1
|
Hu H, Wan S, Hu Y, Wang Q, Li H, Zhang N. Deciphering the role of APOE in cerebral amyloid angiopathy: from genetic insights to therapeutic horizons. Ann Med 2025; 57:2445194. [PMID: 39745195 DOI: 10.1080/07853890.2024.2445194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/26/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Cerebral amyloid angiopathy (CAA), characterized by the deposition of amyloid-β (Aβ) peptides in the walls of medium and small vessels of the brain and leptomeninges, is a major cause of lobar hemorrhage in elderly individuals. Among the genetic risk factors for CAA that continue to be recognized, the apolipoprotein E (APOE) gene is the most significant and prevalent, as its variants have been implicated in more than half of all patients with CAA. While the presence of the APOE ε4 allele markedly increases the risk of CAA, the ε2 allele confers a protective effect relative to the common ε3 allele. These allelic variants encode three APOE isoforms that differ at two amino acid positions. The primary physiological role of APOE is to mediate lipid transport in the brain and periphery; however, it has also been shown to be involved in a wide array of biological functions, particularly those involving Aβ, in which it plays a known role in processing, production, aggregation, and clearance. The challenges posed by the reliance on postmortem histological analyses and the current absence of an effective intervention underscore the urgency for innovative APOE-targeted strategies for diagnosing CAA. This review not only deepens our understanding of the impact of APOE on the pathogenesis of CAA but can also help guide the exploration of targeted therapies, inspiring further research into the therapeutic potential of APOE.
Collapse
Affiliation(s)
- Hantian Hu
- Tianjin Medical University, Tianjin, China
| | - Siqi Wan
- Tianjin Medical University, Tianjin, China
| | - Yuetao Hu
- Tianjin Medical University, Tianjin, China
| | - Qi Wang
- Tianjin Medical University, Tianjin, China
| | - Hanyu Li
- Tianjin Medical University, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Lee K, Kim SI, Shim YM, Kim EE, Yoo S, Won JK, Park SH. Current Status and Future Perspective of Seoul National University Hospital-Dementia Brain Bank with Concordance of Clinical and Neuropathological Diagnosis. Exp Neurobiol 2024; 33:295-311. [PMID: 39806943 PMCID: PMC11738475 DOI: 10.5607/en24027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
This paper introduces the current status of Seoul National University Hospital Dementia Brain Bank (SNUH-DBB), focusing on the concordance rate between clinical diagnoses and postmortem neuropathological diagnoses. We detail SNUH-DBB operations, including protocols for specimen handling, induced pluripotent stem cells (iPSC) and cerebral organoids establishment from postmortem dural fibroblasts, and adult neural progenitor cell cultures. We assessed clinical-neuropathological diagnostic concordance rate. Between 2015 and September 2024, 162 brain specimens were collected via brain donation and autopsy. The median donor age was 73 years (1-94) with a male-to -female ratio of 2:1. The median postmortem interval was 9.5 hours (range: 2.5-65). Common neuropathological diagnoses included pure Lewy body disease (10.6%), Lewy body disease (LBD) with other brain diseases (10.6%), pure Alzheimer's disease-neuropathological change (ADNC) (6.0%), ADNC with other brain diseases (10.7%), vascular brain injury (15.2%), and primary age-related tauopathy (7.3%). APOE genotype distribution was following: ε3/ε3: 62.3%, ε2/ε3: 9.6%, ε2/ε4: 3.4%, ε3/ε4: 24.0%, and ε4/ε4: 0.7%. Concordance rates between pathological and clinical diagnoses were: ADNC/AD at 42.4%; LBD at 59.0%; PSP at 100%; ALS at 85.7%; Huntington's disease 100%. The varying concordance rates across different diseases emphasize the need for improved diagnostic criteria and biomarkers, particularly for AD and LBD. Tissues have been distributed to over 40 national studies. SNUH-DBB provides high-quality brain tissues and cell models for neuroscience research, operating under standardized procedures and international guidelines. It supports translational research in dementia and neurodegenerative diseases, potentially advancing diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Kwanghoon Lee
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seong-Ik Kim
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yu-Mi Shim
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eric Enshik Kim
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sooyeon Yoo
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
| | - Jae-Kyung Won
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sung-Hye Park
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
- Brain Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
3
|
Laslo A, Laslo L, Arbănași EM, Ujlaki-Nagi AA, Chinezu L, Ivănescu AD, Arbănași EM, Cărare RO, Cordoș BA, Popa IA, Brînzaniuc K. Pathways to Alzheimer's Disease: The Intersecting Roles of Clusterin and Apolipoprotein E in Amyloid-β Regulation and Neuronal Health. PATHOPHYSIOLOGY 2024; 31:545-558. [PMID: 39449522 PMCID: PMC11503414 DOI: 10.3390/pathophysiology31040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
One of the hallmarks of Alzheimer's disease (AD) is the deposition of amyloid-β (Aβ) within the extracellular spaces of the brain as plaques and along the blood vessels in the brain, a condition also known as cerebral amyloid angiopathy (CAA). Clusterin (CLU), or apolipoprotein J (APOJ), is a multifunctional glycoprotein that has a role in many physiological and neurological conditions, including AD. The apolipoprotein E (APOE) is a significant genetic factor in AD, and while the primary physiological role of APOE in the brain and peripheral tissues is to regulate lipid transport, it also participates in various other biological processes, having three basic human forms: APOE2, APOE3, and APOE4. Notably, the APOE4 allele substantially increases the risk of developing late-onset AD. The main purpose of this review is to examine the roles of CLU and APOE in AD pathogenesis in order to acquire a better understanding of AD pathogenesis from which to develop targeted therapeutic approaches.
Collapse
Affiliation(s)
- Alexandru Laslo
- Department of Urology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Laura Laslo
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (L.L.); (B.A.C.)
| | - Eliza-Mihaela Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | | | - Laura Chinezu
- Department of Histology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Adrian Dumitru Ivănescu
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
| | - Emil-Marian Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | | | - Bogdan Andrei Cordoș
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (L.L.); (B.A.C.)
- Centre for Experimental Medical and Imaging Studies, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Ioana Adriana Popa
- Clinic of Radiology, Mures County Emergency Hospital, 540136 Targu Mures, Romania;
| | - Klara Brînzaniuc
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
| |
Collapse
|
4
|
Chen F, Zhao J, Meng F, He F, Ni J, Fu Y. The vascular contribution of apolipoprotein E to Alzheimer's disease. Brain 2024; 147:2946-2965. [PMID: 38748848 DOI: 10.1093/brain/awae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease, the most prevalent form of dementia, imposes a substantial societal burden. The persistent inadequacy of disease-modifying drugs targeting amyloid plaques and neurofibrillary tangles suggests the contribution of alternative pathogenic mechanisms. A frequently overlooked aspect is cerebrovascular dysfunction, which may manifest early in the progression of Alzheimer's disease pathology. Mounting evidence underscores the pivotal role of the apolipoprotein E gene, particularly the apolipoprotein ε4 allele as the strongest genetic risk factor for late-onset Alzheimer's disease, in the cerebrovascular pathology associated with Alzheimer's disease. In this review, we examine the evidence elucidating the cerebrovascular impact of both central and peripheral apolipoprotein E on the pathogenesis of Alzheimer's disease. We present a novel three-hit hypothesis, outlining potential mechanisms that shed light on the intricate relationship among different pathogenic events. Finally, we discuss prospective therapeutics targeting the cerebrovascular pathology associated with apolipoprotein E and explore their implications for future research endeavours.
Collapse
Affiliation(s)
- Feng Chen
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Fanxia Meng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jie Ni
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuan Fu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
5
|
Medegan Fagla B, York J, Christensen A, Dela Rosa C, Balu D, Pike CJ, Tai LM, Buhimschi IA. Apolipoprotein E polymorphisms and female fertility in a transgenic mouse model of Alzheimer's disease. Sci Rep 2024; 14:15873. [PMID: 38982272 PMCID: PMC11233746 DOI: 10.1038/s41598-024-66489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
Apolipoprotein E (APOE) is a major cholesterol carrier responsible for lipid transport and injury repair in the brain. The human APOE gene (h-APOE) has 3 naturally occurring alleles: ε3, the common allele; ε4, which increases Alzheimer's disease (AD) risk up to 15-fold; and ε2, the rare allele which protects against AD. Although APOE4 has negative effects on neurocognition in old age, its persistence in the population suggests a survival advantage. We investigated the relationship between APOE genotypes and fertility in EFAD mice, a transgenic mouse model expressing h-APOE. We show that APOE4 transgenic mice had the highest level of reproductive performance, followed by APOE3 and APOE2. Intriguingly, APOE3 pregnancies had more fetal resorptions and reduced fetal weights relative to APOE4 pregnancies. In conclusion, APOE genotypes impact fertility and pregnancy outcomes in female mice, in concordance with findings in human populations. These mouse models may help elucidate how h-APOE4 promotes reproductive fitness at the cost of AD in later life.
Collapse
Affiliation(s)
- Bani Medegan Fagla
- Department of Obstetrics Gynecology, University of Illinois at Chicago College of Medicine, 820 S. Wood Street, Chicago, IL, 60612, USA
| | - Jason York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Amy Christensen
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Cielo Dela Rosa
- Department of Obstetrics Gynecology, University of Illinois at Chicago College of Medicine, 820 S. Wood Street, Chicago, IL, 60612, USA
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Christian J Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Irina A Buhimschi
- Department of Obstetrics Gynecology, University of Illinois at Chicago College of Medicine, 820 S. Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
6
|
Grenon MB, Papavergi MT, Bathini P, Sadowski M, Lemere CA. Temporal Characterization of the Amyloidogenic APPswe/PS1dE9;hAPOE4 Mouse Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:5754. [PMID: 38891941 PMCID: PMC11172317 DOI: 10.3390/ijms25115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating disorder with a global prevalence estimated at 55 million people. In clinical studies administering certain anti-beta-amyloid (Aβ) antibodies, amyloid-related imaging abnormalities (ARIAs) have emerged as major adverse events. The frequency of these events is higher among apolipoprotein ε4 allele carriers (APOE4) compared to non-carriers. To reflect patients most at risk for vascular complications of anti-Aβ immunotherapy, we selected an APPswe/PS1dE9 transgenic mouse model bearing the human APOE4 gene (APPPS1:E4) and compared it with the same APP/PS1 mouse model bearing the human APOE3 gene (APOE ε3 allele; APPPS1:E3). Using histological and biochemical analyses, we characterized mice at three ages: 8, 12, and 16 months. Female and male mice were assayed for general cerebral fibrillar and pyroglutamate (pGlu-3) Aβ deposition, cerebral amyloid angiopathy (CAA), microhemorrhages, apoE and cholesterol composition, astrocytes, microglia, inflammation, lysosomal dysfunction, and neuritic dystrophy. Amyloidosis, lipid deposition, and astrogliosis increased with age in APPPS1:E4 mice, while inflammation did not reveal significant changes with age. In general, APOE4 carriers showed elevated Aβ, apoE, reactive astrocytes, pro-inflammatory cytokines, microglial response, and neuritic dystrophy compared to APOE3 carriers at different ages. These results highlight the potential of the APPPS1:E4 mouse model as a valuable tool in investigating the vascular side effects associated with anti-amyloid immunotherapy.
Collapse
Affiliation(s)
- Martine B. Grenon
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
- Section Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Maria-Tzousi Papavergi
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Praveen Bathini
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
| | - Martin Sadowski
- Departments of Neurology, Psychiatry, and Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Cynthia A. Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
| |
Collapse
|
7
|
Panduro A, Roman S, Mariscal-Martinez IM, Jose-Abrego A, Gonzalez-Aldaco K, Ojeda-Granados C, Ramos-Lopez O, Torres-Reyes LA. Personalized medicine and nutrition in hepatology for preventing chronic liver disease in Mexico. Front Nutr 2024; 11:1379364. [PMID: 38784134 PMCID: PMC11113077 DOI: 10.3389/fnut.2024.1379364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic liver disease is a global health issue. Patients with chronic liver disease require a fresh approach that focuses on the genetic and environmental factors that contribute to disease initiation and progression. Emerging knowledge in the fields of Genomic Medicine and Genomic Nutrition demonstrates differences between countries in terms of genetics and lifestyle risk factors such as diet, physical activity, and mental health in chronic liver disease, which serves as the foundation for the implementation of Personalized Medicine and Nutrition (PerMed-Nut) strategies. Most of the world's populations have descended from various ethnic groupings. Mexico's population has a tripartite ancestral background, consisting of Amerindian, European, and African lineages, which is common across Latin America's regional countries. The purpose of this review is to discuss the genetic and environmental components that could be incorporated into a PerMed-Nut model for metabolic-associated liver disease, viral hepatitis B and C, and hepatocellular carcinoma in Mexico. Additionally, the implementation of the PerMed-Nut approach will require updated medicine and nutrition education curricula. Training and equipping future health professionals and researchers with new clinical and investigative abilities focused on preventing liver illnesses in the field of genomic hepatology globally is a vision that clinicians and nutritionists should be concerned about.
