triggered more effective dendritic cell recruitment, activation, and colocalization with T cells, implying enhanced crosstalk between innate and adaptive immunity. Moreover, it potentiated a 6-month TB drug-resistant regimen, rendering it effective across treatment regimens, and also showed promising results in CD4+ knockout mice, perhaps due to enhanced Rel-specific CD8+ T-cell responses. Notably, our novel fusion vaccine was also immunogenic in nonhuman primates, the gold standard animal model for TB vaccine studies, eliciting antigen-specific T-cell responses in blood and BAL fluid analogous to those observed in protected mice. Our findings have critical implications for therapeutic TB vaccine clinical development in immunocompetent and immunocompromised populations and may serve as a model for defining immunological correlates of therapeutic vaccine-induced protection. One sentence summary A TB vaccine shortens curative drug treatment in mice by eliciting strong TB-protective immune responses and induces similar responses in macaques.
Collapse
|
24
|
Bertorello S, Cei F, Fink D, Niccolai E, Amedei A. The Future Exploring of Gut Microbiome-Immunity Interactions: From In Vivo/Vitro Models to In Silico Innovations. Microorganisms 2024; 12:1828. [PMID: 39338502 PMCID: PMC11434319 DOI: 10.3390/microorganisms12091828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Investigating the complex interactions between microbiota and immunity is crucial for a fruitful understanding progress of human health and disease. This review assesses animal models, next-generation in vitro models, and in silico approaches that are used to decipher the microbiome-immunity axis, evaluating their strengths and limitations. While animal models provide a comprehensive biological context, they also raise ethical and practical concerns. Conversely, modern in vitro models reduce animal involvement but require specific costs and materials. When considering the environmental impact of these models, in silico approaches emerge as promising for resource reduction, but they require robust experimental validation and ongoing refinement. Their potential is significant, paving the way for a more sustainable and ethical future in microbiome-immunity research.
Collapse
Affiliation(s)
- Sara Bertorello
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Francesco Cei
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Dorian Fink
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| |
Collapse
|
25
|
Oppler SH, Palmer SD, Phu SN, Graham ML. The Role of Behavioral Management in Enhancing Clinical Care and Efficiency, Minimizing Social Disruption, and Promoting Welfare in Captive Primates. Vet Sci 2024; 11:401. [PMID: 39330780 PMCID: PMC11435859 DOI: 10.3390/vetsci11090401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Medical procedures necessary for routine care can induce stress in both the veterinary and human clinical situations. In the research environment, nonhuman primates undergo procedures like physical examination, blood sampling, and intravenous drug or fluid administration either as a part of routine veterinary care or during the modeling of clinical disease and interventions under study. Behavioral management techniques, such as training for cooperation, allow caregivers to train primates to voluntarily engage in various medical procedures. This approach reduces stress and anxiety associated with necessary procedures, thereby enhancing efficiency and minimizing the invasiveness of medical care. Consequently, veterinary evaluation and care can be provided without compromise, resulting in enhanced clinical outcomes and overall better health. In this study, we explored the impact of the behavioral management program implemented at our center on a subset of animals undergoing routine veterinary care, focusing on the overall experience, including animal welfare, scientific rigor, and efficiency in terms of economics and time. We investigated its impact on key factors, such as the total procedure and recovery time, incidence of side effects, and welfare indicators, revealing a significant positive influence on animal care. Furthermore, through case studies, we illustrate how behavioral management facilitates timely medical care and monitoring, effectively mitigating stressors that could otherwise impair health and welfare, enabling the provision of care that would have otherwise been unachievable. A thoughtfully designed primate behavioral management program, integrating cooperation and participation with veterinary care, forms the cornerstone of superior animal welfare, enhanced clinical care, and more accurate scientific outcomes.
Collapse
Affiliation(s)
- Scott H. Oppler
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sierra D. Palmer
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Sydney N. Phu
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Melanie L. Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
26
|
Le HH, Shorey-Kendrick LE, Hinds MT, McCarty OJT, Lo JO, Anderson DEJ. Effects of in utero exposure to Δ-9-tetrahydrocannabinol on cardiac extracellular matrix expression and vascular transcriptome in rhesus macaques. Am J Physiol Heart Circ Physiol 2024; 327:H701-H714. [PMID: 39028280 PMCID: PMC11442028 DOI: 10.1152/ajpheart.00181.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Delta-9-tetrahydrocannabinol (THC), the psychoactive component of cannabis, remains a schedule I substance, thus safety data regarding the effects on the cardiovascular and prenatal health are limited. Importantly, there is evidence showing prenatal cannabis exposure can negatively impact fetal organ development, including the cardiovascular system. THC can cross the placenta and bind to cannabinoid receptors expressed in the developing fetus, including on endothelial cells. To understand the impact of prenatal THC exposure on the fetal cardiovascular system, we used our rhesus macaque model of prenatal daily edible THC consumption. Before conception, animals were acclimated to THC (2.5 mg/7 kg/day, equivalent to a heavy medical cannabis dose) and maintained on this dose daily throughout pregnancy. Fetal tissue samples were collected at gestational day 155 (full term is 168 days). Our model showed that in utero THC exposure was associated with a decreased heart weight-to-body weight ratio in offspring, warranting further mechanistic investigation. Histological examination of the fetal cardiac and vascular tissues did not reveal any significant effect of THC exposure on the maturity of collagen within the fetal heart or the aorta. Total collagen III expression and elastin production and organization were unchanged. However, bulk RNA-sequencing of vascular cells in the umbilical vein, umbilical artery, and fetal aorta demonstrated that THC alters the fetal vascular transcriptome and is associated with upregulated expression of genes involved in carbohydrate metabolism and inflammation. The long-term consequences of these findings are unknown but suggest that prenatal THC exposure may affect cardiovascular development in offspring.NEW & NOTEWORTHY Prenatal cannabis use is increasing and despite the public health relevance, there is limited safety data regarding its impact on offspring cardiovascular health outcomes. We used a translational, nonhuman primate model of daily edible Δ-9-tetrahydrocannabinol (THC) consumption during pregnancy to assess its effects on the fetal cardiovascular system. THC-exposed fetal vascular tissues displayed upregulation of genes involved in cellular metabolism and inflammation, suggesting that prenatal THC exposure may impact fetal vascular tissues.
