1
|
Nelson J, Woeste EM, Oba K, Bitterman K, Billings BK, Sacco J, Jacobs B, Sherwood CC, Manger PR, Spocter MA. Neuropil Variation in the Prefrontal, Motor, and Visual Cortex of Six Felids. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:25-44. [PMID: 38354714 DOI: 10.1159/000537843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Felids have evolved a specialized suite of morphological adaptations for obligate carnivory. Although the musculoskeletal anatomy of the Felidae has been studied extensively, the comparative neuroanatomy of felids is relatively unexplored. Little is known about how variation in the cerebral anatomy of felids relates to species-specific differences in sociality, hunting strategy, or activity patterns. METHODS We quantitatively analyzed neuropil variation in the prefrontal, primary motor, and primary visual cortices of six species of Felidae (Panthera leo, Panthera uncia, Panthera tigris, Panthera leopardus, Acinonyx jubatus, Felis sylvestris domesticus) to investigate relationships with brain size, neuronal cell parameters, and select behavioral and ecological factors. Neuropil is the dense, intricate network of axons, dendrites, and synapses in the brain, playing a critical role in information processing and communication between neurons. RESULTS There were significant species and regional differences in neuropil proportions, with African lion, cheetah, and tiger having more neuropil in all three cortical regions in comparison to the other species. Based on regression analyses, we find that the increased neuropil fraction in the prefrontal cortex supports social and behavioral flexibility, while in the primary motor cortex, this facilitates the neural activity needed for hunting movements. Greater neuropil fraction in the primary visual cortex may contribute to visual requirements associated with diel activity patterns. CONCLUSION These results provide a cross-species comparison of neuropil fraction variation in the Felidae, particularly the understudied Panthera, and provide evidence for convergence of the neuroanatomy of Panthera and cheetahs.
Collapse
Affiliation(s)
- Jacob Nelson
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Erin M Woeste
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Ken Oba
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Kathleen Bitterman
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Brendon K Billings
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - James Sacco
- Ellis Pharmacogenomics Laboratory, College of Pharmacy and Health Sciences, Drake University, Des Moines, Iowa, USA
| | - Bob Jacobs
- Department of Psychology, Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammad A Spocter
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
2
|
Wallace MN, Zobay O, Hardman E, Thompson Z, Dobbs P, Chakrabarti L, Palmer AR. The large numbers of minicolumns in the primary visual cortex of humans, chimpanzees and gorillas are related to high visual acuity. Front Neuroanat 2022; 16:1034264. [PMID: 36439196 PMCID: PMC9681811 DOI: 10.3389/fnana.2022.1034264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
Minicolumns are thought to be a fundamental neural unit in the neocortex and their replication may have formed the basis of the rapid cortical expansion that occurred during primate evolution. We sought evidence of minicolumns in the primary visual cortex (V-1) of three great apes, three rodents and representatives from three other mammalian orders: Eulipotyphla (European hedgehog), Artiodactyla (domestic pig) and Carnivora (ferret). Minicolumns, identified by the presence of a long bundle of radial, myelinated fibers stretching from layer III to the white matter of silver-stained sections, were found in the human, chimpanzee, gorilla and guinea pig V-1. Shorter bundles confined to one or two layers were found in the other species but represent modules rather than minicolumns. The inter-bundle distance, and hence density of minicolumns, varied systematically both within a local area that might represent a hypercolumn but also across the whole visual field. The distance between all bundles had a similar range for human, chimpanzee, gorilla, ferret and guinea pig: most bundles were 20-45 μm apart. By contrast, the space between bundles was greater for the hedgehog and pig (20-140 μm). The mean density of minicolumns was greater in tangential sections of the gorilla and chimpanzee (1,243-1,287 bundles/mm2) than in human (314-422 bundles/mm2) or guinea pig (643 bundles/mm2). The minicolumnar bundles did not form a hexagonal lattice but were arranged in thin curving and branched bands separated by thicker bands of neuropil/somata. Estimates of the total number of modules/minicolumns within V-1 were strongly correlated with visual acuity.
Collapse
Affiliation(s)
- Mark N. Wallace
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Oliver Zobay
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
- School of Medicine, University of Nottingham, Hearing Sciences—Scottish Section, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Eden Hardman
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
| | - Zoe Thompson
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
| | - Phillipa Dobbs
- Veterinary Department, Twycross Zoo, East Midland Zoological Society, Atherstone, United Kingdom
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham, United Kingdom
| | - Alan R. Palmer
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
3
|
Corain L, Grisan E, Graïc JM, Carvajal-Schiaffino R, Cozzi B, Peruffo A. Multi-aspect testing and ranking inference to quantify dimorphism in the cytoarchitecture of cerebellum of male, female and intersex individuals: a model applied to bovine brains. Brain Struct Funct 2020; 225:2669-2688. [PMID: 32989472 PMCID: PMC7674367 DOI: 10.1007/s00429-020-02147-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022]
Abstract
The dimorphism among male, female and freemartin intersex bovines, focusing on the vermal lobules VIII and IX, was analyzed using a novel data analytics approach to quantify morphometric differences in the cytoarchitecture of digitalized sections of the cerebellum. This methodology consists of multivariate and multi-aspect testing for cytoarchitecture-ranking, based on neuronal cell complexity among populations defined by factors, such as sex, age or pathology. In this context, we computed a set of shape descriptors of the neural cell morphology, categorized them into three domains named size, regularity and density, respectively. The output and results of our methodology are multivariate in nature, allowing an in-depth analysis of the cytoarchitectonic organization and morphology of cells. Interestingly, the Purkinje neurons and the underlying granule cells revealed the same morphological pattern: female possessed larger, denser and more irregular neurons than males. In the Freemartin, Purkinje neurons showed an intermediate setting between males and females, while the granule cells were the largest, most regular and dense. This methodology could be a powerful instrument to carry out morphometric analysis providing robust bases for objective tissue screening, especially in the field of neurodegenerative pathologies.
Collapse
Affiliation(s)
- L Corain
- Department of Management and Engineering, University of Padova, 36100, Vicenza, VI, Italy
| | - E Grisan
- Department of Information Engineering, University of Padova, 35131, Padua, PD, Italy
- School of Engineering, London South Bank University, London, SE1 0AA, UK
| | - J-M Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy.
| | - R Carvajal-Schiaffino
- Department of Mathematics and Computer Science, University of Santiago de Chile, Santiago, Chile
| | - B Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - A Peruffo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
4
|
Grewal JS, Gloe T, Hegedus J, Bitterman K, Billings BK, Chengetanai S, Bentil S, Wang VX, Ng JC, Tang CY, Geletta S, Wicinski B, Bertelson M, Tendler BC, Mars RB, Aguirre GK, Rusbridge C, Hof PR, Sherwood CC, Manger PR, Spocter MA. Brain gyrification in wild and domestic canids: Has domestication changed the gyrification index in domestic dogs? J Comp Neurol 2020; 528:3209-3228. [PMID: 32592407 DOI: 10.1002/cne.24972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/09/2023]
Abstract
Over the last 15 years, research on canid cognition has revealed that domestic dogs possess a surprising array of complex sociocognitive skills pointing to the possibility that the domestication process might have uniquely altered their brains; however, we know very little about how evolutionary processes (natural or artificial) might have modified underlying neural structure to support species-specific behaviors. Evaluating the degree of cortical folding (i.e., gyrification) within canids may prove useful, as this parameter is linked to functional variation of the cerebral cortex. Using quantitative magnetic resonance imaging to investigate the impact of domestication on the canine cortical surface, we compared the gyrification index (GI) in 19 carnivore species, including six wild canid and 13 domestic dog individuals. We also explored correlations between global and local GI with brain mass, cortical thickness, white and gray matter volume and surface area. Our results indicated that GI values for domestic dogs are largely consistent with what would be expected for a canid of their given brain mass, although more variable than that observed in wild canids. We also found that GI in canids is positively correlated with cortical surface area, cortical thickness and total cortical gray matter volumes. While we found no evidence of global differences in GI between domestic and wild canids, certain regional differences in gyrification were observed.