Collapse
Affiliation(s)
- Arturo Panduro
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sonia Roman
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Irene M. Mariscal-Martinez
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Alexis Jose-Abrego
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Karina Gonzalez-Aldaco
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Claudia Ojeda-Granados
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| | - Luis A. Torres-Reyes
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
8
|
Igloi K, Marin Bosch B, Kuenzi N, Thomas A, Lauer E, Bringard A, Schwartz S. Interactions between physical exercise, associative memory, and genetic risk for Alzheimer's disease. Cereb Cortex 2024; 34:bhae205. [PMID: 38802684 PMCID: PMC11129939 DOI: 10.1093/cercor/bhae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
The ε4 allele of the APOE gene heightens the risk of late onset Alzheimer's disease. ε4 carriers, may exhibit cognitive and neural changes early on. Given the known memory-enhancing effects of physical exercise, particularly through hippocampal plasticity via endocannabinoid signaling, here we aimed to test whether a single session of physical exercise may benefit memory and underlying neurophysiological processes in young ε3 carriers (ε3/ε4 heterozygotes, risk group) compared with a matched control group (homozygotes for ε3). Participants underwent fMRI while learning picture sequences, followed by cycling or rest before a memory test. Blood samples measured endocannabinoid levels. At the behavioral level, the risk group exhibited poorer associative memory performance, regardless of the exercising condition. At the brain level, the risk group showed increased medial temporal lobe activity during memory retrieval irrespective of exercise (suggesting neural compensatory effects even at baseline), whereas, in the control group, such increase was only detectable after physical exercise. Critically, an exercise-related endocannabinoid increase correlated with task-related hippocampal activation in the control group only. In conclusion, healthy young individuals carrying the ε4 allele may present suboptimal associative memory performance (when compared with homozygote ε3 carriers), together with reduced plasticity (and functional over-compensation) within medial temporal structures.
Collapse
Affiliation(s)
- Kinga Igloi
- Department of Fundamental Neurosciences, University of Geneva, CH-1211 Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Blanca Marin Bosch
- Department of Fundamental Neurosciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Noémie Kuenzi
- Department of Fundamental Neurosciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Aurélien Thomas
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, CH-1011 Geneva, Switzerland
| | - Estelle Lauer
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, CH-1011 Geneva, Switzerland
| | - Aurélien Bringard
- Department of Pneumology, Geneva University Hospitals, CH-1011 Geneva, Switzerland
| | - Sophie Schwartz
- Department of Fundamental Neurosciences, University of Geneva, CH-1211 Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, CH-1211 Geneva, Switzerland
- Geneva Neuroscience Center, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
9
|
Li Z, Liang D, Ebelt S, Gearing M, Kobor MS, Konwar C, Maclsaac JL, Dever K, Wingo AP, Levey AI, Lah JJ, Wingo TS, Hüls A. Differential DNA methylation in the brain as potential mediator of the association between traffic-related PM 2.5 and neuropathology markers of Alzheimer's disease. Alzheimers Dement 2024; 20:2538-2551. [PMID: 38345197 PMCID: PMC11032571 DOI: 10.1002/alz.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/29/2023] [Accepted: 11/30/2023] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Growing evidence indicates that fine particulate matter (PM2.5) is a risk factor for Alzheimer's disease (AD), but the underlying mechanisms have been insufficiently investigated. We hypothesized differential DNA methylation (DNAm) in brain tissue as a potential mediator of this association. METHODS We assessed genome-wide DNAm (Illumina EPIC BeadChips) in prefrontal cortex tissue and three AD-related neuropathological markers (Braak stage, CERAD, ABC score) for 159 donors, and estimated donors' residential traffic-related PM2.5 exposure 1, 3, and 5 years prior to death. We used a combination of the Meet-in-the-Middle approach, high-dimensional mediation analysis, and causal mediation analysis to identify potential mediating CpGs. RESULTS PM2.5 was significantly associated with differential DNAm at cg25433380 and cg10495669. Twenty-four CpG sites were identified as mediators of the association between PM2.5 exposure and neuropathology markers, several located in genes related to neuroinflammation. DISCUSSION Our findings suggest differential DNAm related to neuroinflammation mediates the association between traffic-related PM2.5 and AD. HIGHLIGHTS First study to evaluate the potential mediation effect of DNA methylation for the association between PM2.5 exposure and neuropathological changes of Alzheimer's disease. Study was based on brain tissues rarely investigated in previous air pollution research. Cg10495669, assigned to RBCK1 gene playing a role in inflammation, was associated consistently with 1-year, 3-year, and 5-year traffic-related PM2.5 exposures prior to death. Meet-in-the-middle approach and high-dimensional mediation analysis were used simultaneously to increase the potential of identifying the differentially methylated CpGs. Differential DNAm related to neuroinflammation was found to mediate the association between traffic-related PM2.5 and Alzheimer's disease.
Collapse
Affiliation(s)
- Zhenjiang Li
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Stefanie Ebelt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Chaini Konwar
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Julie L Maclsaac
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Kristy Dever
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Aliza P Wingo
- Division of Mental Health, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Thomas S Wingo
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - Anke Hüls
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Cammisuli DM, Tuena C, Riva G, Repetto C, Axmacher N, Chandreswaran V, Isella V, Pomati S, Zago S, Difonzo T, Pavanello G, Prete LA, Stramba-Badiale M, Mauro A, Cattaldo S, Castelnuovo G. Exploring the Remediation of Behavioral Disturbances of Spatial Cognition in Community-Dwelling Senior Citizens with Mild Cognitive Impairment via Innovative Technological Apparatus (BDSC-MCI Project): Protocol for a Prospective, Multi-Center Observational Study. J Pers Med 2024; 14:192. [PMID: 38392625 PMCID: PMC10890288 DOI: 10.3390/jpm14020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Spatial navigation (SN) has been reported to be one of the first cognitive domains to be affected in Alzheimer's disease (AD), which occurs as a result of progressive neuropathology involving specific brain areas. Moreover, the epsilon 4 isoform of apolipoprotein-E (APOE-ε4) has been associated with both sporadic and familial late-onset AD, and patients with mild cognitive impairment (MCI) due to AD are more likely to progressively deteriorate. Spatial navigation performance will be examined on a sample of 76 community-dwelling senior citizens (25 healthy controls; 25 individuals with subjective cognitive decline (SCD); and 26 patients with MCI due to AD) via a virtual computer-based task (i.e., the AppleGame) and a naturalistic task (i.e., the Detour Navigation Test-modified version) for which a wearable device with sensors will be used for recording gait data and revealing physiological parameters that may be associated with spatial disorientation. We expect that patients with MCI due to AD and APOE-ε4 carriers will show altered SN performances compared to individuals with SCD and healthy controls in the experimental tasks, and that VR testing may predict ecological performance. Impaired SN performances in people at increased risk of developing AD may inform future cognitive rehabilitation protocols for counteracting spatial disorientation that may occur during elders' traveling to unfamiliar locations. The research protocol has been approved by the Ethics Committee of the Istituto Auxologico Italiano. Findings will be published in peer-reviewed medical journals and discussed in national and international congresses.
Collapse
Affiliation(s)
| | - Cosimo Tuena
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy; (C.T.); (G.R.)
| | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy; (C.T.); (G.R.)
- Human Technology Lab, Catholic University, 20145 Milan, Italy
| | - Claudia Repetto
- Department of Psychology, Catholic University, 20123 Milan, Italy; (D.M.C.); (C.R.)
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University, 44801 Bochum, Germany (V.C.)
| | - Varnan Chandreswaran
- Department of Neuropsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University, 44801 Bochum, Germany (V.C.)
| | - Valeria Isella
- Department of Neurology, School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy;
- Milan Center for Neurosciences, 20133 Milan, Italy
| | - Simone Pomati
- Neurology Unit, Luigi Sacco University Hospital, 20157 Milan, Italy;
| | - Stefano Zago
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy; (S.Z.); (T.D.)
| | - Teresa Difonzo
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy; (S.Z.); (T.D.)
| | - Giada Pavanello
- School of Specialization in Clinical Psychology, Catholic University, 20123 Milan, Italy; (G.P.); (L.A.P.)
| | - Lorenzo Augusto Prete
- School of Specialization in Clinical Psychology, Catholic University, 20123 Milan, Italy; (G.P.); (L.A.P.)
| | - Marco Stramba-Badiale
- Department of Geriatrics and Cardiovascular Medicine, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy;
| | - Alessandro Mauro
- “Rita Levi Montalcini” Department of Neurosciences, University of Turin, 10126 Turin, Italy;
- Neurology and Neurorehabilitation Unit, IRCCS Istituto Auxologico Italiano, “San Giuseppe” Hospital, 33081 Piancavallo, Italy
| | - Stefania Cattaldo
- Clinic Neurobiology Laboratory, IRCCS Istituto Auxologico Italiano, “San Giuseppe” Hospital, 33081 Piancavallo, Italy;
| | - Gianluca Castelnuovo
- Department of Psychology, Catholic University, 20123 Milan, Italy; (D.M.C.); (C.R.)
- Clinical Psychology Research Laboratory, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| |
Collapse
|
11
|
Ramos AA, Galiano-Castillo N, Machado L. Cognitive Functioning of Unaffected First-degree Relatives of Individuals With Late-onset Alzheimer's Disease: A Systematic Literature Review and Meta-analysis. Neuropsychol Rev 2023; 33:659-674. [PMID: 36057684 PMCID: PMC10770217 DOI: 10.1007/s11065-022-09555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 06/10/2022] [Indexed: 10/14/2022]
Abstract
First-degree relatives of individuals with late-onset Alzheimer's disease (LOAD) are at increased risk for developing dementia, yet the associations between family history of LOAD and cognitive dysfunction remain unclear. In this quantitative review, we provide the first meta-analysis on the cognitive profile of unaffected first-degree blood relatives of LOAD-affected individuals compared to controls without a family history of LOAD. A systematic literature search was conducted in PsycINFO, PubMed /MEDLINE, and Scopus. We fitted a three-level structural equation modeling meta-analysis to control for non-independent effect sizes. Heterogeneity and risk of publication bias were also investigated. Thirty-four studies enabled us to estimate 218 effect sizes across several cognitive domains. Overall, first-degree relatives (n = 4,086, mean age = 57.40, SD = 4.71) showed significantly inferior cognitive performance (Hedges' g = -0.16; 95% CI, -0.25 to -0.08; p < .001) compared to controls (n = 2,388, mean age = 58.43, SD = 5.69). Specifically, controls outperformed first-degree relatives in language, visuospatial and verbal long-term memory, executive functions, verbal short-term memory, and verbal IQ. Among the first-degree relatives, APOE ɛ4 carriership was associated with more significant dysfunction in cognition (g = -0.24; 95% CI, -0.38 to -0.11; p < .001) compared to non-carriers (g = -0.14; 95% CI, -0.28 to -0.01; p = .04). Cognitive test type was significantly associated with between-group differences, accounting for 65% (R23 = .6499) of the effect size heterogeneity in the fitted regression model. No evidence of publication bias was found. The current findings provide support for mild but robust cognitive dysfunction in first-degree relatives of LOAD-affected individuals that appears to be moderated by cognitive domain, cognitive test type, and APOE ɛ4.
Collapse
Affiliation(s)
- Ari Alex Ramos
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
- Brain Research New Zealand, Auckland, New Zealand.
- Department of Psychology, Pontifical Catholic University of Paraná, Rua Imaculada Conceição, 1155, Curitiba, CEP 80.215-901, Brazil.
| | - Noelia Galiano-Castillo
- Department of Physical Therapy, Health Sciences Faculty, "Cuidate" from Biomedical Group (BIO277), Instituto de Investigación Biosanitaria (ibs.GRANADA), and Sport and Health Research Center (IMUDs), Granada, Spain, University of Granada, Granada, Spain
| | - Liana Machado
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, Auckland, New Zealand
| |
Collapse
|
12
|
Norgren J, Sindi S, Matton A, Kivipelto M, Kåreholt I. APOE-Genotype and Insulin Modulate Estimated Effect of Dietary Macronutrients on Cognitive Performance: Panel Analyses in Nondiabetic Older Adults at Risk of Dementia. J Nutr 2023; 153:3506-3520. [PMID: 37778510 DOI: 10.1016/j.tjnut.2023.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/20/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND The apolipoprotein E gene (APOE ε-2/3/4, combined as 6 different genotypes: ε-22/23/24/33/34/44) and insulin status modulate dementia risk and play a role in the metabolism of macronutrients. OBJECTIVES We aimed to examine APOE-genotype and fasting insulin as effect modifiers of the slopes between dietary macronutrients and cognitive performance among older adults at risk of dementia. METHODS Panel analyses-with diet and cognition measured at baseline and follow-up at years 1 and 2-were performed in a sub-sample from the FINGER (Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability) trial (n = 676, 60-77 y, 46% females, all nondiabetics). The associations between macronutrients (3-d food records, z-scores) and global cognition (modified Neuropsychological Test Battery, z-score) were analyzed in mixed regression models adjusted for confounders selected a priori. After a gradient was implied by the point estimates in categorical APOE analyses, we investigated a continuous APOE variable [APOE-gradient, coded -1 (for ε-23), -0.5 (ε-24), 0 (ε-33), 1 (ε-34), 2 (ε-44)] as an effect-modifier. RESULTS At increasing levels of the APOE-gradient, a relatively more favorable slope between diet and cognition was observed for a lower carbohydrate/fat ratio [β = -0.040, 95% confidence interval (CI): -0.074, -0.006; P = 0.020 for interaction diet × APOE-gradient), and higher protein (β = 0.075, 95% CI: 0.042, 0.109; P = 9.4 × 10-6). Insulin concentration (log-linear) modulated the association between the carbohydrate/fat ratio and cognition by a quadratic interaction (β = -0.016, P = 0.039). Coherent findings for exploratory predictors (fiber, fat subtypes, composite score, metabolic biomarkers) were compatible with published hypotheses of differential dietary adaptation by APOE, with cognition among ε-33 being relatively independent of dietary parameters-implying "metabolic flexibility." Antagonistic slopes to cognition for ε-23 (positive) compared with ε-34 and ε-44 (negative) were found for a Higher-carbohydrates-fiber-Lower-fat-protein composite score, even as within-subjects effects. CONCLUSIONS APOE-based precision nutrition appears conceptually promising, but replications in wider samples are warranted, as well as support from trials. Both relative hyper- and hypoinsulinemia might modulate the effect of diet on cognition.