Collapse
Affiliation(s)
- Hillary H Le
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
| | - Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
- Center for Developmental Health, Oregon Health & Science University, Portland, Oregon, United States
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
| | - Jamie O Lo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon, United States
| | - Deirdre E J Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
27
|
Suriya-Arunroj L, Chimngam M, Chamnongpakdee C, Sing-Ayudthaya T, Linchekhaw C, Kongsombat N, Suttisan N. Behavioral Training in First-Generation Long-Tailed Macaques ( Macaca fascicularis) for Improved Husbandry and Veterinary Procedures. Animals (Basel) 2024; 14:2369. [PMID: 39199903 PMCID: PMC11350816 DOI: 10.3390/ani14162369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Owing to their similarities to humans in various aspects, non-human primates (NHPs) serve as valuable translational models that has greatly contributed to scientific advancements. However, working with untrained NHPs can cause stress and increase the risk of injuries to both animals and care staff, compromising both animal welfare and occupational safety. Behavioral training, that benefits from animals' learning abilities to gain their cooperation during husbandry and veterinary procedures, is a well-established method to mitigate these risks. Cynomolgus monkeys, in particular, are known for being despotic, fearful, and challenging to train. Moreover, our first-generation breeders were wild-sourced from human-macaque conflict areas in Thailand. These macaque populations are accustomed with human contact; hence, their prior experience can either work for or against behavioral shaping plans. Establishing a training program with realistic expectations would benefit both the animals and trainers. In this study, six cynomolgus monkeys were selected based on temperament, then underwent a pilot training program that included basic husbandry and veterinary procedures. Over 256 training sessions with gradual shaping plans, all six monkeys went through all training steps, with progress varying considerably among individuals. Cortisol levels were measured to monitor stress responses, revealing a notable sex difference: female monkeys generally complied more easily with the trainer but exhibited a stronger cortisol increase compared to males. This study proposed a behavioral training program grounded in three essential components: temperament assessment, behavioral shaping plans, and the cortisol-based criteria for evaluating training success.
Collapse
|
28
|
Akyazı O, Korkmaz D, Cevher SC. Experimental Parkinson models and green chemistry approach. Behav Brain Res 2024; 471:115092. [PMID: 38844056 DOI: 10.1016/j.bbr.2024.115092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Parkinson's is the most common neurodegenerative disease after Alzheimer's. Motor findings in Parkinson's occur as a result of the degeneration of dopaminergic neurons starting in the substantia nigra pars compacta and ending in the putamen and caudate nucleus. Loss of neurons and the formation of inclusions called Lewy bodies in existing neurons are characteristic histopathological findings of Parkinson's. The disease primarily impairs the functional capacity of the person with cardinal findings such as tremor, bradykinesia, etc., as a result of the loss of dopaminergic neurons in the substantia nigra. Experimental animal models of Parkinson's have been used extensively in recent years to investigate the pathology of this disease. These models are generally based on systemic or local(intracerebral) administration of neurotoxins, which can replicate many features of Parkinson's mammals. The development of transgenic models in recent years has allowed us to learn more about the modeling of Parkinson's. Applying animal modeling, which shows the most human-like effects in studies, is extremely important. It has been demonstrated that oxidative stress increases in many neurodegenerative diseases such as Parkinson's and various age-related degenerative diseases in humans and that neurons are sensitive to it. In cases where oxidative stress increases and antioxidant systems are inadequate, natural molecules such as flavonoids and polyphenols can be used as a new antioxidant treatment to reduce neuronal reactive oxygen species and improve the neurodegenerative process. Therefore, in this article, we examined experimental animal modeling in Parkinson's disease and the effect of green chemistry approaches on Parkinson's disease.
Collapse
Affiliation(s)
- Ozge Akyazı
- Gazi University, Institute of Science, Department of Biology, Ankara 06500, Turkey.
| | - Dılara Korkmaz
- Gazi University, Institute of Science, Department of Biology, Ankara 06500, Turkey
| | - Sule Coskun Cevher
- Gazi University, Faculty of Science, Department of Biology, Ankara 06500, Turkey
| |
Collapse
|
29
|
Logan LE, Sayers K. Pairing Laboratory-Housed Adult Male Rhesus Macaques ( Macaca mulatta): Success Rates in Relation to Behavioral Response and Duration of Visual Contact. Appl Anim Behav Sci 2024; 277:106340. [PMID: 39246422 PMCID: PMC11378955 DOI: 10.1016/j.applanim.2024.106340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
While the benefits of pair housing have been well documented, less is known about increasing success in adult male macaque pair introductions. In this retrospective study, 95 unfamiliar adult male macaque (Macaca mulatta) pairs were examined to determine whether duration of visual contact, behavior, and age and weight were associated with success rate, with "success" defined as two weeks in full tactile contact without excessive behavioral indicators of incompatibility or injury requiring clinical treatment or care. Overall, the unfamiliar adult male pairs achieved a success rate of 72% and wounding requiring medical attention was rare (2%). A significant negative relationship between pair success and time in visual contact for pairs was found. Pairs who moved into tactile contact within 48-hours showed more positive social behaviors in protected and full contact and had a high rate of success (91%), while those who exhibited negative social behaviors were maintained in visual contact for longer. Nevertheless, rapid signs of compatibility were not necessary for the formation of successful pairs. While social introduction success rates steadily declined with increased periods of maintained visual contact, longer durations of 3 days to 1 week (70%), and 8+ days (58%), were still accompanied by high to moderate success, respectively. These results indicate that when negative social behavior is present early in visual contact success may be expected to decrease, but it is not necessarily indicative of incompatibility. Providing extra time in visual contact can reduce overall incidences of single housing.
Collapse
Affiliation(s)
- Lace E Logan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Ken Sayers
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| |
Collapse
|
30
|
Charrier M, Leroux I, Pichon J, Schleder C, Larcher T, Hamel A, Magot A, Péréon Y, Lamirault G, Tremblay JP, Skuk D, Rouger K. Human MuStem cells are competent to fuse with nonhuman primate myofibers in a clinically relevant transplantation context: A proof-of-concept study. J Neuropathol Exp Neurol 2024; 83:684-694. [PMID: 38752570 DOI: 10.1093/jnen/nlae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
We previously reported that human muscle-derived stem cells (hMuStem cells) contribute to tissue repair after local administration into injured skeletal muscle or infarcted heart in immunodeficient rodent models. However, extrapolation of these findings to a clinical context is problematic owing to the considerable differences often seen between in vivo findings in humans versus rodents. Therefore, we investigated whether the muscle regenerative behavior of hMuStem cells is maintained in a clinically relevant transplantation context. Human MuStem cells were intramuscularly administered by high-density microinjection matrices into nonhuman primates receiving tacrolimus-based immunosuppression thereby reproducing the protocol that has so far produced the best results in clinical trials of cell therapy in myopathies. Four and 9 weeks after administration, histological analysis of cell injection sites revealed large numbers of hMuStem cell-derived nuclei in all cases. Most graft-derived nuclei were distributed in small myofiber groups in which no signs of a specific immune response were observed. Importantly, hMuStem cells contributed to simian tissue repair by fusing mainly with host myofibers, demonstrating their capacity for myofiber regeneration in this model. Together, these findings obtained in a valid preclinical model provide new insights supporting the potential of hMuStem cells in future cell therapies for muscle diseases.
