1
|
Sasikumar J, Laha S, Naik B, Das SP. Enhanced visualization of nuclear staining and cell cycle analysis for the human commensal Malassezia. Sci Rep 2024; 14:20936. [PMID: 39251619 PMCID: PMC11385215 DOI: 10.1038/s41598-024-69024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024] Open
Abstract
Malassezia is a lipophilic commensal yeast that resides mainly on the mammalian skin and is also found to associate with the internal organs. Dysbiosis of Malassezia is related to several diseases and often escapes detection as it is difficult to culture and maintain. Malassezia cell wall differs from other budding yeasts like S. cerevisiae due to the difference in the lipid content and is difficult to transform. In this study, we present a methodology to stain Malassezia's nucleus and perform cell cycle studies. However, staining presents a challenge due to its exceptionally thick cell wall with high lipid content, hindering conventional methods. Our novel methodology addresses this challenge and enables the staining of the Malassezia nucleus with a low background. This would allow researchers to visualize the overall nuclear health specifically nuclear morphology and analyze DNA content, crucial for cell cycle progression. By employing DNA-specific dyes like DAPI or Hoechst, we can observe the nuclear structure, and using PI we can differentiate cells in distinct cell cycle phases using techniques like flow cytometry. This novel staining methodology unlocks the door for in-depth cell cycle analysis in Malassezia which has challenged us through ages being refractory to genetic manipulations, paving the way for a deeper understanding of this commensal fungus and its potential role in human health.
Collapse
Affiliation(s)
- Jayaprakash Sasikumar
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Suparna Laha
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Bharati Naik
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India.
| |
Collapse
|
2
|
Naik B, Sasikumar J, Das SP. From Skin and Gut to the Brain: The Infectious Journey of the Human Commensal Fungus Malassezia and Its Neurological Consequences. Mol Neurobiol 2024:10.1007/s12035-024-04270-w. [PMID: 38871941 DOI: 10.1007/s12035-024-04270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
The human mycobiome encompasses diverse communities of fungal organisms residing within the body and has emerged as a critical player in shaping health and disease. While extensive research has focused on the skin and gut mycobiome, recent investigations have pointed toward the potential role of fungal organisms in neurological disorders. Among those fungal organisms, the presence of the commensal fungus Malassezia in the brain has created curiosity because of its commensal nature and primary association with the human skin and gut. This budding yeast is responsible for several diseases, such as Seborrheic dermatitis, Atopic dermatitis, Pityriasis versicolor, Malassezia folliculitis, dandruff, and others. However recent findings surprisingly show the presence of Malassezia DNA in the brain and have been linked to diseases like Alzheimer's disease, Parkinson's disease, Multiple sclerosis, and Amyotrophic lateral sclerosis. The exact role of Malassezia in these disorders is unknown, but its ability to infect human cells, travel through the bloodstream, cross the blood-brain barrier, and reside along with the lipid-rich neuronal cells are potential mechanisms responsible for pathogenesis. This also includes the induction of pro-inflammatory cytokines, disruption of the blood-brain barrier, gut-microbe interaction, and accumulation of metabolic changes in the brain environment. In this review, we discuss these key findings from studies linking Malassezia to neurological disorders, emphasizing the complex and multifaceted nature of these cases. Furthermore, we discuss potential mechanisms through which Malassezia might contribute to the development of neurological conditions. Future investigations will open up new avenues for our understanding of the fungal gut-brain axis and how it influences human behavior. Collaborative research efforts among microbiologists, neuroscientists, immunologists, and clinicians hold promise for unraveling the enigmatic connections between human commensal Malassezia and neurological disorders.
Collapse
Affiliation(s)
- Bharati Naik
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
3
|
Uzunoğlu E, Kalkancı A, Kılıç E, Kızıl Y, Aydil U, Diker KS, Uslu SS. Bacterial and fungal communities in chronic rhinosinusitis with nasal polyps. PLoS One 2024; 19:e0304634. [PMID: 38820284 PMCID: PMC11142431 DOI: 10.1371/journal.pone.0304634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/15/2024] [Indexed: 06/02/2024] Open
Abstract
OBJECTIVE Multiple inflammatory mechanisms dynamically interact in the development of chronic rhinosinusitis with nasal polyps (CRSwNP). Disruption of the relationship between host and environmental factors on the mucosal surface leads to the development of inflammation. Microorganisms constitute the most important part of environmental factors. METHODS 28 volunteers (18 CRSwNP patients and 10 healthy individuals) were included in the study. Eight patients were recurrent nasal polyposis cases, and the remaining were primary cases. Swab samples were taken from the middle meatus under endoscopic examination from all participants. After DNA extraction, a library was created with the Swift Amplicon 16S + ITS kit and sequenced with Illumina Miseq. Sequence analysis was performed using QIIME, UNITE v8.2 database for ITS and Silva v138 for 16S rRNA. RESULTS The predominant bacteria in all groups were Firmicutes, Proteobacteria, Actinobacteria as phyla and Staphylococcus, Corynebacterium, Sphingomonas as genera. Comparison of bacterial communities of CRSwNP patients and control group highlighted Corynebacterium, as the differentiating taxa for control group and Streptococcus, Moraxella, Rothia, Micrococcus, Gemella, and Prevotella for CRSwNP patients. The predominant fungal genus in all groups was Malassezia. Staphylococcus; showed a statistically significant negative correlation with Dolosigranulum. Corynebacterium had a positive correlation with Anaerococcus, and a negative correlation with Neisseria, Prevotella, Fusobacterium and Peptostreptococcus. CONCLUSION Nasal microbiome of CRSwNP patients shows greater inter-individual variation than the control group. Corynebacterium is less abundant in patients with CRSwNP compared to the control group. Malassezia is the predominant fungus in the nasal cavity and paranasal sinuses and correlates positively with the abundance of Corynebacterium.
Collapse
Affiliation(s)
- Eray Uzunoğlu
- Department of Otorhinolaryngology, Izmir Ekol Hospital, İzmir, Turkey
| | - Ayşe Kalkancı
- Department of Medical Microbiology, Gazi University Hospital, Ankara, Turkey
| | - Esra Kılıç
- Department of Medical Microbiology, Gazi University Hospital, Ankara, Turkey
| | - Yusuf Kızıl
- Department of Otorhinolaryngology, Gazi University Hospital, Ankara, Turkey
| | - Utku Aydil
- Department of Otorhinolaryngology, Gazi University Hospital, Ankara, Turkey
| | - Kadir Serdar Diker
- Department of Microbiology, Adnan Menderes University Faculty of Veterinary Medicine, Aydin, Turkey
| | | |
Collapse
|
4
|
Arunan B, Talukdar D, Swain S, Varadarajan A, Sarda R, Singh G, Nischal N, Soneja M, Bakshi S, Jana P, Tanwar S, Sikka K, Verma H, Subramanian A, Xess I, Wig N, Das B, Ray A. Metagenomic insights into fungal community composition of the nasopharyngeal region of COVID-19 associated mucormycosis patients from India. J Med Virol 2024; 96:e29601. [PMID: 38597375 DOI: 10.1002/jmv.29601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Coronavirus disease 2019 (COVID-19) associated mucormycosis (CAM) was reported predominantly from India during the second wave of COVID-19 and has a high mortality rate. The present study aims to understand the fungal community composition of the nasopharyngeal region of CAM-infected individuals and compare it with severe COVID-19 patients and healthy controls. The fungal community composition was decoded by analyzing the sequence homology of the internal transcribed spacer-2-(ITS-2) region of metagenomic DNA extracted from the upper respiratory samples. The alpha-diversity indices were found to be significantly altered in CAM patients (p < 0.05). Interestingly, a higher abundance of Candida africana, Candida haemuloni, Starmerella floris, and Starmerella lactiscondensi was observed exclusively in CAM patients. The interindividual changes in mycobiome composition were well supported by beta-diversity analysis (p < 0.05). The current study provides insights into the dysbiosis of the nasal mycobiome during CAM infection. In conclusion, our study shows that severe COVID-19 and CAM are associated with alteration in mycobiome as compared to healthy controls. However, the sequential alteration in the fungal flora which ultimately leads to the development of CAM needs to be addressed by future studies.
Collapse
Affiliation(s)
| | - Daizee Talukdar
- Functional Genomics Laboratory, BRIC-THSTI, Faridabad, Haryana, India
| | - Satish Swain
- Department of Medicine, AIIMS, New Delhi, Delhi, India
| | | | - Radhika Sarda
- Department of Medicine, AIIMS, New Delhi, Delhi, India
| | | | | | - Manish Soneja
- Department of Medicine, AIIMS, New Delhi, Delhi, India
| | - Susmita Bakshi
- Functional Genomics Laboratory, BRIC-THSTI, Faridabad, Haryana, India
| | - Pradipta Jana
- Functional Genomics Laboratory, BRIC-THSTI, Faridabad, Haryana, India
| | - Subhash Tanwar
- Functional Genomics Laboratory, BRIC-THSTI, Faridabad, Haryana, India
| | - Kapil Sikka
- Department of Otorhinolaryngology, AIIMS, New Delhi, Delhi, India
| | - Hitesh Verma
- Department of Otorhinolaryngology, AIIMS, New Delhi, Delhi, India
| | | | | | - Naveet Wig
- Department of Medicine, AIIMS, New Delhi, Delhi, India
| | - Bhabatosh Das
- Functional Genomics Laboratory, BRIC-THSTI, Faridabad, Haryana, India
| | - Animesh Ray
- Department of Medicine, AIIMS, New Delhi, Delhi, India
| |
Collapse
|
5
|
Lee JT, Simpson CA, Yang HH, Suh JD, Wang MB, Lagishetty V, Liang F, Jacobs JP. Fungal and Bacterial Microbiome in Sinus Mucosa of Patients with and without Chronic Rhinosinusitis. Laryngoscope 2024; 134:1054-1062. [PMID: 37606305 DOI: 10.1002/lary.30941] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/23/2023] [Accepted: 07/12/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVES Dysbiosis of the sinonasal microbiome has been implicated in the pathogenesis of chronic rhinosinusitis (CRS). However, the mycobiome remains largely understudied, and microbial alterations associated with specific CRS subtypes have yet to be delineated. The objective of this study is to investigate the fungal and bacterial microbiome of sinus mucosa in CRS patients with and without nasal polyposis (CRSwNP and CRSsNP) versus healthy controls. METHODS Sinus mucosa was obtained from 92 patients (31 CRSsNP, 31 CRSwNP, and 30 controls) undergoing endoscopic sinus/skull base surgery. Data regarding demographics, Lund-MacKay scores, and histopathology were collected. Fungal and bacterial microbiome analysis was performed utilizing internal transcribed spacer amplicon and 16S rRNA sequencing. RESULTS Beta diversity of the sinonasal mycobiome differed significantly between CRS and controls (p = 0.001) and between CRSwNP and controls (p = 0.049), but not between CRSwNP and CRSsNP (p = 0.32) nor between CRSsNP and controls (p = 0.06). With respect to the bacterial microbiome, significantly lower alpha diversity was observed between CRS and controls (p < 0.001), CRSwNP versus controls (p < 0.001), and CRSsNP versus controls (p < 0.001). Beta diversity was also significantly different at the genus level between CRSwNP and CRSsNP (p = 0.019), CRSwNP and controls (p = 0.002)), and CRSsNP and controls (p < 0.001). However, alpha and beta diversity did not differ significantly between CRS patients with/without eosinophils or correlate with Lund-MacKay scores. CONCLUSIONS Differences in mycobiota diversity in CRS patients in comparison with controls suggest that alterations in the mycobiome may contribute to disease pathogenesis. Our findings also confirmed that diminished diversity among bacterial communities is associated with CRS and that significant differences are present in microbial composition between CRSwNP and CRSsNP. LEVEL OF EVIDENCE 3 Laryngoscope, 134:1054-1062, 2024.
