1
|
Wang Q, Wang S, Cao S, Wang Q, Wei Y, Li Y, Wang Y, Li Y, Qin W, Quan M, Jia J. A Novel Missense Variant in SORBS2 Is Causative With Familial Alzheimer's Disease. CNS Neurosci Ther 2025; 31:e70256. [PMID: 39912518 PMCID: PMC11800137 DOI: 10.1111/cns.70256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a common neurodegenerative disorder with a substantial genetic component. Despite advances in elucidating the genetic underpinnings of AD, much of its heritability remains unexplained. Discovering novel genetic variants and understanding their pathogenic roles are crucial challenges in AD research. OBJECTIVE This study aimed to identify pathogenic genes and elucidate their role in familial early-onset AD (EOAD). METHODS Blood samples from an EOAD pedigree and Sorbin and SH3 Domain-Containing Protein 2 (SORBS2) T189M transgenic mice were analyzed. Cognitive function was assessed via the Morris water maze (MWM). Protein expression was evaluated by western blotting, while amyloid-β (Aβ) levels were quantified via immunohistochemistry and enzyme-linked immunosorbent assay. Inflammatory markers were measured using immunofluorescence and quantitative reverse transcription polymerase chain reaction (PCR). Neuronal morphology, including dendritic and spine alterations, was examined using Golgi staining. RESULTS We identified a novel SORBS2 variant (c. 566C>T, p. T189M) in a Han Chinese family, segregating with AD in a Mendelian fashion. SORBS2 T189M transgenic mice exhibited cognitive deficits, cortical Aβ accumulation, and an increased Aβ42/Aβ40 ratio. Additionally, elevated levels of interleukin (IL)-1β, IL-6, tumor necrosis factor α (TNF-α), and ionized calcium-binding adaptor molecule 1 (Iba1)-positive microglia, along with neuronal loss, were observed in the brains of T189M mice. CONCLUSION Our study suggest that the SORBS2 T189M variant is a novel candidate causal mutation associated with familial AD in a Chinese pedigree, contributing to AD pathogenesis by promoting neuroinflammation and neuronal injury. Notably, this study is the first to establish a link between SORBS2 mutations and AD.
Collapse
Affiliation(s)
- Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingPeople's Republic of China
| | - Shiyuan Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingPeople's Republic of China
| | - Shuman Cao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingPeople's Republic of China
| | - Qigeng Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingPeople's Republic of China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingPeople's Republic of China
| | - Ying Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingPeople's Republic of China
| | - Yan Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingPeople's Republic of China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingPeople's Republic of China
| | - Wei Qin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingPeople's Republic of China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingPeople's Republic of China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingPeople's Republic of China
- Beijing Key Laboratory of Geriatric Cognitive DisordersBeijingPeople's Republic of China
- Clinical Center for Neurodegenerative Disease and Memory ImpairmentCapital Medical UniversityBeijingPeople's Republic of China
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingPeople's Republic of China
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingPeople's Republic of China
| |
Collapse
|
2
|
Wu J, Wang J, Xiao Z, Lu J, Ma X, Zhou X, Wu Y, Liang X, Zheng L, Ding D, Zhang H, Guan Y, Zuo C, Zhao Q. Clinical characteristics and biomarker profile in early- and late-onset Alzheimer's disease: the Shanghai Memory Study. Brain Commun 2025; 7:fcaf015. [PMID: 39850631 PMCID: PMC11756380 DOI: 10.1093/braincomms/fcaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/12/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025] Open
Abstract
Early-onset Alzheimer's disease constitutes ∼5-10% of Alzheimer's disease. Its clinical characteristics and biomarker profiles are not well documented. To compare the characteristics covering clinical, neuropsychological and biomarker profiles between patients with early- and late-onset Alzheimer's disease, we enrolled 203 patients (late-onset Alzheimer's disease = 99; early-onset Alzheimer's disease = 104) from a Chinese hospital-based cohort, the Shanghai Memory Study. A full panel of plasma biomarkers under the amyloid/tau/neurodegeneration framework including plasma amyloid beta 40, amyloid beta 42, total-tau, neurofilament light chain and phosphorylated tau 181 were assayed using ultra-sensitive Simoa technology. Seventy-five patients underwent an amyloid molecular positron emission tomography scan whereas 43 received comprehensive amyloid, Tau deposition and hypometabolism analysis. Clinical features, plasma and imaging biomarkers were compared cross-sectionally. Compared to those with late-onset Alzheimer's disease, patients with early-onset Alzheimer's disease presented more severe impairment in language function, lower frequency of APOE ɛ4 and lower levels of plasma neurofilament light chain (all P < 0.05). The plasma phosphorylated tau 181 concentration and phosphorylated tau 181/amyloid beta 42 ratios were higher in early-onset Alzheimer's disease than in late-onset Alzheimer's disease (all P < 0.05). More severe Tau deposition as indicated by 18F-florzolotau binding in the precuneus, posterior cingulate cortex and angular gyrus was observed in the early-onset Alzheimer's disease group. Plasma phosphorylated tau 181 was associated with earlier age at onset and domain-specific cognitive impairment, especially in patients with early-onset Alzheimer's disease. We concluded that patients with early-onset Alzheimer's disease differed from late-onset Alzheimer's disease in cognitive performance and biomarker profile. A higher burden of pathological tau was observed in early-onset Alzheimer's disease and was associated with earlier age at onset and more profound cognitive impairment.
Collapse
Affiliation(s)
- Jie Wu
- Institute and Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Wang
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Zhenxu Xiao
- Institute and Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiaying Lu
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Xiaoxi Ma
- Institute and Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaowen Zhou
- Institute and Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuhan Wu
- Institute and Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoniu Liang
- Institute and Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Li Zheng
- Institute and Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ding Ding
- Institute and Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Huiwei Zhang
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Yihui Guan
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Chuantao Zuo
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Qianhua Zhao
- Institute and Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200030, China
| |
Collapse
|
3
|
Acosta-Uribe J, Piña Escudero SD, Cochran JN, Taylor JW, Castruita PA, Jonson C, Barinaga EA, Roberts K, Levine AR, George DS, ÁvilaFunes JA, Behrens MI, Bruno MA, Brusco LI, Custodio N, Duran-Aniotz C, Lopera F, Matallana DL, Slachevsky A, Takada LT, Zapata-Restrepo LM, Durón-Reyes DE, de Paula França Resende E, Gelvez N, Godoy ME, Maito MA, Javandel S, Miller BL, Nalls MA, Leonard H, Vitale D, Bandres-Ciga S, Koretsky MJ, Singleton AB, Pantazis CB, Valcour V, Ibañez A, Kosik KS, Yokoyama JS. Genetic Contributions to Alzheimer's Disease and Frontotemporal Dementia in Admixed Latin American Populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.29.24315197. [PMID: 39574875 PMCID: PMC11581085 DOI: 10.1101/2024.10.29.24315197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Background Latin America's diverse genetic makeup, shaped by centuries of admixture, presents a unique opportunity to study Alzheimer's disease dementia (AD) and frontotemporal dementia (FTD). Our aim is to identify genetic variations associated with AD and FTD within this population. Methods The Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat) recruited 2,162 participants with AD, FTD, and healthy controls from six Latin American countries (Argentina, Brazil, Chile, Colombia, Mexico, and Peru). All participants underwent array, exome, and/or whole-genome sequencing. Population structure was analyzed using Principal Component Analysis and ADMIXTURE, projecting the ReDLat population onto the 1000 Genomes Project database. To identify genes associated with autosomal dominant, autosomal recessive, or X-linked forms of adult-onset dementia, we searched the Online Mendelian Inheritance in Man database and analyzed pedigree information. Variant interpretation followed guidelines from the American College of Medical Genetics and Genomics, and the Guerreiro algorithm was applied for the PSEN1 and PSEN2 genes. Results Global ancestry analysis of the ReDLat cohort revealed a predominant mix of American, African, and European ancestries. Uniquely, Brazil displayed an additional East Asian component accurately reflecting the historical admixture patterns from this region. We identified 17 pathogenic variants, a pathogenic C9orf72 expansion, and 44 variants of uncertain significance. Among our cohort, 70 families exhibited autosomal dominant inheritance of neurodegenerative diseases, with 48 families affected by AD and 22 by FTD. In families with AD, We discovered a novel variant in the PSEN1 gene, c.519G>T (p.Leu173Phe), along with other previously described variants seen in the region, such as c.356C>T (p.Thr119Ile). In families with FTD, the most commonly associated gene was GRN, followed by MAPT. Notably, we identified a patient meeting criteria for FTD who carried a pathogenic variant in SOD1, c.388G>A (p.Phe21Leu), which had previously been reported in another FTD patient from the same geographical region. Conclusions This study provides the first snapshot of genetic contributors to AD and FTD in a multisite cohort across Latin America. It will be critical to evaluate the generalizability of genetic risk factors for AD and FTD across diverse ancestral backgrounds, considering distinct social determinants of health and accounting for modifiable risk factors that may influence disease risk and resilience across different cultures.
Collapse
Affiliation(s)
- Juliana Acosta-Uribe
- Grupo de Neurociencias de Antioquia (GNA), Facultad de Medicina, Universidad de Antioquia. Medellín, Colombia
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara. Santa Barbara, USA
| | - Stefanie D. Piña Escudero
- Global Brain Health Institute (GBHI), Department of Neurology, University of California San Francisco. San Francisco, USA
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco. San Francisco, USA
| | | | | | - P. Alejandra Castruita
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco. San Francisco, USA
| | - Caroline Jonson
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco. San Francisco, USA
- DataTecnica LLC, Washington DC, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health. Bethesda, USA
| | | | - Kevin Roberts
- HudsonAlpha Institute for Biotechnology. Huntsville, USA
| | - Alexandra R. Levine
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara. Santa Barbara, USA
| | - Dawwod S. George
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara. Santa Barbara, USA
| | - José Alberto ÁvilaFunes
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Ciudad de México, México
- Bordeaux Population Health Research Center, University of Bordeaux. Bordeaux, France
| | - María I. Behrens
- Departamento de Neurología y Psiquiatría, Clínica Alemana-Universidad del Desarrollo. Santiago, Chile
- Centro de Investigación Clínica Avanza (CICA), Departamento de Neurología y Neurocirugía and Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile. Santiago, Chile
| | - Martín A. Bruno
- Instituto de Ciencias Biomédicas (ICBM) Facultad de Ciencias Médicas, Universidad Católica de Cuyo. San Juan, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). San Juan, Argentina
| | - Luis I. Brusco
- Asociación Alzheimer Argentina (ALZAR). Buenos Aires, Argentina
- Universidad de Buenos Aires. Buenos Aires, Argentina
| | | | - Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez. Santiago, Chile
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia (GNA), Facultad de Medicina, Universidad de Antioquia. Medellín, Colombia
| | - Diana L. Matallana
- Instituto de Envejecimiento, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
- Centro de Memoria y Cognición Intellectus, Hospital Universitario San Ignacio. Bogotá, Colombia
- Departamento de Salud Mental, Hospital Universitario Fundación Santa Fe. Bogotá, Colombia
| | - Andrea Slachevsky
- Departamento de Neurología y Psiquiatría, Clínica Alemana-Universidad del Desarrollo. Santiago, Chile
- Laboratorio de Neuropsicología y Neurociencias Cognitivas (LANNEC) del Programa de Fisiopatología del Instituto de Ciencias Biomédicas (ICBM), Departamento de Ciencias Neurológicas Oriente y Departamento de Neurociencias de la Facultad de Medicina de la Universidad de Chile. Santiago, Chile
- Centro de Gerociencia, Salud Mental y Metabolismo (GERO). Santiago, Chile
- Centro de Memoria y Neuropsiquiatría (CMYN), Departamento de Neurología. Hospital del Salvador, Chile
| | - Leonel T. Takada
- Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo. São Paulo, Brasil
| | - Lina M. Zapata-Restrepo
- Facultad de Ciencias de la Salud, Universidad Icesi. Cali, Colombia
- Fundación Valle de Lili. Cali, Colombia
| | - Dafne E. Durón-Reyes
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Ciudad de México, México
| | - Elisa de Paula França Resende
- Global Brain Health Institute (GBHI), Department of Neurology, University of California San Francisco. San Francisco, USA
- Faculdade de Medicina da Universidade Federal de Minas Gerais. Belo Horizonte, Brasil
| | - Nancy Gelvez
- Instituto de genética humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Maria E. Godoy
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez. Santiago, Chile
| | - Marcelo A. Maito
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez. Santiago, Chile
| | - Shireen Javandel
- Global Brain Health Institute (GBHI), Department of Neurology, University of California San Francisco. San Francisco, USA
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco. San Francisco, USA
| | - Bruce L. Miller
- Global Brain Health Institute (GBHI), Department of Neurology, University of California San Francisco. San Francisco, USA
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco. San Francisco, USA
| | - Mike A. Nalls
- DataTecnica LLC, Washington DC, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health. Bethesda, USA
| | - Hampton Leonard
- DataTecnica LLC, Washington DC, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health. Bethesda, USA
| | - Dan Vitale
- DataTecnica LLC, Washington DC, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health. Bethesda, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health. Bethesda, USA
| | - Mathew J. Koretsky
- DataTecnica LLC, Washington DC, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health. Bethesda, USA
| | - Andrew B. Singleton
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health. Bethesda, USA
- National Institute on Aging, National Institutes of Health. Bethesda, USA
| | - Caroline B. Pantazis
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health. Bethesda, USA
| | - Victor Valcour
- Global Brain Health Institute (GBHI), Department of Neurology, University of California San Francisco. San Francisco, USA
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco. San Francisco, USA
- Division of Geriatric Medicine, University of California San Francisco. San Francisco, USA
| | - Agustin Ibañez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez. Santiago, Chile
- Global Brain Health Institute, Trinity College Dublin. Dublin, Ireland
| | - Kenneth S. Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara. Santa Barbara, USA
| | - Jennifer S. Yokoyama
- Global Brain Health Institute (GBHI), Department of Neurology, University of California San Francisco. San Francisco, USA
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco. San Francisco, USA
- Department of Radiology and Biomedical Imaging, University of California. San Francisco, USA
| | | |
Collapse
|
4
|
Chang Z, Wang Z, Luo L, Xie Z, Yue C, Bian X, Yang H, Wang P. Case report: Double mutations in a patient with early-onset Alzheimer's disease in China, PSEN2 and IDE variants. Front Neurosci 2024; 18:1423892. [PMID: 39539495 PMCID: PMC11557526 DOI: 10.3389/fnins.2024.1423892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by gradual cognitive decline. Early-onset Alzheimer's disease (EOAD) is defined as AD occurring before age 65. The main pathogenic gene variants associated with EOAD include PSEN1, PSEN2, and APP. IDE gene has been identified as a risk factor in the pathogenesis of AD. In this study, we report a 33-year-old male with mutations in the PSEN2 gene (c.640G > T, p.V214L) and IDE gene (c.782G > A, p.R261Q). PSEN2 V214L has been reported in five previous cases, and no reported cases have carried IDE R261Q. He had progressive memory decline, his sister carried the same gene mutations but had no clinical manifestations. Neuroimaging revealed mild cortical atrophy. The concentration of Aβ42 in cerebrospinal fluid (CSF) was obviously decreased. In silico predictive models suggested that these mutations are damaging. Our findings indicate that mutations in the PSEN2 and IDE genes may disrupt the normal functioning of their respective proteins, contributing to the pathogenesis of AD.