Collapse
Affiliation(s)
- Marine Charrier
- Oniris, INRAE, PAnTher, Nantes, France
- L'institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
- Nantes Université, Nantes, France
| | | | | | | | | | - Antoine Hamel
- Service de Chirurgie Infantile, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | - Armelle Magot
- Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, Laboratoire d'Explorations Fonctionnelles, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Yann Péréon
- Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, Laboratoire d'Explorations Fonctionnelles, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | | | - Jacques P Tremblay
- Axe Neurosciences, Research Center of the CHU de Quebec-CHUL and Department of Molecular Medicine, School of Medicine, Laval University, Quebec, Quebec, Canada
| | - Daniel Skuk
- Axe Neurosciences, Research Center of the CHU de Quebec-CHUL and Department of Molecular Medicine, School of Medicine, Laval University, Quebec, Quebec, Canada
| | | |
Collapse
|
31
|
Mulay AR, Hwang J, Kim DH. Microphysiological Blood-Brain Barrier Systems for Disease Modeling and Drug Development. Adv Healthc Mater 2024; 13:e2303180. [PMID: 38430211 PMCID: PMC11338747 DOI: 10.1002/adhm.202303180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/22/2024] [Indexed: 03/03/2024]
Abstract
The blood-brain barrier (BBB) is a highly controlled microenvironment that regulates the interactions between cerebral blood and brain tissue. Due to its selectivity, many therapeutics targeting various neurological disorders are not able to penetrate into brain tissue. Pre-clinical studies using animals and other in vitro platforms have not shown the ability to fully replicate the human BBB leading to the failure of a majority of therapeutics in clinical trials. However, recent innovations in vitro and ex vivo modeling called organs-on-chips have shown the potential to create more accurate disease models for improved drug development. These microfluidic platforms induce physiological stressors on cultured cells and are able to generate more physiologically accurate BBBs compared to previous in vitro models. In this review, different approaches to create BBBs-on-chips are explored alongside their application in modeling various neurological disorders and potential therapeutic efficacy. Additionally, organs-on-chips use in BBB drug delivery studies is discussed, and advances in linking brain organs-on-chips onto multiorgan platforms to mimic organ crosstalk are reviewed.
Collapse
Affiliation(s)
- Atharva R. Mulay
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Jihyun Hwang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Center for Microphysiological Systems, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, 21218
| |
Collapse
|
32
|
Liu G, Huang L, Tan J, Wang Y, Lan C, Chen Y, Mao Y, Wang X, Fan N, Zhu Y, Zhu X, Liu X. Characterization of a monkey model with experimental retinal damage induced by N-methyl-D-aspartate. Dis Model Mech 2024; 17:dmm050033. [PMID: 39056117 PMCID: PMC11554257 DOI: 10.1242/dmm.050033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
N-methyl-D-aspartate (NMDA)-induced retinal damage has been well studied in rodents, but the detailed mechanisms have not yet been characterized in nonhuman primates. Here, we characterized the retinal degenerative effects of NMDA on rhesus monkeys in vivo. NMDA saline or saline-only control was injected intravitreally to the randomly assigned eyes and contralateral eyes of four rhesus monkeys, respectively. The structural and functional changes of retina were characterized by optical coherence tomography and electroretinography on days 0, 4, 30 and 60 post injection. Both optic discs and macular areas of the NMDA-injected eyes initially presented with a transient retinal thickening, followed by continued retinal thinning. The initial, transient retinal thickening has also been observed in glaucoma patients, but this has not been reported in rodent NMDA models. This initial response was followed by loss of retina ganglion cells (RGCs), which is similar to glaucomatous optic neuropathy and other RGC-related retinal degenerations. The amplitudes of both the photopic negative response and pattern electroretinogram decreased significantly and remained low until the end of the study. Thus, the NMDA monkey model may serve as a more clinically relevant animal model of retinal damage.
Collapse
Affiliation(s)
- Guo Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Longxiang Huang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Junkai Tan
- Xiamen Eye Center, Xiamen University, Xiamen, 361004, China
| | - Yun Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, 518040, China
| | - Chunlin Lan
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Yaxi Chen
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, 518040, China
| | - Yukai Mao
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Xizhen Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, 518040, China
| | - Ning Fan
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, 518040, China
| | - Yihua Zhu
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen, 361004, China
- Department of Ophthalmology, Shenzhen People's Hospital, the 2nd Clinical Medical College, Jinan University, Shenzhen, 518020, China
| |
Collapse
|
33
|
Yao YG, Lu L, Ni RJ, Bi R, Chen C, Chen JQ, Fuchs E, Gorbatyuk M, Lei H, Li H, Liu C, Lv LB, Tsukiyama-Kohara K, Kohara M, Perez-Cruz C, Rainer G, Shan BC, Shen F, Tang AZ, Wang J, Xia W, Xia X, Xu L, Yu D, Zhang F, Zheng P, Zheng YT, Zhou J, Zhou JN. Study of tree shrew biology and models: A booming and prosperous field for biomedical research. Zool Res 2024; 45:877-909. [PMID: 39004865 PMCID: PMC11298672 DOI: 10.24272/j.issn.2095-8137.2024.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The tree shrew ( Tupaia belangeri) has long been proposed as a suitable alternative to non-human primates (NHPs) in biomedical and laboratory research due to its close evolutionary relationship with primates. In recent years, significant advances have facilitated tree shrew studies, including the determination of the tree shrew genome, genetic manipulation using spermatogonial stem cells, viral vector-mediated gene delivery, and mapping of the tree shrew brain atlas. However, the limited availability of tree shrews globally remains a substantial challenge in the field. Additionally, determining the key questions best answered using tree shrews constitutes another difficulty. Tree shrew models have historically been used to study hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, myopia, and psychosocial stress-induced depression, with more recent studies focusing on developing animal models for infectious and neurodegenerative diseases. Despite these efforts, the impact of tree shrew models has not yet matched that of rodent or NHP models in biomedical research. This review summarizes the prominent advancements in tree shrew research and reflects on the key biological questions addressed using this model. We emphasize that intensive dedication and robust international collaboration are essential for achieving breakthroughs in tree shrew studies. The use of tree shrews as a unique resource is expected to gain considerable attention with the application of advanced techniques and the development of viable animal models, meeting the increasing demands of life science and biomedical research.