Collapse
Affiliation(s)
- Jivianne T Lee
- Department of Head & Neck Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, U.S.A
- Department of Surgery, VA Greater Los Angeles Healthcare System, Los Angeles, California, U.S.A
| | - Carra A Simpson
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, U.S.A
| | - Hong-Ho Yang
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, U.S.A
| | - Jeffrey D Suh
- Department of Head & Neck Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, U.S.A
| | - Marilene B Wang
- Department of Head & Neck Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, U.S.A
- Department of Surgery, VA Greater Los Angeles Healthcare System, Los Angeles, California, U.S.A
| | - Venu Lagishetty
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, U.S.A
| | - Fengting Liang
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, U.S.A
| | - Jonathan P Jacobs
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, California, U.S.A
| |
Collapse
|
6
|
Nakayama T, Miyata J, Inoue N, Ueki S. Allergic fungal rhinosinusitis: What we can learn from allergic bronchopulmonary mycosis. Allergol Int 2023; 72:521-529. [PMID: 37442743 DOI: 10.1016/j.alit.2023.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 07/15/2023] Open
Abstract
Allergic fungal rhinosinusitis (AFRS) and allergic bronchopulmonary mycosis (ABPM) are inflammatory disorders of the respiratory tract resulting from type 1 and 3 hypersensitivity reactions against fungi. The hallmark features of both diseases are eosinophil infiltration into the airway mucosa caused by localized type 2 inflammation and concomitant viscid secretions in the airways. Eosinophilic mucin-induced compression of adjacent anatomic structures leads to bone erosion and central bronchiectasis in the upper and lower respiratory tracts, respectively. Although these diseases share common features in their pathogenesis, they also exhibit notable differences. Epidemiologic findings are diverse, with AFRS typically presenting at a younger age, exhibiting less complicated bronchial asthma, and displaying lower total immunoglobulin E levels in laboratory findings compared with ABPM. Furthermore, despite their similar pathogenesis, the rarity of sinio-bronchial allergic mycosis in both AFRS and ABPM underscores the distinctions between these two diseases. This review aims to clarify the similarities and differences in the pathogenesis of AFRS and ABPM to determine what can be learned about AFRS from ABPM, where more is known.
Collapse
Affiliation(s)
- Tsuguhisa Nakayama
- Department of Otorhinolaryngology and Head & Neck Surgery, Dokkyo Medical University, Tochigi, Japan.
| | - Jun Miyata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Natsuki Inoue
- Department of Otorhinolaryngology, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
7
|
Shibata R, Zhu Z, Kyo M, Ooka T, Freishtat RJ, Mansbach JM, Pérez-Losada M, Camargo CA, Hasegawa K. Nasopharyngeal fungal subtypes of infant bronchiolitis and disease severity risk. EBioMedicine 2023; 95:104742. [PMID: 37536062 PMCID: PMC10415709 DOI: 10.1016/j.ebiom.2023.104742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Bronchiolitis is a leading cause of infant hospitalization. Recent research suggests the heterogeneity within bronchiolitis and the relationship of airway viruses and bacteria with bronchiolitis severity. However, little is known about the pathobiological role of fungi. We aimed to identify bronchiolitis mycotypes by integrating fungus and virus data, and determine their association with bronchiolitis severity and biological characteristics. METHODS In a multicentre prospective cohort study of 398 infants (age <1 year, male 59%) hospitalized for bronchiolitis, we applied clustering approaches to identify mycotypes by integrating nasopharyngeal fungus (detected in RNA-sequencing data) and virus data (respiratory syncytial virus [RSV], rhinovirus [RV]) at hospitalization. We examined their association with bronchiolitis severity-defined by positive pressure ventilation (PPV) use and biological characteristics by nasopharyngeal metatranscriptome and transcriptome data. RESULTS In infants hospitalized for bronchiolitis, we identified four mycotypes: A) fungiM.restrictavirusRSV/RV, B) fungiM.restrictavirusRSV, C) fungiM.globosavirusRSV/RV, D) funginot-detectedvirusRSV/RV mycotypes. Compared to mycotype A infants (the largest subtype, n = 211), mycotype C infants (n = 85) had a significantly lower risk of PPV use (7% vs. 1%, adjOR, 0.21; 95% CI, 0.02-0.90; p = 0.033), while the risk of PPV use was not significantly different in mycotype B or D. In the metatranscriptome and transcriptome data, mycotype C had similar bacterial composition and microbial functions yet dysregulated pathways (e.g., Fc γ receptor-mediated phagocytosis pathway and chemokine signaling pathway; FDR <0.05). INTERPRETATION In this multicentre cohort, fungus-virus clustering identified distinct mycotypes of infant bronchiolitis with differential severity risks and unique biological characteristics. FUNDING This study was supported by the National Institutes of Health.
Collapse
Affiliation(s)
- Ryohei Shibata
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michihito Kyo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tadao Ooka
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Health Science, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, USA; Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jonathan M Mansbach
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, The George Washington University, Washington, DC, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Liu C, Yang T, Shi P, Zeng Y, Wang Y, Li Y, Wei H. Analysis of Sinus Inflammation Associated With Maxillary Sinus Fungal Ball Based on CT Imaging. EAR, NOSE & THROAT JOURNAL 2023:1455613231185044. [PMID: 37608732 DOI: 10.1177/01455613231185044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Background: Paranasal sinus fungal balls usually occur unilaterally, and the maxillary sinus is most commonly involved. However, other sinuses could be concomitantly inflammed, and this phenomenon is rarely discussed. Aims/Objectives: To evaluate the severity of maxillary sinus fungal ball (MSFB) and the occurrence of sinus inflammation in paranasal sinuses according to the image findings and analyze the potential correlations. Material and Methods: A total of 1226 cases of MSFB were divided into 2 groups according to ostiomeatal complex obstruction on computed tomography. The potential correlations between sinus inflammation and MSFB in these groups were analyzed. Results: The patients were divided into 2 groups: those with obstructed ostiomeatal complex (OOMC) and those with clear ostiomeatal complex (COMC). The incidences of sinus inflammation in the ipsilateral sinuses of MSFB were higher in the OOMC group than in the COMC group, and there were no differences in the contralateral sinuses of MSFB. In the OOMC group, sinus inflammation was more common in all ipsilateral sinuses of MSFB than in the contralateral sinuses. In the COMC group, the incidences of sinus inflammation in the ipsilateral ethmoid and frontal sinuses of MSFB were higher than that in the contralateral sinuses. However, no significant difference was observed in the sinus inflammation incidence of bilateral sphenoid sinuses in the COMC group. The incidence of nasal polyps was higher in the ipsilateral nasal cavity in the OOMC group. Conclusions and Significance: MSFB stimulated sinus inflammation and nasal polyps in the adjacent sinuses through local factors.
Collapse
Affiliation(s)
- Chengyao Liu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
| | - Ting Yang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
| | - Pengyu Shi
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
| | - Yun Zeng
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
| | - Yi Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
| | - Yunchuan Li
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
| | - Hongzheng Wei
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
| |
Collapse
|
9
|
Yuan H, Liu Z, Dong J, Bacharier LB, Jackson D, Mauger D, Boushey H, Castro M, Durack J, Huang YJ, Lemanske RF, Storch GA, Weinstock GM, Wylie K, Covar R, Fitzpatrick AM, Phipatanakul W, Robison RG, Beigelman A, Zhou Y. The Fungal Microbiome of the Upper Airway Is Associated With Future Loss of Asthma Control and Exacerbation Among Children With Asthma. Chest 2023; 164:302-313. [PMID: 37003356 PMCID: PMC10477953 DOI: 10.1016/j.chest.2023.03.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/10/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests that the upper airway bacterial microbiota is implicated in asthma inception, severity, and exacerbation. Unlike bacterial microbiota, the role of the upper airway fungal microbiome (mycobiome) in asthma control is poorly understood. RESEARCH QUESTION What are the upper airway fungal colonization patterns among children with asthma and their relationship with subsequent loss of asthma control and exacerbation of asthma? STUDY DESIGN AND METHODS The study was coupled with the Step Up Yellow Zone Inhaled Corticosteroids to Prevent Exacerbations (ClinicalTrials.gov Identifier: NCT02066129) clinical trial. The upper airway mycobiome was investigated using Internal transcribed spacer 1 (ITS1) sequencing of nasal blow samples collected from children with asthma when asthma was well controlled (baseline, n = 194) and during early signs of loss of asthma control (yellow zone [YZ], n = 107). RESULTS At baseline, 499 fungal genera were detected in the upper airway samples, with two commensal fungal species, Malassezia globosa and Malassezia restricta, being most dominant. The relative abundance of Malassezia species varies by age, BMI, and race. Higher relative abundance of M globosa at baseline was associated with lower risk of future YZ episodes (P = .038) and longer time to development of first YZ episode (P = .022). Higher relative abundance of M globosa at YZ episode was associated with lower risk of progression from YZ episode to severe asthma exacerbation (P = .04). The upper airway mycobiome underwent significant changes from baseline to YZ episode, and increased fungal diversity was correlated highly with increased bacterial diversity (ρ = 0.41). INTERPRETATION The upper airway commensal mycobiome is associated with future asthma control. This work highlights the importance of the mycobiota in asthma control and may contribute to the development of fungi-based markers to predict asthma exacerbation.