Collapse
Affiliation(s)
- Jagmeet S Grewal
- Department of Anatomy, Des Moines University, Des Moines, Iowa, USA
| | - Tyler Gloe
- Department of Anatomy, Des Moines University, Des Moines, Iowa, USA
| | - Joseph Hegedus
- Department of Anatomy, Des Moines University, Des Moines, Iowa, USA
| | | | - Brendon K Billings
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Samson Chengetanai
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Sarah Bentil
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, USA
| | - Victoria X Wang
- Departments of Radiology and Psychiatry,and BioMedical and Engineering Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Johnny C Ng
- Departments of Radiology and Psychiatry,and BioMedical and Engineering Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cheuk Y Tang
- Departments of Radiology and Psychiatry,and BioMedical and Engineering Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Simon Geletta
- Department of Public Health, Des Moines University, Des Moines, Iowa, USA
| | - Bridget Wicinski
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mads Bertelson
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Fredericksberg, Denmark
| | - Benjamin C Tendler
- Wellcome Centre for Intergrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Rogier B Mars
- Wellcome Centre for Intergrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Geoffrey K Aguirre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania Philadelphia, Philadelphia, Pennsylvania, USA
| | - Clare Rusbridge
- Fitzpatrick Referrals Orthopedics and Neurology, Fitzpatrick Referrals Ltd, Godalming, UK.,School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Muhammad A Spocter
- Department of Anatomy, Des Moines University, Des Moines, Iowa, USA.,School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa.,College of Veterinary Medicine, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
5
|
Spocter MA, Fairbanks J, Locey L, Nguyen A, Bitterman K, Dunn R, Sherwood CC, Geletta S, Dell LA, Patzke N, Manger PR. Neuropil Distribution in the Anterior Cingulate and Occipital Cortex of Artiodactyls. Anat Rec (Hoboken) 2018; 301:1871-1881. [DOI: 10.1002/ar.23905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/14/2018] [Accepted: 02/26/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Muhammad A. Spocter
- Department of Anatomy; Des Moines University; Des Moines Iowa
- College of Veterinary Medicine, Biomedical Sciences; Iowa State University; Ames Iowa
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg Republic of South Africa
| | | | - Lisa Locey
- Department of Anatomy; Des Moines University; Des Moines Iowa
| | - Amy Nguyen
- College of Pharmacy and Health Sciences, Drake University; Des Moines Iowa
| | | | - Rachel Dunn
- Department of Anatomy; Des Moines University; Des Moines Iowa
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology; The George Washington University; Washington Washington, DC
| | - Simon Geletta
- Department of Public Health; Des Moines University; Des Moines Iowa
| | - Leigh-Anne Dell
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg Republic of South Africa
- Institute of Computational Neuroscience; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Nina Patzke
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg Republic of South Africa
- Department of Biology; Hokkaido University; Hokkaido Japan
| | - Paul R. Manger
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg Republic of South Africa
| |
Collapse
|
6
|
Abstract
To understand the type of neural computations that may explain how human infants acquire their native language in only a few months, the study of their neural architecture is necessary. The development of brain imaging techniques has opened the possibilities of studying human infants without discomfort, and although these studies are still sparse, several characteristics are noticeable in the human infant's brain: first, parallel and hierarchical processing pathways are observed before intense exposure to speech with an efficient temporal coding in the left hemisphere and, second, frontal regions are involved from the start in infants' cognition. These observations are certainly not sufficient to explain language acquisition but illustrate a new approach that relies on a better description of infants' brain activity during linguistic tasks, which is compared to results in animals and human adults to clarify the neural bases of language in humans.
Collapse
|
7
|
Felton A, Vazquez D, Ramos-Nunez AI, Greene MR, McDowell A, Hernandez AE, Chiarello C. Bilingualism Influences Structural Indices of Interhemispheric Organization. JOURNAL OF NEUROLINGUISTICS 2017; 42:1-11. [PMID: 28579694 PMCID: PMC5450970 DOI: 10.1016/j.jneuroling.2016.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bilingualism represents an interesting model of possible experience-dependent alterations in brain structure. The current study examines whether interhemispheric adaptations in brain structure are associated with bilingualism. Corpus callosum volume and cortical thickness asymmetry across 13 regions of interest (selected to include critical language and bilingual cognitive control areas) were measured in a sample of Spanish-English bilinguals and age- and gender-matched monolingual individuals (N = 39 per group). Cortical thickness asymmetry of the anterior cingulate region differed across groups, with thicker right than left cortex for bilinguals and the reverse for monolinguals. In addition, two adjacent regions of the corpus callosum (mid-anterior and central) had greater volume in bilinguals. The findings suggest that structural indices of interhemispheric organization in a critical cognitive control region are sensitive to variations in language experience.
Collapse
Affiliation(s)
- Adam Felton
- University of California, Riverside, 900 University Ave., Riverside, CA, USA 92521
| | - David Vazquez
- University of California, Riverside, 900 University Ave., Riverside, CA, USA 92521
| | | | - Maya R. Greene
- University of Houston, 4800 Calhoun Rd., Houston, TX, USA 77004
| | - Alessandra McDowell
- University of California, Riverside, 900 University Ave., Riverside, CA, USA 92521
| | | | - Christine Chiarello
- University of California, Riverside, 900 University Ave., Riverside, CA, USA 92521
| |
Collapse
|
8
|
Li X, Chen H, Zhang T, Yu X, Jiang X, Li K, Li L, Razavi MJ, Wang X, Hu X, Han J, Guo L, Hu X, Liu T. Commonly preserved and species-specific gyral folding patterns across primate brains. Brain Struct Funct 2016; 222:2127-2141. [PMID: 27796591 DOI: 10.1007/s00429-016-1329-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/18/2016] [Indexed: 02/05/2023]
Abstract
Cortical folding pattern analysis is very important to understand brain organization and development. Since previous studies mostly focus on human brain cortex, the regularity and variability of cortical folding patterns across primate brains (macaques, chimpanzees and human) remain largely unknown. This paper presents a novel computational framework to identify common or unique gyral folding patterns in macaque, chimpanzee and human brains using magnetic resonance imaging (MRI) data. We quantitatively characterize gyral folding patterns via hinge numbers with cortical surfaces constructed from MRI data, and identify 6 common three-hinge gyral folds that exhibit consistent anatomical locations across these three species as well as 2 unique three hinges in macaque, 6 ones in chimpanzee and 14 ones in human. A novel morphology descriptor is then applied to classify three-hinge gyral folds, and the increasing complexity is identified among the species analyzed. This study may provide novel insights into the regularity and variability of the cerebral cortex from developmental perspective and may potentially facilitate novel neuroimage analyses such as cortical parcellation with correspondences across species in the future.