Collapse
Affiliation(s)
- Zhongzheng Chang
- Department of Neurology, the Second Hospital of Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhiyang Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lele Luo
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaohong Xie
- Department of Neurology, the Second Hospital of Shandong University, Jinan, China
| | - Caibin Yue
- Department of Infectious Diseases and Hepatology, the Second Hospital of Shandong University, Jinan, China
| | - Xianli Bian
- Department of Neurology, the Second Hospital of Shandong University, Jinan, China
| | - Hui Yang
- Department of Neurology, the Second Hospital of Shandong University, Jinan, China
| | - Ping Wang
- Department of Neurology, the Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
5
|
Luo JS, Zhai WH, Ding LL, Zhang XJ, Han J, Ning JQ, Chen XM, Jiang WC, Yan RY, Chen MJ. MAMs and Mitochondrial Quality Control: Overview and Their Role in Alzheimer's Disease. Neurochem Res 2024; 49:2682-2698. [PMID: 39002091 DOI: 10.1007/s11064-024-04205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Alzheimer's disease (AD) represents the most widespread neurodegenerative disorder, distinguished by a gradual onset and slow progression, presenting a substantial challenge to global public health. The mitochondrial-associated membrane (MAMs) functions as a crucial center for signal transduction and material transport between mitochondria and the endoplasmic reticulum, playing a pivotal role in various pathological mechanisms of AD. The dysregulation of mitochondrial quality control systems is considered a fundamental factor in the development of AD, leading to mitochondrial dysfunction and subsequent neurodegenerative events. Recent studies have emphasized the role of MAMs in regulating mitochondrial quality control. This review will delve into the molecular mechanisms underlying the imbalance in mitochondrial quality control in AD and provide a comprehensive overview of the role of MAMs in regulating mitochondrial quality control.
Collapse
Affiliation(s)
- Jian-Sheng Luo
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Wen-Hu Zhai
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Ling-Ling Ding
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Xian-Jie Zhang
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Jia Han
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Jia-Qi Ning
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Xue-Meng Chen
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Wen-Cai Jiang
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Ru-Yu Yan
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Meng-Jie Chen
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| |
Collapse
|
6
|
Devenney EM, Anh N Nguyen Q, Tse NY, Kiernan MC, Tan RH. A scoping review of the unique landscape and challenges associated with dementia in the Western Pacific region. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 50:101192. [PMID: 39399870 PMCID: PMC11471059 DOI: 10.1016/j.lanwpc.2024.101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/14/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024]
Abstract
Dementia is a leading public health crisis that is projected to affect 152.8 million individuals by 2050, over half of whom will be living in the Western Pacific region. To determine the challenges and opportunities for capacity building in the region, this scoping review searched databases. Our findings reveal national and ethnoracial differences in the prevalence, literacy and genetic risk factors associated with dementia syndromes, underscoring the need to identify and mitigate relevant risk factors in this region. Importantly, ∼80% of research was derived from higher income countries, where the establishment of patient registries and biobanks reflect increased efforts and allocation of resources towards understanding the pathogenesis of dementia. We discuss the need for increased public awareness through culturally-relevant policies, the potential to support patients and caregivers through digital strategies and development of regional networks to mitigate the growing social impact and economic burden of dementia in this region. Funding FightMND Mid-Career Fellowship, NHMRC EL1 Fellowship, NHMRC Practitioner Fellowship (1156093), NHMRC Postgraduate scholarship (2022387).
Collapse
Affiliation(s)
- Emma M. Devenney
- Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales, 2050, Australia
- Faculty of Medicine and Health Translative Collective, University of Sydney, 3 Parramatta Road, Camperdown, New South Wales, 2050, Australia
| | - Quynh Anh N Nguyen
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 3 Parramatta Road, Camperdown, New South Wales, 2050, Australia
| | - Nga Yan Tse
- Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales, 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, G02 - Jane Foss Russell Building, The University of Sydney New South Wales, 2006, Australia
| | - Matthew C. Kiernan
- Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales, 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, G02 - Jane Foss Russell Building, The University of Sydney New South Wales, 2006, Australia
- Neuroscience Research Australia, 139 Barker Street, Randwick, New South Wales, 2031, Australia
| | - Rachel H. Tan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 3 Parramatta Road, Camperdown, New South Wales, 2050, Australia
- Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales, 2050, Australia
| |
Collapse
|
7
|
Li Y, Bai H, Liu W, Zhou W, Gu H, Zhao P, Zhu M, Li Y, Yan X, Zhao N, Huang X. Intergenerational epigenetic inheritance mediated by MYS-2/MOF in the pathogenesis of Alzheimer's disease. iScience 2024; 27:110588. [PMID: 39220410 PMCID: PMC11363564 DOI: 10.1016/j.isci.2024.110588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/08/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Although autosomal-dominant inheritance is believed an important cause of familial clustering Alzheimer's disease (FAD), it covers only a small proportion of FAD incidence, and so we investigated epigenetic memory as an alternative mechanism to contribute for intergenerational AD pathogenesis. Our data in vivo showed that mys-2 of Caenorhabditis elegans that encodes a putative MYST acetyltransferase responsible for H4K16 acetylation modulated AD occurrence. The phenotypic improvements in the parent generation caused by mys-2 disfunction were passed to their progeny due to epigenetic memory, which resulted in similar H4K16ac levels among the candidate target genes of MYS-2 and similar gene expression patterns of the AD-related pathways. Furthermore, the ROS/CDK-5/ATM pathway functioned as an upstream activator of MYS-2. Our study indicated that MYS-2/MOF could be inherited intergenerationally via epigenetic mechanisms in C. elegans and mammalian cell of AD model, providing a new insight into our understanding of the etiology and inheritance of FAD.
Collapse
Affiliation(s)
- Yuhong Li
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
- College of Biological Resources and Food Engineering, Qujing Normal University, Qujing 655000, China
| | - Hua Bai
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
- School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Wenwen Liu
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Wenhui Zhou
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Huan Gu
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Peiji Zhao
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Man Zhu
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
- College of Biological Resources and Food Engineering, Qujing Normal University, Qujing 655000, China
| | - Yixin Li
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Xinyi Yan
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Ninghui Zhao
- Neurosurgery of the Second Hospital Affiliated with Kunming Medical University, Kunming 650101, China
| | - Xiaowei Huang
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| |
Collapse
|
8
|
Cen J, Hu N, Shen J, Gao Y, Lu H. Pathological Functions of Lysosomal Ion Channels in the Central Nervous System. Int J Mol Sci 2024; 25:6565. [PMID: 38928271 PMCID: PMC11203704 DOI: 10.3390/ijms25126565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Lysosomes are highly dynamic organelles that maintain cellular homeostasis and regulate fundamental cellular processes by integrating multiple metabolic pathways. Lysosomal ion channels such as TRPML1-3, TPC1/2, ClC6/7, CLN7, and TMEM175 mediate the flux of Ca2+, Cl-, Na+, H+, and K+ across lysosomal membranes in response to osmotic stimulus, nutrient-dependent signals, and cellular stresses. These ion channels serve as the crucial transducers of cell signals and are essential for the regulation of lysosomal biogenesis, motility, membrane contact site formation, and lysosomal homeostasis. In terms of pathophysiology, genetic variations in these channel genes have been associated with the development of lysosomal storage diseases, neurodegenerative diseases, inflammation, and cancer. This review aims to discuss the current understanding of the role of these ion channels in the central nervous system and to assess their potential as drug targets.
Collapse
Affiliation(s)
| | | | | | - Yongjing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; (J.C.); (N.H.); (J.S.)
| | - Huanjun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; (J.C.); (N.H.); (J.S.)
| |
Collapse
|
9
|
Nicolas G. Lessons from genetic studies in Alzheimer disease. Rev Neurol (Paris) 2024; 180:368-377. [PMID: 38429159 DOI: 10.1016/j.neurol.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/27/2023] [Indexed: 03/03/2024]
Abstract
Research on Alzheimer disease (AD) genetics has provided critical advances to the knowledge of AD pathophysiological mechanisms. The etiology of AD can be divided into monogenic (autosomal dominant inheritance) and complex (multifactorial determinism). In monogenic AD, recent advances mainly concern mutation-associated mechanisms, presymptomatic clinical studies, and the search for modifiers of ages of onset that are still ongoing. In complex AD, genetic factors can be further categorized into three classes: (i) the APOE-ɛ4 and ɛ2 common alleles that represent a category by themselves as they are both common and with a strong impact on AD risk; (ii) common variants with a modest effect, identified in genome-wide association studies (GWAS); and (iii) rare variants with a moderate-to-strong effect, identified in case-control sequencing studies. Regarding APOE, odds ratios, available in multiple ethnicities, can now be converted into penetrance curves, although such curves remain to be performed in diverse ethnicities. In addition, advances in the understanding of mechanisms have been recently reported and rare APOE variants add to the complexity. In the GWAS category, novel loci have been discovered thanks to larger studies, doubling the number of hits as compared to the previous reference meta-analysis. However, such modest risk factors cannot be used in the clinic, neither individually, nor in genetic risk scores. In the category of rare variants, two novel genes, ABCA1 and ATP8B4 now add to the three main ones, TREM2, SORL1, and ABCA7. The study of such rare variants suggests oligogenic inheritance in some families, as also suggested by digenic penetrance curves for SORL1 loss-of-function variants with APOE-ɛ4. Cumulate frequencies of definite (so-called) rare risk factors are 2.3% to 3.6% (depending on thresholds on odds ratios) in control databases and many more remain to be classified and identified, showing how important these risk factors may be as part of the complex determinism of AD. A better understanding of these rare risk factors and their combined effects on each other, with common variants, and with environmental factors, should allow for a prediction of AD risk and, eventually, preventive medicine. Taken together, most genetic determinants of AD, in monogenic and in complex forms, point toward the aggregation of Aβ as a pivotal triggering factor, such that targeting it may be efficient as prevention in at-risk individuals. The role of neuroinflammation, microglia, and Tau pathology modulation are important sources of research for disease modification.
Collapse
Affiliation(s)
- G Nicolas
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Genetics and CNRMAJ, 76000 Rouen, France.
| |
Collapse
|
10
|
Nicolas G, Zaréa A, Lacour M, Quenez O, Rousseau S, Richard AC, Bonnevalle A, Schramm C, Olaso R, Sandron F, Boland A, Deleuze JF, Andriuta D, Anthony P, Auriacombe S, Balageas AC, Ballan G, Barbay M, Béjot Y, Belliard S, Benaiteau M, Bennys K, Bombois S, Boutoleau-Bretonnière C, Branger P, Carlier J, Cartz-Piver L, Cassagnaud P, Ceccaldi MP, Chauviré V, Chen Y, Cogez J, Cognat E, Contegal-Callier F, Corneille L, Couratier P, Cretin B, Crinquette C, Dauriat B, Dautricourt S, de la Sayette V, de Liège A, Deffond D, Demurger F, Deramecourt V, Derollez C, Dionet E, Doco Fenzy M, Dumurgier J, Dutray A, Etcharry-Bouyx F, Formaglio M, Gabelle A, Gainche-Salmon A, Godefroy O, Graber M, Gregoire C, Grimaldi S, Gueniat J, Gueriot C, Guillet-Pichon V, Haffen S, Hanta CR, Hardy C, Hautecloque G, Heitz C, Hourregue C, Jonveaux T, Jurici S, Koric L, Krolak-Salmon P, Lagarde J, Lanoiselée HM, Laurens B, Le Ber I, Le Guyader G, Leblanc A, Lebouvier T, Levy R, Lippi A, Mackowiak MA, Magnin E, Marelli C, Martinaud O, Maureille A, Migliaccio R, Milongo-Rigal E, Mohr S, Mollion H, Morin A, Nivelle J, Noiray C, Olivieri P, Paquet C, Pariente J, Pasquier F, Perron A, Philippi N, Planche V, Pouclet-Courtemanche H, Rafiq M, Rollin-Sillaire A, Roué-Jagot C, Saracino D, Sarazin M, Sauvée M, Sellal F, Teichmann M, Thauvin C, Thomas Q, Tisserand C, Turpinat C, Van Damme L, Vercruysse O, Villain N, Wagemann N, Charbonnier C, Wallon D. Assessment of Mendelian and risk-factor genes in Alzheimer disease: A prospective nationwide clinical utility study and recommendations for genetic screening. Genet Med 2024; 26:101082. [PMID: 38281098 DOI: 10.1016/j.gim.2024.101082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024] Open
Abstract
PURPOSE To assess the likely pathogenic/pathogenic (LP/P) variants rates in Mendelian dementia genes and the moderate-to-strong risk factors rates in patients with Alzheimer disease (AD). METHODS We included 700 patients in a prospective study and performed exome sequencing. A panel of 28 Mendelian and 6 risk-factor genes was interpreted and returned to patients. We built a framework for risk variant interpretation and risk gradation and assessed the detection rates among early-onset AD (EOAD, age of onset (AOO) ≤65 years, n = 608) depending on AOO and pedigree structure and late-onset AD (66 < AOO < 75, n = 92). RESULTS Twenty-one patients carried a LP/P variant in a Mendelian gene (all with EOAD, 3.4%), 20 of 21 affected APP, PSEN1, or PSEN2. LP/P variant detection rates in EOAD ranged from 1.7% to 11.6% based on AOO and pedigree structure. Risk factors were found in 69.5% of the remaining 679 patients, including 83 (12.2%) being heterozygotes for rare risk variants, in decreasing order of frequency, in TREM2, ABCA7, ATP8B4, SORL1, and ABCA1, including 5 heterozygotes for multiple rare risk variants, suggesting non-monogenic inheritance, even in some autosomal-dominant-like pedigrees. CONCLUSION We suggest that genetic screening should be proposed to all EOAD patients and should no longer be prioritized based on pedigree structure.