Collapse
Affiliation(s)
- Hanshu Yuan
- Department of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Zhongmao Liu
- Department of Statistics, University of Connecticut, Storrs, CT
| | - Jinhong Dong
- Department of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Leonard B Bacharier
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Daniel Jackson
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - David Mauger
- Department of Public Health Sciences, Penn State University, Hershey, PA
| | - Homer Boushey
- Department of Medicine, University of California, San Francisco, CA
| | - Mario Castro
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS
| | | | - Yvonne J Huang
- Department of Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | - Robert F Lemanske
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Gregory A Storch
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO
| | | | - Kristine Wylie
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO
| | | | | | - Wanda Phipatanakul
- Asthma, Allergy and Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Rachel G Robison
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Avraham Beigelman
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO; Kipper Institute of Allergy and Immunology, Schneider Children's Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health Center, Farmington, CT.
| |
Collapse
|
10
|
Ahmad JG, Marino MJ, Luong AU. Unified Airway Disease. Otolaryngol Clin North Am 2023; 56:181-195. [DOI: 10.1016/j.otc.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Nasal Mycology of Chronic Rhinosinusitis Revealed by Nanopore Sequencing. Diagnostics (Basel) 2022; 12:diagnostics12112735. [DOI: 10.3390/diagnostics12112735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background: Nanopore sequencing (NS) is a third-generation sequencing technology capable of generating reads of long sequences. In this study, we used NS to investigate nasal mycology in patients with chronic rhinosinusitis (CRS). Methods: Nasal cavities of 13 CRS patients were individually irrigated with 20 mL of distilled water. The irrigant was forcefully blown by the patient into a basin. The collected fluid was placed into a centrifuge tube and processed using the method of Ponikau et al. The collected specimens were used for traditional fungal culture and sequenced for total DNA using NS. Results: Traditional fungal culture successfully grew fungi in the specimens of 11 (84.6%) patients. Aspergillus sp. and Penicillium sp. were found in four (30.8%) patients, Cladosporium sp. in three (23.1%) patients, and Candida albicans, Mucor sp. and Chaetomium sp. in one patient. NS revealed fungi abundance ranged from 81 to 2226, with the Shannon species diversity ranging from 1.094 to 1.683 at the genus level. Malassezia sp. was sequenced in 13 patients, Aspergillus sp. in 12 (92.3%) patients, Candida albicans in 11 (84.6%) patients, and Penicillium sp. in 10 (76.9%) patients. Conclusion: Our results showed that NS was sensitive and fast in detecting nasal fungi in CRS patients.
Collapse
|
12
|
Miraglia Del Giudice M, Parisi GF, Indolfi C, Manti S, Leonardi S, Decimo F, Ciprandi G. Nasal microbiome in chronic rhinosinusitis. Minerva Pediatr (Torino) 2022; 74:586-592. [PMID: 32731730 DOI: 10.23736/s2724-5276.20.05850-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Chronic rhinosinusitis (CRS) is defined as an inflammatory disorder of the paranasal sinuses and of the nasal mucosa that lasts 12 weeks or longer. In CRS microbes contribute to the disease pathogenesis. Clinical microbiology is focused on finding single pathogens that causes the disease and the main goal is the use of antibiotics to kill bacteria. Efforts to achieve a better understanding of CRS include the study of the sinus microbiome, and to evaluate the ability of probiotics to augment homeostasis and modulate the immune response of the host mucosa. This review provides an update on the role of the microbiome in CRS. The study was conducted using two databases: PubMed and Science Direct. We searched for articles in English that matched the review topic. We first used the abstracts of articles to assess whether they met the inclusion criteria. We also reviewed the references of the selected articles and read those with titles that might be of interest. Several studies have shown that endogenous microbiome dysbiosis can impact mucosa health and disease severity. Some bacterial species presenting protective or pathogenic effect. Antimicrobial agents can create a similar disruption and impact the nasal microbiome balance. On the other hand, probiotics offers a promising avenue for developing systemic and topical therapies geared towards strategic manipulation of the biological host load, thereby augmenting immune homeostasis. A better comprehension of sinus-nasal microbiome in healthy and in CRS patients and the link with different CRS phenotype can help in developing new prognostics, diagnostics, and therapeutics strategies. Going forward, the use of probiotics can restore the native sinus ecology with significant therapeutic and preventive implications.
Collapse
Affiliation(s)
- Michele Miraglia Del Giudice
- Department of Woman, Child and of General and Specialized Surgery, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Giuseppe F Parisi
- Respiratory Unit, Department of Clinical and Experimental Medicine, Vittorio Emanuele University Hospital, University of Catania, Catania, Italy
| | - Cristiana Indolfi
- Department of Woman, Child and of General and Specialized Surgery, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Sara Manti
- Department of Pediatrics, Pediatric Clinic, University of Messina, Messina, Italy
| | - Salvatore Leonardi
- Respiratory Unit, Department of Clinical and Experimental Medicine, Vittorio Emanuele University Hospital, University of Catania, Catania, Italy
| | - Fabio Decimo
- Department of Woman, Child and of General and Specialized Surgery, Luigi Vanvitelli University of Campania, Naples, Italy
| | | |
Collapse
|
13
|
The Relevance of the Bacterial Microbiome, Archaeome and Mycobiome in Pediatric Asthma and Respiratory Disorders. Cells 2022; 11:cells11081287. [PMID: 35455967 PMCID: PMC9024940 DOI: 10.3390/cells11081287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteria, as well as eukaryotes, principally fungi, of the upper respiratory tract play key roles in the etiopathogenesis of respiratory diseases, whereas the potential role of archaea remains poorly understood. In this review, we discuss the contribution of all three domains of cellular life to human naso- and oropharyngeal microbiomes, i.e., bacterial microbiota, eukaryotes (mostly fungi), as well as the archaeome and their relation to respiratory and atopic disorders in infancy and adolescence. With this review, we aim to summarize state-of-the-art contributions to the field published in the last decade. In particular, we intend to build bridges between basic and clinical science.
Collapse
|
14
|
Lakkireddy M. Daily Saline Nasal Douching for Chronic Allergic Rhinosinusitis: An Autobiographical Case Report. Cureus 2022; 14:e21153. [PMID: 35165603 PMCID: PMC8833096 DOI: 10.7759/cureus.21153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 11/05/2022] Open
|
15
|
Chronic Diseases Associated with Malassezia Yeast. J Fungi (Basel) 2021; 7:jof7100855. [PMID: 34682276 PMCID: PMC8540640 DOI: 10.3390/jof7100855] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/01/2023] Open
Abstract
Malassezia are a lipid-dependent basidiomycetous yeast of the normal skin microbiome, although Malassezia DNA has been recently detected in other body sites and has been associated with certain chronic human diseases. This new perspective raises many questions. Are these yeasts truly present in the investigated body site or were they contaminated by other body sites, adjacent or not? Does this DNA contamination come from living or dead yeast? If these yeasts are alive, do they belong to the resident mycobiota or are they transient colonizers which are not permanently established within these niches? Finally, are these yeasts associated with certain chronic diseases or not? In an attempt to shed light on this knowledge gap, we critically reviewed the 31 published studies focusing on the association of Malassezia spp. with chronic human diseases, including psoriasis, atopic dermatitis (AD), chronic rhinosinusitis (CRS), asthma, cystic fibrosis (CF), HIV infection, inflammatory bowel disease (IBD), colorectal cancer (CRC), and neurodegenerative diseases.
Collapse
|
16
|
MalaSelect: A Selective Culture Medium for Malassezia Species. J Fungi (Basel) 2021; 7:jof7100824. [PMID: 34682245 PMCID: PMC8538348 DOI: 10.3390/jof7100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Malassezia species are fastidious and slow-growing yeasts in which isolation from polymicrobial samples is hampered by fast-growing microorganisms. Malassezia selective culture media are needed. Although cycloheximide is often used, some fungi, including the chief human commensal Candida albicans, are resistant to this compound. This study aimed to test whether the macrolide rapamycin could be used in combination with cycloheximide to develop a Malassezia-selective culture medium. Rapamycin susceptibility testing was performed via microdilution assays in modified Dixon against two M. furfur and five Candida spp. The MIC was the lowest concentration that reduced growth by a minimum of 90%. Rapamycin ± cycloheximide 500 mg/L was also added to FastFung solid, and yeast suspensions were inoculated and incubated for 72 h. Rapamycin MICs for Candida spp. ranged from 0.5 to 2 mg/L, except for C. krusei, for which the MIC was >32 mg/L. M. furfur stains were rapamycin-resistant. Rapamycin and cycloheximide supplementation of the FastFung medium effectively inhibited the growth of non-Malassezia yeast, including cycloheximide-resistant C. albicans and C. tropicalis. Based on our findings, this “MalaSelect” medium should be further evaluated on polymicrobial samples for Malassezia isolation and culture.
Collapse
|
17
|
Dellière S, Dannaoui E, Fieux M, Bonfils P, Gricourt G, Demontant V, Podglajen I, Woerther PL, Angebault C, Botterel F. Analysis of Microbiota and Mycobiota in Fungal Ball Rhinosinusitis: Specific Interaction between Aspergillus fumigatus and Haemophilus influenza? J Fungi (Basel) 2021; 7:550. [PMID: 34356929 PMCID: PMC8305266 DOI: 10.3390/jof7070550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/22/2022] Open
Abstract
Fungal ball (FB) rhinosinusitis (RS) is the main type of non-invasive fungal RS. Despite positive direct examination (DE) of biopsies, culture remains negative in more than 60% of cases. The aim of the study was to evaluate the performance/efficacy of targeted metagenomics (TM) to analyze microbiota and mycobiota in FB and find microbial associations. Forty-five sinus biopsies from patients who underwent surgery for chronic RS were included. After DE and culture, DNA was extracted, then fungal ITS1-ITS2 and bacterial V3-V4 16S rDNA loci were sequenced (MiSeqTM Illumina). Operational taxonomic units (OTUs) were defined via QIIME and assigned to SILVA (16S) and UNITE (ITS) databases. Statistical analyses were performed using SHAMAN. Thirty-eight patients had FB and seven had non-fungal rhinosinusitis (NFRS). DE and culture of FB were positive for fungi in 97.3 and 31.6% of patients, respectively. TM analysis of the 38 FB yielded more than one fungal genus in 100% of cases, with Aspergillus in 89.5% (34/38). Haemophilus was over-represented in FB with >1000 reads/sample in 47.3% (18/38) compared to NFRS (p < 0.001). TM allowed fungal identification in biopsies with negative culture. Haemophilus was associated with FB. Pathogenesis could result from fungi-bacteria interactions in a mixed biofilm-like structure.
Collapse
Affiliation(s)
- Sarah Dellière
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, APHP, GHU Hôpitaux Universitaires Henri-Mondor, 94010 Créteil, France; (S.D.); (C.A.)
- Unité de Parasitologie-Mycologie, Hôpital Saint-Louis, Assistance Publique des Hôpitaux de Paris, Université de Paris, 75010 Paris, France
| | - Eric Dannaoui
- UR DYNAMiC 7380, Faculté de Santé, Université Paris-Est Créteil, 94010 Créteil, France; (E.D.); (P.-L.W.)