Collapse
Affiliation(s)
- Jakob Norgren
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.
| | - Shireen Sindi
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden; Neuroepidemiology and Ageing Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Anna Matton
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden; Neuroepidemiology and Ageing Research Unit, School of Public Health, Imperial College London, London, United Kingdom; Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden; Neuroepidemiology and Ageing Research Unit, School of Public Health, Imperial College London, London, United Kingdom; Theme Inflammation and Aging, Medical Unit Aging, Karolinska University Hospital, Stockholm, Sweden; Stockholms Sjukhem, Research and Development Unit, Stockholm, Sweden
| | - Ingemar Kåreholt
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden; Institute of Gerontology, School of Health and Welfare, Jönköping University, Jönköping, Sweden; Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| |
Collapse
|
13
|
Najd-Hassan-Bonab L, Hedayati M, Shahzadeh Fazeli SA, Daneshpour MS. An optimized method for PCR-based genotyping to detect human APOE polymorphisms. Heliyon 2023; 9:e21102. [PMID: 37954297 PMCID: PMC10637921 DOI: 10.1016/j.heliyon.2023.e21102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/10/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Background Apolipoprotein E (APOE) is one of the most polymorphic genes at two single nucleotides (rs429358 and rs7412). The various isoforms of APOE have been associated with a variety of diseases, including neurodegenerative, type 2 diabetes, etc. Hence, predicting the APOE genotyping is critical for disease risk evaluation. The purpose of this study was to optimize the tetra amplification refractory mutation system (Tetra-ARMS) PCR method for the detection of APOE mutations. Material and methods Here, in our optimized Tetra-ARMS PCR method, different factors like cycle conditions, using HiFidelity enzyme instead of Taq polymerase and setting its best concentration, and the lack of using dimethylsulfoxide (DMSO) for amplifying the GC-regions were set up for all primer pairs. The sensitivity and accuracy were tested. For validation of the assay, the results were compared with known genotypes for the APOE gene that were previously obtained by two independent methods, RFLP and Chip-typing. Results Successful Tetra-ARMS PCR and genotyping are influenced by multiple factors. Our developed method enabled us to amplify the DNA fragment by 25 cycles without adding any hazardous reagent, like DMSO. Our findings showed 100 % accuracy and sensitivity of the optimized Tetra-ARMS PCR while both criteria were 95 % for RFLP and 100 % for the chip-typing method. In addition, our results showed 91 % and 100 % consistency with RFLP and chip typing methods, respectively. Conclusions Our current method is a simple and accurate approach for detecting APOE polymorphisms within a large sample size in a short time and can be performed even in low-tech laboratories.
Collapse
Affiliation(s)
- Leila Najd-Hassan-Bonab
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Abolhassan Shahzadeh Fazeli
- Department of Molecular and Cellular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Maryam S. Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Kashtanova DA, Mamchur AA, Dzhumaniyazova IH, Ivanov MV, Erema VV, Zelenova EA, Yakovchik AY, Gusakova MS, Rumyantseva AM, Terekhov MV, Matkava LR, Akopyan AA, Strazhesko ID, Yudin VS, Makarov VV, Kraevoy SA, Tkacheva ON, Yudin SM. Cognitive impairment in long-living adults: a genome-wide association study, polygenic risk score model and molecular modeling of the APOE protein. Front Aging Neurosci 2023; 15:1273825. [PMID: 37953886 PMCID: PMC10637623 DOI: 10.3389/fnagi.2023.1273825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Background Cognitive impairment is an irreversible, aging-associated condition that robs people of their independence. The purpose of this study was to investigate possible causes of this condition and propose preventive options. Methods We assessed cognitive status in long-living adults aged 90+ (n = 2,559) and performed a genome wide association study using two sets of variables: Mini-Mental State Examination scores as a continuous variable (linear regression) and cognitive status as a binary variable (> 24, no cognitive impairment; <10, impairment) (logistic regression). Results Both variations yielded the same polymorphisms, including a well-known marker of dementia, rs429358in the APOE gene. Molecular dynamics simulations showed that this polymorphism leads to changes in the structure of alpha helices and the mobility of the lipid-binding domain in the APOE protein. Conclusion These changes, along with higher LDL and total cholesterol levels, could be the mechanism underlying the development of cognitive impairment in older adults. However, this polymorphism is not the only determining factor in cognitive impairment. The polygenic risk score model included 45 polymorphisms (ROC AUC 69%), further confirming the multifactorial nature of this condition. Our findings, particularly the results of PRS modeling, could contribute to the development of early detection strategies for predisposition to cognitive impairment in older adults.
Collapse
Affiliation(s)
- D. A. Kashtanova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - A. A. Mamchur
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - I. H. Dzhumaniyazova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - M. V. Ivanov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - V. V. Erema
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - E. A. Zelenova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - A. Y. Yakovchik
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - M. S. Gusakova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - A. M. Rumyantseva
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - M. V. Terekhov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - L. R. Matkava
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - A. A. Akopyan
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - I. D. Strazhesko
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - V. S. Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - V. V. Makarov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - S. A. Kraevoy
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - O. N. Tkacheva
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - S. M. Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
15
|
Trumble BC, Charifson M, Kraft T, Garcia AR, Cummings DK, Hooper P, Lea AJ, Eid Rodriguez D, Koebele SV, Buetow K, Beheim B, Minocher R, Gutierrez M, Thomas GS, Gatz M, Stieglitz J, Finch CE, Kaplan H, Gurven M. Apolipoprotein-ε 4 is associated with higher fecundity in a natural fertility population. SCIENCE ADVANCES 2023; 9:eade9797. [PMID: 37556539 PMCID: PMC10411886 DOI: 10.1126/sciadv.ade9797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
In many populations, the apolipoprotein-ε4 (APOE-ε4) allele increases the risk for several chronic diseases of aging, including dementia and cardiovascular disease; despite these harmful effects at later ages, the APOE-ε4 allele remains prevalent. We assess the impact of APOE-ε4 on fertility and its proximate determinants (age at first reproduction, interbirth interval) among the Tsimane, a natural fertility population of forager-horticulturalists. Among 795 women aged 13 to 90 (20% APOE-ε4 carriers), those with at least one APOE-ε4 allele had 0.3 to 0.5 more children than (ε3/ε3) homozygotes, while those with two APOE-ε4 alleles gave birth to 1.4 to 2.1 more children. APOE-ε4 carriers achieve higher fertility by beginning reproduction 0.8 years earlier and having a 0.23-year shorter interbirth interval. Our findings add to a growing body of literature suggesting a need for studies of populations living in ancestrally relevant environments to assess how alleles that are deleterious in sedentary urban environments may have been maintained by selection throughout human evolutionary history.
Collapse
Affiliation(s)
- Benjamin C. Trumble
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Mia Charifson
- Department of Population Health, New York University Grossman School of Medicine, New York City, NY, USA
| | - Tom Kraft
- Anthropology Department, University of Utah, Salt Lake City, UT, USA
| | - Angela R. Garcia
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- Scientific Research Core, Phoenix Children's Hospital, Phoenix, AZ, USA
- Department of Child Health, University of Arizona, Tucson, AZ, USA
| | - Daniel K. Cummings
- Department of Health Economics and Anthropology, Economic Science Institute, Argyros School of Business and Economics, Chapman University, Orange, CA, USA
| | - Paul Hooper
- Department of Health Economics and Anthropology, Economic Science Institute, Argyros School of Business and Economics, Chapman University, Orange, CA, USA
| | - Amanda J. Lea
- Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | | | - Kenneth Buetow
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bret Beheim
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Riana Minocher
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Gregory S. Thomas
- MemorialCare Health System, Fountain Valley, CA, USA
- University of California, Irvine, CA, USA
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, CA, USA
| | - Jonathan Stieglitz
- Institute for Advanced Study in Toulouse, Université Toulouse 1 Capitole, Toulouse, France
| | - Caleb E. Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Hillard Kaplan
- Department of Health Economics and Anthropology, Economic Science Institute, Argyros School of Business and Economics, Chapman University, Orange, CA, USA
| | - Michael Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
16
|
Yang LG, March ZM, Stephenson RA, Narayan PS. Apolipoprotein E in lipid metabolism and neurodegenerative disease. Trends Endocrinol Metab 2023; 34:430-445. [PMID: 37357100 PMCID: PMC10365028 DOI: 10.1016/j.tem.2023.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/27/2023]
Abstract
Dysregulation of lipid metabolism has emerged as a central component of many neurodegenerative diseases. Variants of the lipid transport protein, apolipoprotein E (APOE), modulate risk and resilience in several neurodegenerative diseases including late-onset Alzheimer's disease (LOAD). Allelic variants of the gene, APOE, alter the lipid metabolism of cells and tissues and have been broadly associated with several other cellular and systemic phenotypes. Targeting APOE-associated metabolic pathways may offer opportunities to alter disease-related phenotypes and consequently, attenuate disease risk and impart resilience to multiple neurodegenerative diseases. We review the molecular, cellular, and tissue-level alterations to lipid metabolism that arise from different APOE isoforms. These changes in lipid metabolism could help to elucidate disease mechanisms and tune neurodegenerative disease risk and resilience.
Collapse
Affiliation(s)
- Linda G Yang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Zachary M March
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Roxan A Stephenson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Priyanka S Narayan
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.; National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA; Center for Alzheimer's and Related Dementias (CARD), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Li Z, Liang D, Ebelt S, Gearing M, Kobor MS, Konwar C, Maclsaac JL, Dever K, Wingo A, Levey A, Lah JJ, Wingo T, Huels A. Differential DNA Methylation in the Brain as Potential Mediator of the Association between Traffic-related PM 2.5 and Neuropathology Markers of Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.30.23292085. [PMID: 37425713 PMCID: PMC10327281 DOI: 10.1101/2023.06.30.23292085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
INTRODUCTION Growing evidence indicates fine particulate matter (PM2.5) as risk factor for Alzheimer's' disease (AD), but the underlying mechanisms have been insufficiently investigated. We hypothesized differential DNA methylation (DNAm) in brain tissue as potential mediator of this association. METHODS We assessed genome-wide DNAm (Illumina EPIC BeadChips) in prefrontal cortex tissue and three AD-related neuropathological markers (Braak stage, CERAD, ABC score) for 159 donors, and estimated donors' residential traffic-related PM2.5 exposure 1, 3 and 5 years prior to death. We used a combination of the Meet-in-the-Middle approach, high-dimensional mediation analysis, and causal mediation analysis to identify potential mediating CpGs. RESULTS PM2.5 was significantly associated with differential DNAm at cg25433380 and cg10495669. Twenty-six CpG sites were identified as mediators of the association between PM2.5 exposure and neuropathology markers, several located in genes related to neuroinflammation. DISCUSSION Our findings suggest differential DNAm related to neuroinflammation mediates the association between traffic-related PM2.5 and AD.
Collapse
Affiliation(s)
- Zhenjiang Li
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Stefanie Ebelt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, 12 Executive Park Dr NE, Atlanta, GA 30322, USA
| | - Michael S. Kobor
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, 950 W 28th Ave, Vancouver, BC V6H 0B3, Canada
| | - Chaini Konwar
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Julie L Maclsaac
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, 950 W 28th Ave, Vancouver, BC V6H 0B3, Canada
| | - Kristy Dever
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, 950 W 28th Ave, Vancouver, BC V6H 0B3, Canada
| | - Aliza Wingo
- Division of Mental Health, Atlanta VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA
- Department of Psychiatry, Emory University School of Medicine, 12 Executive Park Dr NE #200, Atlanta, GA 30329, USA
| | - Allan Levey
- Department of Neurology, Emory University School of Medicine, 12 Executive Park Dr NE, Atlanta, GA 30322, USA
| | - James J. Lah
- Department of Neurology, Emory University School of Medicine, 12 Executive Park Dr NE, Atlanta, GA 30322, USA
| | - Thomas Wingo
- Department of Neurology, Emory University School of Medicine, 12 Executive Park Dr NE, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University, 615 Michael Street Suite 301, Atlanta, GA 30322, USA
| | - Anke Huels
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA
| |
Collapse
|
18
|
Wu Y, Zhao F, Sure VN, Ibrahim A, Yu C, Carr SM, Song P. Human ApoE2 Endows Stronger Contractility in Rat Cardiomyocytes Enhancing Heart Function. Cells 2023; 12:cells12030347. [PMID: 36766690 PMCID: PMC9913850 DOI: 10.3390/cells12030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
(1) Background: Apolipoprotein E (ApoE) is a critical plasma apolipoprotein for lipid transport and nonlipid-related functions. Humans possess three isoforms of ApoE (2, 3, and 4). ApoE2, which exhibits beneficial effects on cardiac health, has not been adequately studied. (2) Methods: We investigated the cardiac phenotypes of the humanized ApoE knock-in (hApoE KI) rats and compared to wild-type (WT) and ApoE knock-out (ApoE KO) rats using echocardiography, ultrasound, blood pressure measurements, histology strategies, cell culture, Seahorse XF, cardiomyocyte contractility and intracellular Ca2+ tests, and Western blotting; (3) Results: hApoE2 rats exhibited enhanced heart contractile function without signs of detrimental remodeling. Isolated adult hApoE2 cardiomyocytes had faster and stronger sarcomere contractility because of more mitochondrial energy generation and stimulation-induced fast and elevated intracellular Ca2+ transient. The abundant energy is a result of elevated mitochondrial function via fatty acid β-oxidation. The fast and elevated Ca2+ transient is associated with decreased sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA2) and increased expression of cardiac ryanodine receptor 2 (RyR2) conducting a potent Ca2+ release from SR.; (4) Conclusions: Our studies validated the association of polymorphic ApoEs with cardiac health in the rat model, and revealed the possible mechanisms of the protective effect of ApoE2 against heart diseases.