Collapse
Affiliation(s)
- Gaël Nicolas
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Genetics and CNRMAJ, F-76000 Rouen, France.
| | - Aline Zaréa
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Neurology and CNRMAJ, F-76000 Rouen, France
| | - Morgane Lacour
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Neurology and CNRMAJ, F-76000 Rouen, France
| | - Olivier Quenez
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Genetics and CNRMAJ, F-76000 Rouen, France
| | - Stéphane Rousseau
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Genetics and CNRMAJ, F-76000 Rouen, France
| | - Anne-Claire Richard
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Genetics and CNRMAJ, F-76000 Rouen, France
| | - Antoine Bonnevalle
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Genetics and CNRMAJ, F-76000 Rouen, France; Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Neurology and CNRMAJ, F-76000 Rouen, France
| | - Catherine Schramm
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Genetics and CNRMAJ, F-76000 Rouen, France
| | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Florian Sandron
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Daniela Andriuta
- Service de Neurologie CHU Amiens et Laboratoire de Neurosciences Fonctionnelles et Pathologies, Université de Picardie Jules Verne, Amiens, France
| | - Pierre Anthony
- Department of Neurology, Hôpitaux Civils de Colmar, F-68000 Colmar, France
| | - Sophie Auriacombe
- Univ. Bordeaux, CNRS UMR 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | | | | | - Mélanie Barbay
- Service de Neurologie CHU Amiens et Laboratoire de Neurosciences Fonctionnelles et Pathologies, Université de Picardie Jules Verne, Amiens, France
| | - Yannick Béjot
- Department of Neurology, University Hospital of Dijon, University of Burgundy, Dijon, France
| | - Serge Belliard
- Unité de recherche 1077 INSERM-EPHE-UNICAEN Neuropsychologie & Imagerie de la Mémoire Humaine (NIMH), Caen, France; Centre Mémoire Ressources et Recherche Haute Bretagne, CHU Rennes, Rennes, France
| | - Marie Benaiteau
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Karim Bennys
- Memory Ressources Research Center, Department of Neurology, University Hospital of Montpellier, Montpellier, France
| | - Stéphanie Bombois
- Sorbonne Université, INSERM U1127, CNRS 7235, Institut du Cerveau - ICM, Paris, France; AP-HP Sorbonne Université, Pitié-Salpêtrière Hospital, Department of Neurology, Institute of Memory and Alzheimer's Disease, Paris, France
| | | | - Pierre Branger
- Department of Neurology, Caen University Hospital, Caen, France
| | - Jasmine Carlier
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Leslie Cartz-Piver
- Memory Ressources Research Center, Department of Neurology, University Hospital of Limoges, France Inserm U1094, IRD U270, EPIMACT, Université of Limoges, Limoges, France
| | | | - Mathieu-Pierre Ceccaldi
- Institute of Neurophysiopathology UMR 7051 Aix Marseille Université & Assistance Publique de Marseille, Marseille, France
| | - Valérie Chauviré
- CMRR, CRMR Neurogénétique, Service de Neurologie, CHU d'ANGERS, Angers, France
| | - Yaohua Chen
- Univ Lille, CHU Lille, Inserm 1172, Memory center, CNRMAJ, LiCEND, Labex DistAlz 59000 Lille, France
| | - Julien Cogez
- Department of Neurology, Caen University Hospital, Caen, France
| | - Emmanuel Cognat
- Cognitive Neurology Center, AP-HP.Nord, Site Lariboisière Fernand-Widal, Paris, France; Université Paris Cité, UMR-S 1144, INSERM, Paris, France
| | | | - Léa Corneille
- Institute of Neurophysiopathology UMR 7051 Aix Marseille Université & Assistance Publique de Marseille, Marseille, France
| | | | - Benjamin Cretin
- CMRR d'Alsace, Service de Neurologie, CHU Strasbourg, Strasbourg, France
| | | | - Benjamin Dauriat
- Service de Génétique Médicale, Hopital Mère-Enfant, CHU Limoges, Limoges, France
| | - Sophie Dautricourt
- CMRR Lyon, Department of Neurology, University Hospital of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Vincent de la Sayette
- Department of Neurology, Caen University Hospital, Caen, France; Normandie UNIV, UNICAEN, PSL Research University, EPHE, INSERM, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Astrid de Liège
- Service de Neurologie, APHP, Hôpital Avicenne, Université Sorbonne Paris Nord, Bobigny, France
| | - Didier Deffond
- CMRR Clermont-Ferrand, Service de Neurologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Vincent Deramecourt
- Univ Lille, CHU Lille, Inserm 1172, Memory center, CNRMAJ, LiCEND, Labex DistAlz 59000 Lille, France
| | | | - Elsa Dionet
- CMRR Clermont-Ferrand, Service de Neurologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Martine Doco Fenzy
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France; CHU Nantes, Service de Génétique, Nantes, France; CHU Reims, Service de Génétique, Reims, France
| | - Julien Dumurgier
- Cognitive Neurology Center, AP-HP.Nord, Site Lariboisière Fernand-Widal, Paris, France; Université Paris Cité, UMR-S 1144, INSERM, Paris, France
| | - Anaïs Dutray
- Service de Neurologie, Centre Hospitalier Perpignan, Perpignan, France
| | | | - Maïté Formaglio
- CMRR Lyon, Department of Neurology, University Hospital of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Audrey Gabelle
- Memory Ressources Research Center, Department of Neurology, University Hospital of Montpellier, Montpellier, France
| | - Anne Gainche-Salmon
- Centre Mémoire Ressources et Recherche Haute Bretagne, CHU Rennes, Rennes, France
| | - Olivier Godefroy
- Service de Neurologie CHU Amiens et Laboratoire de Neurosciences Fonctionnelles et Pathologies, Université de Picardie Jules Verne, Amiens, France
| | - Mathilde Graber
- Centre mémoire ressources et recherche, CHU Dijon, Dijon, France
| | - Chloé Gregoire
- CHU de Bordeaux, Pôle de Neurosciences Cliniques, Centre Mémoire de Ressources et de Recherche, Bordeaux, France
| | - Stephan Grimaldi
- Institute of Neurophysiopathology UMR 7051 Aix Marseille Université & Assistance Publique de Marseille, Marseille, France
| | - Julien Gueniat
- Centre mémoire ressources et recherche, CHU Dijon, Dijon, France
| | - Claude Gueriot
- Institute of Neurophysiopathology UMR 7051 Aix Marseille Université & Assistance Publique de Marseille, Marseille, France
| | | | - Sophie Haffen
- Centre mémoire Recherche Ressources, Service de Neurologie, CHU Besançon, Besançon, France
| | - Cezara-Roxana Hanta
- Centre Mémoire Ressources et Recherche Haute Bretagne, CHU Rennes, Rennes, France
| | - Clémence Hardy
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Neurology and CNRMAJ, F-76000 Rouen, France
| | | | - Camille Heitz
- Institut du cerveau Trocadero, Paris, France; Neurology Department, Hôpital Universitaire de Nîmes, Nîmes, France
| | - Claire Hourregue
- Cognitive Neurology Center, AP-HP.Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Thérèse Jonveaux
- Centre Mémoire de Ressources et de Recherche de Lorraine Service de Neurologie CHRU Nancy, Nancy, France; Laboratoire 2LPN EA 7489 Université de Lorraine, Nancy, France
| | - Snejana Jurici
- Consultation Mémoire, Service de Gériatrie, Centre Hospitalier Perpignan, Perpignan, France
| | - Lejla Koric
- Institute of Neurophysiopathology UMR 7051 Aix Marseille Université & Assistance Publique de Marseille, Marseille, France; Aix-Marseille Univ, UMR 7249, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Pierre Krolak-Salmon
- CMRR Lyon, Department of Neurology, University Hospital of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France; Université Paris-Cité, F-75006 Paris, France; Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, F-91401, Orsay, France
| | | | - Brice Laurens
- CHU de Bordeaux, Pôle de Neurosciences Cliniques, Centre Mémoire de Ressources et de Recherche, Bordeaux, France
| | - Isabelle Le Ber
- Sorbonne Université, INSERM U1127, CNRS 7235, Institut du Cerveau - ICM, Paris, France; AP-HP Sorbonne Université, Pitié-Salpêtrière Hospital, Department of Neurology, Institute of Memory and Alzheimer's Disease, Paris, France
| | | | - Amélie Leblanc
- Consultations neurologiques, HIA Clermont-Tonnerre, Brest, France; Service de neurologie, CHU Cavale-Blanche, Brest, France
| | - Thibaud Lebouvier
- Univ Lille, CHU Lille, Inserm 1172, Memory center, CNRMAJ, LiCEND, Labex DistAlz 59000 Lille, France
| | - Richard Levy
- Sorbonne Université, INSERM U1127, CNRS 7235, Institut du Cerveau - ICM, Paris, France; AP-HP Sorbonne Université, Pitié-Salpêtrière Hospital, Department of Neurology, Institute of Memory and Alzheimer's Disease, Paris, France
| | - Anaïs Lippi
- Service de Neurologie, Hopital Gui de Chauliac, CHU de Montpellier, Montpellier, France
| | | | - Eloi Magnin
- Laboratoire de neuroscience, Université de Franche-Comté UFC et Service de Neurologie, CMRR, CHU Besançon, Besançon, France
| | - Cecilia Marelli
- Service de Neurologie, Hopital Gui de Chauliac, CHU de Montpellier, Montpellier, France
| | - Olivier Martinaud
- Department of Neurology, Caen University Hospital, Caen, France; Normandie UNIV, UNICAEN, PSL Research University, EPHE, INSERM, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | | | - Raffaella Migliaccio
- Sorbonne Université, INSERM U1127, CNRS 7235, Institut du Cerveau - ICM, Paris, France; AP-HP Sorbonne Université, Pitié-Salpêtrière Hospital, Department of Neurology, Institute of Memory and Alzheimer's Disease, Paris, France
| | - Emilie Milongo-Rigal
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Sophie Mohr
- Centre mémoire ressources et recherche, CHU Dijon, Dijon, France
| | - Hélène Mollion
- CMRR Lyon, Department of Neurology, University Hospital of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Alexandre Morin
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Neurology and CNRMAJ, F-76000 Rouen, France; Département de Psychiatrie, Centre Hospitalier du Rouvray, Université de Rouen, 76000, Sotteville-lès-Rouen, France
| | | | - Camille Noiray
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France; Université Paris-Cité, F-75006 Paris, France; Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, F-91401, Orsay, France
| | - Pauline Olivieri
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France; Université Paris-Cité, F-75006 Paris, France; Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, F-91401, Orsay, France
| | - Claire Paquet
- Cognitive Neurology Center, AP-HP.Nord, Site Lariboisière Fernand-Widal, Paris, France; Université Paris Cité, UMR-S 1144, INSERM, Paris, France
| | - Jérémie Pariente
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Toulouse NeuroImaging Center (ToNIC), INSERM-University of Toulouse Paul Sabatier, Toulouse, France
| | - Florence Pasquier
- Univ Lille, CHU Lille, Inserm 1172, Memory center, CNRMAJ, LiCEND, Labex DistAlz 59000 Lille, France
| | - Alexandre Perron
- Department of Neurology, Hôpitaux Civils de Colmar, F-68000 Colmar, France
| | - Nathalie Philippi
- CMRR d'Alsace, Service de Neurologie, CHU Strasbourg, Strasbourg, France
| | - Vincent Planche
- Univ. Bordeaux, CNRS UMR 5293, Institut des Maladies Neurodégénératives, Bordeaux, France; CHU de Bordeaux, Pôle de Neurosciences Cliniques, Centre Mémoire de Ressources et de Recherche, Bordeaux, France
| | | | - Marie Rafiq
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Toulouse NeuroImaging Center (ToNIC), INSERM-University of Toulouse Paul Sabatier, Toulouse, France
| | | | - Carole Roué-Jagot
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France; Université Paris-Cité, F-75006 Paris, France; Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, F-91401, Orsay, France
| | - Dario Saracino
- Sorbonne Université, INSERM U1127, CNRS 7235, Institut du Cerveau - ICM, Paris, France; AP-HP Sorbonne Université, Pitié-Salpêtrière Hospital, Department of Neurology, Institute of Memory and Alzheimer's Disease, Paris, France
| | - Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France; Université Paris-Cité, F-75006 Paris, France; Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, F-91401, Orsay, France
| | - Mathilde Sauvée
- Centre Mémoire de Ressources et de Recherche, Pôle PReNeLe, CHU Grenoble Alpes CS 10226, 38043 Grenoble Cedex 9, France; Unité de recherche mixte Université Grenoble Alpes/Université Savoie Montblanc, CNRS UMR 5115, Laboratoire de Psychologie et Neurocognition (LPNC), 38000 Grenoble, France
| | - François Sellal
- Department of Neurology, Hôpitaux Civils de Colmar, F-68000 Colmar, France; University of Strasbourg, Medicine Faculty, INSERM, U-1118, Strasbourg, France
| | - Marc Teichmann
- AP-HP Sorbonne Université, Pitié-Salpêtrière Hospital, Department of Neurology, Institute of Memory and Alzheimer's Disease, Paris, France
| | - Christel Thauvin
- Genetics Center, University Hospital of Dijon, University of Burgundy, Dijon, France
| | - Quentin Thomas
- Department of Neurology, University Hospital of Dijon, University of Burgundy, Dijon, France; Genetics Center, University Hospital of Dijon, University of Burgundy, Dijon, France
| | - Camille Tisserand
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Cédric Turpinat
- Service de Neurologie, Hopital Gui de Chauliac, CHU de Montpellier, Montpellier, France
| | - Laurène Van Damme
- Service de Neurologie, Centre Hospitalier Perpignan, Perpignan, France
| | | | - Nicolas Villain
- Sorbonne Université, INSERM U1127, CNRS 7235, Institut du Cerveau - ICM, Paris, France; AP-HP Sorbonne Université, Pitié-Salpêtrière Hospital, Department of Neurology, Institute of Memory and Alzheimer's Disease, Paris, France
| | | | - Camille Charbonnier
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Biostatistics and CNRMAJ, F-76000 Rouen, France
| | - David Wallon
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Neurology and CNRMAJ, F-76000 Rouen, France
| |
Collapse
|
11
|
Wang X, Zhang X, Liu J, Zhang J, Liu C, Cui Y, Song Q, Hou Y, Wang Y, Zhang Q, Zhang Y, Fan Y, Jia J, Wang P. Synaptic vesicle glycoprotein 2 A in serum is an ideal biomarker for early diagnosis of Alzheimer's disease. Alzheimers Res Ther 2024; 16:82. [PMID: 38615037 PMCID: PMC11015666 DOI: 10.1186/s13195-024-01440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Previous studies have demonstrated that early intervention was the best plan to inhibit the progression of Alzheimer's disease (AD), which relied on the discovery of early diagnostic biomarkers. In this study, synaptic vesicle glycoprotein 2 A (SV2A) was examined to improve the early diagnostic efficiency in AD. METHODS In this study, biomarker testing was performed through the single-molecule array (Simoa). A total of 121 subjects including cognitively unimpaired controls, amnestic mild cognitive impairment (aMCI), AD and other types of dementia underwent cerebrospinal fluid (CSF) SV2A testing; 430 subjects including health controls, aMCI, AD and other types of dementia underwent serum SV2A, glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL) and p-tau217 testing; 92 subjects including aMCI and AD underwent both CSF SV2A and serum SV2A testing; 115 cognitively unimpaired subjects including APOE ε4 carriers and APOE ε4 non-carriers were tested for serum SV2A, GFAP, NfL and p-tau217. Then, the efficacy of SV2A for the early diagnosis of AD and its ability to identify those at high risk of AD from a cognitively unimpaired population were further analyzed. RESULTS Both CSF and serum SV2A significantly and positively correlated with cognitive performance in patients with AD, and their levels gradually decreased with the progression of AD. Serum SV2A demonstrated excellent diagnostic efficacy for aMCI, with a sensitivity of 97.8%, which was significantly higher than those of NfL, GFAP, and p-tau217. The SV2A-positive rates ranged from 92.86 to 100% in aMCI cases that were negative for the above three biomarkers. Importantly, of all the biomarkers tested, serum SV2A had the highest positivity rate (81.82%) in individuals at risk for AD. CONCLUSIONS Serum SV2A was demonstrated to be a novel and ideal biomarker for the early diagnosis of AD, which can effectively distinguish those at high risk of AD in cognitively unimpaired populations.