Collapse
Affiliation(s)
- Xiao Li
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Hanbo Chen
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an, China.,Brain Decoding Research Center, Northwestern Polytechnical University, Xi'an, China
| | - Xiang Yu
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Xi Jiang
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
| | - Kaiming Li
- Department of Bioengineering, UC Riverside, Riverside, GA, USA.,West China Hospital of Sichuan University, Chengdu, China
| | - Longchuan Li
- Marcus Autism Center, Emory University, Atlanta, GA, USA
| | - Mir Jalil Razavi
- College of Engineering, The University of Georgia, Athens, GA, USA
| | - Xianqiao Wang
- College of Engineering, The University of Georgia, Athens, GA, USA
| | - Xintao Hu
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Xiaoping Hu
- Department of Bioengineering, UC Riverside, Riverside, GA, USA
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
9
|
Hopkins WD, Misiura M, Pope SM, Latash EM. Behavioral and brain asymmetries in primates: a preliminary evaluation of two evolutionary hypotheses. Ann N Y Acad Sci 2015; 1359:65-83. [PMID: 26426409 PMCID: PMC4715693 DOI: 10.1111/nyas.12936] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Contrary to many historical views, recent evidence suggests that species-level behavioral and brain asymmetries are evident in nonhuman species. Here, we briefly present evidence of behavioral, perceptual, cognitive, functional, and neuroanatomical asymmetries in nonhuman primates. In addition, we describe two historical accounts of the evolutionary origins of hemispheric specialization and present data from nonhuman primates that address these specific theories. Specifically, we first discuss the evidence that genes play specific roles in determining left-right differences in anatomical and functional asymmetries in primates. We next consider and present data on the hypothesis that hemispheric specialization evolved as a by-product of increasing brain size relative to the surface area of the corpus callosum in different primate species. Last, we discuss some of the challenges in the study of hemispheric specialization in primates and offer some suggestions on how to advance the field.
Collapse
Affiliation(s)
- William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, Georgia
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Maria Misiura
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Sarah M Pope
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, Georgia
| | - Elitaveta M Latash
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, Georgia
| |
Collapse
|
10
|
Reducing the neural search space for hominid cognition: what distinguishes human and great ape brains from those of small apes? Psychon Bull Rev 2015; 21:590-619. [PMID: 24481882 DOI: 10.3758/s13423-013-0559-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Differences in the psychological capacities of closely related species are likely due to differences in their brains. Here, we review neuroanatomical comparisons between hominids (i.e., great apes and humans) and their closest living relatives, the hylobatids (i.e., small apes). We report the differences in quantitative, as well as qualitative, neural characteristics on the basis of 19 comparative studies that each included representatives of all hominid genera and at least one genus of hylobatid. The current data are patchy, based on a small number of hylobatids and few neuroanatomical features. Yet a systematic interspecies comparison could help reduce the neuroanatomical search space for the neural correlates underlying psychological abilities restricted to hominids. We illustrate the potential power of this approach by discussing the neural features of visual self-recognition.
Collapse
|
11
|
Teffer K, Buxhoeveden DP, Stimpson CD, Fobbs AJ, Schapiro SJ, Baze WB, McArthur MJ, Hopkins WD, Hof PR, Sherwood CC, Semendeferi K. Developmental changes in the spatial organization of neurons in the neocortex of humans and common chimpanzees. J Comp Neurol 2013; 521:4249-59. [PMID: 23839595 PMCID: PMC4041080 DOI: 10.1002/cne.23412] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/16/2013] [Accepted: 06/28/2013] [Indexed: 01/01/2023]
Abstract
In adult humans the prefrontal cortex possesses wider minicolumns and more neuropil space than other cortical regions. These aspects of prefrontal cortex architecture, furthermore, are increased in comparison to chimpanzees and other great apes. In order to determine the developmental appearance of this human cortical specialization, we examined the spatial organization of neurons in four cortical regions (frontal pole [Brodmann's area 10], primary motor [area 4], primary somatosensory [area 3b], and prestriate visual cortex [area 18]) in chimpanzees and humans from birth to approximately the time of adolescence (11 years of age). Horizontal spacing distance (HSD) and gray level ratio (GLR) of layer III neurons were measured in Nissl-stained sections. In both human and chimpanzee area 10, HSD was significantly higher in the postweaning specimens compared to the preweaning ones. No significant age-related differences were seen in the other regions in either species. In concert with other recent studies, the current findings suggest that there is a relatively slower maturation of area 10 in both humans and chimpanzees as compared to other cortical regions, and that further refinement of the spatial organization of neurons within this prefrontal area in humans takes place after the postweaning periods included here.
Collapse
Affiliation(s)
- Kate Teffer
- Anthropology Department, University of California, San Diego, 92093
| | | | - Cheryl D. Stimpson
- Anthropology Department, The George Washington University, Washington DC, 20052
| | | | - Steven J. Schapiro
- Department of Veterinary Sciences, The University of Texas M. D. Anderson Cancer Center, Bastrop, TX, 78602
| | - Wallace B. Baze
- Department of Veterinary Sciences, The University of Texas M. D. Anderson Cancer Center, Bastrop, TX, 78602
| | - Mark J. McArthur
- Department of Veterinary Sciences, The University of Texas M. D. Anderson Cancer Center, Bastrop, TX, 78602
| | - William D. Hopkins
- Institute for Neuroscience, Georgia State University, Atlanta, GA, 30303
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- New York Consortium in Evolutionary Primatology, New York, NY
| | - Chet C. Sherwood
- Anthropology Department, The George Washington University, Washington DC, 20052
| | - Katerina Semendeferi
- Anthropology Department, University of California, San Diego, 92093
- Neuroscience Graduate Program, University of California, San Diego, 92093
| |
Collapse
|
12
|
Spocter MA, Hopkins WD, Barks SK, Bianchi S, Hehmeyer AE, Anderson SM, Stimpson CD, Fobbs AJ, Hof PR, Sherwood CC. Neuropil distribution in the cerebral cortex differs between humans and chimpanzees. J Comp Neurol 2012; 520:2917-29. [PMID: 22350926 DOI: 10.1002/cne.23074] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Increased connectivity of high-order association regions in the neocortex has been proposed as a defining feature of human brain evolution. At present, however, there are limited comparative data to examine this claim fully. We tested the hypothesis that the distribution of neuropil across areas of the neocortex of humans differs from that of one of our closest living relatives, the common chimpanzee. The neuropil provides a proxy measure of total connectivity within a local region because it is composed mostly of dendrites, axons, and synapses. Using image analysis techniques, we quantified the neuropil fraction from both hemispheres in six cytoarchitectonically defined regions including frontopolar cortex (area 10), Broca's area (area 45), frontoinsular cortex (area FI), primary motor cortex (area 4), primary auditory cortex (area 41/42), and the planum temporale (area 22). Our results demonstrate that humans exhibit a unique distribution of neuropil in the neocortex compared to chimpanzees. In particular, the human frontopolar cortex and the frontoinsular cortex had a significantly higher neuropil fraction than the other areas. In chimpanzees these prefrontal regions did not display significantly more neuropil, but the primary auditory cortex had a lower neuropil fraction than other areas. Our results support the conclusion that enhanced connectivity in the prefrontal cortex accompanied the evolution of the human brain. These species differences in neuropil distribution may offer insight into the neural basis of human cognition, reflecting enhancement of the integrative capacity of the prefrontal cortex.