Collapse
Affiliation(s)
- Yang Wu
- Correspondence: (Y.W.); (P.S.); Tel.: +1-404-413-6636 (P.S.)
| | | | | | | | | | | | - Ping Song
- Correspondence: (Y.W.); (P.S.); Tel.: +1-404-413-6636 (P.S.)
| |
Collapse
|
19
|
O’Shea DM, Galvin JE. Female APOE ɛ4 Carriers with Slow Rates of Biological Aging Have Better Memory Performances Compared to Female ɛ4 Carriers with Accelerated Aging. J Alzheimers Dis 2023; 92:1269-1282. [PMID: 36872781 PMCID: PMC10535361 DOI: 10.3233/jad-221145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND Evidence suggests that APOE ɛ4 carriers have worse memory performances compared to APOE ɛ4 non-carriers and effects may vary by sex and age. Estimates of biological age, using DNA methylation may enhance understanding of the associations between sex and APOE ɛ4 on cognition. OBJECTIVE To investigate whether associations between APOE ɛ4 status and memory vary according to rates of biological aging, using a DNA methylation age biomarker, in older men and women without dementia. METHODS Data were obtained from 1,771 adults enrolled in the 2016 wave of the Health and Retirement Study. A series of ANCOVAs were used to test the interaction effects of APOE ɛ4 status and aging rates (defined as 1 standard deviation below (i.e., slow rate), or above (i.e., fast rate) their sex-specific mean rate of aging on a composite measure of verbal learning and memory. RESULTS APOE ɛ4 female carriers with slow rates of GrimAge had significantly better memory performances compared to fast and average aging APOE ɛ4 female carriers. There was no effect of aging group rate on memory in the female non-carriers and no significant differences in memory according to age rate in either male APOE ɛ4 carriers or non-carriers. CONCLUSION Slower rates of aging in female APOE ɛ4 carriers may buffer against the negative effects of the ɛ4 allele on memory. However, longitudinal studies with larger sample sizes are needed to evaluate risk of dementia/memory impairment based on rates of aging in female APOE ɛ4 carriers.
Collapse
Affiliation(s)
- Deirdre M. O’Shea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | - James E. Galvin
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| |
Collapse
|
20
|
APOE Allele Frequency in Southern Greece: Exploring the Role of Geographical Gradient in the Greek Population. Geriatrics (Basel) 2022; 8:geriatrics8010001. [PMID: 36648906 PMCID: PMC9844375 DOI: 10.3390/geriatrics8010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND the apolipoprotein e4 allele (APOE4) constitutes an established genetic risk factor for Alzheimer's Disease Dementia (ADD). We aimed to explore the frequency of the APOE isoforms in the Greek population of Southern Greece. METHODS peripheral blood from 175 Greek AD patients, 113 with mild cognitive impairment (MCI), and 75 healthy individuals. DNA isolation was performed with a High Pure PCR Template Kit (Roche), followed by amplification with a real-time qPCR kit (TIB MolBiol) in Roche's Light Cycler PCR platform. RESULTS APOE4 allele frequency was 20.57% in the ADD group, 17.69% in the MCI group, and 6.67% in the control group. APOE3/3 homozygosity was the most common genotype, while the frequency of APOE4/4 homozygosity was higher in the AD group (8.60%). APOE4 carrier status was associated with higher odds for ADD and MCI (OR: 4.49, 95% CI: [1.90-10.61] and OR: 3.82, 95% CI: [1.59-9.17], respectively). CONCLUSION this study examines the APOE isoforms and is the first to report a higher APOE frequency in MCI compared with healthy controls in southern Greece. Importantly, we report the occurrence of the APOE4 allele, related to ADD, as amongst the lowest globally reported, even within the nation, thus enhancing the theory of ethnicity and latitude contribution.
Collapse
|
21
|
Suchy-Dicey A, Howard B, Longstreth WT, Reiman EM, Buchwald D. APOE genotype, hippocampus, and cognitive markers of Alzheimer's disease in American Indians: Data from the Strong Heart Study. Alzheimers Dement 2022; 18:2518-2526. [PMID: 35142437 PMCID: PMC9363523 DOI: 10.1002/alz.12573] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/01/2021] [Accepted: 12/10/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND The apolipoprotein E (APOE) ε4 allele confers higher risk of neurodegeneration and Alzheimer's disease (AD), but differs by race/ethnicity. We examined this association in American Indians. METHODS The Strong Heart Study is a population-based cohort of American Indians who were 64 to 95 years of age in 2010 to 2013. APOE ε4 status, brain imaging, and neuropsychological testing was collected in N = 811 individuals. Summary statistics, graphics, and generalized linear regressions-adjusted for sociodemographics, clinical features, and intracranial volume with bootstrap variance estimator-compared APOE ε4 carriers with non-carriers. RESULTS APOE ε4 carriers comprised 22% of the population (0.7% homozygotes). Participants were mean 73 years, 67% female, and 54% had some college education. The majority were obese (>50%), hypertensive (>80%), and diabetic (>50%). Neither imaging findings nor multidomain cognitive testing showed any substantive differences between APOE ε4 carriers and non-carriers. CONCLUSION We found no evidence of neurodegenerative risk from APOE ε4 in American Indians. Additional studies are needed to examine potential protective features.
Collapse
Affiliation(s)
- Astrid Suchy-Dicey
- Washington State University Elson S Floyd College of Medicine, Seattle, Washington, USA
| | - Barbara Howard
- MedStar Health Research Institute, Phoenix, Arizona, USA
| | - W T Longstreth
- University of Washington Neurology and Epidemiology Departments, Seattle, Washington, USA
| | | | - Dedra Buchwald
- Washington State University Elson S Floyd College of Medicine, Seattle, Washington, USA
| |
Collapse
|
22
|
Okubadejo NU, Okunoye O, Ojo OO, Arabambi B, Akinyemi RO, Osaigbovo GO, Abubakar SA, Iwuozo EU, Wahab KW, Agabi OP, Agulanna U, Imarhiagbe FA, Abiodun OV, Achoru CO, Adebowale AA, Adeniji O, Akpekpe JE, Ali MW, Ani-Osheku I, Arigbodi O, Balarabe SA, Bello AH, Ekenze OS, Erameh CO, Farombi TH, Fawale MB, Komolafe MA, Nwani PO, Nwazor EO, Nyandaiti Y, Obehighe EE, Obiabo YO, Odeniyi OA, Odiase FE, Ojini FI, Onwuegbuzie GA, Osemwegie N, Oshinaike OO, Otubogun FM, Oyakhire SI, Taiwo FT, Williams UE, Ozomma S, Zubair Y, Hernandez D, Bandres-Ciga S, Blauwendraat C, Singleton A, Houlden H, Hardy J, Rizig M. APOE E4 is associated with impaired self-declared cognition but not disease risk or age of onset in Nigerians with Parkinson's disease. NPJ Parkinsons Dis 2022; 8:155. [PMID: 36371506 PMCID: PMC9653490 DOI: 10.1038/s41531-022-00411-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/11/2022] [Indexed: 11/15/2022] Open
Abstract
The relationship between APOE polymorphisms and Parkinson's disease (PD) in black Africans has not been previously investigated. We evaluated the association between APOE polymorphic variability and self-declared cognition in 1100 Nigerians with PD and 1097 age-matched healthy controls. Cognition in PD was assessed using the single item cognition question (item 1.1) of the MDS-UPDRS. APOE genotype and allele frequencies did not differ between PD and controls (p > 0.05). No allelic or genotypic association was observed between APOE and age at onset of PD. In PD, APOE ε4/ε4 conferred a two-fold risk of cognitive impairment compared to one or no ε4 (HR: 2.09 (95% CI: 1.13-3.89; p = 0.02)), while APOE ε2 was associated with modest protection against cognitive impairment (HR: 0.41 (95% CI 0.19-0.99, p = 0.02)). Of 773 PD with motor phenotype and APOE characterized, tremor-dominant (TD) phenotype predominated significantly in ε2 carriers (87/135, 64.4%) compared to 22.2% in persons with postural instability/gait difficulty (PIGD) (30/135) and 13.3% in indeterminate (ID) (18/135, 13.3%) (p = 0.037). Although the frequency of the TD phenotype was highest in homozygous ε2 carriers (85.7%), the distribution of motor phenotypes across the six genotypes did not differ significantly (p = 0.18). Altogether, our findings support previous studies in other ethnicities, implying a role for APOE ε4 and ε2 as risk and protective factors, respectively, for cognitive impairment in PD.
Collapse
Affiliation(s)
- Njideka U Okubadejo
- Neurology Unit, Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi-Araba, Lagos State, Nigeria.
- Neurology Unit, Department of Medicine, Lagos University Teaching Hospital, Idi-Araba, Lagos State, Nigeria.
| | - Olaitan Okunoye
- Department of Molecular Neuroscience, University College London Institute of Neurology, Queen Square, London, UK
| | - Oluwadamilola O Ojo
- Neurology Unit, Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi-Araba, Lagos State, Nigeria
- Neurology Unit, Department of Medicine, Lagos University Teaching Hospital, Idi-Araba, Lagos State, Nigeria
| | - Babawale Arabambi
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, Canada
| | - Rufus O Akinyemi
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Sani A Abubakar
- Department of Medicine, Ahmadu Bello University Teaching Hospital, Zaria, Kaduna State, Nigeria
| | - Emmanuel U Iwuozo
- Neurology Unit, Benue State University & Benue State University Teaching Hospital, Makurdi, Benue State, Nigeria
| | - Kolawole W Wahab
- Department of Medicine, University of Ilorin & University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria
| | - Osigwe P Agabi
- Neurology Unit, Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi-Araba, Lagos State, Nigeria
- Neurology Unit, Department of Medicine, Lagos University Teaching Hospital, Idi-Araba, Lagos State, Nigeria
| | - Uchechi Agulanna
- Neurology Unit, Department of Medicine, Lagos University Teaching Hospital, Idi-Araba, Lagos State, Nigeria
| | - Frank A Imarhiagbe
- University of Benin & University of Benin Teaching Hospital, Benin City, Edo State, Nigeria
| | | | | | - Akintunde A Adebowale
- Neurology Unit, Department of Medicine, Obafemi Awolowo University & Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Osun State, Nigeria
| | | | | | | | - Ifeyinwa Ani-Osheku
- Asokoro District Hospital, Asokoro, Abuja, Federal Capital Territory, Nigeria
| | - Ohwotemu Arigbodi
- Department of Internal Medicine, Delta State University Teaching Hospital, Oghara, Delta State, Nigeria
| | - Salisu A Balarabe
- Department of Medicine, College of Health Sciences, Usmanu Danfodiyo University & Usmanu Danfodiyo University Teaching Hospital, Sokoto, Sokoto State, Nigeria
| | - Abiodun H Bello
- Department of Medicine, University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria
| | - Oluchi S Ekenze
- Neurology Unit, Department of Medicine, Faculty of Medical Sciences, University of Nigeria & University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu State, Nigeria
| | | | - Temitope H Farombi
- Chief Tony Anenih Geriatrics Center, University College Hospital, Ibadan, Oyo State, Nigeria
| | - Michael B Fawale
- Neurology Unit, Department of Medicine, Obafemi Awolowo University & Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Osun State, Nigeria
| | - Morenikeji A Komolafe
- Neurology Unit, Department of Medicine, Obafemi Awolowo University & Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Osun State, Nigeria
| | - Paul O Nwani
- Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria
| | - Ernest O Nwazor
- Department of Medicine, Madonna University College of Medical Sciences, Elele, Rivers State & Federal Medical Center, Owerri, Imo State, Nigeria
| | - Yakub Nyandaiti
- University of Maiduguri & University of Maiduguri Teaching Hospital, Maiduguri, Borno State, Nigeria
| | | | - Yahaya O Obiabo
- Department of Internal Medicine, Delta State University & Delta State University Teaching Hospital, Oghara, Delta State, Nigeria
| | | | - Francis E Odiase
- University of Benin & University of Benin Teaching Hospital, Benin City, Edo State, Nigeria
| | - Francis I Ojini
- Neurology Unit, Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi-Araba, Lagos State, Nigeria
- Neurology Unit, Department of Medicine, Lagos University Teaching Hospital, Idi-Araba, Lagos State, Nigeria
| | - Gerald A Onwuegbuzie
- University of Abuja & University of Abuja Teaching Hospital, Gwagwalada, Abuja, Federal Capital Territory, Nigeria
| | - Nosakhare Osemwegie
- University of Port Harcourt Teaching Hospital, Port Harcourt, Rivers State, Nigeria
| | - Olajumoke O Oshinaike
- Neurology Unit, Department of Medicine, Faculty of Clinical Sciences, Lagos State University College of Medicine, Ikeja, Lagos State, Nigeria
| | | | - Shyngle I Oyakhire
- Department of Internal Medicine, National Hospital, Abuja, Federal Capital Territory, Nigeria
| | - Funlola T Taiwo
- Department of Medicine, University College Hospital, Ibadan, Oyo State, Nigeria
| | - Uduak E Williams
- Department of Internal Medicine, University of Calabar/University of Calabar Teaching Hospital, Calabar, Cross Rivers State, Nigeria
| | - Simon Ozomma
- Department of Internal Medicine, University of Calabar/University of Calabar Teaching Hospital, Calabar, Cross Rivers State, Nigeria
| | - Yusuf Zubair
- Department of Internal Medicine, National Hospital, Abuja, Federal Capital Territory, Nigeria
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center For Alzheimer's and Related Dementias, NIA, NIH, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center For Alzheimer's and Related Dementias, NIA, NIH, Bethesda, MD, USA
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center For Alzheimer's and Related Dementias, NIA, NIH, Bethesda, MD, USA
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
- Neurogenetics Laboratory, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - John Hardy
- Department of Molecular Neuroscience, University College London Institute of Neurology, Queen Square, London, UK
| | - Mie Rizig
- Department of Molecular Neuroscience, University College London Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
23
|
Harerimana NV, Goate AM, Bowles KR. The influence of 17q21.31 and APOE genetic ancestry on neurodegenerative disease risk. Front Aging Neurosci 2022; 14:1021918. [PMID: 36337698 PMCID: PMC9632173 DOI: 10.3389/fnagi.2022.1021918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 09/08/2024] Open
Abstract
Advances in genomic research over the last two decades have greatly enhanced our knowledge concerning the genetic landscape and pathophysiological processes involved in multiple neurodegenerative diseases. However, current insights arise almost exclusively from studies on individuals of European ancestry. Despite this, studies have revealed that genetic variation differentially impacts risk for, and clinical presentation of neurodegenerative disease in non-European populations, conveying the importance of ancestry in predicting disease risk and understanding the biological mechanisms contributing to neurodegeneration. We review the genetic influence of two important disease-associated loci, 17q21.31 (the "MAPT locus") and APOE, to neurodegenerative disease risk in non-European populations, touching on global population differences and evolutionary genetics by ancestry that may underlie some of these differences. We conclude there is a need to increase representation of non-European ancestry individuals in genome-wide association studies (GWAS) and biomarker analyses in order to help resolve existing disparities in understanding risk for, diagnosis of, and treatment for neurodegenerative diseases in diverse populations.