Collapse
Affiliation(s)
- Yong-Gang Yao
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China. E-mail:
| | - Li Lu
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rong-Jun Ni
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Rui Bi
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ceshi Chen
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jia-Qi Chen
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Eberhard Fuchs
- German Primate Center, Leibniz Institute of Primate Research, Göttingen 37077, Germany
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hongli Li
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Chunyu Liu
- Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Long-Bao Lv
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-8580, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | | - Gregor Rainer
- Department of Medicine, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Bao-Ci Shan
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Shen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - An-Zhou Tang
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530000, China
| | - Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Xia
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530000, China
| | - Xueshan Xia
- School of Public Health, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ling Xu
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Dandan Yu
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Feng Zhang
- Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ping Zheng
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yong-Tang Zheng
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jumin Zhou
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jiang-Ning Zhou
- CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- Institute of Brain Science, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| |
Collapse
|
34
|
Prete JN, Collier MA, Epperly PM, Czoty PW. Effects of self- and experimenter-administered cocaine on subsequent ethanol drinking in rhesus monkeys. Drug Alcohol Depend 2024; 260:111347. [PMID: 38833794 PMCID: PMC11186377 DOI: 10.1016/j.drugalcdep.2024.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND One possible reason for the lack of FDA-approved pharmacotherapies to treat cocaine use disorder (CUD) is that, although cocaine is typically used in combination with alcohol, it is studied in isolation in preclinical studies. A better understanding of the cocaine-alcohol interactions that promote polysubstance use (PSU) will improve animal models of CUD and hasten pharmacotherapy development. We used a rhesus monkey model of cocaine-alcohol PSU to investigate one possible mechanism: that alcohol is used to mitigate negative effects associated with termination of cocaine use. METHODS In 6 adult male rhesus monkeys, the relationship between self-administered cocaine intake and oral ethanol intake 2hours later was examined during self-administration of cocaine (0.0003-0.3mg/kg per injection, i.v.) under a fixed-ratio 30 schedule (FR30) or a progressive-ratio (PR) schedule. Next, ethanol consumption was measured 0-120minutes after experimenter-administered cocaine (0.3-1.7mg/kg, i.v.). RESULTS Self-administered cocaine intake under both FR30 and PR schedules was unrelated to oral ethanol intakes 2hours later. When cocaine was administered non-contingently, cocaine decreased ethanol intake as well as intake of a non-alcoholic solution in monkeys who never consumed ethanol (n=4) in a time- and dose-dependent manner. CONCLUSIONS Taken together, the results do not provide evidence for cocaine-induced increases in ethanol consumption. By extension, the results do not support the hypothesis that cocaine users drink alcohol to counteract negative effects that occur after terminating use. This finding implies either that such effects do not exist or that such effects exist but are unaffected by ethanol.
Collapse
Affiliation(s)
- Joshua N Prete
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem NC 27157, USA
| | - Miracle A Collier
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem NC 27157, USA
| | - Phillip M Epperly
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem NC 27157, USA
| | - Paul W Czoty
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem NC 27157, USA.
| |
Collapse
|
35
|
Liang L, Zimmermann Rollin I, Alikaya A, Ho JC, Santini T, Bostan AC, Schwerdt HN, Stauffer WR, Ibrahim TS, Pirondini E, Schaeffer DJ. An open-source MRI compatible frame for multimodal presurgical mapping in macaque and capuchin monkeys. J Neurosci Methods 2024; 407:110133. [PMID: 38588922 PMCID: PMC11127775 DOI: 10.1016/j.jneumeth.2024.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND High-precision neurosurgical targeting in nonhuman primates (NHPs) often requires presurgical anatomical mapping with noninvasive neuroimaging techniques (MRI, CT, PET), allowing for translation of individual anatomical coordinates to surgical stereotaxic apparatus. Given the varied tissue contrasts that these imaging techniques produce, precise alignment of imaging-based coordinates to surgical apparatus can be cumbersome. MRI-compatible stereotaxis with radiopaque fiducial markers offer a straight-forward and reliable solution, but existing commercial options do not fit in conformal head coils that maximize imaging quality. NEW METHOD We developed a compact MRI-compatible stereotaxis suitable for a variety of NHP species (Macaca mulatta, Macaca fascicularis, and Cebus apella) that allows multimodal alignment through technique-specific fiducial markers. COMPARISON WITH EXISTING METHODS With the express purpose of compatibility with clinically available MRI, CT, and PET systems, the frame is no larger than a human head, while allowing for imaging NHPs in the supinated position. This design requires no marker implantation, special software, or additional knowledge other than the operation of a common large animal stereotaxis. RESULTS We demonstrated the applicability of this 3D-printable apparatus across a diverse set of experiments requiring presurgical planning: 1) We demonstrate the accuracy of the fiducial system through a within-MRI cannula insertion and subcortical injection of a viral vector. 2) We also demonstrated accuracy of multimodal (MRI and CT) alignment and coordinate transfer to guide a surgical robot electrode implantation for deep-brain electrophysiology. CONCLUSIONS The computer-aided design files and engineering drawings are publicly available, with the modular design allowing for low cost and manageable manufacturing.
Collapse
Affiliation(s)
- Lucy Liang
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Isabela Zimmermann Rollin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aydin Alikaya
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Jonathan C Ho
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tales Santini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andreea C Bostan
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Helen N Schwerdt
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - William R Stauffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Tamer S Ibrahim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh, Psychiatry, Pittsburgh, PA, USA; University of Pittsburgh, Radiology, Pittsburgh, PA, USA
| | - Elvira Pirondini
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - David J Schaeffer
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
36
|
Ichinose H, Natsume T, Yano M, Awaga Y, Hanada M, Takamatsu H, Matsuyama Y. Evaluation of brain activation related to resting pain using functional magnetic resonance imaging in cynomolgus macaques undergoing knee surgery. J Orthop 2024; 52:12-16. [PMID: 38404703 PMCID: PMC10881445 DOI: 10.1016/j.jor.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024] Open
Abstract
Purpose Functional magnetic resonance imaging (fMRI) visualizes hemodynamic responses associated with brain and spinal cord activation. Various types of pain have been objectively assessed using fMRI as considerable brain activations. This study aimed to develop a pain model in cynomolgus macaques undergoing knee surgery and confirm brain activation due to resting pain after knee surgery. Methods An osteochondral graft surgery on the femoral condyle in the unilateral knee was performed on four cynomolgus macaques (Macaca fascicularis). Resting pain was evaluated as changes in brain fMRI findings with a 3.0-T MRI scanner preoperatively, postoperatively, and after postoperative administration of morphine. In the fMRI analysis, Z-values >1.96 were considered statistically significant. Results Brain activation without stimulation after surgery in the cingulate cortex (3.09) and insular cortex (3.06) on the opposite side of the surgery was significantly greater than that before surgery (1.05 and 1.03, respectively) according to fMRI. After the administration of morphine, activation due to resting pain decreased in the cingulate cortex (1.38) and insular cortex (1.21). Conclusion Osteochondral graft surgery on the femoral condyle can lead to postoperative resting pain. fMRI can reveal activation in pain-related brain areas and evaluate resting pain due to knee surgery.