Collapse
Affiliation(s)
- Xiaoling Wang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Xiaomin Zhang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Jing Liu
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Jingjing Zhang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Congcong Liu
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yuting Cui
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Qiao Song
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yuli Hou
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yaqi Wang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Qian Zhang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yingzhen Zhang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yujian Fan
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Jianping Jia
- National Clinical Research Center for Geriatric Disorders, 45 Changchun Street, Beijing, 100053, China.
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, 45 Changchun Street, Beijing, 100053, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, 45 Changchun Street, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, 45 Changchun Street, Beijing, 100053, China.
| | - Peichang Wang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Disorders, 45 Changchun Street, Beijing, 100053, China.
| |
Collapse
|
12
|
Duan X, Zheng Q, Liang L, Zhou L. Serum Exosomal miRNA-125b and miRNA-451a are Potential Diagnostic Biomarker for Alzheimer's Diseases. Degener Neurol Neuromuscul Dis 2024; 14:21-31. [PMID: 38618193 PMCID: PMC11012623 DOI: 10.2147/dnnd.s444567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/29/2024] [Indexed: 04/16/2024] Open
Abstract
Aim To explore the diagnostic value of serum-derived exosomal miRNAs and predict the roles of their target genes in Alzheimer's disease (AD) based on the expression of miRNAs in AD patients. Methods We determined the relative concentration of exosomal miRNAs by High-throughput Second-generation Sequencing and real-time quantitative real-time PCR. Results 71 AD patients and 71 ND subjects were collected. The study demonstrated that hsa-miR-125b-1-3p, hsa-miR-193a-5p, hsa-miR-378a-3p, hsa-miR-378i and hsa-miR-451a are differentially expressed in the serum-derived exosomes of AD patients compared with healthy subjects. According to ROC analysis, hsa-miR-125b-1-3p has an AUC of 0.765 in the AD group compared to the healthy group with a sensitivity and specificity of 82.1-67.7%, respectively. Enrichment analysis of its target genes showed that they were related to neuroactive ligand-receptor interactions, the PI3K-Akt signaling pathway, the Hippo signaling pathway and nervous system-related pathways. And, hsa-miR-451a had an AUC of 0.728 that differentiated the AD group from the healthy group with a sensitivity and specificity of 67.9% and 72.6%, respectively. Enrichment analysis of its target genes showed a relationship with cytokine-cytokine receptor interactions and the PI3K-Akt signaling pathway. Conclusion The dysregulation of serum exosomal microRNAs in patients with AD may promote the diagnosis of AD. The target genes of miRNAs may be involved in the occurrence and development of AD through various pathways.
Collapse
Affiliation(s)
- Xian Duan
- Department of Geriatrics, Hunan Provincial People’s Hospital, Changsha, Hunan, 410002, People’s Republic of China
| | - Qing Zheng
- Department of Geriatrics, Hunan Provincial People’s Hospital, Changsha, Hunan, 410002, People’s Republic of China
| | - Lihui Liang
- Department of Geriatrics, Hunan Provincial People’s Hospital, Changsha, Hunan, 410002, People’s Republic of China
| | - Lin Zhou
- Department of Geriatrics, The Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| |
Collapse
|
13
|
Nicolas G. Recent advances in Alzheimer disease genetics. Curr Opin Neurol 2024; 37:154-165. [PMID: 38235704 DOI: 10.1097/wco.0000000000001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW Genetics studies provide important insights into Alzheimer disease (AD) etiology and mechanisms. Critical advances have been made recently, mainly thanks to the access to novel techniques and larger studies. RECENT FINDINGS In monogenic AD, progress has been made with a better understanding of the mechanisms associated with pathogenic variants and the input of clinical studies in presymptomatic individuals. In complex AD, increasing sample sizes in both DNA chip-based (genome-wide association studies, GWAS) and exome/genome sequencing case-control studies unveiled novel common and rare risk factors, while the understanding of their combined effect starts to suggest the existence of rare families with oligogenic inheritance of early-onset, nonmonogenic, AD. SUMMARY Most genetic risk factors with a known consequence designate the aggregation of the Aβ peptide as a core etiological factor in complex AD thus confirming that the research based on monogenic AD - where the amyloid cascade seems more straightforward - is relevant to complex AD as well. Novel mechanistic insights and risk factor studies unveiling novel factors and attempting to combine the effect of common and rare variants will offer promising perspectives for future AD prevention, at least regarding early-onset AD, and probably in case of later onset as well.
Collapse
Affiliation(s)
- Gaël Nicolas
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Genetics and CNRMAJ, F-76000 Rouen, France
| |
Collapse
|
14
|
Zhang Y, Xie X, Chen B, Pan L, Li J, Wang W, Wang J, Tang R, Huang Q, Chen X, Ren R, Zhang Z, Fu W, Wang G. E674Q (Shanghai APP mutant), a novel amyloid precursor protein mutation, in familial late-onset Alzheimer's disease. Genes Dis 2024; 11:1022-1034. [PMID: 37692508 PMCID: PMC10491941 DOI: 10.1016/j.gendis.2023.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 09/12/2023] Open
Abstract
Identified as the pathogenic genes of Alzheimer's disease (AD), APP, PSEN1, and PSEN2 mainly lead to early-onset AD, whose course is more aggressive, and atypical symptoms are more common than sporadic AD. Here, a novel missense mutation, APP E674Q (also named "Shanghai APP"), was detected in a Chinese index patient with typical late-onset AD (LOAD) who developed memory decline in his mid-70s. The results from neuroimaging were consistent with AD, where widespread amyloid β deposition was demonstrated in 18F-florbetapir Positron Emission Tomography (PET). APP E674Q is close to the β-secretase cleavage site and the well-studied Swedish APP mutation (KM670/671NL), which was predicted to be pathogenic in silico. Molecular dynamics simulation indicated that the E674Q mutation resulted in a rearrangement of the interaction mode between APP and BACE1 and that the E674Q mutation was more prone to cleavage by BACE1. The in vitro results suggested that the E674Q mutation was pathogenic by facilitating the BACE1-mediated processing of APP and the production of Aβ. Furthermore, we applied an adeno-associated virus (AAV)-mediated transfer of the human E674Q mutant APP gene to the hippocampi of two-month-old C57Bl/6 J mice. AAV-E674Q-injected mice exhibited impaired learning behavior and increased pathological burden in the brain, implying that the E674Q mutation had a pathogenicity that bore a comparison with the classical Swedish mutation. Collectively, we report a strong amyloidogenic effect of the E674Q substitution in AD. To our knowledge, E674Q is the only pathogenic mutation within the amyloid processing sequence causing LOAD.
Collapse
Affiliation(s)
- Yongfang Zhang
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyi Xie
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Boyu Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lina Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jianping Li
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wanbing Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518063, China
| | - Jintao Wang
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ran Tang
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiang Huang
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaofen Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518063, China
| | - Rujing Ren
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Gang Wang
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
15
|
He M, Lian T, Guo P, Zhang W, Zhang Y, Huang Y, Liu G, Guan H, Li J, Luo D, Zhang W, Zhang W, Qi J, Yue H, Wang X, Zhang W. The roles of apolipoprotein E ε4 on neuropathology and neuroinflammation in patients with Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14440. [PMID: 37697966 PMCID: PMC10916449 DOI: 10.1111/cns.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023] Open
Abstract
AIMS To explore the roles of apolipoprotein E (APOE) ε4 on the neuropathology and neuroinflammation in Alzheimer's disease (AD) patients. METHODS AD patients were divided into the APOE ε4 carrier and the APOE ε4 non-carrier groups according to APOE genotype. Demographic information, cognitive function, the levels of neuropathological proteins and neuroinflammatory factors in cerebrospinal fluid (CSF) were compared between the two groups, and their correlations were subsequently analyzed. RESULTS β amyloid protein (Aβ)1-42 level from the APOE ε4 carrier group was significantly lower than that from the non-carrier group (p = 0.023), which was associated with worse cognitive function. The nitric oxide (NO) level was significantly elevated in the APOE ε4 carrier group compared to the non-carrier group (p = 0.016), which was significantly and positively correlated with the Trail Making Test (TMT)-A-time (r = 0.21, p = 0.026) and TMT-B-time (r = 0.38, p < 0.01). CONCLUSION APOE ε4 is associated with poorer cognition, particularly the early symptoms of memory, language, and attention. APOE ε4 is associated with lower Aβ1-42 level, and the more numbers of APOE ε4 are carried, the lower level of Aβ1-42 is measured. APOE ε4 is associated with elevated NO level, which is linked to the impaired attention and executive function.
Collapse
Grants
- Basic-Clinical Research Cooperation Funding of Capital Medical University, China (2015-JL-PT-X04, 10-JL-49, 14-JL-15)
- Beijing Healthcare Research Project, China (JING-15-2)
- Capital Clinical Characteristic Application Research (Z121107001012161)
- Capital's Funds for Health Improvement and Research (CFH) (2022-2-2048)
- Excellent Personnel Training Project of Beijing, China (20071D0300400076)
- High Level Technical Personnel Training Project of Beijing Health System, China (2009-3-26)
- Key Project of Natural Science Foundation of Beijing, China (4161004)
- Key Technology R&D Program of Beijing Municipal Education Commission (kz201610025030)
- National Key Research and Development Program of China (2016YFC1306300, 2016YFC1306000)
- National Natural Science Foundation of China (81970992, 81571229, 81071015, 30770745, 82201639)
- Natural Science Foundation of Beijing, China (7082032)
- Natural Science Foundation of Capital Medical University, Beijing, China (PYZ2018077)
- Project of Beijing Institute for Brain Disorders (BIBD-PXM2013_014226_07_000084)
- Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality (IDHT20140514)
- Project of Scientific and Technological Development of Traditional Chinese Medicine in Beijing (JJ2018-48)
- The National Key R&D Program of China-European Commission Horizon 2020 (2017YFE0118800-779238)
- Youth Research Funding, Beijing Tiantan Hospital, Capital Medical University, China (2015-YQN-14, 2015-YQN-15, 2015-YQN-17)
- Capital's Funds for Health Improvement and Research (CFH) (2022‐2‐2048)
- National Key Research and Development Program of China (2016YFC1306300, 2016YFC1306000)
- National Natural Science Foundation of China (81970992, 81571229, 81071015, 30770745, 82201639)
- Natural Science Foundation of Beijing, China (7082032)
Collapse
Affiliation(s)
- Mingyue He
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Tenghong Lian
- Department of Neurology, Center for Cognitive Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Peng Guo
- Department of Neurology, Center for Cognitive Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Weijiao Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yanan Zhang
- Department of Blood Transfusion, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yue Huang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine & HealthUNSW SydneySydneyNew South WalesAustralia
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Gaifen Liu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Huiying Guan
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jinghui Li
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Dongmei Luo
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Weijia Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenjing Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jing Qi
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Hao Yue
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaomin Wang
- Department of PhysiologyCapital Medical UniversityBeijingChina
| | - Wei Zhang
- Department of Neurology, Center for Cognitive Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Center of Parkinson's DiseaseBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory on Parkinson DiseaseBeijingChina
| |
Collapse
|
16
|
Eccles MK, Main N, Carlessi R, Armstrong AM, Sabale M, Roberts-Mok B, Tirnitz-Parker JEE, Agostino M, Groth D, Fraser PE, Verdile G. Quantitative comparison of presenilin protein expression reveals greater activity of PS2-γ-secretase. FASEB J 2024; 38:e23396. [PMID: 38156414 DOI: 10.1096/fj.202300954rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023]
Abstract
γ-secretase processing of amyloid precursor protein (APP) has long been of interest in the pathological progression of Alzheimer's disease (AD) due to its role in the generation of amyloid-β. The catalytic component of the enzyme is the presenilins of which there are two homologues, Presenilin-1 (PS1) and Presenilin-2 (PS2). The field has focussed on the PS1 form of this enzyme, as it is typically considered the more active at APP processing. However, much of this work has been completed without appropriate consideration of the specific levels of protein expression of PS1 and PS2. We propose that expression is an important factor in PS1- and PS2-γ-secretase activity, and that when this is considered, PS1 does not have greater activity than PS2. We developed and validated tools for quantitative assessment of PS1 and PS2 protein expression levels to enable the direct comparison of PS in exogenous and endogenous expression systems, in HEK-293 PS1 and/or PS2 knockout cells. We show that exogenous expression of Myc-PS1-NTF is 5.5-times higher than Myc-PS2-NTF. Quantitating endogenous PS protein levels, using a novel PS1/2 fusion standard we developed, showed similar results. When the marked difference in PS1 and PS2 protein levels is considered, we show that compared to PS1-γ-secretase, PS2-γ-secretase has equal or more activity on APP and Notch1. This study has implications for understanding the PS1- and PS2-specific contributions to substrate processing, and their potential influence in AD pathogenesis.