Collapse
Affiliation(s)
- Nadia V. Harerimana
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alison M. Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kathryn R. Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
24
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
25
|
Liu C, Lu Y, Chen J, Qiu W, Zhan Y, Liu Z. Basal metabolic rate and risk of multiple sclerosis: a Mendelian randomization study. Metab Brain Dis 2022; 37:1855-1861. [PMID: 35543713 DOI: 10.1007/s11011-022-00973-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
To determine the relationship between basal metabolic rate (BMR) and multiple sclerosis (MS) susceptibility, we analyzed genome-wide association study (GWAS) summary statistics data from the International Multiple Sclerosis Genetics Consortium on a total of 115,803 participants of European descent, including 47,429 patients with MS and 68,374 controls. We selected 378 independent genetic variants strongly associated with BMR in a GWAS involving 454,874 participants as instrumental variables to examine a potential causal relationship between BMR and MS. A genetically predicted higher BMR was associated with a greater risk of MS (odds ratio [OR]: 1.283 per one standard deviation increase in BMR, 95% confidence interval [CI]: 1.108-1.486, P = 0.001). Moreover, we used the lasso method to eliminate heterogeneity (Q statistic = 384.58, P = 0.370). There was no pleiotropy in our study and no bias was found in the sensitivity analysis using the leave-one-out test. We provide novel evidence that a higher BMR is an independent causal risk factor in the development of MS. Further work is warranted to elucidate the potential mechanisms.
Collapse
Affiliation(s)
- Chunxin Liu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yaxin Lu
- Clinical Data Centre, Third Affiliated Hospital of Sun Yat- Sen University, Guangzhou, China
| | - Jingjing Chen
- Clinical Data Centre, Third Affiliated Hospital of Sun Yat- Sen University, Guangzhou, China
| | - Wei Qiu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yiqiang Zhan
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 17 177, Stockholm, Sweden.
- German Center for Neurodegenerative Diseases (DZNE), 89 081, Ulm, Germany.
| | - Zifeng Liu
- Clinical Data Centre, Third Affiliated Hospital of Sun Yat- Sen University, Guangzhou, China.
| |
Collapse
|
26
|
Sato K, Takayama KI, Hashimoto M, Inoue S. Transcriptional and Post-Transcriptional Regulations of Amyloid-β Precursor Protein (APP ) mRNA. FRONTIERS IN AGING 2022; 2:721579. [PMID: 35822056 PMCID: PMC9261399 DOI: 10.3389/fragi.2021.721579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023]
Abstract
Alzheimer’s disease (AD) is an age-associated neurodegenerative disorder characterized by progressive impairment of memory, thinking, behavior, and dementia. Based on ample evidence showing neurotoxicity of amyloid-β (Aβ) aggregates in AD, proteolytically derived from amyloid precursor protein (APP), it has been assumed that misfolding of Aβ plays a crucial role in the AD pathogenesis. Additionally, extra copies of the APP gene caused by chromosomal duplication in patients with Down syndrome can promote AD pathogenesis, indicating the pathological involvement of the APP gene dose in AD. Furthermore, increased APP expression due to locus duplication and promoter mutation of APP has been found in familial AD. Given this background, we aimed to summarize the mechanism underlying the upregulation of APP expression levels from a cutting-edge perspective. We first reviewed the literature relevant to this issue, specifically focusing on the transcriptional regulation of APP by transcription factors that bind to the promoter/enhancer regions. APP expression is also regulated by growth factors, cytokines, and hormone, such as androgen. We further evaluated the possible involvement of post-transcriptional regulators of APP in AD pathogenesis, such as RNA splicing factors. Indeed, alternative splicing isoforms of APP are proposed to be involved in the increased production of Aβ. Moreover, non-coding RNAs, including microRNAs, post-transcriptionally regulate the APP expression. Collectively, elucidation of the novel mechanisms underlying the upregulation of APP would lead to the development of clinical diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Makoto Hashimoto
- Department of Basic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
27
|
Hao L, Jia J, Xing Y, Han Y. APOE ε4 Allele Distribution and Association With Scores of Subjective Cognitive Decline Questionnaire 9 in a Large Chinese Memory Clinic Cohort. Front Neurosci 2022; 16:829031. [PMID: 35720695 PMCID: PMC9204235 DOI: 10.3389/fnins.2022.829031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background Previous reports on APOE ε4 allele distribution in different populations have been inconclusive. The Subjective Cognitive Decline-Questionnaire 9 (SCD-Q9) was developed to identify those at risk of objective cognitive impairment [OCI; including mild cognitive impairment (MCI) and dementia groups), but its association with APOE ε4 and discriminatory powers for SCDwith subtle cognitive decline (SCDs) and OCI in memory clinics are unclear. Objectives To investigate demographic distribution of APOE ε4, its association with SCD-Q9 scores, and its ability to discriminate SCDs and OCI groups from normal control (NC). Methods A total of 632 participants were recruited (NC = 243, SCDs = 298, OCI = 91). APOE ε4 allele distribution and association with SCD-Q9 scores were calculated and the effects on cognitive impairment were analyzed. Receiver operating characteristic (ROC) analysis was applied to identify discriminatory powers for NC, SCDs, and OCI. Results Total APOE ε4 frequency was 13.1%. This did not vary by demography but was higher in patients with OCI. The SCD-Q9 scores were higher in APOE ε4 carriers than non-carriers in the OCI group. The area under the curve (AUC) for discriminating from OCI using APOE ε4 were 0.587 and 0.575, using SCD-Q9 scores were 0.738 and 0.571 for NC and SCDs groups, respectively. When we combined APOE ε4 and SCD-Q9 scores into the model, the AUC increased to 0.747 for discriminating OCI from NC. However, when OCI group was split into MCI and dementia groups, only total SCD-Q9 score was the independent affecting factor of MCI. Conclusion This study demonstrated that the distribution of APOE ε4 alleles did not vary with different demographic characteristics in a large-scale cohort from a memory clinic. APOE ε4 alleles may be associated with scores of SCD-Q9 reflecting the degree of cognitive complaints but their additional contribution to SCD-Q9 scores is marginal in discriminating between NC, SCDs, and OCI.
Collapse
Affiliation(s)
- Lixiao Hao
- Department of General Practice, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jianguo Jia
- Department of General Practice, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yue Xing
- Radiological Sciences, Division of Clinical Neuroscience, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Yue Xing,
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
- Ying Han,
| |
Collapse
|
28
|
Perdomo VA, Ortega DC, Barreto G. Polymorphisms of apolipoprotein E in the Afro-descendant population of Buenaventura, Colombia. REVISTA COLOMBIANA DE PSIQUIATRIA (ENGLISH ED.) 2022; 51:99-104. [PMID: 35803688 DOI: 10.1016/j.rcpeng.2020.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 10/05/2020] [Indexed: 06/15/2023]
Abstract
OBJETIVES To estimate the frequency distribution, both allelic and genotypic, of the APOE gene in the Afro-descendant population of Buenaventura, Colombia. METHODS Three hundred and forty-eight Afro-descendant individuals were analysed and the APOE locus was genotyped by PCR-RFLP. The allelic and genotypic frequencies were established by direct counting and the Hardy-Weinberg equilibrium was evaluated through χ2 test. The frequencies obtained in this study were compared with frequencies reported for other Colombian populations through the Fisher's exact test. RESULTS The following allelic frequencies were observed: E3, 70.8%; E4, 21.4%, and E2, 7.8%. The genotypic frequencies were: E3/E3, 51.1%; E3/E4, 27.3%; E2/E3, 12.1%; E4/E4, 6%; E2/E4, 3.5%, and E2/E2, 0%. The entire examined population was found in Hardy-Weinberg equilibrium (P=.074), and significant differences were found in the allele E4 when comparing this population with the Amerindian and mestizo populations of Bogotá, Quindío, Centro-Oriente, Valle del Cauca, Barranquilla and Medellín (P≤ 0.0345). CONCLUSIONS The allelic frequencies observed in this study were significantly different from the frequencies reported in other Colombian populations. The high representativeness of the E4 and E2 alleles validates the hypothesis that there are micro-evolutionary processes that have been acting on their frequencies and could be associated with susceptibility to neuropsychiatric diseases such as Alzheimer's disease, metabolic alterations of fats and/or coronary artery disease.
Collapse
Affiliation(s)
- Vivian Andrea Perdomo
- Grupo de Genética Molecular Humana, Departamento de Biología, Universidad del Valle, Cali, Colombia
| | - Diana Carolina Ortega
- Grupo de Genética Molecular Humana, Departamento de Biología, Universidad del Valle, Cali, Colombia
| | - Guillermo Barreto
- Grupo de Genética Molecular Humana, Departamento de Biología, Universidad del Valle, Cali, Colombia.
| |
Collapse
|
29
|
Medrano-Jiménez E, Meza-Sosa KF, Urbán-Aragón JA, Secundino I, Pedraza-Alva G, Pérez-Martínez L. Microglial activation in Alzheimer's disease: The role of flavonoids and microRNAs. J Leukoc Biol 2022; 112:47-77. [PMID: 35293018 DOI: 10.1002/jlb.3mr1021-531r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of senile dementia and is characterized by progressive cognitive impairment and neuronal degeneration. Microglial activation is an important pathologic hallmark of AD. During disease progression, microglial cells switch from an alternative or anti-inflammatory and neuroprotective profile (M2) to a classic or proinflammatory and neurotoxic profile (M1). Phenotypically, M1 microglia is characterized by the activation of inflammatory signaling pathways that cause increased expression of proinflammatory genes, including those coding for cytokines and chemokines. This microglia-mediated neuroinflammation contributes to neuronal cell death. Recent studies in microglial cells have shown that a group of plant-derived compounds, known as flavonoids, possess anti-inflammatory properties and therefore exert a neuroprotective effect through regulating microglia activation. Here, we discuss how flavonoids can promote the switch from an inflammatory M1 phenotype to an anti-inflammatory M2 phenotype in microglia and how this represents a valuable opportunity for the development of novel therapeutic strategies to blunt neuroinflammation and boost neuronal recovery in AD. We also review how certain flavonoids can inhibit neuroinflammation through their action on the expression of microglia-specific microRNAs (miRNAs), which also constitute a key therapeutic approach in different neuropathologies involving an inflammatory component, including AD. Finally, we propose novel targets of microglia-specific miRNAs that may be considered for AD treatment.
Collapse
Affiliation(s)
- Elisa Medrano-Jiménez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Karla F Meza-Sosa
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - José A Urbán-Aragón
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Ismael Secundino
- Universidad De La Salle Bajío, Facultad de Odontología y Escuela de Veterinaria, León-Guanajuato, México
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| |
Collapse
|
30
|
Factors Influencing Alzheimer's Disease Risk: Whether and How They are Related to the APOE Genotype. Neurosci Bull 2022; 38:809-819. [PMID: 35149974 PMCID: PMC9276873 DOI: 10.1007/s12264-021-00814-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease featuring progressive cognitive impairment. Although the etiology of late-onset AD remains unclear, the close association of AD with apolipoprotein E (APOE), a gene that mainly regulates lipid metabolism, has been firmly established and may shed light on the exploration of AD pathogenesis and therapy. However, various confounding factors interfere with the APOE-related AD risk, raising questions about our comprehension of the clinical findings concerning APOE. In this review, we summarize the most debated factors interacting with the APOE genotype and AD pathogenesis, depict the extent to which these factors relate to APOE-dependent AD risk, and discuss the possible underlying mechanisms.