Collapse
Affiliation(s)
- Muhammad A Spocter
- Department of Anthropology, The George Washington University, Washington, DC 20052, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sayers K, Raghanti MA, Lovejoy CO. Human Evolution and the Chimpanzee Referential Doctrine. ANNUAL REVIEW OF ANTHROPOLOGY 2012. [DOI: 10.1146/annurev-anthro-092611-145815] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chimpanzees are our closest living genomic relatives, but they lack the bipedal locomotion, markedly enlarged brains, and advanced communication skills of humans. This has led many to view them as “primitive” and to presume that their behavior and anatomy are also primitive. If true, they could serve as models of our last common ancestor (LCA), i.e., a territorially aggressive knuckle walker, reliant on vertical climbing and below-branch suspension to access the high canopy as a ripe-fruit frugivore. Ardipithecus now provides abundant information that the LCA differed substantially from chimpanzees (as well as bonobos and gorillas), both anatomically and behaviorally, and exhibited many characters that are more similar to those of modern humans than to any living ape. This major extension of the hominoid fossil record contravenes strict referential modeling based on the extant chimpanzee and greatly improves our ability to reconstruct the LCA more accurately, but only when viewed within the broader context of evolutionary ecology.
Collapse
Affiliation(s)
- Ken Sayers
- Language Research Center, Georgia State University, Decatur, Georgia 30034
| | - Mary Ann Raghanti
- Department of Anthropology and Division of Biomedical Sciences, Kent State University, Kent, Ohio 44242;,
| | - C. Owen Lovejoy
- Department of Anthropology and Division of Biomedical Sciences, Kent State University, Kent, Ohio 44242;,
| |
Collapse
|
14
|
Rijntjes M, Weiller C, Bormann T, Musso M. The dual loop model: its relation to language and other modalities. FRONTIERS IN EVOLUTIONARY NEUROSCIENCE 2012; 4:9. [PMID: 22783188 PMCID: PMC3388276 DOI: 10.3389/fnevo.2012.00009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 06/11/2012] [Indexed: 11/17/2022]
Abstract
The current neurobiological consensus of a general dual loop system scaffolding human and primate brains gives evidence that the dorsal and ventral connections subserve similar functions, independent of the modality and species. However, most current commentators agree that although bees dance and chimpanzees grunt, these systems of communication differ qualitatively from human language. So why is language unique to humans? We discuss anatomical differences between humans and other animals, the meaning of lesion studies in patients, the role of inner speech, and compare functional imaging studies in language with other modalities in respect to the dual loop model. These aspects might be helpful for understanding what kind of biological system the language faculty is, and how it relates to other systems in our own species and others.
Collapse
|
15
|
|
16
|
Lyn H, Pierre P, Bennett AJ, Fears S, Woods R, Hopkins WD. Planum temporale grey matter asymmetries in chimpanzees (Pan troglodytes), vervet (Chlorocebus aethiops sabaeus), rhesus (Macaca mulatta) and bonnet (Macaca radiata) monkeys. Neuropsychologia 2011; 49:2004-12. [PMID: 21447349 PMCID: PMC3151738 DOI: 10.1016/j.neuropsychologia.2011.03.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 03/17/2011] [Accepted: 03/19/2011] [Indexed: 11/25/2022]
Abstract
Brain asymmetries, particularly asymmetries within regions associated with language, have been suggested as a key difference between humans and our nearest ancestors. These regions include the planum temporale (PT) - the bank of tissue that lies posterior to Heschl's gyrus and encompasses Wernicke's area, an important brain region involved in language and speech in the human brain. In the human brain, both the surface area and the grey matter volume of the PT are larger in the left compared to right hemisphere, particularly among right-handed individuals. Here we compared the grey matter volume and asymmetry of the PT in chimpanzees and three other species of nonhuman primate in two Genera including vervet monkeys (Chlorocebus aethiops sabaeus), rhesus macaques (Macaca mulatta) and bonnet macaques (Macaca radiata). We show that the three monkey species do not show population-level asymmetries in this region whereas the chimpanzees do, suggesting that the evolutionary brain development that gave rise to PT asymmetry occurred after our split with the monkey species, but before our split with the chimpanzees.
Collapse
Affiliation(s)
- Heidi Lyn
- Department of Psychology, Agnes Scott College, Decatur, GA 30030
| | - Peter Pierre
- Department of Physiology and Pharmacology and Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Allyson J. Bennett
- Department of Physiology and Pharmacology and Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Scott Fears
- Center for Neurobehavioral Genetics, University of California, Los Angeles (UCLA), Los Angeles, California 90095
| | - Roger Woods
- Department of Neurology, University of California, Los Angeles (UCLA), Los Angeles, California 90095
| | - William D. Hopkins
- Department of Psychology, Agnes Scott College, Decatur, GA 30030
- Division of Cognitive and Developmental Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322
| |
Collapse
|
17
|
Hutchison RM, Leung LS, Mirsattari SM, Gati JS, Menon RS, Everling S. Resting-state networks in the macaque at 7T. Neuroimage 2011; 56:1546-55. [DOI: 10.1016/j.neuroimage.2011.02.063] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/18/2011] [Accepted: 02/21/2011] [Indexed: 11/16/2022] Open
|
18
|
Smiley JF, Rosoklija G, Mancevski B, Pergolizzi D, Figarsky K, Bleiwas C, Duma A, Mann JJ, Javitt DC, Dwork AJ. Hemispheric comparisons of neuron density in the planum temporale of schizophrenia and nonpsychiatric brains. Psychiatry Res 2011; 192:1-11. [PMID: 21377842 PMCID: PMC3071586 DOI: 10.1016/j.pscychresns.2010.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 11/04/2010] [Accepted: 11/17/2010] [Indexed: 12/22/2022]
Abstract
Postmortem and in vivo studies of schizophrenia frequently reveal reduced cortical volume, but the underlying cellular abnormalities are incompletely defined. One influential hypothesis, especially investigated in Brodmann's area 9 of prefrontal cortex, is that the number of neurons is normal, and the volume change is caused by reduction of the surrounding neuropil. However, studies have differed on whether the cortex has the increased neuron density that is predicted by this hypothesis. In a recent study of bilateral planum temporale (PT), we reported smaller volume and width of the outer cortex (layers I-III), especially in the left hemisphere, among subjects with schizophrenia. In the present study, we measured neuron density and size in the same PT samples, and also in prefrontal area 9 of the same brains. In the PT, separate stereological measurements were made in layers II, IIIc, and VI, whereas area 9 was sampled in layer IIIb-c. In both cortical regions, there was no significant effect of schizophrenia on neuronal density or size. There was, nevertheless, a trend-level right>left hemispheric asymmetry of neuron density in the PT, which may partially explain the previously reported left>right asymmetry of cortical width. In schizophrenia, our findings suggest that closer packing of neurons may not always explain reduced cortical volume, and subtly decreased neuron number may be a contributing factor.
Collapse
Affiliation(s)
- John F Smiley
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Semendeferi K, Teffer K, Buxhoeveden DP, Park MS, Bludau S, Amunts K, Travis K, Buckwalter J. Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cereb Cortex 2010; 21:1485-97. [PMID: 21098620 DOI: 10.1093/cercor/bhq191] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Few morphological differences have been identified so far that distinguish the human brain from the brains of our closest relatives, the apes. Comparative analyses of the spatial organization of cortical neurons, including minicolumns, can aid our understanding of the functionally relevant aspects of microcircuitry. We measured horizontal spacing distance and gray-level ratio in layer III of 4 regions of human and ape cortex in all 6 living hominoid species: frontal pole (Brodmann area [BA] 10), and primary motor (BA 4), primary somatosensory (BA 3), and primary visual cortex (BA 17). Our results identified significant differences between humans and apes in the frontal pole (BA 10). Within the human brain, there were also significant differences between the frontal pole and 2 of the 3 regions studied (BA 3 and BA 17). Differences between BA 10 and BA 4 were present but did not reach significance. These findings in combination with earlier findings on BA 44 and BA 45 suggest that human brain evolution was likely characterized by an increase in the number and width of minicolumns and the space available for interconnectivity between neurons in the frontal lobe, especially the prefrontal cortex.