- UR DYNAMiC 7380, Ecole Nationale Vétérinaire d’Alfort, USC Anses, 94700 Maison-Alfort, France
- Unité de Parasitologie-Mycologie, Département de Microbiologie, Hôpital Européen George Pompidou, APHP, Université de Paris, 75015 Paris, France
| | - Maxime Fieux
- Département d’Otorhinolaryngologie, Hôpital Européen George Pompidou, APHP, Université de Paris, 75015 Paris, France; (M.F.); (P.B.)
- Service d’Otorhinolaryngologie, d’Otoneurochirurgie et de Chirurgie Cervico-Faciale, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France
| | - Pierre Bonfils
- Département d’Otorhinolaryngologie, Hôpital Européen George Pompidou, APHP, Université de Paris, 75015 Paris, France; (M.F.); (P.B.)
| | - Guillaume Gricourt
- Plate-Forme Genomiques, APHP-IMRB, GHU Hôpitaux Universitaires Henri-Mondor, UPEC, 94010 Créteil, France; (G.G.); (V.D.)
| | - Vanessa Demontant
- Plate-Forme Genomiques, APHP-IMRB, GHU Hôpitaux Universitaires Henri-Mondor, UPEC, 94010 Créteil, France; (G.G.); (V.D.)
| | - Isabelle Podglajen
- Unité de Bactériologie, Département de Microbiologie, Hôpital Européen George Pompidou, APHP, Université de Paris, 75015 Paris, France;
| | - Paul-Louis Woerther
- UR DYNAMiC 7380, Faculté de Santé, Université Paris-Est Créteil, 94010 Créteil, France; (E.D.); (P.-L.W.)
- Unité de Bactériologie, Département de Prévention, Diagnostic et Traitement des Infections, APHP, GHU Hôpitaux Universitaires Henri-Mondor, 94010 Créteil, France
| | - Cécile Angebault
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, APHP, GHU Hôpitaux Universitaires Henri-Mondor, 94010 Créteil, France; (S.D.); (C.A.)
- UR DYNAMiC 7380, Faculté de Santé, Université Paris-Est Créteil, 94010 Créteil, France; (E.D.); (P.-L.W.)
- UR DYNAMiC 7380, Ecole Nationale Vétérinaire d’Alfort, USC Anses, 94700 Maison-Alfort, France
| | - Françoise Botterel
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, APHP, GHU Hôpitaux Universitaires Henri-Mondor, 94010 Créteil, France; (S.D.); (C.A.)
- UR DYNAMiC 7380, Faculté de Santé, Université Paris-Est Créteil, 94010 Créteil, France; (E.D.); (P.-L.W.)
- UR DYNAMiC 7380, Ecole Nationale Vétérinaire d’Alfort, USC Anses, 94700 Maison-Alfort, France
| |
Collapse
|
18
|
Ickrath P, Sprügel L, Beyersdorf N, Scherzad A, Hagen R, Hackenberg S. Detection of Candida albicans-Specific CD4+ and CD8+ T Cells in the Blood and Nasal Mucosa of Patients with Chronic Rhinosinusitis. J Fungi (Basel) 2021; 7:jof7060403. [PMID: 34063898 PMCID: PMC8224094 DOI: 10.3390/jof7060403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Candida albicans is ubiquitously present, and colonization in the nose and oral cavity is common. In healthy patients, it usually does not act as a pathogen, but in some cases can cause diseases. The influence of C. albicans as a trigger of T cell activation on the pathogenesis of chronic rhinosinusitis (CRS) is controversial, and its exact role is not clear to date. The aim of the present study was to detect and characterize C. albicans-specific CD4+ and CD8+ T cells in patients with CRS, with and without nasal polyps. Tissue and blood samples were collected from patients suffering from chronic rhinosinusitis with (CRSwNP) and without nasal polyps (CRSsNP), and from healthy controls. A peptide pool derived from C. albicans antigen was added to tissue and blood samples. After 6 days, lymphocytes were analyzed by multicolor flow cytometry. Activation was assessed by the intracellular marker Ki-67, and the cytokine secretion was measured. Tissue CD8+ T cells of CRSsNP patients showed a significantly higher proportion of Ki-67+ cells after activation with C. albicans antigen compared to peripheral blood CD8+ T cells. Cytokine secretion in response to C. albicans antigen was similar for all study groups. In this study, C. albicans-specific CD4+ and CD8+ T cells were detected in peripheral blood and mucosal tissue in all study groups. In patients suffering from CRSsNP, C. albicans-specific CD8+ T cells were relatively enriched in the nasal mucosa, suggesting that they might play a role in the pathogenesis of CRSsNP.
Collapse
Affiliation(s)
- Pascal Ickrath
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (L.S.); (A.S.); (R.H.); (S.H.)
- Correspondence: ; Tel.: +49-931-201-21288; Fax: +49-931-201-21321
| | - Lisa Sprügel
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (L.S.); (A.S.); (R.H.); (S.H.)
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Wuerzburg, 97078 Wuerzburg, Germany;
| | - Agmal Scherzad
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (L.S.); (A.S.); (R.H.); (S.H.)
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (L.S.); (A.S.); (R.H.); (S.H.)
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (L.S.); (A.S.); (R.H.); (S.H.)
| |
Collapse
|
19
|
Tai J, Han MS, Kwak J, Kim TH. Association Between Microbiota and Nasal Mucosal Diseases in terms of Immunity. Int J Mol Sci 2021; 22:4744. [PMID: 33947066 PMCID: PMC8124637 DOI: 10.3390/ijms22094744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022] Open
Abstract
The pathogenesis of nasal inflammatory diseases is related to various factors such as anatomical structure, heredity, and environment. The nasal microbiota play a key role in coordinating immune system functions. Dysfunction of the microbiota has a significant impact on the occurrence and development of nasal inflammation. This review will introduce the positive and negative roles of microbiota involved in immunity surrounding nasal mucosal diseases such as chronic sinusitis and allergic rhinitis. In addition, we will also introduce recent developments in DNA sequencing, metabolomics, and proteomics combined with computation-based bioinformatics.
Collapse
Affiliation(s)
- Junhu Tai
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea
| | - Mun Soo Han
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea
| | - Jiwon Kwak
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea
| |
Collapse
|
20
|
Orlandi RR, Kingdom TT, Smith TL, Bleier B, DeConde A, Luong AU, Poetker DM, Soler Z, Welch KC, Wise SK, Adappa N, Alt JA, Anselmo-Lima WT, Bachert C, Baroody FM, Batra PS, Bernal-Sprekelsen M, Beswick D, Bhattacharyya N, Chandra RK, Chang EH, Chiu A, Chowdhury N, Citardi MJ, Cohen NA, Conley DB, DelGaudio J, Desrosiers M, Douglas R, Eloy JA, Fokkens WJ, Gray ST, Gudis DA, Hamilos DL, Han JK, Harvey R, Hellings P, Holbrook EH, Hopkins C, Hwang P, Javer AR, Jiang RS, Kennedy D, Kern R, Laidlaw T, Lal D, Lane A, Lee HM, Lee JT, Levy JM, Lin SY, Lund V, McMains KC, Metson R, Mullol J, Naclerio R, Oakley G, Otori N, Palmer JN, Parikh SR, Passali D, Patel Z, Peters A, Philpott C, Psaltis AJ, Ramakrishnan VR, Ramanathan M, Roh HJ, Rudmik L, Sacks R, Schlosser RJ, Sedaghat AR, Senior BA, Sindwani R, Smith K, Snidvongs K, Stewart M, Suh JD, Tan BK, Turner JH, van Drunen CM, Voegels R, Wang DY, Woodworth BA, Wormald PJ, Wright ED, Yan C, Zhang L, Zhou B. International consensus statement on allergy and rhinology: rhinosinusitis 2021. Int Forum Allergy Rhinol 2021; 11:213-739. [PMID: 33236525 DOI: 10.1002/alr.22741] [Citation(s) in RCA: 413] [Impact Index Per Article: 137.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
I. EXECUTIVE SUMMARY BACKGROUND: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR-RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR-RS-2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence-based findings of the document. METHODS ICAR-RS presents over 180 topics in the forms of evidence-based reviews with recommendations (EBRRs), evidence-based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. RESULTS ICAR-RS-2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence-based management algorithm is provided. CONCLUSION This ICAR-RS-2021 executive summary provides a compilation of the evidence-based recommendations for medical and surgical treatment of the most common forms of RS.
Collapse
Affiliation(s)
| | | | | | | | | | - Amber U Luong
- University of Texas Medical School at Houston, Houston, TX
| | | | - Zachary Soler
- Medical University of South Carolina, Charleston, SC
| | - Kevin C Welch
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | | | | | | | - Claus Bachert
- Ghent University, Ghent, Belgium.,Karolinska Institute, Stockholm, Sweden.,Sun Yatsen University, Gangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David A Gudis
- Columbia University Irving Medical Center, New York, NY
| | - Daniel L Hamilos
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Richard Harvey
- University of New South Wales and Macquarie University, Sydney, New South Wales, Australia
| | | | | | | | | | - Amin R Javer
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | - Valerie Lund
- Royal National Throat Nose and Ear Hospital, UCLH, London, UK
| | - Kevin C McMains
- Uniformed Services University of Health Sciences, San Antonio, TX
| | | | - Joaquim Mullol
- IDIBAPS Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | - Alkis J Psaltis
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | - Luke Rudmik
- University of Calgary, Calgary, Alberta, Canada
| | - Raymond Sacks
- University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | - De Yun Wang
- National University of Singapore, Singapore, Singapore
| | | | | | | | - Carol Yan
- University of California San Diego, La Jolla, CA
| | - Luo Zhang
- Capital Medical University, Beijing, China
| | - Bing Zhou
- Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Lee K, Zhang I, Kyman S, Kask O, Cope EK. Co-infection of Malassezia sympodialis With Bacterial Pathobionts Pseudomonas aeruginosa or Staphylococcus aureus Leads to Distinct Sinonasal Inflammatory Responses in a Murine Acute Sinusitis Model. Front Cell Infect Microbiol 2020; 10:472. [PMID: 33014894 PMCID: PMC7498577 DOI: 10.3389/fcimb.2020.00472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
Host-associated bacteria and fungi, comprising the microbiota, are critical to host health. In the airways, the composition and diversity of the mucosal microbiota of patients are associated with airway health status. However, the relationship between airway microbiota and respiratory inflammation is not well-understood. Chronic rhinosinusitis (CRS) is a complex disease that affects up to 14% of the US population. Previous studies have shown decreased microbial diversity in CRS patients and enrichment of either Staphylococcus aureus or Pseudomonas aeruginosa. Although bacterial community composition is variable across CRS patients, Malassezia is a dominant fungal genus in the upper airways of the majority of healthy and CRS subjects. We hypothesize that distinct bacterial-fungal interactions differentially influence host mucosal immune response. Thus, we investigated in vitro and in vivo interactions between Malassezia sympodialis, P. aeruginosa, and S. aureus. The in vitro interactions were evaluated using the modified Kirby-Bauer Assay, Crystal Violet assay for biofilm, and FISH. A pilot murine model of acute sinusitis was used to investigate relationships with the host immune response. S. aureus and P. aeruginosa were intranasally instilled in the presence or absence of M. sympodialis (n = 66 total mice; 3–5/group). Changes in the microbiota were determined using 16S rRNA gene sequencing and host immune response was measured using quantitative real-time PCR (qRT-PCR). In vitro, only late stage planktonic P. aeruginosa and its biofilms inhibited M. sympodialis. Co-infection of mice with M. sympodialis and P. aeruginosa or S. aureus differently influenced the immune response. In co-infected mice, we demonstrate different expression of fungal sensing (Dectin-1), allergic responses (IL-5, and IL-13) and inflammation (IL-10, and IL-17) in murine sinus depending on the bacterial species that co-infected with M. sympodialis (p < 0.05). The pilot results suggest that species-specific interactions in airway-associated microbiota may be implicated driving immune responses. The understanding of the role of bacterial-fungal interactions in CRS will contribute to development of novel therapies toward manipulation of the airway microbiota.