Collapse
|
31
|
Lindseth LRS, de Lange AMG, van der Meer D, Agartz I, Westlye LT, Tamnes CK, Barth C. Associations between reproductive history, hormone use, APOE ε4 genotype and cognition in middle- to older-aged women from the UK Biobank. Front Aging Neurosci 2022; 14:1014605. [PMID: 36760712 PMCID: PMC9907169 DOI: 10.3389/fnagi.2022.1014605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Relative to men, women are at a higher risk of developing age-related neurocognitive disorders including Alzheimer's disease. While women's health has historically been understudied, emerging evidence suggests that reproductive life events such as pregnancy and hormone use may influence women's cognition later in life. Methods We investigated the associations between reproductive history, exogenous hormone use, apolipoprotein (APOE) ε4 genotype and cognition in 221,124 middle- to older-aged (mean age 56.2 ± 8.0 years) women from the UK Biobank. Performance on six cognitive tasks was assessed, covering four cognitive domains: episodic visual memory, numeric working memory, processing speed, and executive function. Results A longer reproductive span, older age at menopause, older age at first and last birth, and use of hormonal contraceptives were positively associated with cognitive performance later in life. Number of live births, hysterectomy without oophorectomy and use of hormone therapy showed mixed findings, with task-specific positive and negative associations. Effect sizes were generally small (Cohen's d < 0.1). While APOE ε4 genotype was associated with reduced processing speed and executive functioning, in a dose-dependent manner, it did not influence the observed associations between female-specific factors and cognition. Discussion Our findings support previous evidence of associations between a broad range of female-specific factors and cognition. The positive association between a history of hormonal contraceptive use and cognition later in life showed the largest effect sizes (max. d = 0.1). More research targeting the long-term effects of female-specific factors on cognition and age-related neurocognitive disorders including Alzheimer's disease is crucial for a better understanding of women's brain health and to support women's health care.
Collapse
Affiliation(s)
| | - Ann-Marie G. de Lange
- LREN, Department of Clinical Neurosciences, Centre for Research in Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Dennis van der Meer
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Ingrid Agartz
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm Health Care Services, Karolinska Institute, Stockholm County Council, Stockholm, Sweden
| | - Lars T. Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christian K. Tamnes
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
| | - Claudia Barth
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- *Correspondence: Claudia Barth, ✉
| |
Collapse
|
32
|
Association between clinical symptoms and apolipoprotein A1 or apolipoprotein B levels is regulated by apolipoprotein E variant rs429358 in patients with chronic schizophrenia. Ann Gen Psychiatry 2021; 20:56. [PMID: 34930329 PMCID: PMC8686343 DOI: 10.1186/s12991-021-00376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The apolipoprotein E (ApoE) gene polymorphisms are correlated with blood lipid levels and several neuropsychiatric symptoms. Therefore, this study aimed to examine whether the ApoE rs429358 affected the development and clinical symptoms of schizophrenia and to explore the relationship between apolipoproteins levels and clinical symptoms. METHODS The ApoE rs429358 was genotyped using a case-control design. The Positive and Negative Syndrome Scale (PANSS) was employed to evaluate the psychopathology of all patients. RESULTS A total of 637 patients with schizophrenia and 467 healthy controls were recruited. We found no significant differences in the genotype and allele distribution between the patient and control groups. A significant correlation between PANSS negative symptoms and ApoA1 levels (p = 0.048) or ApoB levels (p = 0.001) was found in patients with schizophrenia, which was also confirmed by linear regression analyses (p = 0.048 vs. p = 0.001). Interestingly, only in the T homozygote group, ApoA1 and ApoB levels were predictors of the PANSS negative symptom score (p = 0.008 vs. p = 0.012), while in the C allele carrier group, no correlation was observed. CONCLUSIONS This study found that the levels of ApoA1 and ApoB were negatively associated with negative symptoms of patients with schizophrenia. Furthermore, the association between ApoA1 or ApoB levels and psychopathology of schizophrenia was regulated by ApoE rs429358.
Collapse
|
33
|
Liu S, Weng R, Gu X, Li L, Zhong Z. Association between apolipoprotein E gene polymorphism and nonalcoholic fatty liver disease in Southern China: A case-control study. J Clin Lab Anal 2021; 35:e24061. [PMID: 34664321 PMCID: PMC8649370 DOI: 10.1002/jcla.24061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/03/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Apolipoprotein E (ApoE) polymorphisms have been reported to be associated with nonalcoholic fatty liver disease (NAFLD), but the conclusions of studies are inconsistent in different regions. The present study aims to investigate the role of ApoE genotypes on NAFLD in southern China. METHODS A total of 1064 subjects including 372 NAFLD patients and 692 controls who attended Meizhou People's Hospital located in southern China from March 1, 2016 to April 30, 2020 were enrolled in this study. The ApoE genotypes were detected and the laboratory parameters were examined. RESULTS Significant differences were observed between NAFLD patients and controls in the prevalence of ε3/ε3 (p < 0.001) and ε3/ε4 (p = 0.004). NAFLD patients presented higher frequency of ε4 allele than controls (p = 0.013). Logistic regression analysis suggested that ε3/ε3 was an independent risk factor (OR: 1.435, 95% CI: 1.084-1.891, p = 0.010), while ε3/ε4 was an independent protective factor (OR: 0.578, 95% CI: 0.404-0.828, p = 0.003) for development of NAFLD. In addition, allele ε4 showed a protective effect on NAFLD with an adjusted OR of 0.588 (95% CI: 0.420-0.824, p = 0.002). CONCLUSION Our results suggested that ApoE genotype was associated with the development of NAFLD in the population of southern China. Individuals carrying ε3/ε3 were at higher risk of NAFLD, while those carrying ε3/ε4 were at lower risk of NAFLD.
Collapse
Affiliation(s)
- Sudong Liu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China.,Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China.,Research Experiment Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Ruiqiang Weng
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China.,Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China.,Research Experiment Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Xiaodong Gu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China.,Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China.,Research Experiment Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Lihai Li
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China.,Research Experiment Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Zhixiong Zhong
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China.,Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| |
Collapse
|
34
|
Garcia AR, Finch C, Gatz M, Kraft T, Eid Rodriguez D, Cummings D, Charifson M, Buetow K, Beheim BA, Allayee H, Thomas GS, Stieglitz J, Gurven MD, Kaplan H, Trumble BC. APOE4 is associated with elevated blood lipids and lower levels of innate immune biomarkers in a tropical Amerindian subsistence population. eLife 2021; 10:68231. [PMID: 34586066 PMCID: PMC8480980 DOI: 10.7554/elife.68231] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
In post-industrial settings, apolipoprotein E4 (APOE4) is associated with increased cardiovascular and neurological disease risk. However, the majority of human evolutionary history occurred in environments with higher pathogenic diversity and low cardiovascular risk. We hypothesize that in high-pathogen and energy-limited contexts, the APOE4 allele confers benefits by reducing innate inflammation when uninfected, while maintaining higher lipid levels that buffer costs of immune activation during infection. Among Tsimane forager-farmers of Bolivia (N = 1266, 50% female), APOE4 is associated with 30% lower C-reactive protein, and higher total cholesterol and oxidized LDL. Blood lipids were either not associated, or negatively associated with inflammatory biomarkers, except for associations of oxidized LDL and inflammation which were limited to obese adults. Further, APOE4 carriers maintain higher levels of total and LDL cholesterol at low body mass indices (BMIs). These results suggest that the relationship between APOE4 and lipids may be beneficial for pathogen-driven immune responses and unlikely to increase cardiovascular risk in an active subsistence population.
Collapse
Affiliation(s)
- Angela R Garcia
- Center for Evolution and Medicine, Arizona State University, Tempe, United States.,Department of Anthropology, Emory University, Atlanta, United States
| | - Caleb Finch
- Leonard Davis School of Gerontology, Dornsife College, University of Southern California, Los Angeles, Los Angeles, United States
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, Los Angeles, United States
| | - Thomas Kraft
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, United States
| | | | - Daniel Cummings
- Institute for Economics and Society, Chapman University, Orange, United States
| | - Mia Charifson
- Vilcek Institute of Graduate Biomedical Sciences, New York University, New York, United States
| | - Kenneth Buetow
- Center for Evolution and Medicine, Arizona State University, Tempe, United States.,School of Life Sciences, Arizona State University, Tempe, United States
| | - Bret A Beheim
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Hooman Allayee
- Department of Preventive Medicine and Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Irvine, Irvine, United States.,Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Irvine, Irvine, United States
| | - Gregory S Thomas
- Long Beach Memorial, Long Beach and University of California Irvine, Irvine, United States
| | - Jonathan Stieglitz
- Institute for Advanced Study in Toulouse, Universite Toulouse, Toulouse, France
| | - Michael D Gurven
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, United States
| | - Hillard Kaplan
- Institute for Economics and Society, Chapman University, Orange, United States
| | - Benjamin C Trumble
- School of Human Evolution and Social Change, Arizona State University, Tempe, United States
| |
Collapse
|
35
|
Carmichael J, Hicks AJ, Spitz G, Gould KR, Ponsford J. Moderators of gene-outcome associations following traumatic brain injury. Neurosci Biobehav Rev 2021; 130:107-124. [PMID: 34411558 DOI: 10.1016/j.neubiorev.2021.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/04/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
The field of genomics is the principal avenue in the ongoing development of precision/personalised medicine for a variety of health conditions. However, relating genes to outcomes is notoriously complex, especially when considering that other variables can change, or moderate, gene-outcome associations. Here, we comprehensively discuss moderation of gene-outcome associations in the context of traumatic brain injury (TBI), a common, chronically debilitating, and costly neurological condition that is under complex polygenic influence. We focus our narrative review on single nucleotide polymorphisms (SNPs) of three of the most studied genes (apolipoprotein E, brain-derived neurotrophic factor, and catechol-O-methyltransferase) and on three demographic variables believed to moderate associations between these SNPs and TBI outcomes (age, biological sex, and ethnicity). We speculate on the mechanisms which may underlie these moderating effects, drawing widely from biomolecular and behavioural research (n = 175 scientific reports) within the TBI population (n = 72) and other neurological, healthy, ageing, and psychiatric populations (n = 103). We conclude with methodological recommendations for improved exploration of moderators in future genetics research in TBI and other populations.
Collapse
Affiliation(s)
- Jai Carmichael
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia.
| | - Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Kate Rachel Gould
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Jennie Ponsford
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| |
Collapse
|
36
|
Freitas RS, Roque CR, Matos GA, Belayev L, de Azevedo OGR, Alvarez-Leite JI, Guerrant RL, Oriá RB. Immunoinflammatory role of apolipoprotein E4 in malnutrition and enteric infections and the increased risk for chronic diseases under adverse environments. Nutr Rev 2021; 80:1001-1012. [PMID: 34406390 DOI: 10.1093/nutrit/nuab063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Apolipoprotein E plays a crucial role in cholesterol metabolism. The immunomodulatory functions of the human polymorphic APOE gene have gained particular interest because APOE4, a well-recognized risk factor for late-onset Alzheimer's disease, has also been recently linked to increased risk of COVID-19 infection severity in a large UK biobank study. Although much is known about apoE functions in the nervous system, much less is known about APOE polymorphism effects on malnutrition and enteric infections and the consequences for later development in underprivileged environments. In this review, recent findings are summarized of apoE's effects on intestinal function in health and disease and the role of APOE4 in protecting against infection and malnutrition in children living in unfavorable settings, where poor sanitation and hygiene prevail, is highlighted. The potential impact of APOE4 on later development also is discussed and gaps in knowledge are identified that need to be addressed to protect children's development under adverse environments.
Collapse
Affiliation(s)
- Raul S Freitas
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Cássia R Roque
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Gabriella A Matos
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Ludmila Belayev
- Neuroscience Center of Excellence, School of Medicine, Health Sciences Center, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Orleâncio G R de Azevedo
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | | | - Richard L Guerrant
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States
| | - Reinaldo B Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| |
Collapse
|
37
|
Wu Y, Johnson G, Zhao F, Wu Y, Zhao G, Brown A, You S, Zou MH, Song P. Features of Lipid Metabolism in Humanized ApoE Knockin Rat Models. Int J Mol Sci 2021; 22:ijms22158262. [PMID: 34361033 PMCID: PMC8347964 DOI: 10.3390/ijms22158262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022] Open
Abstract
Apolipoprotein E (ApoE), an essential plasma apolipoprotein, has three isoforms (E2, E3, and E4) in humans. E2 is associated with type III hyperlipoproteinemia. E4 is the major susceptibility gene to Alzheimer’s disease (AD) and coronary heart disease (CHD). We investigated lipid metabolism and atherosclerotic lesions of novel humanized ApoE knockin (hApoE KI) rats in comparison to wide-type (WT) and ApoE knockout (ApoE KO) rats. The hApoE2 rats showed the lowest bodyweight and white fat mass. hApoE2 rats developed higher serum total cholesterol (TC), total triglyceride (TG), and low- and very low density lipoprotein (LDL-C&VLDL-C). ApoE KO rats also exhibited elevated TC and LDL-C&VLDL-C. Only mild atherosclerotic lesions were detected in hApoE2 and ApoE KO aortic roots. Half of the hApoE2 rats developed hepatic nodular cirrhosis. A short period of the Paigen diet (PD) treatment led to the premature death of the hApoE2 and ApoE KO rats. Severe vascular wall thickening of the coronary and pulmonary arteries was observed in 4-month PD-treated hApoE4 rats. In conclusion, hApoE2 rats develop spontaneous hyperlipidemia and might be suitable for studies of lipid metabolism-related diseases. With the PD challenge, hApoE4 KI rats could be a novel model for the analysis of vascular remodeling.