Collapse
Affiliation(s)
- Melissa K Eccles
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Nathan Main
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Rodrigo Carlessi
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Ayeisha Milligan Armstrong
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Miheer Sabale
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Brigid Roberts-Mok
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Janina E E Tirnitz-Parker
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Mark Agostino
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - David Groth
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Giuseppe Verdile
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
17
|
Li X, Quan M, Wei Y, Wang W, Xu L, Wang Q, Jia J. Critical thinking of Alzheimer's transgenic mouse model: current research and future perspective. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2711-2754. [PMID: 37480469 DOI: 10.1007/s11427-022-2357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/23/2023] [Indexed: 07/24/2023]
Abstract
Transgenic models are useful tools for studying the pathogenesis of and drug development for Alzheimer's Disease (AD). AD models are constructed usually using overexpression or knock-in of multiple pathogenic gene mutations from familial AD. Each transgenic model has its unique behavioral and pathological features. This review summarizes the research progress of transgenic mouse models, and their progress in the unique mechanism of amyloid-β oligomers, including the first transgenic mouse model built in China based on a single gene mutation (PSEN1 V97L) found in Chinese familial AD. We further summarized the preclinical findings of drugs using the models, and their future application in exploring the upstream mechanisms and multitarget drug development in AD.
Collapse
Affiliation(s)
- Xinyue Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
18
|
Cai H, Pang Y, Fu X, Ren Z, Jia L. Plasma biomarkers predict Alzheimer's disease before clinical onset in Chinese cohorts. Nat Commun 2023; 14:6747. [PMID: 37875471 PMCID: PMC10597998 DOI: 10.1038/s41467-023-42596-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Plasma amyloid-β (Aβ)42, phosphorylated tau (p-tau)181, and neurofilament light chain (NfL) are promising biomarkers of Alzheimer's disease (AD). However, whether these biomarkers can predict AD in Chinese populations is yet to be fully explored. We therefore tested the performance of these plasma biomarkers in 126 participants with preclinical AD and 123 controls with 8-10 years of follow-up from the China Cognition and Aging Study. Plasma Aβ42, p-tau181, and NfL were significantly correlated with cerebrospinal fluid counterparts and significantly altered in participants with preclinical AD. Combining plasma Aβ42, p-tau181, and NfL successfully discriminated preclinical AD from controls. These findings were validated in a replication cohort including 51 familial AD mutation carriers and 52 non-carriers from the Chinese Familial Alzheimer's Disease Network. Here we show that plasma Aβ42, p-tau181, and NfL may be useful for predicting AD 8 years before clinical onset in Chinese populations.
Collapse
Affiliation(s)
- Huimin Cai
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yana Pang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xiaofeng Fu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ziye Ren
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
19
|
Quan M, Cao S, Wang Q, Wang S, Jia J. Genetic Phenotypes of Alzheimer's Disease: Mechanisms and Potential Therapy. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:333-349. [PMID: 37589021 PMCID: PMC10425323 DOI: 10.1007/s43657-023-00098-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 08/18/2023]
Abstract
Years of intensive research has brought us extensive knowledge on the genetic and molecular factors involved in Alzheimer's disease (AD). In addition to the mutations in the three main causative genes of familial AD (FAD) including presenilins and amyloid precursor protein genes, studies have identified several genes as the most plausible genes for the onset and progression of FAD, such as triggering receptor expressed on myeloid cells 2, sortilin-related receptor 1, and adenosine triphosphate-binding cassette transporter subfamily A member 7. The apolipoprotein E ε4 allele is reported to be the strongest genetic risk factor for sporadic AD (SAD), and it also plays an important role in FAD. Here, we reviewed recent developments in genetic and molecular studies that contributed to the understanding of the genetic phenotypes of FAD and compared them with SAD. We further reviewed the advancements in AD gene therapy and discussed the future perspectives based on the genetic phenotypes.
Collapse
Affiliation(s)
- Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
| | - Shuman Cao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
| | - Shiyuan Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053 China
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053 China
- Center of Alzheimer’s Disease, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100053 China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053 China
| |
Collapse
|
20
|
Ciurea AV, Mohan AG, Covache-Busuioc RA, Costin HP, Glavan LA, Corlatescu AD, Saceleanu VM. Unraveling Molecular and Genetic Insights into Neurodegenerative Diseases: Advances in Understanding Alzheimer's, Parkinson's, and Huntington's Diseases and Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:10809. [PMID: 37445986 DOI: 10.3390/ijms241310809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Neurodegenerative diseases are, according to recent studies, one of the main causes of disability and death worldwide. Interest in molecular genetics has started to experience exponential growth thanks to numerous advancements in technology, shifts in the understanding of the disease as a phenomenon, and the change in the perspective regarding gene editing and the advantages of this action. The aim of this paper is to analyze the newest approaches in genetics and molecular sciences regarding four of the most important neurodegenerative disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. We intend through this review to focus on the newest treatment, diagnosis, and predictions regarding this large group of diseases, in order to obtain a more accurate analysis and to identify the emerging signs that could lead to a better outcome in order to increase both the quality and the life span of the patient. Moreover, this review could provide evidence of future possible novel therapies that target the specific genes and that could be useful to be taken into consideration when the classical approaches fail to shed light.
Collapse
Affiliation(s)
- Alexandru Vlad Ciurea
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| | - Aurel George Mohan
- Department of Neurosurgery, Bihor County Emergency Clinical Hospital, 410167 Oradea, Romania
- Department of Neurosurgery, Faculty of Medicine, Oradea University, 410610 Oradea, Romania
| | | | - Horia-Petre Costin
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Luca-Andrei Glavan
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Antonio-Daniel Corlatescu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Vicentiu Mircea Saceleanu
- Neurosurgery Department, Sibiu County Emergency Hospital, 550245 Sibiu, Romania
- Neurosurgery Department, "Lucian Blaga" University of Medicine, 550024 Sibiu, Romania
| |
Collapse
|
21
|
Li W, Pang Y, Wang Y, Mei F, Guo M, Wei Y, Li X, Qin W, Wang W, Jia L, Jia J. Aberrant palmitoylation caused by a ZDHHC21 mutation contributes to pathophysiology of Alzheimer's disease. BMC Med 2023; 21:223. [PMID: 37365538 DOI: 10.1186/s12916-023-02930-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The identification of pathogenic mutations in Alzheimer's disease (AD) causal genes led to a better understanding of the pathobiology of AD. Familial Alzheimer's disease (FAD) is known to be associated with mutations in the APP, PSEN1, and PSEN2 genes involved in Aβ production; however, these genetic defects occur in only about 10-20% of FAD cases, and more genes and new mechanism causing FAD remain largely obscure. METHODS We performed exome sequencing on family members with a FAD pedigree and identified gene variant ZDHHC21 p.T209S. A ZDHHC21T209S/T209S knock-in mouse model was then generated using CRISPR/Cas9. The Morris water navigation task was then used to examine spatial learning and memory. The involvement of aberrant palmitoylation of FYN tyrosine kinase and APP in AD pathology was evaluated using biochemical methods and immunostaining. Aβ and tau pathophysiology was evaluated using ELISA, biochemical methods, and immunostaining. Field recordings of synaptic long-term potentiation were obtained to examine synaptic plasticity. The density of synapses and dendritic branches was quantified using electron microscopy and Golgi staining. RESULTS We identified a variant (c.999A > T, p.T209S) of ZDHHC21 gene in a Han Chinese family. The proband presented marked cognitive impairment at 55 years of age (Mini-Mental State Examination score = 5, Clinical Dementia Rating = 3). Considerable Aβ retention was observed in the bilateral frontal, parietal, and lateral temporal cortices. The novel heterozygous missense mutation (p.T209S) was detected in all family members with AD and was not present in those unaffected, indicating cosegregation. ZDHHC21T209S/T209S mice exhibited cognitive impairment and synaptic dysfunction, suggesting the strong pathogenicity of the mutation. The ZDHHC21 p.T209S mutation significantly enhanced FYN palmitoylation, causing overactivation of NMDAR2B, inducing increased neuronal sensitivity to excitotoxicity leading to further synaptic dysfunction and neuronal loss. The palmitoylation of APP was also increased in ZDHHC21T209S/T209S mice, possibly contributing to Aβ production. Palmitoyltransferase inhibitors reversed synaptic function impairment. CONCLUSIONS ZDHHC21 p.T209S is a novel, candidate causal gene mutation in a Chinese FAD pedigree. Our discoveries strongly suggest that aberrant protein palmitoylation mediated by ZDHHC21 mutations is a new pathogenic mechanism of AD, warranting further investigations for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Wenwen Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yana Pang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yan Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Fan Mei
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Mengmeng Guo
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xinyue Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wei Qin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.
| |
Collapse
|
22
|
Yang Y, Bagyinszky E, An SSA. Presenilin-1 (PSEN1) Mutations: Clinical Phenotypes beyond Alzheimer's Disease. Int J Mol Sci 2023; 24:8417. [PMID: 37176125 PMCID: PMC10179041 DOI: 10.3390/ijms24098417] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Presenilin 1 (PSEN1) is a part of the gamma secretase complex with several interacting substrates, including amyloid precursor protein (APP), Notch, adhesion proteins and beta catenin. PSEN1 has been extensively studied in neurodegeneration, and more than 300 PSEN1 mutations have been discovered to date. In addition to the classical early onset Alzheimer's disease (EOAD) phenotypes, PSEN1 mutations were discovered in several atypical AD or non-AD phenotypes, such as frontotemporal dementia (FTD), Parkinson's disease (PD), dementia with Lewy bodies (DLB) or spastic paraparesis (SP). For example, Leu113Pro, Leu226Phe, Met233Leu and an Arg352 duplication were discovered in patients with FTD, while Pro436Gln, Arg278Gln and Pro284Leu mutations were also reported in patients with motor dysfunctions. Interestingly, PSEN1 mutations may also impact non-neurodegenerative phenotypes, including PSEN1 Pro242fs, which could cause acne inversa, while Asp333Gly was reported in a family with dilated cardiomyopathy. The phenotypic diversity suggests that PSEN1 may be responsible for atypical disease phenotypes or types of disease other than AD. Taken together, neurodegenerative diseases such as AD, PD, DLB and FTD may share several common hallmarks (cognitive and motor impairment, associated with abnormal protein aggregates). These findings suggested that PSEN1 may interact with risk modifiers, which may result in alternative disease phenotypes such as DLB or FTD phenotypes, or through less-dominant amyloid pathways. Next-generation sequencing and/or biomarker analysis may be essential in clearly differentiating the possible disease phenotypes and pathways associated with non-AD phenotypes.
Collapse
Affiliation(s)
- Youngsoon Yang
- Department of Neurology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan 31151, Republic of Korea;
| | - Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
23
|
Zhaoxia W, Chenyu W, ZhuangZhuang Y, Liangliang F, Xue L, Tieyu T. Whole-exome sequencing detected a novel APP variant in a Han-Chinese family with Alzheimer's disease. Mol Biol Rep 2023; 50:5267-5271. [PMID: 37145212 DOI: 10.1007/s11033-023-08400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/23/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is an incurable and debilitating neurodegenerative disease that results in the progressive degeneration and death of nerve cells. Mutations in the APP gene, which encodes an amyloid precursor protein, is the strongest genetic risk factor for sporadic AD. METHODS AND RESULTS We studied the APP gene (NM_000484.3: c.2045A > T; p.E682V) variants carried by members of a family suffering from AD using whole-exome sequencing and Sanger sequencing. CONCLUSION In this study, we identified a new variant of the APP gene (NM_000484.3: c.2045A > T; p.E682V) in members of a family with AD. This provides potential targets for subsequent studies and information that can be used in genetic counselling.