Collapse
Affiliation(s)
- Keehoon Lee
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Irene Zhang
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Shari Kyman
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Oliver Kask
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Emily Kathryn Cope
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
22
|
Lee K, Zhang I, Kyman S, Kask O, Cope EK. Co-infection of Malassezia sympodialis With Bacterial Pathobionts Pseudomonas aeruginosa or Staphylococcus aureus Leads to Distinct Sinonasal Inflammatory Responses in a Murine Acute Sinusitis Model. Front Cell Infect Microbiol 2020. [DOI: 10.10.3389/fcimb.2020.00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Coelho C, Farrer RA. Pathogen and host genetics underpinning cryptococcal disease. ADVANCES IN GENETICS 2020; 105:1-66. [PMID: 32560785 DOI: 10.1016/bs.adgen.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryptococcosis is a severe fungal disease causing 220,000 cases of cryptococcal meningitis yearly. The etiological agents of cryptococcosis are taxonomically grouped into at least two species complexes belonging to the genus Cryptococcus. All of these yeasts are environmentally ubiquitous fungi (often found in soil, leaves and decaying wood, tree hollows, and associated with bird feces especially pigeon guano). Infection in a range of animals including humans begins following inhalation of spores or aerosolized yeasts. Recent advances provide fundamental insights into the factors from both the pathogen and its hosts which influence pathogenesis and disease. The complex interactions leading to disease in mammalian hosts have also updated from the availability of better genomic tools and datasets. In this review, we discuss recent genetic research on Cryptococcus, covering the epidemiology, ecology, and evolution of Cryptococcus pathogenic species. We also discuss the insights into the host immune response obtained from the latest genetic modified host models as well as insights from monogenic disorders in humans. Finally we highlight outstanding questions that can be answered in the near future using bioinformatics and genomic tools.
Collapse
Affiliation(s)
- Carolina Coelho
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Rhys A Farrer
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
24
|
Liu Z, Chen J, Cheng L, Li H, Liu S, Lou H, Shi J, Sun Y, Wang D, Wang C, Wang X, Wei Y, Wen W, Yang P, Yang Q, Zhang G, Zhang Y, Zhao C, Zhu D, Zhu L, Chen F, Dong Y, Fu Q, Li J, Li Y, Liu C, Liu F, Lu M, Meng Y, Sha J, She W, Shi L, Wang K, Xue J, Yang L, Yin M, Zhang L, Zheng M, Zhou B, Zhang L. Chinese Society of Allergy and Chinese Society of Otorhinolaryngology-Head and Neck Surgery Guideline for Chronic Rhinosinusitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:176-237. [PMID: 32009319 PMCID: PMC6997287 DOI: 10.4168/aair.2020.12.2.176] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 02/05/2023]
Abstract
The current document is based on a consensus reached by a panel of experts from the Chinese Society of Allergy and the Chinese Society of Otorhinolaryngology-Head and Neck Surgery, Rhinology Group. Chronic rhinosinusitis (CRS) affects approximately 8% of Chinese adults. The inflammatory and remodeling mechanisms of CRS in the Chinese population differ from those observed in the populations of European descent. Recently, precision medicine has been used to treat inflammation by targeting key biomarkers that are involved in the process. However, there are no CRS guidelines or a consensus available from China that can be shared with the international academia. The guidelines presented in this paper cover the epidemiology, economic burden, genetics and epigenetics, mechanisms, phenotypes and endotypes, diagnosis and differential diagnosis, management, and the current status of CRS in China. These guidelines-with a focus on China-will improve the abilities of clinical and medical staff during the treatment of CRS. Additionally, they will help international agencies in improving the verification of CRS endotypes, mapping of eosinophilic shifts, the identification of suitable biomarkers for endotyping, and predicting responses to therapies. In conclusion, these guidelines will help select therapies, such as pharmacotherapy, surgical approaches and innovative biotherapeutics, which are tailored to each of the individual CRS endotypes.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Cheng
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China
| | - Huabin Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Shixi Liu
- Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongfei Lou
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jianbo Shi
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Sun
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dehui Wang
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Xiangdong Wang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yongxiang Wei
- Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Weiping Wen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Hospital, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pingchang Yang
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qintai Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Gehua Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Changqing Zhao
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Li Zhu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Fenghong Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Dong
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingyun Li
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yanqing Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Chengyao Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Feng Liu
- Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Meiping Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yifan Meng
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jichao Sha
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wenyu She
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lili Shi
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kuiji Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jinmei Xue
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Luoying Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Yin
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China
| | - Lichuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ming Zheng
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Bing Zhou
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
25
|
Longitudinal study of the bacterial and fungal microbiota in the human sinuses reveals seasonal and annual changes in diversity. Sci Rep 2019; 9:17416. [PMID: 31758066 PMCID: PMC6874676 DOI: 10.1038/s41598-019-53975-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
There is a pressing need for longitudinal studies which examine the stability of the sinonasal microbiota. In this study, we investigated bacterial and fungal community composition of the sinuses of four healthy individuals every month for one year, then once every three months for an additional year to capture seasonal variation. Sequencing of bacterial 16S rRNA genes and fungal ITS2 revealed communities that were mainly dominated by members of Actinobacteria and Basidiomycota, respectively. We observed overall shifts in both bacterial and fungal community diversity that were attributable to a combination of individual, seasonal and annual changes. The results suggest that each of the subjects possessed a strong bacterial sinonasal signature, but that fungal communities were less subject specific. Differences in fungal and bacterial diversity between subjects, and which OTUs may be correlated with seasonal differences, were investigated. A small core community that persisted throughout the two year sampling period was identified: Corynebacterium, Propionibacterium and Staphylococcus, and one type of fungus, Malassezia restricta. It is likely that bacterial and fungal airway microbiomes are dynamic and experience natural shifts in diversity with time. The underlying reasons for these shifts appear to be a combination of changes in environmental climate and host factors.
Collapse
|
26
|
Dykewicz MS, Rodrigues JM, Slavin RG. Allergic fungal rhinosinusitis. J Allergy Clin Immunol 2019; 142:341-351. [PMID: 30080526 DOI: 10.1016/j.jaci.2018.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Allergic fungal rhinosinusitis (AFRS) is a subset of chronic rhinosinusitis with nasal polyps (CRSwNP) characterized by antifungal IgE sensitivity, eosinophil-rich mucus (ie, allergic mucin), and characteristic computed tomographic and magnetic resonance imaging findings in paranasal sinuses. AFRS develops in immunocompetent patients, with occurrence influenced by climate, geography, and several identified host factors. Molecular pathways and immune responses driving AFRS are still being delineated, but prominent adaptive and more recently recognized innate type 2 immune responses are important, many similar to those established in patients with other forms of CRSwNP. It is unclear whether AFRS represents merely a more extreme expression of pathways important in patients with CRSwNP or whether there are other disordered immune responses that would define a distinct endotype or endotypes. Although AFRS and allergic bronchopulmonary aspergillosis share some analogous immune mechanisms, the 2 conditions do not occur commonly in the same patient. Treatment of AFRS almost always requires surgical debridement of the involved sinuses. Oral corticosteroids decrease recurrence after surgery, but other adjunctive pharmacologic agents, including topical and oral antifungal agents, do not have a firm evidence basis for use. There is good rationale for use of biologic agents that target eosinophilic inflammation or other type 2 responses, but studies in patients with AFRS are required.
Collapse
Affiliation(s)
- Mark S Dykewicz
- Section of Allergy and Immunology, Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, Mo.
| | - Jonathan M Rodrigues
- Allergy and Immunology, Sanford Health, and the Department of Internal Medicine, University of North Dakota School of Medicine and Health Sciences, Bismarck, ND
| | - Raymond G Slavin
- Section of Allergy and Immunology, Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, Mo
| |
Collapse
|
27
|
Coelho C, Camacho E, Salas A, Alanio A, Casadevall A. Intranasal Inoculation of Cryptococcus neoformans in Mice Produces Nasal Infection with Rapid Brain Dissemination. mSphere 2019; 4:e00483-19. [PMID: 31391283 PMCID: PMC6686232 DOI: 10.1128/msphere.00483-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Cryptococcus neoformans is an important fungal pathogen, causing life-threatening pneumonia and meningoencephalitis. Brain dissemination of C. neoformans is thought to be a consequence of an active infection in the lung which then extravasates to other sites. Brain invasion results from dissemination via either transport by free yeast cells in the bloodstream or Trojan horse transport within mononuclear phagocytes. We assessed brain dissemination in three mouse models of infection: intravenous, intratracheal, and intranasal models. All three modes of infection resulted in dissemination of C. neoformans to the brain in less than 3 h. Further, C. neoformans was detected in the entirety of the upper respiratory tract and the ear canals of mice. In recent years, intranasal infection has become a popular mechanism to induce pulmonary infection because it avoids surgery, but our findings show that instillation of C. neoformans produces cryptococcal nasal infection. These findings imply that immunological studies using intranasal infection should assume that the initial sites of infection of infection are brain, lung, and upper respiratory tract, including the nasal airways.IMPORTANCECryptococcus neoformans causes an estimated 181, 000 deaths each year, mostly associated with untreated HIV/AIDS. C. neoformans has a ubiquitous worldwide distribution. Humans become infected from exposure to environmental sources, after which the fungus lays dormant within the human body. Upon AIDS-induced immunosuppression or therapy-induced immunosuppression (required for organ transplant recipients or those suffering from autoimmune disorders), cryptococcal disease reactivates and causes life-threatening meningitis and pneumonia. This study showed that upon contact with the host, C. neoformans can quickly (a few hours) reach the host brain and also colonizes the nose of infected animals. Therefore, this work paves the way to better knowledge of how C. neoformans travels through the host body. Understanding how C. neoformans infects, disseminates, and survives within the host is critically required so that we can prevent infections and the disease caused by this deadly fungus.