Collapse
Affiliation(s)
- Katerina Semendeferi
- Department of Anthropology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Raghanti MA, Spocter MA, Butti C, Hof PR, Sherwood CC. A comparative perspective on minicolumns and inhibitory GABAergic interneurons in the neocortex. Front Neuroanat 2010; 4:3. [PMID: 20161991 PMCID: PMC2820381 DOI: 10.3389/neuro.05.003.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 01/07/2010] [Indexed: 11/28/2022] Open
Abstract
Neocortical columns are functional and morphological units whose architecture may have been under selective evolutionary pressure in different mammalian lineages in response to encephalization and specializations of cognitive abilities. Inhibitory interneurons make a substantial contribution to the morphology and distribution of minicolumns within the cortex. In this context, we review differences in minicolumns and GABAergic interneurons among species and discuss possible implications for signaling among and within minicolumns. Furthermore, we discuss how abnormalities of both minicolumn disposition and inhibitory interneurons might be associated with neuropathological processes, such as Alzheimer's disease, autism, and schizophrenia. Specifically, we explore the possibility that phylogenetic variability in calcium-binding protein-expressing interneuron subtypes is directly related to differences in minicolumn morphology among species and might contribute to neuropathological susceptibility in humans.
Collapse
Affiliation(s)
- Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University Kent, OH, USA
| | | | | | | | | |
Collapse
|
21
|
Hopkins WD, Nir TM. Planum temporale surface area and grey matter asymmetries in chimpanzees (Pan troglodytes): the effect of handedness and comparison with findings in humans. Behav Brain Res 2009; 208:436-43. [PMID: 20035802 DOI: 10.1016/j.bbr.2009.12.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 11/06/2009] [Accepted: 12/14/2009] [Indexed: 11/17/2022]
Abstract
The planum temporale (PT) is the bank of tissue that lies posterior to Heschl's gyrus and is considered a key brain region involved in language and speech in the human brain. In the human brain, both the surface area and grey matter volume of the PT is larger in the left compared to right hemisphere in approximately 2/3rds of individuals, particularly among right-handed individuals. Here we examined whether chimpanzees show asymmetries in the PT for grey matter volume and surface area in a sample of 103 chimpanzees from magnetic resonance images. The results indicated that, overall, the chimpanzees showed population-level leftward asymmetries for both surface area and grey matter volumes. Furthermore, chimpanzees that prefer to gesture with their right-handed had significantly greater leftward grey matter asymmetries compared to ambiguously- and left-handed apes. When compared to previously published data in humans, the direction and magnitude of PT grey matter asymmetries were similar between humans and apes; however, for the surface area measures, the human showed more pronounced leftward asymmetries. These results suggest that leftward asymmetries in the PT were present in the common ancestor of chimpanzees and humans.
Collapse
Affiliation(s)
- William D Hopkins
- Department of Psychology, Agnes Scott College, Decatur, GA 30030, USA.
| | | |
Collapse
|
22
|
Passingham R. How good is the macaque monkey model of the human brain? Curr Opin Neurobiol 2009; 19:6-11. [PMID: 19261463 PMCID: PMC2706975 DOI: 10.1016/j.conb.2009.01.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/29/2009] [Accepted: 01/30/2009] [Indexed: 11/30/2022]
Abstract
Macaque monkeys are widely used in order to understand the mechanisms of the human brain. But humans have capacities not found in monkeys, and their brains differ in important ways, for example in the proportions of different regions and in microstructure. However, this does not mean that we must abandon the monkey model, only that wherever possible, we should test whether generalizations can be made. One strategy is to use fMRI to visualize activations in humans, and compare these with activations in monkeys. Where the results are the same, we can then use information from single unit recording in those areas to suggest the mechanisms by which those areas perform their functions in the human brain.
Collapse
Affiliation(s)
- Richard Passingham
- Department of Experimental Psychology, University of Oxford University, Oxford, United Kingdom.
| |
Collapse
|
23
|
Rilling JK. Neuroscientific approaches and applications within anthropology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2009; Suppl 47:2-32. [PMID: 19003891 DOI: 10.1002/ajpa.20947] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Many of the most distinctive attributes of our species are a product of our brains. To understand the function, development, variability, and evolution of the human brain, we must engage with the field of neuroscience. Neuroscientific methods can be used to investigate research topics that are of special interest to anthropologists, such as the neural bases of primate behavioral diversity, human brain evolution, and human brain development. Traditional neuroscience methods had to rely on investigation of postmortem brains, as well as invasive studies in living nonhuman primates. However, recent neuroimaging methods have made it possible to compare living human and nonhuman primate brains using noninvasive techniques such as structural and functional magnetic resonance imaging, positron emission tomography, and diffusion tensor imaging. These methods are providing an integrated picture of brain structure and function that was not previously available. With a combination of these traditional and modern neuroscience methods, we are beginning to explore and understand the neural bases of some of the most distinctive cognitive and behavioral attributes of the human species, including language, tool use, altruism, and mental self-projection, and we can now begin to propose plausible scenarios by which the neural substrates supporting these human specializations evolved from pre-existing neural circuitry serving related functions in common ancestors we shared with the living nonhuman primates. Consideration of the process of neurodevelopment suggests plausible mechanisms by which the highly encephalized human brain might have evolved. Neurodevelopmental studies also demonstrate that experience can shape both brain structure and function, providing a mechanism by which people of different cultures learn to act and think differently. Finally, not only can anthropologists benefit from neuroscience, neuroscience can benefit from the more sophisticated concept of evolution that anthropology offers, including an appreciation of evolutionary diversity as well as consideration of the process by which the human brain was formed during evolution.
Collapse
Affiliation(s)
- James K Rilling
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
24
|
Di Rosa E, Crow TJ, Chance SA. Axon bundle spacing in the anterior cingulate cortex of the human brain. J Clin Neurosci 2008; 15:1389-92. [PMID: 18974006 DOI: 10.1016/j.jocn.2008.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 01/17/2008] [Accepted: 01/21/2008] [Indexed: 11/29/2022]
Abstract
The anterior cingulate cortex (ACC) is implicated in neuropsychiatric disorders. Post-mortem axon bundle data will be important to complement novel MRI methods for analysing cortical diffusion data. [Jespersen SN, Kroenke CD, Ostergaard L, et al. Modeling dendrite density from magnetic resonance diffusion measurements. Neuroimage. 2007;34:1473-86] Therefore we aimed to assess perimeter, area, density and spacing of axon bundles in BA24 not previously measured in the human ACC using image analysis of 10 microm-thick tangential sections of layer IV in 4 normal patients. Axon bundle mean perimeter was 53.8 microm, mean area was 197.1 microm(2), mean density was 226.3/mm(2), and mean spacing was 73.8 microm. Thus, axon bundles were widely spaced relative to cell body minicolumns and other prelimbic areas. A review of the literature suggests that there is hierarchical regional variation of bundle and column spacing.