Collapse
Affiliation(s)
- Hatsumi Ichinose
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takahiro Natsume
- Pharmacology Group, Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka, Japan
| | - Mizuho Yano
- Pharmacology Group, Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka, Japan
| | - Yuji Awaga
- Pharmacology Group, Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka, Japan
| | - Mitsuru Hanada
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroyuki Takamatsu
- Pharmacology Group, Hamamatsu Pharma Research, Inc., Hamamatsu, Shizuoka, Japan
| | - Yukihiro Matsuyama
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
37
|
Galbo-Thomma LK, Epperly PM, Blough BE, Landavazo A, Saldaña SJ, Carroll FI, Czoty PW. Cognitive-Enhancing Effects of Acetylcholine Receptor Agonists in Group-Housed Cynomolgus Monkeys Who Drink Ethanol. J Pharmacol Exp Ther 2024; 389:258-267. [PMID: 38135508 PMCID: PMC11125785 DOI: 10.1124/jpet.123.001854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The cognitive impairments that are often observed in patients with alcohol use disorder (AUD) partially contribute to the extremely low rates of treatment initiation and adherence. Brain acetylcholine receptors (AChR) mediate and modulate cognitive and reward-related behavior, and their distribution can be altered by long-term heavy drinking. Therefore, AChRs are promising pharmacotherapeutic targets for treating the cognitive symptoms of AUD. In the present study, the procognitive efficacy of two AChR agonists, xanomeline and varenicline, were evaluated in group-housed monkeys who self-administered ethanol for more than 1 year. The muscarinic AChR antagonist scopolamine was used to disrupt performance of a serial stimulus discrimination and reversal (SDR) task designed to probe cognitive flexibility, defined as the ability to modify a previously learned behavior in response to a change in reinforcement contingencies. The ability of xanomeline and varenicline to remediate the disruptive effects of scopolamine was compared between socially dominant and subordinate monkeys, with lighter and heavier drinking histories, respectively. We hypothesized that subordinate monkeys would be more sensitive to all three drugs. Scopolamine dose-dependently impaired performance on the serial SDR task in all monkeys at doses lower than those that produced nonspecific impairments (e.g., sedation); its potency did not differ between dominant and subordinate monkeys. However, both AChR agonists were effective in remediating the scopolamine-induced deficit in subordinate monkeys but not in dominant monkeys. These findings suggest xanomeline and varenicline may be effective for enhancing cognitive flexibility in individuals with a history of heavy drinking. SIGNIFICANCE STATEMENT: Procognitive effects of two acetylcholine (ACh) receptor agonists were assessed in group-housed monkeys who had several years' experience drinking ethanol. The muscarinic ACh receptor agonist xanomeline and the nicotinic ACh receptor agonist varenicline reversed a cognitive deficit induced by the muscarinic ACh receptor antagonist scopolamine. However, this effect was observed only in lower-ranking (subordinate) monkeys and not higher-ranking (dominant monkeys). Results suggest that ACh agonists may effectively remediate alcohol-induced cognitive deficits in a subpopulation of those with alcohol use disorder.
Collapse
Affiliation(s)
- Lindsey K Galbo-Thomma
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| | - Phillip M Epperly
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| | - Bruce E Blough
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| | - Antonio Landavazo
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| | - Santiago J Saldaña
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| | - F Ivy Carroll
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| | - Paul W Czoty
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| |
Collapse
|
38
|
Abdullah M, Ehaideb S, Roberts G, Bouchama A. Insights into pathophysiology and therapeutic strategies for heat stroke: Lessons from a baboon model. Exp Physiol 2024; 109:484-501. [PMID: 38124439 PMCID: PMC10988686 DOI: 10.1113/ep091586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Heat stroke is a perilous condition marked by severe hyperthermia and extensive multiorgan dysfunction, posing a considerable risk of mortality if not promptly identified and treated. Furthermore, the complex biological mechanisms underlying heat stroke-induced tissue and cell damage across organ systems remain incompletely understood. This knowledge gap has hindered the advancement of effective preventive and therapeutic strategies against this condition. In this narrative review, we synthesize key insights gained over a decade using a translational baboon model of heat stroke. By replicating heat stroke pathology in a non-human primate species that closely resembles humans, we have unveiled novel insights into the pathways of organ injury and cell death elicited by this condition. Here, we contextualize and integrate the lessons learned concerning heat stroke pathophysiology and recovery, areas that are inherently challenging to investigate directly in human subjects. We suggest novel research directions to advance the understanding of the complex mechanisms underlying cell death and organ injury. This may lead to precise therapeutic strategies that benefit individuals suffering from this debilitating condition.
Collapse
Affiliation(s)
- Mashan Abdullah
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical CityMinistry of National Guard Health AffairsRiyadhSaudi Arabia
| | - Salleh Ehaideb
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical CityMinistry of National Guard Health AffairsRiyadhSaudi Arabia
| | - George Roberts
- Pathology and Laboratory MedicineKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Abderrezak Bouchama
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical CityMinistry of National Guard Health AffairsRiyadhSaudi Arabia
| |
Collapse
|
39
|
Capitanio JP, Del Rosso LA, Yee J, Lemoy MJMF. An analysis of risk factors for spontaneously occurring type 2 diabetes mellitus in rhesus macaques (Macaca mulatta). J Med Primatol 2024; 53:e12695. [PMID: 38454195 PMCID: PMC10936567 DOI: 10.1111/jmp.12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2D) is a chronic disease with a high prevalence worldwide. Human literature suggests factors beyond well-known risk factors (e.g., age, body mass index) for T2D: cytomegalovirus serostatus, season of birth, maternal age, birth weight, and depression. Nothing is known, however, about whether these variables are influential in primate models of T2D. METHODS Using a retrospective methodology, we identified 22 cases of spontaneously occurring T2D among rhesus monkeys at our facility. A control sample of n = 1199 was identified. RESULTS Animals born to mothers that were ≤5.5 years of age, and animals that showed heightened Activity and Emotionality in response to brief separation in infancy, had a greater risk for development of T2D in adulthood. CONCLUSIONS Knowledge of additional risk factors for T2D could help colony managers better identify at-risk animals and enable diabetes researchers to select animals that might be more responsive to their manipulations.
Collapse
Affiliation(s)
- John P Capitanio
- California National Primate Research Center, University of California, Davis, California, USA
| | - Laura A Del Rosso
- California National Primate Research Center, University of California, Davis, California, USA
| | - JoAnn Yee
- California National Primate Research Center, University of California, Davis, California, USA
| | | |
Collapse
|
40
|
Pan MT, Zhang H, Li XJ, Guo XY. Genetically modified non-human primate models for research on neurodegenerative diseases. Zool Res 2024; 45:263-274. [PMID: 38287907 PMCID: PMC11017080 DOI: 10.24272/j.issn.2095-8137.2023.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Currently, there are no therapies available that can delay, stop, or reverse the pathological progression of NDs in clinical settings. As the population ages, NDs are imposing a huge burden on public health systems and affected families. Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments. While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms, the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap. Old World non-human primates (NHPs), such as rhesus, cynomolgus, and vervet monkeys, are phylogenetically, physiologically, biochemically, and behaviorally most relevant to humans. This is particularly evident in the similarity of the structure and function of their central nervous systems, rendering such species uniquely valuable for neuroscience research. Recently, the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms. This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained, as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis.