Collapse
Affiliation(s)
- Yang Wu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA; (Y.W.); (G.J.); (F.Z.); (Y.W.); (S.Y.); (M.-H.Z.)
| | - Gem Johnson
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA; (Y.W.); (G.J.); (F.Z.); (Y.W.); (S.Y.); (M.-H.Z.)
| | - Fujie Zhao
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA; (Y.W.); (G.J.); (F.Z.); (Y.W.); (S.Y.); (M.-H.Z.)
| | - Yin Wu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA; (Y.W.); (G.J.); (F.Z.); (Y.W.); (S.Y.); (M.-H.Z.)
| | - Guojun Zhao
- Envigo RMS, Inc., St. Louis, MO 63146, USA; (G.Z.); (A.B.)
| | - Andrew Brown
- Envigo RMS, Inc., St. Louis, MO 63146, USA; (G.Z.); (A.B.)
| | - Shaojin You
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA; (Y.W.); (G.J.); (F.Z.); (Y.W.); (S.Y.); (M.-H.Z.)
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA; (Y.W.); (G.J.); (F.Z.); (Y.W.); (S.Y.); (M.-H.Z.)
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA; (Y.W.); (G.J.); (F.Z.); (Y.W.); (S.Y.); (M.-H.Z.)
- Correspondence: ; Tel.: +1-404-413-6636
| |
Collapse
|
38
|
Jannati A, Ryan MA, Block G, Kayarian FB, Oberman LM, Rotenberg A, Pascual-Leone A. Modulation of motor cortical excitability by continuous theta-burst stimulation in adults with autism spectrum disorder. Clin Neurophysiol 2021; 132:1647-1662. [PMID: 34030059 PMCID: PMC8197744 DOI: 10.1016/j.clinph.2021.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To test whether change in motor evoked potential (ΔMEP) induced by continuous theta-burst stimulation (cTBS) of motor cortex (M1) distinguishes adults with autism spectrum disorder (ASD) from neurotypicals, and to explore the contribution of two common polymorphisms related to neuroplasticity. METHODS 44 adult neurotypical (NT) participants (age 21-65, 34 males) and 19 adults with ASD (age 21-58, 17 males) prospectively underwent M1 cTBS. Their data were combined with previously obtained results from 35 NT and 35 ASD adults. RESULTS ΔMEP at 15 minutes post-cTBS (T15) was a significant predictor of diagnosis (p = 0.04) in the present sample (n=63). T15 remained a significant predictor in a larger sample (n=91) and when partially imputed based on T10-T20 from a yet-greater sample (N=133). T15 also remained a significant predictor of diagnosis among brain-derived neurotrophic factor (BDNF) Met+ and apolipoprotein E (APOE) ε4- subjects (p's < 0.05), but not among Met- or ε4+ subjects (p's > 0.19). CONCLUSIONS ΔMEP at T15 post-cTBS is a significant biomarker for adults with ASD, and its utility is modulated by BDNF and APOE polymorphisms. SIGNIFICANCE M1 cTBS response is a physiologic biomarker for adults with ASD in large samples, and controlling for BDNF and APOE polymorphisms can improve its diagnostic utility.
Collapse
Affiliation(s)
- Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Mary A Ryan
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Gabrielle Block
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Fae B Kayarian
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lindsay M Oberman
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Guttman Brain Health Institute, Institut Guttman de Neurorehabilitació, Universitat Autónoma de Barcelona, Badalona, Barcelona, Spain.
| |
Collapse
|
39
|
Bangen KJ, Smirnov DS, Delano-Wood L, Wierenga CE, Bondi MW, Salmon DP, Galasko D. Arterial stiffening acts synergistically with APOE genotype and AD biomarker status to influence memory in older adults without dementia. Alzheimers Res Ther 2021; 13:121. [PMID: 34210365 PMCID: PMC8246656 DOI: 10.1186/s13195-021-00851-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/31/2021] [Indexed: 12/02/2022]
Abstract
BACKGROUND Arterial stiffening has emerged as an important risk factor for Alzheimer's disease (AD) and related dementias. Carotid-femoral pulse wave velocity has been proposed as a non-invasive and reproducible method to assess arterial stiffness. However, the association of pulse wave velocity with performance across multiple cognitive domains as well as interactions with in vivo AD biomarkers and apolipoprotein E (APOE) genotype has received limited study. METHOD We studied 193 older adult volunteers (167 with normal cognition and 26 with mild cognitive impairment) who underwent comprehensive medical and neuropsychological evaluation at the University of California, San Diego Alzheimer's Disease Research Center. Cerebrospinal fluid (CSF) biomarkers were available on 123 participants (63%). Linear models examined whether pulse wave velocity significantly interacted with APOE ε4 status and CSF AD biomarker positivity (based on the ratio of total tau over beta-amyloid [tau/Aβ42]) on memory, language, executive functioning, attention, and visuospatial abilities. RESULTS After adjusting for demographic characteristics and vascular risk burden, across the entire sample, pulse wave velocity was associated with poorer executive functioning but not the performance in the other cognitive domains. When the modifying effects of AD genetic risk and CSF AD biomarkers were considered, pulse wave velocity interacted with APOE genotype and CSF tau/Aβ ratio such that a stronger association between elevated pulse wave velocity and poorer memory performance was found among those positive for CSF and genetic AD markers. There were no significant interaction effects for non-memory cognitive domains. CONCLUSION The findings suggest that pulse wave velocity, a non-invasive method to assess arterial wall properties, may be a useful marker of risk for cognitive decline, particularly among individuals who are APOE ε4 carriers or CSF AD biomarke0r-positive.
Collapse
Affiliation(s)
- Katherine J Bangen
- Research Service, VA San Diego Healthcare System, Building 13, 3350 La Jolla Village Drive (151A), San Diego, CA, 92161, USA.
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| | - Denis S Smirnov
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Lisa Delano-Wood
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Christina E Wierenga
- Research Service, VA San Diego Healthcare System, Building 13, 3350 La Jolla Village Drive (151A), San Diego, CA, 92161, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - David P Salmon
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
40
|
Investigating Effects of Plasma Apolipoprotein E on Ischemic Heart Disease Using Mendelian Randomization Study. Nutrients 2021; 13:nu13072215. [PMID: 34203181 PMCID: PMC8308265 DOI: 10.3390/nu13072215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/08/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Observationally plasma apolipoprotein E (apoE) is positively associated with ischemic heart disease (IHD). A Mendelian randomization (MR) study suggesting apoE is unrelated to cardiovascular mortality did not consider specific isoforms. We used MR to obtain estimates of plasma apoE2, apoE3 and apoE4 on IHD, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, triglycerides and apolipoprotein B (apoB). METHODS We obtained independent genetic instruments from proteome genome-wide association studies (GWAS) and applied them to large outcome GWAS. We used univariable MR to assess the role of each isoform and multivariable MR to assess direct effects. RESULTS In univariable MR, apoE4 was positively associated with IHD (odds ratio (OR) 1.05, 95% confidence interval (CI) 1.01 to 1.09), but apoE2 and apoE3 were less clearly associated. Using multivariable MR an association of apoE2 with IHD (OR 1.16, 95% CI 0.98 to 1.38) could not be excluded, and associations of apoE3 and apoE4 with IHD were not obvious. In univariable MR, apoE2 and apoE4 were positively associated with apoB, and a positive association of apoE2 with LDL cholesterol could not be excluded. Using multivariable MR apoE2 was positively associated with LDL cholesterol, and associations with apoB could not be excluded. After adjusting for apoB, no direct effects of apoE isoforms on IHD were evident. CONCLUSIONS Plasma apoE2 and apoE4 may play a role in lipid modulation and IHD. Whether apoE could be a potential therapeutic target requires further clarification when larger genetic studies of apoE isoforms are available.
Collapse
|
41
|
Mentink LJ, Guimarães JPOFT, Faber M, Sprooten E, Olde Rikkert MGM, Haak KV, Beckmann CF. Functional co-activation of the default mode network in APOE ε4-carriers: A replication study. Neuroimage 2021; 240:118304. [PMID: 34329959 DOI: 10.1016/j.neuroimage.2021.118304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/27/2021] [Accepted: 06/22/2021] [Indexed: 11/19/2022] Open
Abstract
Structural and functional alterations of the brain in persons genetically at-risk for Alzheimer's disease (AD) are crucial in unravelling AD development. Filippini et al. found that the default mode network (DMN) is already affected in young APOE ε4-carriers, with increased co-activation of the DMN during rest and increased hippocampal task activation. We aimed to replicate the early findings of Filippini et al, using the APOE gene, still the principal AD risk gene, and extended this with a polygenic risk score (PRS) analysis for AD, using the Human Connectome Project dataset (HCP). We included participants from the HCP S1200 dataset (age range: 22-36 years). We studied morphometric features, functional DMN co-activation and functional task activation of recollection performance. Permutation Analysis of Linear Models (PALM) was used to test for group differences between APOE ε4-carriers and non-carriers, and to test the association with PRS. PALM controls for biases induced by the family structure of the HCP sample. Results were family-wise error rate corrected at p < 0.05. Our primary analysis did not replicate the early findings of Filippini et al. (2009). However, compared with non-carriers, APOE ε4-carriers showed increased functional activation during the encoding of subsequently recollected items in areas related to facial recognition (p<0.05, t>756.11). This increased functional activation was also positively associated with PRS (APOE variants included) (p<0.05, t>647.55). Our results are supportive for none to limited genetic effects on brain structure and function in young adults. Taking the methodological considerations of replication studies into account, the true effect of APOE ε4-carriership is likely smaller than indicated in the Filippini paper. However, it still holds that we may not yet be able to detect already present measurable effects decades before a clinical expression of AD. Since the mechanistic pathway of AD is likely to encompass many different factors, further research should be focused on the interactions of genetic risk, biomarkers, aging and lifestyle factors over the life course. Sensitive functional neuroimaging as used here may help disentangling these complex interactions.
Collapse
Affiliation(s)
- Lara J Mentink
- Department of Geriatrics, Radboudumc Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - João P O F T Guimarães
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Myrthe Faber
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Communication and Cognition, Tilburg Center for Cognition and Communication, Tilburg University, Tilburg, The Netherlands.
| | - Emma Sprooten
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Marcel G M Olde Rikkert
- Department of Geriatrics, Radboudumc Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Koen V Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
42
|
Rao W, Zhang Y, Li K, Zhang XY. Association between cognitive impairment and apolipoprotein A1 or apolipoprotein B levels is regulated by apolipoprotein E variant rs429358 in patients with chronic schizophrenia. Aging (Albany NY) 2021; 13:16353-16366. [PMID: 34135129 PMCID: PMC8266354 DOI: 10.18632/aging.203161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022]
Abstract
ApoE gene polymorphism may be involved in the change in blood lipid profile and cognitive impairment of the general population. However, few studies explored the effects of ApoE gene polymorphism on blood lipid levels and cognition in schizophrenia. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was employed to evaluate the cognition and the SNPStats was used to investigate the association of ApoE rs429358 with schizophrenia. The models of analysis of covariance and multivariate analysis were conducted to investigate the effect of ApoE rs429358 on cognition in schizophrenia. Altogether, 637 patients with schizophrenia and 467 healthy controls were recruited in this study. The findings in the case group found that both the ApoA1 and ApoB levels were predictors for RBANS total score (p < 0.001 vs. p = 0.011), immediate memory (p < 0.001 vs. p = 0.019), language (p < 0.001 vs. p = 0.013), attention (p < 0.001 vs. p < 0.001), except ApoA1 level only was a predictor for visuospatial/constructional (p = 0.014) and delayed memory (p < 0.001). When the association was examined in different ApoE rs429358 genotype subgroups, the association between ApoA1 level and RBANS scores (except for the language score) or between ApoB level and RBANS scores (except for the attention score) was regulated by ApoE rs429358. Our results suggest that patients with schizophrenia have broad cognitive impairment compared with healthy controls. For patients with schizophrenia, both ApoA1 and ApoB levels were positively associated with cognition. There was a significant association between ApoA1 or ApoB levels and cognition in schizophrenia, which was regulated by the ApoE rs429358.
Collapse
Affiliation(s)
- Wenwang Rao
- Institute of Mental Health, Hebei Mental Health Centre, Hebei Province, China.,Unit of Psychiatry, Department of Public Health and Medicinal Administration & Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Yunshu Zhang
- Institute of Mental Health, Hebei Mental Health Centre, Hebei Province, China.,Department of Sleep Medicine, Hebei Psychiatric Hospital, Hebei Province, China
| | - Keqing Li
- Institute of Mental Health, Hebei Mental Health Centre, Hebei Province, China.,Department of Sleep Medicine, Hebei Psychiatric Hospital, Hebei Province, China
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Ferguson AC, Tank R, Lyall LM, Ward J, Celis-Morales C, Strawbridge R, Ho F, Whelan CD, Gill J, Welsh P, Anderson JJ, Mark PB, Mackay DF, Smith DJ, Pell JP, Cavanagh J, Sattar N, Lyall DM. Alzheimer's Disease Susceptibility Gene Apolipoprotein E (APOE) and Blood Biomarkers in UK Biobank (N = 395,769). J Alzheimers Dis 2021; 76:1541-1551. [PMID: 32651323 DOI: 10.3233/jad-200338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative condition where the underlying etiology is still unclear. Investigating the potential influence of apolipoprotein E (APOE), a major genetic risk factor, on common blood biomarkers could provide a greater understanding of the mechanisms of AD and dementia risk. OBJECTIVE Our objective was to conduct the largest (to date) single-protocol investigation of blood biomarkers in the context of APOE genotype, in UK Biobank. METHODS After quality control and exclusions, data on 395,769 participants of White European ancestry were available for analysis. Linear regressions were used to test potential associations between APOE genotypes and biomarkers. RESULTS Several biomarkers significantly associated with APOEɛ4 'risk' and ɛ2 'protective' genotypes (versus neutral ɛ3/ɛ3). Most associations supported previous data: for example, ɛ4 genotype was associated with elevated low-density lipoprotein cholesterol (LDL) (standardized beta [b] = 0.150 standard deviations [SDs] per allele, p < 0.001) and ɛ2 with lower LDL (b = -0.456 SDs, p < 0.001). There were however instances of associations found in unexpected directions: e.g., ɛ4 and increased insulin-like growth factor (IGF-1) (b = 0.017, p < 0.001) where lower levels have been previously suggested as an AD risk factor. CONCLUSION These findings highlight biomarker differences in non-demented people at genetic risk for dementia. The evidence herein supports previous hypotheses of involvement from cardiometabolic and neuroinflammatory pathways.