Collapse
Affiliation(s)
- Enrica Di Rosa
- Dipartimento di Neuroscienze, Scienze Psichiatriche e Anestesiologiche, Universitá di Messina, Italy
| | | | | |
Collapse
|
25
|
Schenker NM, Buxhoeveden DP, Blackmon WL, Amunts K, Zilles K, Semendeferi K. A comparative quantitative analysis of cytoarchitecture and minicolumnar organization in Broca's area in humans and great apes. J Comp Neurol 2008; 510:117-28. [DOI: 10.1002/cne.21792] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Casanova MF. Schizophrenia seen as a deficit in the modulation of cortical minicolumns by monoaminergic systems. Int Rev Psychiatry 2007; 19:361-72. [PMID: 17671869 DOI: 10.1080/09540260701486738] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The highly evolved architecture of the cerebral cortex is organized across hierarchical levels that maximize functional repertoires (emergent properties) and expedite information processing. Minicolumns are nested within this multiscale architecture as the smallest module capable of processing information. Signals are transmitted within minicolumns through massive ion-gated connections and modulated through slower onset second messenger systems. The terminal zones of the modulatory second messenger systems comprise the laminae of the cortex. A comprehensive review of the literature suggests that schizophrenia results from widely distributed changes at the level of the cerebral cortex and little, if any, neuronal somatic changes: (Esiri & Crow, 2002). Concordant with this observation recent studies indicate that schizophrenic patients have an alteration of neuronal connectivity according to both lamina and brain region examined. One possible explanation for this deficit is an alteration in the modulatory system of cortical minicolumns. This ontogenetic deficit propitiates a cascade of neurochemical changes resulting in varying abnormalities relating information processing to behavioural states.
Collapse
Affiliation(s)
- Manuel F Casanova
- Department of Psychiatry, Neurology, and Anatomy, Medical College of Georgia, USA.
| |
Collapse
|
27
|
Raghanti MA, Stimpson CD, Marcinkiewicz JL, Erwin JM, Hof PR, Sherwood CC. Differences in Cortical Serotonergic Innervation among Humans, Chimpanzees, and Macaque Monkeys: A Comparative Study. Cereb Cortex 2007; 18:584-97. [PMID: 17586605 DOI: 10.1093/cercor/bhm089] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, we assess the possibility that the evolution of human intellectual capacities was supported by changes in the supply of serotonin to the frontal cortex. To this end, quantitative comparative analyses were performed among humans, chimpanzees, and macaques. Immunohistochemical methods were used to visualize serotonin transporter-immunoreactive (SERT-ir) axons within the cerebral cortex. Areas 9 and 32 were chosen for evaluation due to their roles in working memory and theory of mind, respectively. Primary motor cortex was also evaluated because it is not associated with higher cognitive functions. The findings revealed that humans do not display a quantitative increase in serotonin innervation. However, the results indicated region- and layer-specific differences among species in serotonergic innervation pattern. Compared with macaques, humans and chimpanzees together displayed a greater density of SERT-ir axons relative to neuron density in layers V/VI. This change was detected in cortical areas 9 and 32, but not in primary motor cortex. Further, morphological specializations, coils of axons, were observed in humans and chimpanzees that were absent in macaques. These features may represent a greater capacity for cortical plasticity exclusive to hominoids. Taken together, these results indicate a significant reorganization of cortical serotonergic transmission in humans and chimpanzees.
Collapse
Affiliation(s)
- Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Courchesne E, Redcay E, Morgan JT, Kennedy DP. Autism at the beginning: microstructural and growth abnormalities underlying the cognitive and behavioral phenotype of autism. Dev Psychopathol 2006; 17:577-97. [PMID: 16262983 DOI: 10.1017/s0954579405050285] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Autistic symptoms begin in the first years of life, and recent magnetic resonance imaging studies have discovered brain growth abnormalities that precede and overlap with the onset of these symptoms. Recent postmortem studies of the autistic brain provide evidence of cellular abnormalities and processes that may underlie the recently discovered early brain overgrowth and arrest of growth that marks the first years of life in autism. Alternative origins and time tables for these cellular defects and processes are discussed. These cellular and growth abnormalities are most pronounced in frontal, cerebellar, and temporal structures that normally mediate the development of those same higher order social, emotional, speech, language, speech, attention, and cognitive functions that characterize autism. Cellular and growth pathologies are milder and perhaps nonexistent in other structures (e.g., occipital cortex), which are known to mediate functions that are often either mildly affected or entirely unaffected in autistic patients. It is argued that in autism, higher order functions largely fail to develop normally in the first place because frontal, cerebellar, and temporal cellular and growth pathologies occur prior to and during the critical period when these higher order neural systems first begin to form their circuitry. It is hypothesized that microstructural maldevelopment results in local and short distance overconnectivity in frontal cortex that is largely ineffective and in a failure of long-distance cortical-cortical coupling, and thus a reduction in frontal-posterior reciprocal connectivity. This altered circuitry impairs the essential role of frontal cortex in integrating information from diverse functional systems (emotional, sensory, autonomic, memory, etc.) and providing context-based and goal-directed feedback to lower level systems.
Collapse
|
29
|
Seldon HL. Cortical laminar thickness and column spacing in human temporal and inferior parietal lobes: Intra-individual anatomical relations. Laterality 2006; 11:226-50. [PMID: 16644561 DOI: 10.1080/13576500500489162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Harasty, Seldon, Chan, Halliday, and Harding (2003) and Seldon (2005) have proposed a "balloon model" which suggests that myelin growth stretches the cerebral cortex, causing the cortical thickness to decrease and the columnar spacing to increase, in turn affecting the cortical capacity to differentiate afferent signals. This has been tested using temporal lobe (area TA) and inferior parietal lobule (areas PG, PF) histological specimens from human donors. The temporal and inferior parietal regions differ in ways that have never been described. Correlations between the thickness of laminae II-III and columnar spacing in lamina III within individual cytoarchitectonic areas in both hemispheres of each donor were calculated. Those in areas PG/PF are predominantly negative in both hemispheres, as predicted by the model. This is also true for the left hemisphere TA, but the right hemisphere TA shows no correlations between thickness and spacing. Comparisons of thickness and spacing between left and right hemispheres in PG/PF of each donor show no consistent direction, whereas those in TA fairly consistently show thinner laminae and wider column intervals on the left. In the left area TA, females have thinner laminae than males. Thus, intra-area predictions of the balloon model are supported in most areas, whereas the hemispheric asymmetry predictions appear to hold for TA, but not for the inferior parietal lobe.
Collapse
Affiliation(s)
- H L Seldon
- School of Networking Computing, Monash University, Frankston, Victoria, Australia.
| |
Collapse
|
30
|
Allen JS, Bruss J, Damasio H. Looking for the lunate sulcus: A magnetic resonance imaging study in modern humans. ACTA ACUST UNITED AC 2006; 288:867-76. [PMID: 16835937 DOI: 10.1002/ar.a.20362] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The position of the lunate sulcus in fossil endocasts (when it can be determined) may serve as a potential marker of cognitive development in extinct hominid species. While the lunate sulcus is reliably present in the brains of great apes and forms the anterolateral boundary of the primary visual cortex, in humans its presentation is much more variable, and even if present, it does not correspond to a functional region. Grafton Elliot Smith, who named the lunate sulcus, claimed that it was homologous in humans and the great apes. Using high-resolution MRI, we assessed the presence/absence and course of the lunate sulcus in 110 adult subjects. We found that in the vast majority of cases, lunate sulci identified on the surface of the occipital lobe are actually composed of smaller sulcal segments that converge into an apparently continuous composite lunate sulcus. We found only 3 examples in 220 hemispheres (1.4%) of continuous lunate sulci that resembled ape lunates in form (albeit in a more posterior position). Composite lunate sulci were found in 32.7% of left hemispheres and 26.4% of right hemispheres. These results, combined with those from histological and functional imaging studies, indicate that human and ape lunate sulci are not homologous structures. We suggest that the extent of functional reorganization of the occipital region during hominid evolution has been underestimated, and that changes in this region were not just passively shaped by expansion of parietal association cortex.