Collapse
Affiliation(s)
- Ming-Tian Pan
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Han Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiang-Yu Guo
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China. E-mail:
| |
Collapse
|
41
|
Olajiga OM, Jameson SB, Carter BH, Wesson DM, Mitzel D, Londono-Renteria B. Artificial Feeding Systems for Vector-Borne Disease Studies. BIOLOGY 2024; 13:188. [PMID: 38534457 DOI: 10.3390/biology13030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
This review examines the advancements and methodologies of artificial feeding systems for the study of vector-borne diseases, offering a critical assessment of their development, advantages, and limitations relative to traditional live host models. It underscores the ethical considerations and practical benefits of such systems, including minimizing the use of live animals and enhancing experimental consistency. Various artificial feeding techniques are detailed, including membrane feeding, capillary feeding, and the utilization of engineered biocompatible materials, with their respective applications, efficacy, and the challenges encountered with their use also being outlined. This review also forecasts the integration of cutting-edge technologies like biomimicry, microfluidics, nanotechnology, and artificial intelligence to refine and expand the capabilities of artificial feeding systems. These innovations aim to more accurately simulate natural feeding conditions, thereby improving the reliability of studies on the transmission dynamics of vector-borne diseases. This comprehensive review serves as a foundational reference for researchers in the field, proposing a forward-looking perspective on the potential of artificial feeding systems to revolutionize vector-borne disease research.
Collapse
Affiliation(s)
- Olayinka M Olajiga
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Samuel B Jameson
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Brendan H Carter
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Dawn M Wesson
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Dana Mitzel
- Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, United States Department of Agriculture, Agricultural Research Service, Manhattan, KS 66506, USA
| | - Berlin Londono-Renteria
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
42
|
Drouyer M, Merjane J, Nazareth D, Knight M, Scott S, Liao SHY, Ginn SL, Zhu E, Alexander IE, Lisowski L. Development of CNS tropic AAV1-like variants with reduced liver-targeting following systemic administration in mice. Mol Ther 2024; 32:818-836. [PMID: 38297833 PMCID: PMC10928139 DOI: 10.1016/j.ymthe.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/27/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Directed evolution of natural AAV9 using peptide display libraries have been widely used in the search for an optimal recombinant AAV (rAAV) for transgene delivery across the blood-brain barrier (BBB) to the CNS following intravenous ( IV) injection. In this study, we used a different approach by creating a shuffled rAAV capsid library based on parental AAV serotypes 1 through 12. Following selection in mice, 3 novel variants closely related to AAV1, AAV-BBB6, AAV-BBB28, and AAV-BBB31, emerged as top candidates. In direct comparisons with AAV9, our novel variants demonstrated an over 270-fold improvement in CNS transduction and exhibited a clear bias toward neuronal cells. Intriguingly, our AAV-BBB variants relied on the LY6A cellular receptor for CNS entry, similar to AAV9 peptide variants AAV-PHP.eB and AAV.CAP-B10, despite the different bioengineering methods used and parental backgrounds. The variants also showed reduced transduction of both mouse liver and human primary hepatocytes in vivo. To increase clinical translatability, we enhanced the immune escape properties of our new variants by introducing additional modifications based on rational design. Overall, our study highlights the potential of AAV1-like vectors for efficient CNS transduction with reduced liver tropism, offering promising prospects for CNS gene therapies.
Collapse
Affiliation(s)
- Matthieu Drouyer
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Jessica Merjane
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Deborah Nazareth
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Maddison Knight
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Suzanne Scott
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Sophia H Y Liao
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Erhua Zhu
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia; Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia; Australian Genome Therapeutics Centre, Children's Medical Research Institute and Sydney Children's Hospitals Network, Westmead, NSW, Australia; Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warsaw, Poland.
| |
Collapse
|
43
|
Chang KW, Karthikesh MS, Zhu Y, Hudson HM, Barbay S, Bundy D, Guggenmos DJ, Frost S, Nudo RJ, Wang X, Yang X. Photoacoustic imaging of squirrel monkey cortical responses induced by peripheral mechanical stimulation. JOURNAL OF BIOPHOTONICS 2024; 17:e202300347. [PMID: 38171947 PMCID: PMC10961203 DOI: 10.1002/jbio.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Non-human primates (NHPs) are crucial models for studies of neuronal activity. Emerging photoacoustic imaging modalities offer excellent tools for studying NHP brains with high sensitivity and high spatial resolution. In this research, a photoacoustic microscopy (PAM) device was used to provide a label-free quantitative characterization of cerebral hemodynamic changes due to peripheral mechanical stimulation. A 5 × 5 mm area within the somatosensory cortex region of an adult squirrel monkey was imaged. A deep, fully connected neural network was characterized and applied to the PAM images of the cortex to enhance the vessel structures after mechanical stimulation on the forelimb digits. The quality of the PAM images was improved significantly with a neural network while preserving the hemodynamic responses. The functional responses to the mechanical stimulation were characterized based on the improved PAM images. This study demonstrates capability of PAM combined with machine learning for functional imaging of the NHP brain.
Collapse
Affiliation(s)
- Kai-Wei Chang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | | | - Yunhao Zhu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Heather M. Hudson
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - Scott Barbay
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - David Bundy
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - David J. Guggenmos
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - Shawn Frost
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - Randolph J. Nudo
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Xinmai Yang
- Bioengineering Graduate Program and Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas, 66045, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas, 66045, United States
| |
Collapse
|
44
|
Garber PA, Dolins F, Lappan S. Scientific activism to protect the world's primates and their environments from extinction: Introduction to the special issue. Am J Primatol 2024; 86:e23601. [PMID: 38284477 DOI: 10.1002/ajp.23601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Nonhuman primates and their habitats are facing an impending extinction crisis. Approximately 69% of primate species are listed by the International Union for Conservation of Nature as threatened and 93% have declining populations. Human population growth (expected to reach 10.9 billion by the year 2100), the unsustainable demands of a small number of consumer nations for forest-risk commodities, deforestation and habitat conversion, the expansion of roads and rail networks, cattle ranching, the hunting and trapping of wild primate populations, and the potential spread of infectious diseases are among the primary drivers of primate population decline. Climate change will only exacerbate the current situation. The time to act to protect primate populations is now! In this special issue of the American Journal of Primatology, we present a series of commentaries, formulated as "Action Letters." These are designed to educate and inform primatologists, conservation biologists, wildlife ecologists, political leaders, and global citizens about the conservation challenges faced by particular primate taxa and particular world regions, and present examples of specific actions that one can take, individually and collectively, to promote the persistence of wild primate populations and environmental justice for local human populations and impacted ecological communities. As scientists, researchers, and educators, primatologists are in a unique position to lead local, national, and international efforts to protect biodiversity. In this special issue, we focus on primates of the Brazilian Amazon, lemurs of northeast Madagascar, Temminck's red colobus monkey (Piliocolobus badius temminckii), night monkeys (Aotus spp.), long-tailed macaques (Macaca fascicularis), the primate pet trade, and professional capacity building to foster conservation awareness and action. We encourage primatologists, regardless of their research focus, to engage in both advocacy and activism to protect wild primate populations worldwide.