Collapse
Affiliation(s)
- Wang Zhaoxia
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Wang Chenyu
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, 410013, China
| | - Yuan ZhuangZhuang
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, 410013, China
| | - Fan Liangliang
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, 410013, China
| | - Lin Xue
- Department of Neurology, Yangzhou Oriental Hospital, Yangzhou, 225001, Jiangsu, China.
| | - Tang Tieyu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
24
|
Liang Z, Wu Y, Li C, Liu Z. Clinical and genetic characteristics in a central-southern Chinese cohort of early-onset Alzheimer's disease. Front Neurol 2023; 14:1119326. [PMID: 37051054 PMCID: PMC10084792 DOI: 10.3389/fneur.2023.1119326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
BackgroundMutations in the presenilin-1 (PSEN1), presenilin-2 (PSEN2), and amyloid precursor protein (APP) genes have been commonly identified in early-onset Alzheimer's disease (EOAD). Some of the mutations in the three causative genes, especially the PSEN1 gene, result in variable phenotypes and exhibit clinical heterogeneity among EOAD families.MethodsUsing next-generation sequencing (NGS), we performed genetic screening in a Chinese cohort of 18 patients with EOAD, consisting of five familial EOAD and 13 sporadic cases.ResultsWe identified two likely pathogenic PSEN1 mutations (one novel) and a novel APP mutation in three cases of EOAD, where two are familial and one is sporadic, respectively. In addition, we detected a few variants of uncertain significance (VUS) in several genes, including not only the two known variants in PSEN2 (p.H169N and p.V214L) but also genes causal of other types of dementia or previously identified as risk factors for AD, suggesting the possible involvement of multiple genes in the etiopathology of AD. The patients carrying PSEN1 mutations had an earlier mean age at the onset than those with PSEN2 or APP variants. The initial symptoms varied greatly among patients in the EOAD cohort, from progressive memory impairment and epilepsy to uncommon motor symptoms such as involuntary tremors in the upper extremities.ConclusionsIn conclusion, our study provides further evidence of the genetic profile of patients with EOAD from China and expands the mutation spectrum of both PSEN1 and APP. In addition, our results highlight the clinical heterogeneity in patients with EOAD and mutations in PSEN1, PSEN2, and APP and suggest strong effects of genetic variants on clinical phenotypes. Future functional studies are needed to clarify the interaction between AD-causative gene mutations and phenotypic heterogeneity.
Collapse
Affiliation(s)
- Zhihou Liang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Chuanzhou Li
| | - Zhijun Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhijun Liu
| |
Collapse
|
25
|
Abondio P, Bruno F, Bruni AC, Luiselli D. Rare Amyloid Precursor Protein Point Mutations Recapitulate Worldwide Migration and Admixture in Healthy Individuals: Implications for the Study of Neurodegeneration. Int J Mol Sci 2022; 23:ijms232415871. [PMID: 36555510 PMCID: PMC9781461 DOI: 10.3390/ijms232415871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Genetic discoveries related to Alzheimer's disease and other dementias have been performed using either large cohorts of affected subjects or multiple individuals from the same pedigree, therefore disregarding mutations in the context of healthy groups. Moreover, a large portion of studies so far have been performed on individuals of European ancestry, with a remarkable lack of epidemiological and genomic data from underrepresented populations. In the present study, 70 single-point mutations on the APP gene in a publicly available genetic dataset that included 2504 healthy individuals from 26 populations were scanned, and their distribution was analyzed. Furthermore, after gametic phase reconstruction, a pairwise comparison of the segments surrounding the mutations was performed to reveal patterns of haplotype sharing that could point to specific cross-population and cross-ancestry admixture events. Eight mutations were detected in the worldwide dataset, with several of them being specific for a single individual, population, or macroarea. Patterns of segment sharing reflected recent historical events of migration and admixture possibly linked to colonization campaigns. These observations reveal the population dynamics of the considered APP mutations in worldwide human groups and support the development of ancestry-informed screening practices for the improvement of precision and personalized approaches to neurodegeneration and dementia.
Collapse
Affiliation(s)
- Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
- Laboratory of Molecular Anthropology and Center for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Francesco Bruno
- Regional Neurogenetic Center (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
- Correspondence:
| | - Amalia Cecilia Bruni
- Regional Neurogenetic Center (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| |
Collapse
|
26
|
Gao W, Zhou J, Gu X, Zhou Y, Wang L, Si N, Fan X, Bian B, Wang H, Zhao H. A multi-network comparative analysis of whole-transcriptome and translatome reveals the effect of high-fat diet on APP/PS1 mice and the intervention with Chinese medicine. Front Nutr 2022; 9:974333. [PMID: 36352898 PMCID: PMC9638104 DOI: 10.3389/fnut.2022.974333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Different studies on the effects of high-fat diet (HFD) on Alzheimer’s disease (AD) pathology have reported conflicting findings. Our previous studies showed HFD could moderate neuroinflammation and had no significant effect on amyloid-β levels or contextual memory on AD mice. To gain more insights into the involvement of HFD, we performed the whole-transcriptome sequencing and ribosome footprints profiling. Combined with competitive endogenous RNA analysis, the transcriptional regulation mechanism of HFD on AD mice was systematically revealed from RNA level. Mmu-miR-450b-3p and mmu-miR-6540-3p might be involved in regulating the expression of Th and Ddc expression. MiR-551b-5p regulated the expression of a variety of genes including Slc18a2 and Igfbp3. The upregulation of Pcsk9 expression in HFD intervention on AD mice might be closely related to the increase of cholesterol in brain tissues, while Huanglian Jiedu Decoction significantly downregulated the expression of Pcsk9. Our data showed the close connection between the alterations of transcriptome and translatome under the effect of HFD, which emphasized the roles of translational and transcriptional regulation were relatively independent. The profiled molecular responses in current study might be valuable resources for advanced understanding of the mechanisms underlying the effect of HFD on AD.
Collapse
|
27
|
Genetics, Functions, and Clinical Impact of Presenilin-1 (PSEN1) Gene. Int J Mol Sci 2022; 23:ijms231810970. [PMID: 36142879 PMCID: PMC9504248 DOI: 10.3390/ijms231810970] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022] Open
Abstract
Presenilin-1 (PSEN1) has been verified as an important causative factor for early onset Alzheimer's disease (EOAD). PSEN1 is a part of γ-secretase, and in addition to amyloid precursor protein (APP) cleavage, it can also affect other processes, such as Notch signaling, β-cadherin processing, and calcium metabolism. Several motifs and residues have been identified in PSEN1, which may play a significant role in γ-secretase mechanisms, such as the WNF, GxGD, and PALP motifs. More than 300 mutations have been described in PSEN1; however, the clinical phenotypes related to these mutations may be diverse. In addition to classical EOAD, patients with PSEN1 mutations regularly present with atypical phenotypic symptoms, such as spasticity, seizures, and visual impairment. In vivo and in vitro studies were performed to verify the effect of PSEN1 mutations on EOAD. The pathogenic nature of PSEN1 mutations can be categorized according to the ACMG-AMP guidelines; however, some mutations could not be categorized because they were detected only in a single case, and their presence could not be confirmed in family members. Genetic modifiers, therefore, may play a critical role in the age of disease onset and clinical phenotypes of PSEN1 mutations. This review introduces the role of PSEN1 in γ-secretase, the clinical phenotypes related to its mutations, and possible significant residues of the protein.
Collapse
|
28
|
Kalfon L, Paz R, Raveh-Barak H, Salama A, Samra N, Kaplun A, Chasnyk N, Kfir NC, Mousa NK, Biton ES, Tanus M, Aharon-Peretz J, Falik Zaccai TC. Familial Early-Onset Alzheimer's Caused by Novel Genetic Variant and APP Duplication: A Cross-Sectional Study. Curr Alzheimer Res 2022; 19:694-707. [PMID: 36278440 DOI: 10.2174/1567205020666221020095257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND The clinical characteristics of symptomatic and asymptomatic carriers of early- onset autosomal dominant Alzheimer's (EOADAD) due to a yet-undescribed chromosomal rearrangement may add to the available body of knowledge about Alzheimer's disease and may enlighten novel and modifier genes. We report the clinical and genetic characteristics of asymptomatic and symptomatic individuals carrying a novel APP duplication rearrangement. METHODS Individuals belonging to a seven-generation pedigree with familial cognitive decline or intracerebral hemorrhages were recruited. Participants underwent medical, neurological, and neuropsychological evaluations. The genetic analysis included chromosomal microarray, Karyotype, fluorescence in situ hybridization, and whole genome sequencing. RESULTS Of 68 individuals, six females presented with dementia, and four males presented with intracerebral hemorrhage. Of these, nine were found to carry Chromosome 21 copy number gain (chr21:27,224,097-27,871,284, GRCh37/hg19) including the APP locus (APP-dup). In seven, Chromosome 5 copy number gain (Chr5: 24,786,234-29,446,070, GRCh37/hg19) (Chr5-CNG) cosegregated with the APP-dup. Both duplications co-localized to chromosome 18q21.1 and segregated in 25 pre-symptomatic carriers. Compared to non-carriers, asymptomatic carriers manifested cognitive decline in their mid-thirties. A third of the affected individuals carried a diagnosis of a dis-immune condition. CONCLUSION APP extra dosage, even in isolation and when located outside chromosome 21, is pathogenic. The clinical presentation of APP duplication varies and may be gender specific, i.e., ICH in males and cognitive-behavioral deterioration in females. The association with immune disorders is presently unclear but may prove relevant. The implication of Chr5-CNG co-segregation and the surrounding chromosome 18 genetic sequence needs further clarification.
Collapse
Affiliation(s)
- Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Rotem Paz
- Rappaport Faculty of Medicine, Technion Medicine, Haifa, Israel.,Cognitive Neurology Institute, Rambam Health Care Campus, Haifa, Israel
| | - Hadas Raveh-Barak
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Areef Salama
- Department of Family Medicine, Sherutei Briut Clalit, Haifa and Western Galilee District, Tel Aviv, Israel
| | - Nadra Samra
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | | | - Natalia Chasnyk
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Nehama Cohen Kfir
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | | | - Efrat Shuster Biton
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Mary Tanus
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Judith Aharon-Peretz
- Rappaport Faculty of Medicine, Technion, Haifa Israel.,Cognitive Neurology Institute, Rambam Health Care Campus, Haifa, Israel
| | - Tzipora C Falik Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| |
Collapse
|
29
|
Liu C, Cong L, Zhu M, Wang Y, Tang S, Han X, Zhang Q, Tian N, Liu K, Liang X, Fa W, Wang N, Hou T, Du Y. Screening for Genetic Mutations Associated with Early-Onset Alzheimer's Disease in Han Chinese. Curr Alzheimer Res 2022; 19:724-733. [PMID: 36306459 DOI: 10.2174/1567205020666221028112915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Early-onset Alzheimer's disease (EOAD) is highly influenced by genetic factors. Numerous mutations in amyloid precursor protein (APP) and presenilin 1 and 2 (PSEN1 and PSEN2) have been identified for EOAD, but they can only account for a small proportion of EOAD cases. OBJECTIVE This study aimed to screen genetic mutations and variants associated with EOAD among Han Chinese adults. METHODS This study included 34 patients with EOAD and 26 controls from a population-based study and neurological ward. We first sequenced mutations in APP/PSENs and then performed whole-exome sequencing in the remaining patients with negative mutations in APP/PSENs to screen for additional potential genetic variants. Among patients who were negative in genetic screening tests, we further evaluated the risk burden of genes related to the Aβ metabolism-centered network to search for other probable causes of EOAD. RESULTS We identified 7 functional variants in APP/PSENs in 8 patients, including 1 APP mutation (p. Val715Met), 3 PSEN1 mutations (p. Phe177Ser; p. Arg377Met; p. Ile416Thr), and 3 PSEN2 mutations (p. Glu24Lys; p. Gly34Ser; p. Met239Thr). Of the remaining 26 EOAD cases without mutations in APP/PSENs, the proportion of carrying rare variants of genes involved in Aβ and APP metabolism was significantly higher than that of controls (84.6% vs. 73.1%, P=0.042). Thirty-one risk genes with 47 variants were identified in 22 patients. However, in 26 normal subjects, only 20 risk genes with 29 variants were identified in 19 subjects. CONCLUSIONS Our findings demonstrate the role of APP/PSENs mutations in EOAD, identifying a new PSEN2 missense mutation, and further offer valuable insights into the potential genetic mechanisms of EOAD without APP/PSENs mutations among Han Chinese.
Collapse
Affiliation(s)
- Cuicui Liu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Min Zhu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Xiaojuan Han
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Qinghua Zhang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Na Tian
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Keke Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Xiaoyan Liang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Wenxin Fa
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Nan Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| |
Collapse
|
30
|
Zhao L, Yue Z, Wang Y, Wang J, Ullah I, Muhammad F, Zhou Y, Zhu H, Wang X, Li H. Autophagy activation by Terminalia chebula Retz. reduce Aβ generation by shifting APP processing toward non-amyloidogenic pathway in APPswe transgenic SH-SY5Y cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154245. [PMID: 35696798 DOI: 10.1016/j.phymed.2022.154245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/18/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease. Deposition of amyloid β plaques (Aβ) is a central hallmark of AD. Accumulating evidence suggest that shifting amyloid precursor protein (APP) metabolism pathway to non-amyloidogenic ways and inducing autophagy play key roles in AD pathology. In published reports, there is no research on the APP metabolic process of Terminalia chebula Retz. (T. Chebula). PURPOSE The study aims to assess the effects of T. Chebula in AD transgenic SH-SY5Y cells to determine its underlying mechanisms on reducing Aβ level by regulating APP metabolic process. METHODS The effects of T. Chebula water extract (TWE) on APPswe transgenic SH-SY5Y cells were analyzed by cell viability. ELISA used to quantify extracellular Aβ1-40 and Aβ1-42 generations. Western blot and RT-PCR assays were chosen to detect the expression of proteins and genes. The acridine orange (AO) stain was used to label autophagic-vesicles. RESULTS Treatment with TWE significantly suppressed the Aβ1-40 and Aβ1-42 generations of APPswe transgenic cells. TWE inhibited amyloidogenic pathway by reducing BACE1 expression, and promote non-amyloidogenic pathway by inducing ADAM10 level of APP metabolism. Additionally, TWE induced autophagy in APPswe transgenic cells involved in APP metabolism to shift the balance to non-amyloidogenic pathway. CONCLUSION In summary, our finding first time expounded that TWE can inhibit the generation of Aβ1-40 and Aβ1-42 in APPswe transgenic SH-SY5Y cells, which were regulated APP metabolism tends to non-amyloid metabolism pathway and mediated by autophagy. The results presented a novel finding for AD treatment of traditional natural medicines.