Collapse
Affiliation(s)
- John S Allen
- Dornsife Cognitive Neuroscience Imaging Center, University of Southern California, Los Angeles, 90089, USA.
| | | | | |
Collapse
|
31
|
Hutsler JJ, Lee DG, Porter KK. Comparative analysis of cortical layering and supragranular layer enlargement in rodent carnivore and primate species. Brain Res 2005; 1052:71-81. [PMID: 16018988 DOI: 10.1016/j.brainres.2005.06.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 05/31/2005] [Accepted: 06/05/2005] [Indexed: 11/17/2022]
Abstract
The mammalian cerebral cortex is composed of individual layers characterized by the cell types they contain and their afferent and efferent connections. The current study examined the raw, and size-normalized, laminar thicknesses in three cortical regions (somatosensory, motor, and premotor) of fourteen species from three orders of mammals: primates, carnivores, and rodents. The proportional size of the pyramidal cell layers (supra- and infragranular) varied between orders but was similar within orders despite wide variance in absolute cortical thickness. Further, supragranular layer thickness was largest in primates (46 +/- 3 percent), followed by carnivores (36 +/- 3 percent), and then rodents (19 +/- 4 percent), suggesting a distinct difference in the proportion of cortex devoted to corticocortical connectivity across these orders. Although measures of supragranular layer thickness are highly correlated with measures of overall brain size, such associations are not present when independent contrasts are used to control for phylogenetic inertia. Interestingly, neurogenesis time span remains strongly associated with supragranular layer thickness despite size normalization and controlling for phylogenetic inertia. Such layering differences between orders, and similarities amongst species within an order, suggest that supragranular layer expansion may have occurred early in mammalian evolution and may be related to ontogenetic variables such as neurogenesis time span rather than measures of overall size.
Collapse
Affiliation(s)
- Jeffrey J Hutsler
- Department of Psychology, 525 E. University Ave., University of Michigan, Ann Arbor, MI 48109-1109, USA.
| | | | | |
Collapse
|
32
|
Yoshimoto N, Shimoda K, Mori Y, Honda R, Okamura H, Ide Y, Nakashima T, Nakagata N, Torii R, Yoshikawa Y, Hayasaka I. Ovarian follicular development stimulated by leuprorelin acetate plus human menopausal gonadotropin in chimpanzees. J Med Primatol 2005; 34:73-85. [PMID: 15860113 DOI: 10.1111/j.1600-0684.2005.00094.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We attempted ovarian stimulation using gonadotropins in 14 chimpanzees. Subjects were given a single administration of leuprorelin acetate, followed by repeated administration of human menopausal gonadotropin (hMG) for 16-21 days. During the dosing period, the ovarian follicle diameter and count were measured by transvaginal ultrasonography. The hormone administration induced the development of multiple follicles, and multiple oocytes were subsequently retrieved. However, the follicle count was decreased, suggesting atresia, in some subjects. Statistically, the final follicle diameter was dependent on the dosing duration and the hMG dose in the late stage, while the maximum follicle count during hMG administration was dependent on age and the hMG dose in the early stage. Five subjects showed mild ovarian hyperstimulation syndrome (OHSS)-like symptoms with a high serum estradiol (E2) concentration. These results suggest that leuprorelin acetate plus hMG administration successfully stimulates the development of multiple ovarian follicles for oocyte retrieval and that the serum E2 concentration is predictive of OHSS-like symptoms in chimpanzees.
Collapse
Affiliation(s)
- Nobuhiko Yoshimoto
- Kumamoto Primates Research Park, Sanwa Kagaku Kenkyusho Co., Ltd, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cruz L, Buldyrev SV, Peng S, Roe DL, Urbanc B, Stanley HE, Rosene DL. A statistically based density map method for identification and quantification of regional differences in microcolumnarity in the monkey brain. J Neurosci Methods 2005; 141:321-32. [PMID: 15661314 DOI: 10.1016/j.jneumeth.2004.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 09/09/2004] [Accepted: 09/17/2004] [Indexed: 11/28/2022]
Abstract
We present a statistical density map method derived from condensed matter physics to quantify microcolumns, the fundamental computational unit of the cerebral cortex. This method provides measures for microcolumnar strength, width, spacing, length, and periodicity. We applied this method to Nissl-stained 30 microm thick frozen sections from areas 46, TE, and TL of rhesus monkey brains, areas that differ visually in microcolumnarity and are associated with different cognitive functions. Our results indicate that microcolumns in these areas are similar in width, spacing, and periodicity, but are stronger (possess a higher neuronal density) in area TE, as compared to areas TL and 46. We modeled the effect of section orientation on microcolumnar spacing and demonstrated that this method provides an adequate estimate of spacing. We also modeled disruption of microcolumnarity by performing simulations that randomly displace neurons and demonstrated that displacements of only one neuronal diameter effectively eliminate microcolumnar organization. These results indicate that our density map method is sensitive enough to detect and quantify subtle differences in microcolumnar organization that may occur in the context of development, aging, and neuropathology, as well as between areas and species.
Collapse
Affiliation(s)
- Luis Cruz
- Department of Physics, Center for Polymer Studies, Boston University, 590 Commonwealth Ave, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Cruz L, Roe DL, Urbanc B, Cabral H, Stanley HE, Rosene DL. Age-related reduction in microcolumnar structure in area 46 of the rhesus monkey correlates with behavioral decline. Proc Natl Acad Sci U S A 2004; 101:15846-51. [PMID: 15520373 PMCID: PMC528765 DOI: 10.1073/pnas.0407002101] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many age-related declines in cognitive function are attributed to the prefrontal cortex, area 46 being especially critical. Yet in normal aging, studies indicate that neurons are not lost in area 46, suggesting that impairments result from more subtle processes. One cortical feature that is functionally important, but that has not been examined in normal aging because of a lack of efficient quantitative methods, is the vertical arrangement of neurons into microcolumns, a fundamental computational unit of the cortex. By using a density-map method derived from condensed-matter physics, we quantified microcolumns in area 46 of seven young and seven aged rhesus monkeys that had been cognitively tested. This analysis demonstrated that there is no age-related reduction in total neuronal density or in microcolumn width, length, or periodicity. There was, however, a statistically significant decrease in the strength of microcolumns, indicating microcolumnar disorganization. This reduction in strength was significantly correlated with age-related cognitive decline on tests of spatial working memory and recognition memory independent of the effect of age. Modeling demonstrated that random neuron displacements of approximately 30% of a neuronal diameter (<3 mum) produced the observed reduction in strength. Hence, it is possible that, with changes in dendrites and myelinated axons, subtle displacements of neurons occur that alter microcolumnar structure and correlate with age-induced dysfunction. Therefore, quantitative measurement of microcolumnar structure may provide a sensitive morphological method to assay microcolumnar function in aging and other conditions.