Collapse
Affiliation(s)
- Paul A Garber
- Department of Anthropology, and Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, Illinois, USA
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Francine Dolins
- Department of Behavioral Sciences, University of Michigan, Dearborn, Michigan, USA
| | - Susan Lappan
- Department of Anthropology, Malaysian Primatological Society, Appalachian State University, Boone, North Carolina, USA
| |
Collapse
|
45
|
Martínez-Ramos S, García S. An update of murine models and their methodologies in immune-mediated joint damage and pain research. Int Immunopharmacol 2024; 128:111440. [PMID: 38176343 DOI: 10.1016/j.intimp.2023.111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Murine models have played an indispensable role in the understanding of rheumatic and musculoskeletal disorders (RMD), elucidating the genetic, endocrine and biomechanical pathways involved in joint pathology and associated pain. To date, the available models in RMD can be classified as induced or spontaneous, both incorporating transgenic alternatives that improve specific insights. It is worth noting that the selection of the most appropriate model together with the evaluation of their specific characteristics and technical capabilities are crucial when designing the experiments. Furthermore, it is also imperative to consistently adhere to the ethical standards concerning animal experimentation. Recognizing the inherent limitation that any model can entirely encapsulates the complexity of the pathophysiology of these conditions, the aim of this review is to provide an updated overview on the methodology of current murine models in major arthropathies and their immune-mediated pathways, addressing to basic, translational and pharmacological research in joint damage and pain.
Collapse
Affiliation(s)
- Sara Martínez-Ramos
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain.
| | - Samuel García
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| |
Collapse
|
46
|
Wu J, Chen Y, Veeraraghavan A, Seidemann E, Robinson JT. Mesoscopic calcium imaging in a head-unrestrained male non-human primate using a lensless microscope. Nat Commun 2024; 15:1271. [PMID: 38341403 PMCID: PMC10858944 DOI: 10.1038/s41467-024-45417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Mesoscopic calcium imaging enables studies of cell-type specific neural activity over large areas. A growing body of literature suggests that neural activity can be different when animals are free to move compared to when they are restrained. Unfortunately, existing systems for imaging calcium dynamics over large areas in non-human primates (NHPs) are table-top devices that require restraint of the animal's head. Here, we demonstrate an imaging device capable of imaging mesoscale calcium activity in a head-unrestrained male non-human primate. We successfully miniaturize our system by replacing lenses with an optical mask and computational algorithms. The resulting lensless microscope can fit comfortably on an NHP, allowing its head to move freely while imaging. We are able to measure orientation columns maps over a 20 mm2 field-of-view in a head-unrestrained macaque. Our work establishes mesoscopic imaging using a lensless microscope as a powerful approach for studying neural activity under more naturalistic conditions.
Collapse
Affiliation(s)
- Jimin Wu
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Yuzhi Chen
- Department of Neuroscience, University of Texas at Austin, 100 E 24th St., Austin, TX, 78712, USA
- Department of Psychology, University of Texas at Austin, 108 E Dean Keeton St., Austin, TX, 78712, USA
| | - Ashok Veeraraghavan
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Eyal Seidemann
- Department of Neuroscience, University of Texas at Austin, 100 E 24th St., Austin, TX, 78712, USA.
- Department of Psychology, University of Texas at Austin, 108 E Dean Keeton St., Austin, TX, 78712, USA.
| | - Jacob T Robinson
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
47
|
Nashed JY, Shearer KT, Wang JZ, Chen Y, Cook EE, Champagne AA, Coverdale NS, Fernandez-Ruiz J, Striver SI, Flanagan JR, Gallivan JP, Cook DJ. Spontaneous Behavioural Recovery Following Stroke Relates to the Integrity of Parietal and Temporal Regions. Transl Stroke Res 2024; 15:127-139. [PMID: 36542292 DOI: 10.1007/s12975-022-01115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Stroke is a devastating disease that results in neurological deficits and represents a leading cause of death and disability worldwide. Following a stroke, there is a degree of spontaneous recovery of function, the neural basis of which is of great interest among clinicians in their efforts to reduce disability following stroke and enhance rehabilitation. Conventionally, work on spontaneous recovery has tended to focus on the neural reorganization of motor cortical regions, with comparably little attention being paid to changes in non-motor regions and how these relate to recovery. Here we show, using structural neuroimaging in a macaque stroke model (N = 31) and by exploiting individual differences in spontaneous behavioural recovery, that the preservation of regions in the parietal and temporal cortices predict animal recovery. To characterize recovery, we performed a clustering analysis using Non-Human Primate Stroke Scale (NHPSS) scores and identified a good versus poor recovery group. By comparing the preservation of brain volumes in the two groups, we found that brain areas in integrity of brain areas in parietal, temporal and somatosensory cortex were associated with better recovery. In addition, a decoding approach performed across all subjects revealed that the preservation of specific brain regions in the parietal, somatosensory and medial frontal cortex predicted recovery. Together, these findings highlight the importance of parietal and temporal regions in spontaneous behavioural recovery.
Collapse
Affiliation(s)
- Joseph Y Nashed
- Department of Translational Medicine, Queen's University, 18 Stuart Street, Room 230, Botterell Hall, Kingston, Ontario, K7L 3N6, Canada
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Kaden T Shearer
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Justin Z Wang
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, M5T 1P5, Canada
| | - Yining Chen
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Elise E Cook
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Allen A Champagne
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Nicole S Coverdale
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Juan Fernandez-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Shirley I Striver
- Division of Neurosurgery, Department of Surgery, Queen's University, Kingston, Ontario, K7L 2V7, Canada
| | - J Randal Flanagan
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Department of Psychology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Jason P Gallivan
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Department of Psychology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Douglas J Cook
- Department of Translational Medicine, Queen's University, 18 Stuart Street, Room 230, Botterell Hall, Kingston, Ontario, K7L 3N6, Canada.