Collapse
Affiliation(s)
- Longhe Zhao
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Zhaorong Yue
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Yanni Wang
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Jiatao Wang
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Inam Ullah
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, China
| | - Fahim Muhammad
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, China
| | - Yongtao Zhou
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hongmei Zhu
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China.
| | - Hongyu Li
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China; Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, China.
| |
Collapse
|
31
|
Exosomal MicroRNA-Based Predictive Model for Preclinical Alzheimer's Disease: A Multicenter Study. Biol Psychiatry 2022; 92:44-53. [PMID: 35221095 DOI: 10.1016/j.biopsych.2021.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Exosomal microRNAs (miRNAs) have been demonstrated to be biomarkers of Alzheimer's disease (AD). However, whether exosomal miRNAs can predict AD at the asymptomatic stage remains unclear. METHODS This study is a multicenter study with four independent datasets to verify the capacity of exosomal miRNAs to identify preclinical AD. Subjects were recruited from a Beijing center in the pilot study (dataset 1: subjects with AD, n = 20; control subjects, n = 20), from other centers across China (dataset 2: subjects with AD, n = 95; control subjects, n = 93), a longitudinal cohort (dataset 3: subjects with preclinical AD, n = 101; control subjects, n = 102), and a confirmation study on familial AD (dataset 4: mutation carriers, n = 56; nonmutation carriers, n = 57). RESULTS A panel of miRNAs was changed in subjects with AD and can detect preclinical AD 5 to 7 years before the onset of cognitive impairment (areas under the curve = 0.85-0.88). CONCLUSIONS Exosomal miRNAs can be effective biomarkers for predicting AD 5 to 7 years prior to cognitive impairment onset.
Collapse
|
32
|
Qin W, Li F, Jia L, Wang Q, Li Y, Wei Y, Li Y, Jin H, Jia J. Phosphorylated Tau 181 Serum Levels Predict Alzheimer’s Disease in the Preclinical Stage. Front Aging Neurosci 2022; 14:900773. [PMID: 35769604 PMCID: PMC9234327 DOI: 10.3389/fnagi.2022.900773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background There is an urgent need for cost-effective, easy-to-measure biomarkers to identify subjects who will develop Alzheimer’s disease (AD), especially at the pre-symptomatic stage. This stage can be determined in autosomal dominant AD (ADAD) which offers the opportunity to observe the dynamic biomarker changes during the life-course of AD stages. This study aimed to investigate serum biomarkers during different AD stages and potential novel protein biomarkers of presymptomatic AD. Methods In the first stage, 32 individuals [20 mutation carriers including 10 with AD, and 10 with mild cognitive impairment (MCI), and 12 healthy controls] from ADAD families were analyzed. All subjects underwent a complete clinical evaluation and a comprehensive neuropsychological battery. Serum samples were collected from all subjects, and antibody arrays were used to analyze 170 proteins in these samples. The most promising biomarkers were identified during this screening and were then measured in serum samples of 12 subjects with pre-MCI and 20 controls. Results The serum levels of 13 proteins were significantly different in patients with AD or MCI compared to controls. Of the 13 proteins, cathepsin D, immunoglobulin E, epidermal growth factor receptor (EGFR), matrix metalloproteinase-9 (MMP-9), von Willebrand factor (vWF), haptoglobin, and phosphorylated Tau-181 (p-Tau181) correlated with all cognitive measures (R2 = −0.69–0.76). The areas under the receiver operating characteristic curve of these seven proteins were 0.71–0.93 for the classification of AD and 0.57–0.95 for the classification of MCI. Higher levels of p-Tau181 were found in the serum of pre-MCI subjects than in the serum of controls. The p-Tau181 serum level might detect AD before symptoms occur (area under the curve 0.85, sensitivity 75%, specificity 81.67%). Conclusions A total of 13 serum proteins showed significant differences between subjects with AD and MCI and healthy controls. The p-Tau181 serum level might be a broadly available and cost-effective biomarker to identify individuals with preclinical AD and assess the severity of AD.
Collapse
Affiliation(s)
- Wei Qin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Fangyu Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ying Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Hongmei Jin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Capital Medical University, Beijing, China
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- *Correspondence: Jianping Jia
| |
Collapse
|
33
|
Dong L, Liu C, Sha L, Mao C, Li J, Huang X, Wang J, Chu S, Peng B, Cui L, Xu Q, Gao J. PSEN2 Mutation Spectrum and Novel Functionally Validated Mutations in Alzheimer’s Disease: Data from PUMCH Dementia Cohort. J Alzheimers Dis 2022; 87:1549-1556. [PMID: 35491795 PMCID: PMC9277672 DOI: 10.3233/jad-220194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The established causative mutations in the APP, PSEN1, and PSEN2 can explain less than 1%,Alzheimer’s disease (AD) patients. Of the identified variants, the PSEN2 mutations are even less common. Objective: With the genetic study from the dementia cohort of Peking Union Medical College Hospital (PUMCH), we aim to illustrate the PSEN2 mutation spectrum and novel functionally validated mutations in Chinese AD patients. Methods: 702 AD participants, aged 30–85, were identified in PUMCH dementia cohort. They all received history inquiry, physical examination, biochemical test, cognitive evaluation, brain CT/MRI, and next-generation DNA sequencing. Functional analysis was achieved by transfection of the HEK293 cells with plasmids harboring the wild-type PSEN2 or candidate mutations. Results: Nine PSEN2 rare variants were found, including two reported (M239T, R62C) and seven novel variants (N141S, I368F, L396I, G117X, I146T, S147N, H220Y). The HEK293 cells transfected with the PSEN2 N141S, M239T, I368F plasmids showed higher Aβ 42 and Aβ 42/Aβ 40 levels relative to the wild-type PSEN2. The PSEN2 L396I, G117X, S147N, H220Y, and R62C did not alter Aβ 42, Aβ 40 levels, or Aβ 42/Aβ 40 ratio. 1.9%,(13/702) subjects harbored rare PSEN2 variants. 0.4%,(3/702) subjects carried pathogenic/likely pathogenic PSEN2 mutations. The three subjects with the functionally validated PSEN2 mutations were all familial early-onset AD patients. The common symptoms included amnesia and mental symptom. Additionally, the M239T mutation carrier presented with dressing apraxia, visuospatial agraphia, dyscalculia and visual mislocalization. Conclusion: The PSEN2 N141S, M239T, and I368F are functionally validated mutations.
Collapse
Affiliation(s)
- Liling Dong
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caiyan Liu
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Longze Sha
- Institute of Basic Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chenhui Mao
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Li
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinying Huang
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Wang
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Chu
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Peng
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liying Cui
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Xu
- Institute of Basic Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Gao
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
A Possible Pathogenic PSEN2 Gly56Ser Mutation in a Korean Patient with Early-Onset Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23062967. [PMID: 35328387 PMCID: PMC8953053 DOI: 10.3390/ijms23062967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Early-onset Alzheimer’s disease (EOAD) is characterized by the presence of neurological symptoms in patients with Alzheimer’s disease (AD) before 65 years of age. Mutations in pathological genes, including amyloid protein precursor (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2), were associated with EOAD. Seventy-six mutations in PSEN2 have been found around the world, which could affect the activity of γ-secretase in amyloid beta processing. Here, a heterozygous PSEN2 point mutation from G to A nucleotide change at position 166 (codon 56; c.166G>A, Gly56Ser) was identified in a 64-year-old Korean female with AD with progressive cognitive memory impairment for the 4 years prior to the hospital visit. Hippocampal atrophy was observed from magnetic resonance imaging-based neuroimaging analyses. Temporal and parietal cortex hypometabolisms were identified using fluorodeoxyglucose positron emission tomography. This mutation was at the N-terminal portion of the presenilin 2 protein on the cytosolic side. Therefore, the serine substitution may have promoted AD pathogenesis by perturbing to the mutation region through altered phosphorylation of presenilin. In silico analysis revealed that the mutation altered protein bulkiness with increased hydrophilicity and reduced flexibility of the mutated region of the protein. Structural changes were likely caused by intramolecular interactions between serine and other residues, which may have affected APP processing. The functional study will clarify the pathogenicity of the mutation in the future.
Collapse
|
35
|
Zhang Q, Wu Y, Liu E. Longitudinal associations between sleep duration and cognitive function in the elderly population in China: A 10-year follow-up study from 2005 to 2014. Int J Geriatr Psychiatry 2021; 36:1878-1890. [PMID: 34378823 DOI: 10.1002/gps.5615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Sleep duration is increasingly recognized as an important determinant of cognitive function among elderly. However, longitudinal studies on the relationship between sleep duration and cognitive function in Chinese elderly are rare. We sought to investigate the longitudinal association between sleep duration and cognitive function in Chinese elderly during a 10-year follow-up. METHOD This longitudinal study analyzed 2148 elderly (the baseline including 43.16% aged 70%-79%, 23.79% aged 80 and over) who had participated in four waves of the Chinese Longitudinal Healthy Longevity Survey during 2005-2014. Cognitive function (including global functioning and cognitive domains) was assessed using the Chinese version of the Mini-Mental State Examination. Sleep duration was assessed via self-reports. Mixed model analysis was used to evaluate the association between sleep duration and cognitive function, adjusting for sociodemographic variables and risk factors for cognitive function. RESULTS There is an inverted U-shaped relationship between sleep duration and global cognition and cognitive domains, with the highest cognitive scores observed for sleep durations between 6 and 9 h and the curve shifting from smooth to steeper from 2005 to 2014. The regression model showed that long sleep duration (>9 h) is significantly associated with global cognition and four cognitive domains: orientation, attention and calculation, immediate recall and visual construction. Both long and short sleep durations are significantly associated with delayed recall and not significantly associated with category fluency, language or the ability to follow a three-stage command. The five cognitive domains related to sleep duration are the domains that exhibited a rapid rate of decline. CONCLUSIONS Sleep duration can be identified as a modifiable risk factor for cognitive decline, as long or short sleep duration is associated with the five cognitive domains that exhibit cognitive decline. These findings suggest the need for intervention measures to maintain healthy sleep durations among Chinese elderly people.
Collapse
Affiliation(s)
- Qilin Zhang
- Center for Social Security Studies, Wuhan University, Wuhan, China
| | - Yanli Wu
- Center for Social Security Studies, Wuhan University, Wuhan, China
| | - Erpeng Liu
- Institute of Income Distribution and Public Finance, Zhongnan University of Economics and Law, Wuhan, China
| |
Collapse
|
36
|
Sun L, Zhang J, Su N, Zhang S, Yan F, Lin X, Yu J, Li W, Li X, Xiao S. Analysis of Genotype-Phenotype Correlations in Patients With Degenerative Dementia Through the Whole Exome Sequencing. Front Aging Neurosci 2021; 13:745407. [PMID: 34720994 PMCID: PMC8551445 DOI: 10.3389/fnagi.2021.745407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Sporadic dementias generally occur in older age and are highly polygenic, which indicates some patients transmitted in a poly-genes hereditary fashion. Objective: Our study aimed to analyze the correlations of genetic features with clinical symptoms in patients with degenerative dementia. Methods: We recruited a group of 84 dementia patients and conducted the whole exome sequencing (WES). The data were analyzed focusing on 153 dementia-related causing and susceptible genes. Results: According to the American College of Medical Genetics and Genomics (ACMG) standards and guidelines, we identified four reported pathogenic variants, namely, PSEN1 c.A344G, APP c.G2149A, MAPT c.G1165A, and MAPT c.G742A, one reported likely pathogenic variant, namely, PSEN2 c.G100A, one novel pathogenic variants, SQSTM1 c.C671A, and three novel likely pathogenic variants, namely, ABCA7 c.C4690T, ATP13A2 c.3135delC, and NOS3 c.2897-2A > G. 21 variants with uncertain significance in PSEN2, C9orf72, NOTCH3, ABCA7, ERBB4, GRN, MPO, SETX, SORL1, NEFH, ADCM10, and SORL1, etc., were also detected in patients with Alzheimer's disease (AD) and frontotemporal dementia (FTD). Conclusion: The new variants in dementia-related genes indicated heterogeneity in pathogenesis and phenotype of degenerative dementia. WES could serve as an efficient diagnostic tool for detecting intractable dementia.
Collapse
Affiliation(s)
- Lin Sun
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianye Zhang
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Su
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaowei Zhang
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Yan
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Lin
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yu
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Li
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Li
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shifu Xiao
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Rahman MH, Rana HK, Peng S, Kibria MG, Islam MZ, Mahmud SMH, Moni MA. Bioinformatics and system biology approaches to identify pathophysiological impact of COVID-19 to the progression and severity of neurological diseases. Comput Biol Med 2021; 138:104859. [PMID: 34601390 PMCID: PMC8483812 DOI: 10.1016/j.compbiomed.2021.104859] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/21/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) still tends to propagate and increase the occurrence of COVID-19 across the globe. The clinical and epidemiological analyses indicate the link between COVID-19 and Neurological Diseases (NDs) that drive the progression and severity of NDs. Elucidating why some patients with COVID-19 influence the progression of NDs and patients with NDs who are diagnosed with COVID-19 are becoming increasingly sick, although others are not is unclear. In this research, we investigated how COVID-19 and ND interact and the impact of COVID-19 on the severity of NDs by performing transcriptomic analyses of COVID-19 and NDs samples by developing the pipeline of bioinformatics and network-based approaches. The transcriptomic study identified the contributing genes which are then filtered with cell signaling pathway, gene ontology, protein-protein interactions, transcription factor, and microRNA analysis. Identifying hub-proteins using protein-protein interactions leads to the identification of a therapeutic strategy. Additionally, the incorporation of comorbidity interactions score enhances the identification beyond simply detecting novel biological mechanisms involved in the pathophysiology of COVID-19 and its NDs comorbidities. By computing the semantic similarity between COVID-19 and each of the ND, we have found gene-based maximum semantic score between COVID-19 and Parkinson's disease, the minimum semantic score between COVID-19 and Multiple sclerosis. Similarly, we have found gene ontology-based maximum semantic score between COVID-19 and Huntington disease, minimum semantic score between COVID-19 and Epilepsy disease. Finally, we validated our findings using gold-standard databases and literature searches to determine which genes and pathways had previously been associated with COVID-19 and NDs.