Collapse
Affiliation(s)
- Carolina Coelho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Medical Research Council Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Emma Camacho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Antonio Salas
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Alexandre Alanio
- Institut Pasteur, Molecular Mycology Unit, CNRS UMR2000, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Laboratoire de Parasitologie-Mycologie, Hôpital Saint-Louis, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Laurence M, Benito-León J, Calon F. Malassezia and Parkinson's Disease. Front Neurol 2019; 10:758. [PMID: 31396143 PMCID: PMC6667642 DOI: 10.3389/fneur.2019.00758] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 07/01/2019] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a common debilitating neurodegenerative disease caused by a loss of dopamine neurons in the substantia nigra within the central nervous system (CNS). The process leading to this neuronal loss is poorly understood. Seborrheic dermatitis (SD) is a common benign inflammatory condition of the skin which mainly affects lipid-rich regions of the head and trunk. SD is caused by over proliferation of the lipophilic fungus Malassezia. PD and SD are strongly associated. The increased PD risk following an SD diagnosis (OR = 1.69, 95% CI 1.36, 2.1; p < 0.001) reported by Tanner and colleagues remains unexplained. Malassezia were historically considered commensals confined to the skin. However, many recent studies report finding Malassezia in internal organs, including the CNS. This raises the possibility that Malassezia might be directly contributing to PD. Several lines of evidence support this hypothesis. AIDS is causally associated with both parkinsonism and SD, suggesting that weak T cell-mediated control of commensal microbes such as Malassezia might contribute to both. Genetic polymorphisms associated with PD (LRRK2, GBA, PINK1, SPG11, SNCA) increase availability of lipids within human cells, providing a suitable environment for Malassezia. Four LRRK2 polymorphisms which increase PD risk also increase Crohn's disease risk; Crohn's disease is strongly associated with an immune response against fungi, particularly Malassezia. Finally, Malassezia hypha formation and melanin synthesis are stimulated by L-DOPA, which could promote Malassezia invasiveness of dopamine neurons, and contribute to the accumulation of melanin in these neurons. Although Malassezia's presence in the substantia nigra remains to be confirmed, if Malassezia play a role in PD etiology, antifungal drugs should be tested as a possible therapeutic intervention.
Collapse
Affiliation(s)
| | - Julián Benito-León
- Department of Neurology, University Hospital "12 de Octubre", Madrid, Spain.,Department of Medicine, Faculty of Medicine, Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Frédéric Calon
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada.,Neurosciences Unit, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada
| |
Collapse
|
29
|
[Guideline for "rhinosinusitis"-long version : S2k guideline of the German College of General Practitioners and Family Physicians and the German Society for Oto-Rhino-Laryngology, Head and Neck Surgery]. HNO 2019; 66:38-74. [PMID: 28861645 DOI: 10.1007/s00106-017-0401-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Morawska-Kochman M, Jermakow K, Nelke K, Zub K, Pawlak W, Dudek K, Bochnia M. The pH Value as a Factor Modifying Bacterial Colonization of Sinonasal Mucosa in Healthy Persons. Ann Otol Rhinol Laryngol 2019; 128:819-828. [PMID: 31014081 DOI: 10.1177/0003489419843143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The aim of the present study is to determine and compare the range of pH value in nasal and sinus cavities in vivo regarding the presence of bacteria colonizing sinonasal mucosa among healthy subjects. METHODS The nasal pH value measurement using a portable pH meter (Dx-pH System, Restech) and the microbiological culture swab were taken from beneath the middle turbinate and in the sinus cavity in 39 healthy subjects during maxillary bone corrective osteotomy with the Le Fort I technique. RESULTS The mean pH value (independently of sex, P = .441) in the healthy sinus cavity was statistically higher than in the nasal middle meatus: 7.96 (SD ± 0.29) versus 7.83 (SD ± 0.30) (P = .032). Forty-eight strains of bacteria were cultured from sinus maxillaries cavities-aerobic 36.8%, aerobic and anaerobic 52.6%, anaerobic only 10.5%-and 23 strains from the nasal meatus-aerobic 25%, aerobic and anaerobic 75%. A statistically significant correlation was found between the type and location of 8 microorganisms, especially Propionibacterium acnes, identified only in the sinus cavities. CONCLUSIONS Differences in the pH value between the middle nasal meatus and the maxillary sinus are characteristic of healthy subjects and could be associated with the diverse bacterial flora. The role of bacteria Propionibacterium acnes seems to be crucial for the pH range and sinus flora in healthy subjects.
Collapse
Affiliation(s)
- Monika Morawska-Kochman
- 1 Department of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Jermakow
- 2 Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
| | - Kamil Nelke
- 3 Department of Oral Anatomy, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Zub
- 1 Department of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Pawlak
- 4 Department of Maxillofacial Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Dudek
- 5 Faculty of Mechanical Engineering, University of Science and Technology, Wroclaw, Poland
| | - Marek Bochnia
- 6 Department of Otolaryngology of Faculty of Dentistry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
31
|
Richardson M, Bowyer P, Sabino R. The human lung and Aspergillus: You are what you breathe in? Med Mycol 2019; 57:S145-S154. [PMID: 30816978 PMCID: PMC6394755 DOI: 10.1093/mmy/myy149] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/01/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
The diversity of fungal species comprising the lung mycobiome is a reflection of exposure to environmental and endogenous filamentous fungi and yeasts. Most lung mycobiome studies have been culture-based. A few have utilized next generation sequencing (NGS). Despite the low number of published NGS studies, several themes emerge from the literature: (1) moulds and yeasts are present in the human respiratory tract, even during health; (2) the fungi present in the respiratory tract are highly variable between individuals; and (3) many diseases are accompanied by decreased diversity of fungi in the lungs. Even in patients with the same disease, different patients have been shown to harbor distinct fungal communities. Those fungal species present in any one individual may represent a patient's unique environmental exposure(s), either to species restricted to the indoor environment, for example, Penicillium, or species found in the outdoor environment such as Aspergillus, wood and vegetation colonizing fungi and plant pathogens. In addition to causing clinical fungal infections, the lung mycobiome may have inflammatory effects that can cause or worsen lung disease. Most respiratory diseases that have been studied, have been associated with decreases in fungal diversity. However, none of these diversity studies distinguish between accidental, transient fungal colonizers and true residents of the respiratory tract. Where does Aspergillus feature in the mycobiomes of the respiratory tract? Do these mycobiomes reflect the diversity of fungi in outdoor and internal environments? These intriguing questions are explored here.
Collapse
Affiliation(s)
- Malcolm Richardson
- Mycology Reference Centre Manchester, ECMM Centre of Excellence, Manchester University NHS Foundation Trust, Manchester, UK.,Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Bowyer
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Raquel Sabino
- Nacional Institute of Health Dr. Ricardo Jorge - URSZ- Infectious Diseases Department, Lisbon, Portugal
| |
Collapse
|
32
|
Sivasubramaniam R, Douglas R. The microbiome and chronic rhinosinusitis. World J Otorhinolaryngol Head Neck Surg 2018; 4:216-221. [PMID: 30506054 PMCID: PMC6251963 DOI: 10.1016/j.wjorl.2018.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a multifactorial condition in which the microbiota plays a pathogenic role. The nature of the interaction between the microbiota and the local immune system is very complex and has not been fully elucidated. Recent improvements in the microbiological techniques have greatly advanced our understanding of the complex nature of this interaction. This paper summarizes the current state of the rapidly evolving research on this subject. Defining the nature of the role of the microbiota in CRS is important because of the associated therapeutic implications.
Collapse
Affiliation(s)
- Rahuram Sivasubramaniam
- Department of Otorhinolaryngology Head and Neck Surgery, Auckland City Hospital, Park Road, Grafton, Auckland 1023, New Zealand
| | - Richard Douglas
- Department of Surgery, The University of Auckland, Grafton, Auckland, New Zealand
- Corresponding author.
| |
Collapse
|
33
|
Hoggard M, Vesty A, Wong G, Montgomery JM, Fourie C, Douglas RG, Biswas K, Taylor MW. Characterizing the Human Mycobiota: A Comparison of Small Subunit rRNA, ITS1, ITS2, and Large Subunit rRNA Genomic Targets. Front Microbiol 2018; 9:2208. [PMID: 30283425 PMCID: PMC6157398 DOI: 10.3389/fmicb.2018.02208] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/29/2018] [Indexed: 12/28/2022] Open
Abstract
Interest in the human microbiome has increased dramatically in the last decade. However, much of this research has focused on bacteria, while the composition and roles of their fungal counterparts remain less understood. Furthermore, a variety of methodological approaches have been applied, and the comparability between studies is unclear. This study compared four primer pairs targeting the small subunit (SSU) rRNA (18S), ITS1, ITS2, and large subunit (LSU) rRNA (26S) genomic regions for their ability to accurately characterize fungal communities typical of the human mycobiota. All four target regions of 21 individual fungal mock community taxa were capable of being amplified adequately and sequenced. Mixed mock community analyses revealed marked variability in the ability of each primer pair to accurately characterize a complex community. ITS target regions outperformed LSU and SSU. Of the ITS regions, ITS1 failed to generate sequences for Yarrowia lipolytica and all three Malassezia species when in a mixed community. These findings were further supported in studies of human sinonasal and mouse fecal samples. Based on these analyses, previous studies using ITS1, SSU, or LSU markers may omit key taxa that are identified by the ITS2 marker. Of methods commonly used in human mycobiota studies to date, we recommend selection of the ITS2 marker. Further investigation of more recently developed fungal primer options will be essential to ultimately determine the optimal methodological approach by which future human mycobiota studies ought to be standardized.