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
- Division of Neurosurgery, Department of Surgery, Queen's University, Kingston, Ontario, K7L 2V7, Canada.
| |
Collapse
|
48
|
Scarberry SR, Prutchi H, Frye BM, Herr J, Scott C, Long CM, Jorgensen MJ, Shively CA, Kavanagh K. Development and assessment of a stair ascension challenge as a measure of aging and physical function in nonhuman primates. Am J Primatol 2024; 86:e23582. [PMID: 38050788 PMCID: PMC10843660 DOI: 10.1002/ajp.23582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023]
Abstract
Nonhuman primates (NHPs) are valuable models for studying healthspan, including frailty development. Frailty metrics in people centers on functional measures, including usual gait speed which can be predictive of all-cause mortality. This concept that physical competencies are able to prognosticate an individual's health trajectory over chronologic aging is well-accepted and has led to refinements in how physical function is evaluated, and include measures of strength and power along with walking speed. NHP studies of aging require evaluation of physical function, which can be difficult in field and research settings. We compared stair climb velocity to usual walking speed in 28 peri-geriatric to geriatric NHPs, as incorporating a climbing obstacle integrates multiple components of physical function: isolated leg and back strength, proprioception, balance, and range of motion. We find that stair climbing speed was reliable between observers, and whether timing was in-person take from video capture. The stair climb rates were 50% more associated with chronological age than walking speed (R = -0.68 vs. -0.45) and only stair climbing speeds were retained as predictive of age when walking speed and bodyweight were included in multivariate models (overall R2 = 0.44; p < 0.0001). When comparing young (10-16 years) versus geriatric (16-29 years) stair climbing speed was significantly different (p < 0.001), while walking speeds only tended to be slower (p = 0.12) suggesting that the additional challenge of a stair climb better unmasks subclinical frailty development that usual walking speed.
Collapse
Affiliation(s)
- Shannon R. Scarberry
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Hannah Prutchi
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- College of Veterinary Medicine, Tufts University, Boston, Massachusetts, USA
| | - Brett M. Frye
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biology, Emory and Henry College, Emory, Virginia, USA
| | - Justin Herr
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Christie Scott
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Chrissy M. Long
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Matthew J. Jorgensen
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Carol A. Shively
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Kylie Kavanagh
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- College of Health and Medicine, University of Tasmania, Tasmania, Australia
| |
Collapse
|
49
|
Chalet L, Debatisse J, Wateau O, Boutelier T, Wiart M, Costes N, Mérida I, Redouté J, Langlois JB, Lancelot S, Léon C, Cho TH, Mechtouff L, Eker OF, Nighoghossian N, Canet-Soulas E, Becker G. The PREMISE database of 20 Macaca fascicularis PET/MRI brain images available for research. Lab Anim (NY) 2024; 53:13-17. [PMID: 37996697 PMCID: PMC10766538 DOI: 10.1038/s41684-023-01289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Non-human primate studies are unique in translational research, especially in neurosciences where neuroimaging approaches are the preferred methods used for cross-species comparative neurosciences. In this regard, neuroimaging database development and sharing are encouraged to increase the number of subjects available to the community, while limiting the number of animals used in research. Here we present a simultaneous positron emission tomography (PET)/magnetic resonance (MR) dataset of 20 Macaca fascicularis images structured according to the Brain Imaging Data Structure standards. This database contains multiple MR imaging sequences (anatomical, diffusion and perfusion imaging notably), as well as PET perfusion and inflammation imaging using respectively [15O]H2O and [11C]PK11195 radiotracers. We describe the pipeline method to assemble baseline data from various cohorts and qualitatively assess all the data using signal-to-noise and contrast-to-noise ratios as well as the median of intensity and the pseudo-noise-equivalent-count rate (dynamic and at maximum) for PET data. Our study provides a detailed example for quality control integration in preclinical and translational PET/MR studies with the aim of increasing reproducibility. The PREMISE database is stored and available through the PRIME-DE consortium repository.
Collapse
Affiliation(s)
- Lucie Chalet
- CarMeN Laboratory, Université Claude Bernard Lyon 1, INSERM U1060, INRA U1397, Lyon, France
- Olea Medical, La Ciotat, France
| | - Justine Debatisse
- Institut des Sciences Cognitives Marc Jeannerod (ISCMJ), UMR 5229 CNRS, Bron Cedex, France
| | | | | | - Marlène Wiart
- CarMeN Laboratory, Université Claude Bernard Lyon 1, INSERM U1060, INRA U1397, Lyon, France
| | | | | | | | | | | | - Christelle Léon
- CarMeN Laboratory, Université Claude Bernard Lyon 1, INSERM U1060, INRA U1397, Lyon, France
| | - Tae-Hee Cho
- CarMeN Laboratory, Université Claude Bernard Lyon 1, INSERM U1060, INRA U1397, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Laura Mechtouff
- CarMeN Laboratory, Université Claude Bernard Lyon 1, INSERM U1060, INRA U1397, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Omer Faruk Eker
- Hospices Civils de Lyon, Lyon, France
- CREATIS, CNRS UMR 5220, INSERM U1206, Université Lyon 1, INSA Lyon, Bât. Blaise Pascal, Villeurbanne, France
| | - Norbert Nighoghossian
- CarMeN Laboratory, Université Claude Bernard Lyon 1, INSERM U1060, INRA U1397, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, Université Claude Bernard Lyon 1, INSERM U1060, INRA U1397, Lyon, France.
| | - Guillaume Becker
- CarMeN Laboratory, Université Claude Bernard Lyon 1, INSERM U1060, INRA U1397, Lyon, France.
- Lyon Neuroscience Research Center, University Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, Lyon, France.
| |
Collapse
|
50
|
Wu R, Qi J, Li W, Wang L, Shen Y, Liu J, Teng Y, Roos C, Li M. Landscape genomics analysis provides insights into future climate change-driven risk in rhesus macaque. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165746. [PMID: 37495138 DOI: 10.1016/j.scitotenv.2023.165746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/01/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Climate change significantly affects the suitability of wildlife habitats. Thus, understanding how animals adapt ecologically and genetically to climate change is important for targeted species protection. Rhesus macaques (Macaca mulatta) are widely distributed and multi-climatically adapted primates. This study explored how rhesus macaques adapt to climate change by integrating ecological and genetic methods and applying species distribution models (SDMs) and a gradient forest (GF) model. The findings suggested that temperature seasonality primarily affects habitat suitability and indicated that climate change will have a dramatic impact on macaque populations in the future. We also applied genotype-environment association (GEA) analyses and selection signature analyses to identify genes associated with climate change and provide possible explanations for the adaptation of rhesus macaques to climatic environments. The population genomics analyses suggested that the Taihang population has the highest genomic vulnerability with inbreeding and low heterozygosity. Combined with the higher ecological vulnerability, additional conservation strategies are required for this population under higher risk of climate change. Our work measured the impact of climate change and enabled the identification of populations that exhibit high vulnerability to severe climate change. Such information is useful for selecting populations of rhesus macaques as subject of long-term monitoring or evolutionary rescue under future climate change.
Collapse
Affiliation(s)
- Ruifeng Wu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiwei Qi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenbo Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Shen
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawen Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Teng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|