Collapse
Affiliation(s)
- Luis Cruz
- Center for Polymer Studies and Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Ochiai T, Grimault S, Scavarda D, Roch G, Hori T, Rivière D, Mangin JF, Régis J. Sulcal pattern and morphology of the superior temporal sulcus. Neuroimage 2004; 22:706-19. [PMID: 15193599 DOI: 10.1016/j.neuroimage.2004.01.023] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 12/09/2003] [Accepted: 01/06/2004] [Indexed: 11/20/2022] Open
Abstract
The superior temporal sulcus (STs) is the main sulcal landmark of the external temporal cortex and is very important for functional (posterior language areas on the left) mapping and surgery. The methodology we use is based on the extraction of the 3D shape of sulci and their separation into subunits called sulcal roots. Seventeen normal brains (male: 11, female: 6, age: 22-60) were systematically analyzed. Additionally, parameters generated by visual observation were recorded. Non-parametric statistics were performed to evaluate the variation of the STs and influence of side, handedness and sex. We found that the 3D architecture of the STs was consistent with our generic model in four sulcal roots and four "plis de passage" (PP) and significant differences between right and left hemispheres. These morphological differences may be related to the language-relevant cortical areas difference and are pertinent for defining the limits of morphometric variability of the STs in "normal humans".
Collapse
Affiliation(s)
- Taku Ochiai
- Department of Stereotactic and Functional Neurosurgery, Timone University Hospital, Marseilles INSERM UMI 9926, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Nissl cytoarchitectural and MAP-2 immunocytochemical evidence is presented for the radial organisation of neurons and neural processes in the human medial prefrontal cortex (mPFC). In Brodmann areas 25, 32, and 32', neuronal cell bodies are organised into short vertical stacks of 15-19 somata with pyramidal cells apical dendrites being arranged into distinct vertically oriented units spaced 52-59 microm apart. Such architecture may underlie specific functional aspects of information processing in the human mPFC.
Collapse
|
37
|
Sherwood CC, Broadfield DC, Holloway RL, Gannon PJ, Hof PR. Variability of Broca's area homologue in African great apes: implications for language evolution. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 271:276-85. [PMID: 12629670 DOI: 10.1002/ar.a.10046] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cortical circuits subserving neural processing of human language are localized to the inferior frontal operculum and the posterior perisylvian region. Functional language dominance has been related to anatomical asymmetry of Broca's area and the planum temporale. The evolutionary history of these asymmetric patterns, however, remains obscure. Although testing of hypotheses about the evolution of language areas requires comparison to homologous regions in the brains of our closest living relatives, the great apes, to date little is known about normal interindividual variation of these regions in this group. Here we focus on Brodmann's area 44 in African great apes (Pan troglodytes and Gorilla gorilla). This area corresponds to the pars opercularis of the inferior frontal gyrus (IFG), and has been shown to exhibit both gross and cytoarchitectural asymmetries in humans. We calculated frequencies of sulcal variations and mapped the distribution of cytoarchitectural area 44 to determine whether its boundaries occurred at consistent macrostructural landmarks. A considerable amount of variation was found in the distribution of the inferior frontal sulci among great ape brains. The inferior precentral sulcus in particular was often bifurcated, which made it impossible to determine the posterior boundary of the pars opercularis. In addition, the distribution of Brodmann's area 44 showed very little correspondence to surface anatomy. We conclude that gross morphologic patterns do not offer substantive landmarks for the measurement of Brodmann's area 44 in great apes. Whether or not Broca's area homologue of great apes exhibits humanlike asymmetry can only be resolved through further analyses of microstructural components.
Collapse
Affiliation(s)
- Chet C Sherwood
- Department of Anthropology, Columbia University, New York, New York 10027, USA.
| | | | | | | | | |
Collapse
|
38
|
Buxhoeveden DP, Casanova MF. The minicolumn and evolution of the brain. BRAIN, BEHAVIOR AND EVOLUTION 2003; 60:125-51. [PMID: 12417819 DOI: 10.1159/000065935] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The minicolumn is generally considered an elementary unit of the neocortex in all mammalian brains. This essential building block has been affected by changes in the circuitry of the cortex during evolution. Researchers believe that enlargement of the cortical surface occurs through the addition of minicolumns rather than of single neurons. Therefore, minicolumns integrate cortical encephalization with organization. Despite these insights, few studies have analyzed the morphometry of the minicolumn to detect subtle but important differences among the brains of diverse mammals. The notion that minicolumns are essentially unchanged across species is challenged by strong evidence to the contrary. Because they are subject to species-specific variation, they can be used as a way to study evolutionary changes. Unfortunately, comparative studies are marred by a lack of standardized techniques, tissue preparation, cortical regions, or anatomical feature studied. However, recent advances in methodology enable standardized, quantified comparisons of minicolumn morphology.
Collapse
|
39
|
Casanova MF, Buxhoeveden DP, Cohen M, Switala AE, Roy EL. Minicolumnar pathology in dyslexia. Ann Neurol 2002; 52:108-10. [PMID: 12112057 DOI: 10.1002/ana.10226] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The minicolumn is an anatomical and functional unit of the brain whose genesis accrues from germinal cell divisions in the ventricular zone of the brain. Disturbances in the morphometry of minicolumns have been demonstrated recently for both autism and Down's syndrome. We report minicolumnar abnormalities in the brain of a dyslexic patient. The corresponding developmental disturbance (ie, large minicolumns) could account for the perceptual errors observed in dyslexia.
Collapse
Affiliation(s)
- Manuel F Casanova
- Department of Psychiatry and Neurology, Medical College of Georgia, Augusta, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
The minicolumn is a continuing source of research and debate more than half a century after it was identified as a component of brain organization. The minicolumn is a sophisticated local network that contains within it the elements for redundancy and plasticity. Although it is sometimes compared to subcortical nuclei, the design of the minicolumn is a distinctive form of module that has evolved specifically in the neocortex. It unites the horizontal and vertical components of cortex within the same cortical space. Minicolumns are often considered highly repetitive, even clone-like, units. However, they display considerable heterogeneity between areas and species, perhaps even within a given macrocolumn. Despite a growing recognition of the anatomical basis of the cortical minicolumn, as well as its physiological properties, the potential of the minicolumn has not been exploited in fields such as comparative neuroanatomy, abnormalities of the brain and mind, and evolution.
Collapse
|
41
|
Semendeferi K, Lu A, Schenker N, Damasio H. Humans and great apes share a large frontal cortex. Nat Neurosci 2002; 5:272-6. [PMID: 11850633 DOI: 10.1038/nn814] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Some of the outstanding cognitive capabilities of humans are commonly attributed to a disproportionate enlargement of the human frontal lobe during evolution. This claim is based primarily on comparisons between the brains of humans and of other primates, to the exclusion of most great apes. We compared the relative size of the frontal cortices in living specimens of several primate species, including all extant hominoids, using magnetic resonance imaging. Human frontal cortices were not disproportionately large in comparison to those of the great apes. We suggest that the special cognitive abilities attributed to a frontal advantage may be due to differences in individual cortical areas and to a richer interconnectivity, none of which required an increase in the overall relative size of the frontal lobe during hominid evolution.
Collapse
Affiliation(s)
- K Semendeferi
- Department of Anthropology, University of California at San Diego, La Jolla, California 92093, USA.
| | | | | | | |
Collapse
|