Collapse
Affiliation(s)
- Michael Hoggard
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Anna Vesty
- School of Medicine, The University of Auckland, Auckland, New Zealand.,Microbiology Laboratory, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Giselle Wong
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Chantelle Fourie
- Department of Physiology, Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Richard G Douglas
- School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Kristi Biswas
- School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Michael W Taylor
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
34
|
Mahdavinia M. The nasal microbiome: opening new clinical research avenues for allergic disease. Expert Rev Clin Immunol 2018; 14:645-647. [PMID: 29999434 DOI: 10.1080/1744666x.2018.1500177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mahboobeh Mahdavinia
- a Allergy and Immunology Division, Department of Internal Medicine , Rush University Medical Center , Chicago , IL , USA
| |
Collapse
|
35
|
Laurence M, Asquith M, Rosenbaum JT. Spondyloarthritis, Acute Anterior Uveitis, and Fungi: Updating the Catterall-King Hypothesis. Front Med (Lausanne) 2018; 5:80. [PMID: 29675414 PMCID: PMC5895656 DOI: 10.3389/fmed.2018.00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/09/2018] [Indexed: 12/12/2022] Open
Abstract
Spondyloarthritis is a common type of arthritis which affects mostly adults. It consists of idiopathic chronic inflammation of the spine, joints, eyes, skin, gut, and prostate. Inflammation is often asymptomatic, especially in the gut and prostate. The HLA-B*27 allele group, which presents intracellular peptides to CD8+ T cells, is by far the strongest risk factor for spondyloarthritis. The precise mechanisms and antigens remain unknown. In 1959, Catterall and King advanced a novel hypothesis explaining the etiology of spondyloarthritis: an as-yet-unrecognized sexually acquired microbe would be causing all spondyloarthritis types, including acute anterior uveitis. Recent studies suggest an unrecognized sexually acquired fungal infection may be involved in prostate cancer and perhaps multiple sclerosis. This warrants reanalyzing the Catterall-King hypothesis based on the current literature. In the last decade, many links between spondyloarthritis and fungal infections have been found. Antibodies against the fungal cell wall component mannan are elevated in spondyloarthritis. Functional polymorphisms in genes regulating the innate immune response against fungi have been associated with spondyloarthritis (CARD9 and IL23R). Psoriasis and inflammatory bowel disease, two common comorbidities of spondyloarthritis, are both strongly associated with fungi. Evidence reviewed here lends credence to the Catterall-King hypothesis and implicates a common fungal etiology in prostate cancer, benign prostatic hyperplasia, multiple sclerosis, psoriasis, inflammatory bowel disease, and spondyloarthritis. However, the evidence available at this time is insufficient to definitely confirm this hypothesis. Future studies investigating the microbiome in relation to these conditions should screen specimens for fungi in addition to bacteria. Future clinical studies of spondyloarthritis should consider antifungals which are effective in psoriasis and multiple sclerosis, such as dimethyl fumarate and nystatin.
Collapse
Affiliation(s)
| | - Mark Asquith
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR, United States
| | - James T Rosenbaum
- Department of Ophthalmology, Oregon Health and Science University, Portland, OR, United States.,Department of Medicine, Oregon Health and Science University, Portland, OR, United States.,Department of Cell Biology, Oregon Health and Science University, Portland, OR, United States.,Legacy Devers Eye Institute, Portland, OR, United States
| |
Collapse
|
36
|
Abstract
The microbiome is defined as the total of cellular microorganisms of baczerial, viral or e. g., parasite origin living on the surface of a body. Within the anatomical areas of otorhinolaryngology, a significant divergence and variance can be demonstrated. For ear, nose, throat, larynx and cutis different interactions of microbiome and common factors like age, diet and live style factors (e. g., smoking) have been detected in recent years. Besides, new insights hint at a passible pathognomic role of the microbiome towards diseases in the ENT area. This review article resumes the present findings of this rapidly devloping scientific area.
Collapse
Affiliation(s)
- Achim G Beule
- HNO-Uniklinik Münster.,Klinik und Poliklinik für Hals-Nasen-Ohrenkrankheiten der Universitätsmedizin Greifswald
| |
Collapse
|
37
|
Theelen B, Cafarchia C, Gaitanis G, Bassukas ID, Boekhout T, Dawson TL. Malassezia ecology, pathophysiology, and treatment. Med Mycol 2018. [DOI: 10.1093/mmy/myx134] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Claudia Cafarchia
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Georgios Gaitanis
- Department of Skin and Venereal Diseases, Faculty of Medicine, School of Health Sciences, University of Ioannina, Greece
| | - Ioannis Dimitrios Bassukas
- Department of Skin and Venereal Diseases, Faculty of Medicine, School of Health Sciences, University of Ioannina, Greece
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, The Netherlands
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Thomas L Dawson
- Agency for Science, Technology, and Research (A*STAR), Institute for Medical Biology, (IMB), Singapore
- Center for Cell Death, Injury and Regeneration, Departments of Drug Discovery and Biomedical Sciences and Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
38
|
Abstract
Humans are exceptional among vertebrates in that their living tissue is directly exposed to the outside world. In the absence of protective scales, feathers, or fur, the skin has to be highly effective in defending the organism against the gamut of opportunistic fungi surrounding us. Most (sub)cutaneous infections enter the body by implantation through the skin barrier. On intact skin, two types of fungal expansion are noted: (A) colonization by commensals, i.e., growth enabled by conditions prevailing on the skin surface without degradation of tissue, and (B) infection by superficial pathogens that assimilate epidermal keratin and interact with the cellular immune system. In a response-damage framework, all fungi are potentially able to cause disease, as a balance between their natural predilection and the immune status of the host. For this reason, we will not attribute a fixed ecological term to each species, but rather describe them as growing in a commensal state (A) or in a pathogenic state (B).
Collapse
|
39
|
Copeland E, Leonard K, Carney R, Kong J, Forer M, Naidoo Y, Oliver BGG, Seymour JR, Woodcock S, Burke CM, Stow NW. Chronic Rhinosinusitis: Potential Role of Microbial Dysbiosis and Recommendations for Sampling Sites. Front Cell Infect Microbiol 2018. [PMID: 29541629 PMCID: PMC5836553 DOI: 10.3389/fcimb.2018.00057] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is an inflammatory condition that affects up to 12% of the human population in developed countries. Previous studies examining the potential role of the sinus bacterial microbiota within CRS infections have found inconsistent results, possibly because of inconsistencies in sampling strategies. The aim of this study was to determine whether the sinus microbiome is altered in CRS and additionally if the middle meatus is a suitable representative site for sampling the sinus microbiome. Swab samples were collected from 12 healthy controls and 21 CRS patients, including all eight sinuses for CRS patients and between one and five sinuses for control subjects. The left and right middle meatus and nostril swabs were also collected. Significant differences in the sinus microbiomes between CRS and control samples were revealed using high-throughput 16S rRNA gene sequencing. The genus Escherichia was over-represented in CRS sinuses, and associations between control patients and Corynebacterium and Dolosigranulum were also identified. Comparisons of the middle meatuses between groups did not reflect these differences, and the abundance of the genus Escherichia was significantly lower at this location. Additionally, intra-patient variation was lower between sinuses than between sinus and middle meatus, which together with the above results suggests that the middle meatus is not an effective representative sampling site.
Collapse
Affiliation(s)
- Elizabeth Copeland
- The School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Katherine Leonard
- Sydney Centre for Ear Nose and Throat, Frenchs Forest, Sydney, NSW, Australia
| | - Richard Carney
- The Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Justin Kong
- Department of Otorhinolaryngology, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia
| | - Martin Forer
- Department of Otorhinolaryngology, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia
| | - Yuresh Naidoo
- Department of Otorhinolaryngology, Concord Hospital, University of Sydney, Sydney, NSW, Australia
| | - Brian G G Oliver
- The School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.,Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Justin R Seymour
- The Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Stephen Woodcock
- The Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Catherine M Burke
- The School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Nicholas W Stow
- Department of Otorhinolaryngology, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia.,Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
40
|
State-of-the-Art Adult Chronic Rhinosinusitis Microbiome: Perspective for Future Studies in Pediatrics. SINUSITIS 2018. [DOI: 10.3390/sinusitis3010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
41
|
Zhang I, Pletcher SD, Goldberg AN, Barker BM, Cope EK. Fungal Microbiota in Chronic Airway Inflammatory Disease and Emerging Relationships with the Host Immune Response. Front Microbiol 2017; 8:2477. [PMID: 29312187 PMCID: PMC5733051 DOI: 10.3389/fmicb.2017.02477] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/29/2017] [Indexed: 12/22/2022] Open
Abstract
The respiratory tract is a complex system that is inhabited by niche-specific communities of microbes including bacteria, fungi, and viruses. These complex microbial assemblages are in constant contact with the mucosal immune system and play a critical role in airway health and immune homeostasis. Changes in the composition and diversity of airway microbiota are frequently observed in patients with chronic inflammatory diseases including chronic rhinosinusitis (CRS), cystic fibrosis, allergy, and asthma. While the bacterial microbiome of the upper and lower airways has been the focus of many recent studies, the contribution of fungal microbiota to inflammation is an emerging research interest. Within the context of allergic airway disease, fungal products are important allergens and fungi are potent inducers of inflammation. In addition, murine models have provided experimental evidence that fungal microbiota in peripheral organs, notably the gastrointestinal (GI) tract, influence pulmonary health. In this review, we explore the role of the respiratory and GI microbial communities in chronic airway inflammatory disease development with a specific focus on fungal microbiome interactions with the airway immune system and fungal-bacterial interactions that likely contribute to inflammatory disease. These findings are discussed in the context of clinical and immunological features of fungal-mediated disease in CRS, allergy, and asthmatic patients. While this field is still nascent, emerging evidence suggests that dysbiotic fungal and bacterial microbiota interact to drive or exacerbate chronic airway inflammatory disease.
Collapse
Affiliation(s)
- Irene Zhang
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Steven D. Pletcher
- Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Andrew N. Goldberg
- Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Bridget M. Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Emily K. Cope
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
42
|
Chronic Rhinosinusitis and the Evolving Understanding of Microbial Ecology in Chronic Inflammatory Mucosal Disease. Clin Microbiol Rev 2017; 30:321-348. [PMID: 27903594 DOI: 10.1128/cmr.00060-16] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic rhinosinusitis (CRS) encompasses a heterogeneous group of debilitating chronic inflammatory sinonasal diseases. Despite considerable research, the etiology of CRS remains poorly understood, and debate on potential roles of microbial communities is unresolved. Modern culture-independent (molecular) techniques have vastly improved our understanding of the microbiology of the human body. Recent studies that better capture the full complexity of the microbial communities associated with CRS reintroduce the possible importance of the microbiota either as a direct driver of disease or as being potentially involved in its exacerbation. This review presents a comprehensive discussion of the current understanding of bacterial, fungal, and viral associations with CRS, with a specific focus on the transition to the new perspective offered in recent years by modern technology in microbiological research. Clinical implications of this new perspective, including the role of antimicrobials, are discussed in depth. While principally framed within the context of CRS, this discussion also provides an analogue for reframing our understanding of many similarly complex and poorly understood chronic inflammatory diseases for which roles of microbes have been suggested but specific mechanisms of disease remain unclear. Finally, further technological advancements on the horizon, and current pressing questions for CRS microbiological research, are considered.