Collapse
Affiliation(s)
- Amy C Ferguson
- Institute of Health and Wellbeing, University of Glasgow, Scotland, UK
| | - Rachana Tank
- Institute of Health and Wellbeing, University of Glasgow, Scotland, UK
| | - Laura M Lyall
- Institute of Health and Wellbeing, University of Glasgow, Scotland, UK
| | - Joey Ward
- Institute of Health and Wellbeing, University of Glasgow, Scotland, UK
| | - Carlos Celis-Morales
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK.,GEEAFyS, Universidad Católica del Maule, Talca, Chile
| | - Rona Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Scotland, UK.,Health Data Research UK.,Department of Medicine Solna, Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Frederick Ho
- Institute of Health and Wellbeing, University of Glasgow, Scotland, UK
| | | | - Jason Gill
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Paul Welsh
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Jana J Anderson
- Institute of Health and Wellbeing, University of Glasgow, Scotland, UK
| | - Patrick B Mark
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Daniel F Mackay
- Institute of Health and Wellbeing, University of Glasgow, Scotland, UK
| | - Daniel J Smith
- Institute of Health and Wellbeing, University of Glasgow, Scotland, UK
| | - Jill P Pell
- Institute of Health and Wellbeing, University of Glasgow, Scotland, UK
| | - Jonathan Cavanagh
- Institute of Health and Wellbeing, University of Glasgow, Scotland, UK
| | - Naveed Sattar
- Institute of Health and Wellbeing, University of Glasgow, Scotland, UK
| | - Donald M Lyall
- Institute of Health and Wellbeing, University of Glasgow, Scotland, UK
| |
Collapse
|
44
|
Liu RM, Chong Z, Chen JC. Ozone and Particulate Matter Exposure and Alzheimer's Disease: A Review of Human and Animal Studies. J Alzheimers Dis 2021; 76:807-824. [PMID: 32568209 DOI: 10.3233/jad-200435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), an aging-related neurodegenerative disease, is a major cause of dementia in the elderly. Although the early-onset (familial) AD is attributed to mutations in the genes coding for amyloid-β protein precursor (AβPP) and presenilin1/presenilin 2 (PS1/PS2), the cause for the late-onset AD (LOAD), which accounts for more than 95% of AD cases, remains unclear. Aging is the greatest risk factor for LOAD, whereas the apolipo protein E4 allele (APOEɛ4) is believed to be a major genetic risk factor in acquiring LOAD, with female APOEɛ4 carriers at highest risk. Nonetheless, not all the elderly, even older female APOEɛ4 carriers, develop LOAD, suggesting that other factors, including environmental exposure, must play a role. This review summarizes recent studies that show a potential role of environmental exposure, especially ozone and particulate matter exposure, in the development of AD. Interactions between environmental exposure, genetic risk factor (APOEɛ4), and sex in AD pathophysiology are also discussed briefly. Identification of environmental risk factor(s) and elucidation of the complex interactions between genetic and environmental risk factors plus aging and female sex in the onset of AD will be a key to our understanding of the etiology and pathogenesis of AD and the development of the strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zechen Chong
- Department of Genetics, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jiu-Chiuan Chen
- Department of Biostatistics and Data Science, The University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
45
|
Postrigan AE, Zhalsanova IZ, Fonova EA, Skryabin NA. Modifier Genes as a Cause of Wilson–Konovalov Disease Clinical Polymorphism. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421050094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Age and sex specific effects of APOE genotypes on ischemic heart disease and its risk factors in the UK Biobank. Sci Rep 2021; 11:9229. [PMID: 33927215 PMCID: PMC8085204 DOI: 10.1038/s41598-021-88256-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/17/2021] [Indexed: 12/23/2022] Open
Abstract
APOE genotypes are associated with ischemic heart disease (IHD), several other cardiovascular diseases and dementia. Previous studies have not comprehensively considered all genotypes, especially ε2ε2, nor associations by age and sex, although IHD incidence differs by sex. In the UK Biobank, including 391,992 white British participants, we compared effects of APOE genotypes on IHD and its risk factors. Compared to the ε3ε3 genotype, ε2ε2 was not clearly associated with IHD but was associated with lower plasma apolipoprotein B (apoB). The ε2ε3 genotype conferred lower IHD risk, systolic blood pressure (SBP), pulse pressure and plasma apoB than ε3ε3. ε3ε4 and ε4ε4 conferred higher IHD risk, higher pulse pressure and plasma apoB, but lower glycated haemoglobin (HbA1c) than ε3ε3. The associations by age and sex were fairly similar, except ε2ε2 compared to ε3ε3 was marginally positively associated with IHD in the younger age group and nominally inversely associated with SBP in men. ε3ε4 compared to ε3ε3 was nominally positively associated with SBP in women. APOE genotypes affect IHD risk increasingly from ε2ε3, ε3ε3, ε3ε4 to ε4ε4, with similar patterns for pulse pressure and plasma apoB, but not for diabetes. Associations with blood pressure differed by sex. Greater understanding of products of APOE and their effects might generate targets of intervention.
Collapse
|
47
|
Apolipoprotein E ϵ4 allele and neuropsychiatric symptoms among older adults in Central Africa (EPIDEMCA study). Int Psychogeriatr 2021; 33:295-306. [PMID: 33715647 DOI: 10.1017/s1041610220003993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To evaluate the association between neuropsychiatric symptoms and apolipoprotein E (APOE) ϵ4 allele among older people in Central African Republic (CAR) and the Republic of Congo (ROC). DESIGN Multicenter population-based study following a two-phase design. SETTING From 2011 to 2012, rural and urban areas of CAR and ROC. PARTICIPANTS People aged 65 and over. MEASUREMENTS Following screening using the Community Screening Interview for Dementia, participants with low cognitive scores (CSI-D ≤ 24.5) underwent clinical assessment. Dementia diagnosis followed the DSM-IV criteria and Peterson's criteria were considered for Mild Cognitive Impairment (MCI). Neuropsychiatric symptoms were evaluated through the brief version of the Neuropsychiatric Inventory (NPI-Q). Blood samples were taken from all consenting participants before APOE genotyping was performed by polymerase chain reaction (PCR). Logistic regression models were used to evaluate the association between the APOE ϵ4 allele and neuropsychiatric symptoms. RESULTS Overall, 322 participants had complete information on both neuropsychiatric symptoms and APOE status. Median age was 75.0 years and 81.1% were female. Neuropsychiatric symptoms were reported by 192 participants (59.8%) and at least 1 APOE ϵ4 allele was present in 135 (41.9%). APOE ϵ4 allele was not significantly associated with neuropsychiatric symptoms but showed a trend toward a protective effect in some models. CONCLUSION This study is the first one investigating the association between APOE ϵ4 and neuropsychiatric symptoms among older people in sub-Saharan Africa (SSA). Preliminary findings indicate that the APOE ϵ4 allele was not associated with neuropsychiatric symptoms. Further research seems, however, needed to investigate the protective trend found in this study.
Collapse
|
48
|
Wang YY, Ge YJ, Tan CC, Cao XP, Tan L, Xu W. The Proportion of APOE4 Carriers Among Non-Demented Individuals: A Pooled Analysis of 389,000 Community-Dwellers. J Alzheimers Dis 2021; 81:1331-1339. [PMID: 33935087 DOI: 10.3233/jad-201606] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The apolipoprotein E epsilon 4 (APOE4) is the strongest genetic risk factor for sporadic Alzheimer's disease (AD). Its carriage percentage in non-demented population varies across geographic regions and ethnic groups. OBJECTIVE To estimate the proportion of APOE4 (2/4, 3/4, or 4/4) carriers in non-demented community-dwellers. METHODS PubMed, EMBASE, and China National Knowledge Infrastructure were searched from inception to April 20, 2020. Community-based studies that reported APOE polymorphisms with a sample of≥500 non-demented participants were included. Random-effects models were used to pool the results. Meta-regression and subgroup analyses were performed to test the source of heterogeneity and stratified effects. Age-standardized pooled proportion estimates (ASPPE) were calculated by direct standardization method. RESULTS A total of 121 studies were included, with a pooled sample of 389,000 community-dwellers from 38 countries. The global average proportion of APOE4 carriers was 23.9% (age-standardized proportion: 26.3%; 2.1% for APOE4/4, 20.6% for APOE3/4 and 2.3% for APOE2/4), and varied significantly with geographical regions (from 19.3% to 30.0%) and ethnic groups (from 19.1% to 37.5%). The proportion was highest in Africa, followed by Europe, North America, Oceania, and lowest in South America and Asia (p < 0.0001). With respect to ethnicity, it was highest in Africans, followed by Caucasians, and was lowest in Hispanics/Latinos and Chinese (p < 0.0001). CONCLUSION APOE4 carriers are common in communities, especially in Africans and Caucasians. Developing precision medicine strategies in this specific high-risk population is highly warranted in the future.
Collapse
Affiliation(s)
- Ya-Yu Wang
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Yi-Jun Ge
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
49
|
Cancer Chemotherapy Related Cognitive Impairment and the Impact of the Alzheimer's Disease Risk Factor APOE. Cancers (Basel) 2020; 12:cancers12123842. [PMID: 33352780 PMCID: PMC7766535 DOI: 10.3390/cancers12123842] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer related cognitive impairment (CRCI) is a serious impairment to maintaining quality of life in cancer survivors. Cancer chemotherapy contributes to this condition through several potential mechanisms, including damage to the blood brain barrier, increases in oxidative stress and inflammation in the brain, and impaired neurogenesis, each of which lead to neuronal dysfunction. A genetic predisposition to CRCI is the E4 allele of the Apolipoprotein E gene (APOE), which is also the strongest genetic risk factor for Alzheimer's disease. In normal brains, APOE performs essential lipid transport functions. The APOE4 isoform has been linked to altered lipid binding, increased oxidative stress and inflammation, reduced turnover of neural progenitor cells, and impairment of the blood brain barrier. As chemotherapy also affects these processes, the influence of APOE4 on CRCI takes on great significance. This review outlines the main areas where APOE genotype could play a role in CRCI. Potential therapeutics based on APOE biology could mitigate these detrimental cognitive effects for those receiving chemotherapy, emphasizing that the APOE genotype could help in developing personalized cancer treatment regimens.
Collapse
|
50
|
Perdomo VA, Ortega DC, Barreto G. Polymorphisms of apolipoprotein E in the Afro-descendant population of Buenaventura, Colombia. REVISTA COLOMBIANA DE PSIQUIATRIA (ENGLISH ED.) 2020; 51:S0034-7450(20)30091-3. [PMID: 33735031 DOI: 10.1016/j.rcp.2020.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
OBJETIVES To estimate the frequency distribution, both allelic and genotypic, of the APOE gene in the Afro-descendant population of Buenaventura, Colombia. METHODS Three hundred and forty-eight Afro-descendant individuals were analysed and the APOE locus was genotyped by PCR-RFLP. The allelic and genotypic frequencies were established by direct counting and the Hardy-Weinberg equilibrium was evaluated through χ2 test. The frequencies obtained in this study were compared with frequencies reported for other Colombian populations through the Fisher's exact test. RESULTS The following allelic frequencies were observed: E3, 70.8%; E4, 21.4%, and E2, 7.8%. The genotypic frequencies were: E3/E3, 51.1%; E3/E4, 27.3%; E2/E3, 12.1%; E4/E4, 6%; E2/E4, 3.5%, and E2/E2, 0%. The entire examined population was found in Hardy-Weinberg equilibrium (P=.074), and significant differences were found in the allele E4 when comparing this population with the Amerindian and mestizo populations of Bogotá, Quindío, Centro-Oriente, Valle del Cauca, Barranquilla and Medellín (P≤ 0.0345). CONCLUSIONS The allelic frequencies observed in this study were significantly different from the frequencies reported in other Colombian populations. The high representativeness of the E4 and E2 alleles validates the hypothesis that there are micro-evolutionary processes that have been acting on their frequencies and could be associated with susceptibility to neuropsychiatric diseases such as Alzheimer's disease, metabolic alterations of fats and/or coronary artery disease.
Collapse
Affiliation(s)
- Vivian Andrea Perdomo
- Grupo de Genética Molecular Humana, Departamento de Biología, Universidad del Valle, Cali, Colombia
| | - Diana Carolina Ortega
- Grupo de Genética Molecular Humana, Departamento de Biología, Universidad del Valle, Cali, Colombia
| | - Guillermo Barreto
- Grupo de Genética Molecular Humana, Departamento de Biología, Universidad del Valle, Cali, Colombia.
| |
Collapse
|