Collapse
|
43
|
Zhao YC, Bassiouni A, Tanjararak K, Vreugde S, Wormald PJ, Psaltis AJ. Role of fungi in chronic rhinosinusitis through ITS sequencing. Laryngoscope 2017; 128:16-22. [DOI: 10.1002/lary.26702] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/04/2017] [Accepted: 04/28/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Yi Chen Zhao
- Department of Surgery-Otorhinolaryngology; Head and Neck Surgery, University of Adelaide; Adelaide Australia
| | - Ahmed Bassiouni
- Department of Surgery-Otorhinolaryngology; Head and Neck Surgery, University of Adelaide; Adelaide Australia
| | - Kangsadarn Tanjararak
- Department of Surgery-Otorhinolaryngology; Head and Neck Surgery, University of Adelaide; Adelaide Australia
| | - Sarah Vreugde
- Department of Surgery-Otorhinolaryngology; Head and Neck Surgery, University of Adelaide; Adelaide Australia
| | - Peter-John Wormald
- Department of Surgery-Otorhinolaryngology; Head and Neck Surgery, University of Adelaide; Adelaide Australia
| | - Alkis James Psaltis
- Department of Surgery-Otorhinolaryngology; Head and Neck Surgery, University of Adelaide; Adelaide Australia
| |
Collapse
|
44
|
Man WH, de Steenhuijsen Piters WA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol 2017; 15:259-270. [PMID: 28316330 PMCID: PMC7097736 DOI: 10.1038/nrmicro.2017.14] [Citation(s) in RCA: 744] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The respiratory tract is a complex organ system that is responsible for the exchange of oxygen and carbon dioxide. The human respiratory tract spans from the nostrils to the lung alveoli and is inhabited by niche-specific communities of bacteria. The microbiota of the respiratory tract probably acts as a gatekeeper that provides resistance to colonization by respiratory pathogens. The respiratory microbiota might also be involved in the maturation and maintenance of homeostasis of respiratory physiology and immunity. The ecological and environmental factors that direct the development of microbial communities in the respiratory tract and how these communities affect respiratory health are the focus of current research. Concurrently, the functions of the microbiome of the upper and lower respiratory tract in the physiology of the human host are being studied in detail. In this Review, we will discuss the epidemiological, biological and functional evidence that support the physiological role of the respiratory microbiota in the maintenance of human health.
Collapse
Affiliation(s)
- Wing Ho Man
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584 EA The Netherlands
- Spaarne Gasthuis Academy, Spaarnepoort 1, Hoofddorp, 2134 TM The Netherlands
| | - Wouter A.A. de Steenhuijsen Piters
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584 EA The Netherlands
- The University of Edinburgh/MRC Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - Debby Bogaert
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584 EA The Netherlands
- The University of Edinburgh/MRC Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| |
Collapse
|
45
|
Abstract
Bacterial pathogens and microbiome alterations can contribute to the initiation and propagation of mucosal inflammation in chronic rhinosinusitis (CRS). In this article, the authors review the clinical and research implications of key pathogens, discuss the role of the microbiome, and connect bacteria to mechanisms of mucosal immunity relevant in CRS.
Collapse
Affiliation(s)
- Thad W Vickery
- University of Colorado School of Medicine, 13001 East 17th Place, Aurora, CO 80045, USA
| | - Vijay R Ramakrishnan
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado, 12631 East 17th Avenue, B205, Aurora, CO 80045, USA.
| |
Collapse
|
46
|
Cleland EJ, Bassiouni A, Vreugde S, Wormald PJ. The bacterial microbiome in chronic rhinosinusitis: Richness, diversity, postoperative changes, and patient outcomes. Am J Rhinol Allergy 2016; 30:37-43. [PMID: 26867528 DOI: 10.2500/ajra.2016.30.4261] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The bacterial microbiome in chronic rhinosinusitis (CRS) remains poorly understood. Microorganisms are believed to be important contributors to the inflammatory response seen in these patients. OBJECTIVE To examine the bacterial CRS microbiome by using a pyrosequencing technique and determine the diversity, richness, prevalence, and abundance of bacterial species in these patients. Furthermore, the postoperative changes that occur in the microbiome and correlations with patient outcomes are assessed. METHODS Swabs were collected from 23 patients with CRS and 11 controls during surgery. Further postoperative swabs were collected in the CRS group. Bacterial DNA was extracted from the swabs and then sequenced by using 16S ribosomal DNA bacterial tag-encoded FLX amplicon pyrosequencing. RESULTS A total of 456 unique bacterial species were detected. No difference was seen for richness or diversity between the study groups (p > 0.05). Diversity declined after surgery in the CRS group (p = 0.01). Propionibacterium acnes and Staphylococcus epidermidis were the most prevalent species. Several significant differences were determined for prevalence and mean relative abundance (MRA) between the study groups. In particular, Acinetobacter johnsonii was more prevalent and had a higher MRA in the controls. Furthermore, the MRA of this species increased after surgery and was associated with improved quality of life. CONCLUSION This study characterized the sinonasal microbiome in a group of controls and patients with CRS. Important differences in diversity, prevalence, abundance, and temporal changes were described. Of great interest is the potential association between A. johnsonii and health. These findings provide new insights into the interplay between the microbiome and health in the paranasal sinuses.
Collapse
Affiliation(s)
- Edward John Cleland
- Department of Surgery-Otorhinolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
47
|
Lee JT, Frank DN, Ramakrishnan V. Microbiome of the paranasal sinuses: Update and literature review. Am J Rhinol Allergy 2016; 30:3-16. [PMID: 26867525 DOI: 10.2500/ajra.2016.30.4255] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Our understanding of the resident microbiome of the paranasal sinuses has changed considerably in recent years. Once presumed to be sterile, healthy sinus cavities are now known to harbor a diverse assemblage of microorganisms, and, it is hypothesized that alterations in the kinds and quantities of these microbes may play a role in the pathogenesis of chronic rhinosinusitis (CRS). OBJECTIVES To review the current literature regarding the sinus microbiome and collate research findings from relevant studies published to date. METHODS A systematic literature review was performed on all molecular studies that investigated the microbial communities of the paranasal sinuses. Methods of detection, microbiome composition, and comparative profiling between patients with and without CRS were explored. RESULTS A complex consortium of microorganisms has been demonstrated in the sinuses of both patients with and without CRS. However, the latter generally have been characterized by reduced biodiversity compared with controls, with selective enrichment of particular microbes (e.g., Staphylococcus aureus). Such disruptions in the resident microbiome may contribute to disease pathogenesis by enhancing the virulence of potential pathogens and adversely modulating immune responses. CONCLUSION The advent of culture-independent molecular approaches has led to a greater appreciation of the intricate microbial ecology of the paranasal sinuses. Microbiota composition, distribution, and abundance impact mucosal health and influence pathogen growth and function. A deeper understanding of the host-microbiome relationship and its constituents may encourage development of new treatment paradigms for CRS, which target restoration of microbiome homeostasis and cultivation of optimal microbial communities.
Collapse
Affiliation(s)
- Jivianne T Lee
- Department of Otolaryngology-Head and Neck Surgery, Orange County Sinus Institute, Southern California Permanente Medical Group, Irvine, California, USA
| | | | | |
Collapse
|
48
|
Mahdavinia M, Keshavarzian A, Tobin MC, Landay AL, Schleimer RP. A comprehensive review of the nasal microbiome in chronic rhinosinusitis (CRS). Clin Exp Allergy 2016; 46:21-41. [PMID: 26510171 DOI: 10.1111/cea.12666] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic rhinosinusitis (CRS) has been known as a disease with strong infectious and inflammatory components for decades. The recent advancement in methods identifying microbes has helped implicate the airway microbiome in inflammatory respiratory diseases such as asthma and COPD. Such studies support a role of resident microbes in both health and disease of host tissue, especially in the case of inflammatory mucosal diseases. Identifying interactive events between microbes and elements of the immune system can help us to uncover the pathogenic mechanisms underlying CRS. Here we provide a review of the findings on the complex upper respiratory microbiome in CRS in comparison with healthy controls. Furthermore, we have reviewed the defects and alterations of the host immune system that interact with microbes and could be associated with dysbiosis in CRS.
Collapse
Affiliation(s)
- M Mahdavinia
- Allergy and Immunology Section, Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL, USA
| | - A Keshavarzian
- Division of Digestive Diseases and Nutrition, Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - M C Tobin
- Allergy and Immunology Section, Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL, USA
| | - A L Landay
- Allergy and Immunology Section, Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL, USA
| | - R P Schleimer
- Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
49
|
Gelber JT, Cope EK, Goldberg AN, Pletcher SD. Evaluation ofMalasseziaand Common Fungal Pathogens in Subtypes of Chronic Rhinosinusitis. Int Forum Allergy Rhinol 2016; 6:950-5. [DOI: 10.1002/alr.21777] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/04/2016] [Accepted: 03/01/2016] [Indexed: 12/19/2022]
Affiliation(s)
| | - Emily K. Cope
- Department of Otolaryngology-Head and Neck Surgery; University of California, San Francisco; San Francisco CA
| | - Andrew N. Goldberg
- Department of Otolaryngology-Head and Neck Surgery; University of California, San Francisco; San Francisco CA
| | - Steven D. Pletcher
- Department of Otolaryngology-Head and Neck Surgery; University of California, San Francisco; San Francisco CA
| |
Collapse
|
50
|
Jervis Bardy J, Psaltis AJ. Next Generation Sequencing and the Microbiome of Chronic Rhinosinusitis: A Primer for Clinicians and Review of Current Research, Its Limitations, and Future Directions. Ann Otol Rhinol Laryngol 2016; 125:613-21. [PMID: 27056556 DOI: 10.1177/0003489416641429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Microbiomics in chronic diseases, including chronic rhinosinusitis (CRS), have undergone rapid advances in recent times. The introduction of Next Generation Sequencing (NGS) technology has produced significant clinical insights regarding the bacteriology of these conditions. We review studies that have used 16S rRNA sequencing to specifically investigate the microbiota profiles of patients with CRS in a variety of contexts. METHODS Literature review using the CINAHL, MEDLINE, PUBMED, and the Cochrane databases. Papers utilizing 16S-sequencing technology on CRS specimens published between January 1, 1995, and October 31, 2015, were included. Studies limited to only healthy controls were excluded. RESULTS Consistent with published studies using non-NGS techniques, the main genera commonly identified from the sinuses of CRS patients included Staphylococcus, Propionibacterium, and Corynebacterium. The microbiome of CRS patients had lower bacterial diversity compared to controls in a number of studies. Also consistent with non-NGS-based studies, Staphylococcus was implicated as an important genus, with highly colonized patients having worse surgical outcomes. Conflicting reports of antibiotic effects on the CRS microbiome were observed. Sampling methods were well investigated, many of the studies reviewed failed to include important methodological detail. CONCLUSION While 16S sequencing is a novel microbiological laboratory method, current studies have confirmed our existing understanding of bacteriology of CRS without providing significant additional clinical insight. Complementing 16S studies with more complex NGS methods while developing robust clinical studies aimed at shifting the disrupted CRS microbiome will provide researches with the opportunity to derive further clinical insight and develop new therapeutic targets.
Collapse
Affiliation(s)
- Jake Jervis Bardy
- Department of Otolaryngology-Head & Neck Surgery, The Queen Elizabeth Hospital and The University of Adelaide, Adelaide, South Australia
| | - Alkis J Psaltis
- Department of Otolaryngology-Head & Neck Surgery, The Queen Elizabeth Hospital and The University of Adelaide, Adelaide, South Australia
| |
Collapse
|