Collapse
Affiliation(s)
- Md Habibur Rahman
- Dept. of Computer Science and Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Humayan Kabir Rana
- Dept. of Computer Science and Engineering, Green University of Bangladesh, Dhaka, Bangladesh
| | - Silong Peng
- Institute of Automation, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Md Golam Kibria
- Dept. of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Canada
| | - Md Zahidul Islam
- Department of Electronics, Graduate School of Engineering, Nagoya University, Japan
| | - S M Hasan Mahmud
- Dept. of Computer Science, American International University Bangladesh, Dhaka, Bangladesh
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
38
|
Jiao B, Liu H, Guo L, Xiao X, Liao X, Zhou Y, Weng L, Zhou L, Wang X, Jiang Y, Yang Q, Zhu Y, Zhou L, Zhang W, Wang J, Yan X, Li J, Tang B, Shen L. The role of genetics in neurodegenerative dementia: a large cohort study in South China. NPJ Genom Med 2021; 6:69. [PMID: 34389718 PMCID: PMC8363644 DOI: 10.1038/s41525-021-00235-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative dementias are a group of diseases with highly heterogeneous pathology and complicated etiology. There exist potential genetic component overlaps between different neurodegenerative dementias. Here, 1795 patients with neurodegenerative dementias from South China were enrolled, including 1592 with Alzheimer's disease (AD), 110 with frontotemporal dementia (FTD), and 93 with dementia with Lewy bodies (DLB). Genes targeted sequencing analysis were performed. According to the American College of Medical Genetics (ACMG) guidelines, 39 pathogenic/likely pathogenic (P/LP) variants were identified in 47 unrelated patients in 14 different genes, including PSEN1, PSEN2, APP, MAPT, GRN, CHCHD10, TBK1, VCP, HTRA1, OPTN, SQSTM1, SIGMAR1, and abnormal repeat expansions in C9orf72 and HTT. Overall, 33.3% (13/39) of the variants were novel, the identified P/LP variants were seen in 2.2% (35/1592) and 10.9% (12/110) of AD and FTD cases, respectively. The overall molecular diagnostic rate was 2.6%. Among them, PSEN1 was the most frequently mutated gene (46.8%, 22/47), followed by PSEN2 and APP. Additionally, the age at onset of patients with P/LP variants (51.4 years), ranging from 30 to 83 years, was ~10 years earlier than those without P/LP variants (p < 0.05). This study sheds insight into the genetic spectrum and clinical manifestations of neurodegenerative dementias in South China, further expands the existing repertoire of P/LP variants involved in known dementia-associated genes. It provides a new perspective for basic research on genetic pathogenesis and novel guiding for clinical practice of neurodegenerative dementia.
Collapse
Affiliation(s)
- Bin Jiao
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China ,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China ,grid.216417.70000 0001 0379 7164Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hui Liu
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lina Guo
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuewen Xiao
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China ,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China ,grid.216417.70000 0001 0379 7164Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China ,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China ,grid.216417.70000 0001 0379 7164Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Weng
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China ,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China ,grid.216417.70000 0001 0379 7164Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Zhou
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaling Jiang
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhou
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China ,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Weiwei Zhang
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China ,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China ,grid.216417.70000 0001 0379 7164Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China ,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China ,grid.216417.70000 0001 0379 7164Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxiang Yan
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China ,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China ,grid.216417.70000 0001 0379 7164Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jinchen Li
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China ,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China ,grid.216417.70000 0001 0379 7164Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China ,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China ,grid.216417.70000 0001 0379 7164Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China ,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China ,grid.216417.70000 0001 0379 7164Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China ,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
39
|
Mao C, Li J, Dong L, Huang X, Lei D, Wang J, Chu S, Liu C, Peng B, Román GC, Cui L, Gao J. Clinical Phenotype and Mutation Spectrum of Alzheimer's Disease with Causative Genetic Mutation in a Chinese Cohort. Curr Alzheimer Res 2021; 18:265-272. [PMID: 34102969 PMCID: PMC8506917 DOI: 10.2174/1567205018666210608120339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/06/2021] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
Background Alzheimer’s disease with a causative genetic mutation (AD-CGM) is an uncommon form, characterized by a heterogeneous clinical phenotype and variations in the genotype of racial groups affected. Objective We aimed to systemically describe the phenotype variance and mutation spectrum in the large sample size of the Peking Union Medical College Hospital (PUMCH) cohort, Beijing, China. Methods Next-generation sequencing (NGS) was carried out in 1108 patients diagnosed with dementia. A total of 40 Han Chinese patients with three AD gene mutations were enrolled. A systemic review of all the patients was performed, including clinical history, neurocognitive assessment, brain magnetic resonance imaging, and cerebrospinal fluid (CSF) biomarkers. Results We studied the following gene mutation variants: 12 AβPP, 13 PSEN1, and 9 PSEN2, and 23 among them were novel. Most of them were early-onset, but PSEN1 mutation carriers had the youngest onset age. The commonest symptoms were similar to those of AD, including an amnestic syndrome, followed by psychiatric symptoms and movement disorder. On MRI, parietal and posterior temporal atrophy was prominent in PSEN1 and PSEN2 mutation carriers, while AβPP mutation carriers had more vascular changes. The CSF biomarkers profile was indistinguishable from sporadic AD. Conclusion We identified a small group of AD-CGM subjects representing 3.6% among more than 1000 demented patients in the PUMCH cohort. These subjects usually presented with early-onset
dementia and exhibited significant clinical and genetic heterogeneity. Identification required complete screening of genetic mutations using NGS. Although family history was usually present, we found non-familial cases of all three genetic mutations.
Collapse
Affiliation(s)
- Chenhui Mao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Jie Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Liling Dong
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Xinying Huang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Dan Lei
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Jie Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Shanshan Chu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Caiyan Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Bin Peng
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Gustavo C Román
- Stanley H. Appel Department of Neurology, Nantz National Alzheimer Center, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Jing Gao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
40
|
Wan K, Ma ZJ, Zhou X, Zhang YM, Yu XF, You MZ, Huang CJ, Zhang W, Sun ZW. A Novel Probable Pathogenic PSEN2 Mutation p.Phe369Ser Associated With Early-Onset Alzheimer's Disease in a Chinese Han Family: A Case Report. Front Aging Neurosci 2021; 13:710075. [PMID: 34366829 PMCID: PMC8334358 DOI: 10.3389/fnagi.2021.710075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Abstract
The pathogenesis of Alzheimer's disease is complex, and early-onset Alzheimer's disease (EOAD) is mostly influenced by genetic factors. Presenilin-1, presenilin-2 (PSEN2), and amyloid precursor protein are currently known as the three main causative genes for autosomal dominant EOAD, with the PSEN2 mutation being the rarest. In this study, we reported a 56-year-old Chinese Han proband who presented with prominent progressive amnesia, aphasia, executive function impairment, and depression 5 years ago. The 3-year follow-up showed that the patient experienced progressive brain atrophy displayed on magnetic resonance imaging (MRI) and dramatic cognitive decline assessed by neuropsychological evaluation. This patient was clinically diagnosed as EOAD based on established criteria. A heterozygous variant (NM_000447.2: c.1106T>C) of PSEN2 was identified for the first time in this patient and her two daughters. This mutation causing a novel missense mutation (p.Phe369Ser) in transmembrane domain 7 encoded by exon 11 had not been reported previously in 1000Genomes, ExAC, or ClinVar databases. This mutation was predicted by four in silico prediction programs, which all strongly suggested that it was damaging. Our results suggest that this novel PSEN2 Phe369Ser mutation may alter PSEN2 protein function and associate with EOAD.
Collapse
Affiliation(s)
- Ke Wan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhen-Juan Ma
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi-Mei Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xian-Feng Yu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meng-Zhe You
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chao-Juan Huang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhong-Wu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
41
|
Xiao X, Liu H, Liu X, Zhang W, Zhang S, Jiao B. APP, PSEN1, and PSEN2 Variants in Alzheimer's Disease: Systematic Re-evaluation According to ACMG Guidelines. Front Aging Neurosci 2021; 13:695808. [PMID: 34220489 PMCID: PMC8249733 DOI: 10.3389/fnagi.2021.695808] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/31/2021] [Indexed: 01/18/2023] Open
Abstract
The strategies of classifying APP, PSEN1, and PSEN2 variants varied substantially in the previous studies. We aimed to re-evaluate these variants systematically according to the American college of medical genetics and genomics and the association for molecular pathology (ACMG-AMP) guidelines. In our study, APP, PSEN1, and PSEN2 variants were collected by searching Alzforum and PubMed database with keywords “PSEN1,” “PSEN2,” and “APP.” These variants were re-evaluated based on the ACMG-AMP guidelines. We compared the number of pathogenic/likely pathogenic variants of APP, PSEN1, and PSEN2. In total, 66 APP variants, 323 PSEN1 variants, and 63 PSEN2 variants were re-evaluated in our study. 94.91% of previously reported pathogenic variants were re-classified as pathogenic/likely pathogenic variants, while 5.09% of them were variants of uncertain significance (VUS). PSEN1 carried the most prevalent pathogenic/likely pathogenic variants, followed by APP and PSEN2. Significant statistically difference was identified among these three genes when comparing the number of pathogenic/likely pathogenic variants (P < 2.2 × 10–16). Most of the previously reported pathogenic variants were re-classified as pathogenic/likely pathogenic variants while the others were re-evaluated as VUS, highlighting the importance of interpreting APP, PSEN1, and PSEN2 variants with caution according to ACMG-AMP guidelines.
Collapse
Affiliation(s)
- Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Zhang
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Sizhe Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
42
|
Genetic profiles of familial late-onset Alzheimer's disease in China: The Shanghai FLOAD study. Genes Dis 2021; 9:1639-1649. [PMID: 36157508 PMCID: PMC9485165 DOI: 10.1016/j.gendis.2021.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
Compared with early-onset familial AD (FAD), the heritability of most familial late-onset Alzheimer's disease (FLOAD) cases still remains unclear. However, there are few reported genetic profiles of FLOAD to date. In the present study, targeted sequencing of selected candidate genes was conducted for each of 90 probands with FLOAD and 101 unrelated matched normal controls among Chinese Han population. Results show a significantly lower rate of mutation in APP and PSENs, and APOE ε4 genetic risk is higher for FLOAD. Among the Chinese FLOAD population, the most frequent variant was CR1 rs116806486 [5.6%, 95% CI (1.8%, 12.5%)], followed by coding variants of TREM2 (4.4%, 95%CI (1.2%, 10.9%)) and novel mutations of ACE [3.3%, 95%CI (0.7%, 9.4%)]. Next, we found that novel pathogenic mutations in ACE including frame-shift and nonsense mutations were in association with FLOAD regardless of APOE ε4 status. Evidence from the Alzheimer's disease Neuroimaging Initiative (ADNI) database also supported this finding in different ethnicities. Results of in vitro analysis suggest that frame-shift and nonsense mutations in ACE may be involved in LOAD through decreased ACE protein levels without affecting direct processing of APP.
Collapse
|
43
|
Yang J, Kong C, Jia L, Li T, Quan M, Li Y, Lyu D, Li F, Jin H, Li Y, Wang Q, Jia J. Association of accelerated long-term forgetting and senescence-related blood-borne factors in asymptomatic individuals from families with autosomal dominant Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2021; 13:107. [PMID: 34044860 PMCID: PMC8157428 DOI: 10.1186/s13195-021-00845-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
Background Accelerated long-term forgetting has been identified in preclinical Alzheimer’s disease (AD) and is attributed to a selective impairment of memory consolidation in which the hippocampus plays a key role. As blood may contain multiple senescence-related factors that involved in neurogenesis and synaptic plasticity in the hippocampus, we tested whether there is an association between blood-borne factors and accelerated long-term forgetting in asymptomatic individuals from families with autosomal dominant AD (ADAD). Methods We analyzed data of 39 asymptomatic participants (n = 18 ADAD mutation carriers, n = 21 non-carriers) from the Chinese Familial Alzheimer’s Disease Network (CFAN) study. Long-term forgetting rates were calculated based on recall or recognition of two materials (word list and complex figure) at three delays comprising immediate, 30 min, and 7 days. Peripheral blood concentrations of candidate pro-aging factors (CC chemokine ligand 11 [CCL11] and monocyte chemotactic protein 1 [MCP1]) and rejuvenation factors (growth differentiation factor 11 [GDF11], thrombospondin-4 [THBS4], and secreted protein acidic and rich in cysteine like 1 [SPARCL1]) were evaluated in all participants. Results Despite normal performance on standard 30-min delayed testing, mutation carriers exhibited accelerated forgetting of verbal and visual material over 7 days in comparison with matched non-carriers. In the whole sample, lower plasma THBS4 was associated with accelerated long-term forgetting in list recall (β = −0.46, p = 0.002), figure recall (β = −0.44, p = 0.004), and list recognition (β = −0.37, p = 0.010). Additionally, higher plasma GDF11 and CCL11 were both associated with accelerated long-term forgetting (GDF11 versus figure recall: β = 0.39, p = 0.007; CCL11 versus list recognition: β = 0.44, p = 0.002). Conclusions Accelerated long-term forgetting is a cognitive feature of presymptomatic AD. Senescence-related blood-borne factors, especially THBS4, GDF11, and CCL11, may be promising biomarkers for the prediction of accelerated long-term forgetting. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00845-0.
Collapse
Affiliation(s)
- Jianwei Yang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, China
| | - Chaojun Kong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, China. .,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China. .,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China. .,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Tingting Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, China
| | - Diyang Lyu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, China
| | - Fangyu Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Hongmei Jin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Ying Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Qigeng Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, China. .,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China. .,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China. .,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
44
|
Pang Y, Li T, Wang Q, Qin W, Li Y, Wei Y, Jia L. A Rare Variation in the 3' Untranslated Region of the Presenilin 2 Gene Is Linked to Alzheimer's Disease. Mol Neurobiol 2021; 58:4337-4347. [PMID: 34009547 DOI: 10.1007/s12035-021-02429-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022]
Abstract
Rare variations in coding regions may alter the amino acid sequence and function of presenilins (PSENs), which results in the dysfunction of gamma-secretase, in turn contributing to the development of familial Alzheimer's disease (AD). However, whether rare variations in the 3' untranslated region (UTR) may change the expression level of PSEN2 leading to AD remains unclear. In a familial AD pedigree, DNA samples of the patients were screened for APP, PSEN1, and PSEN2 gene mutations using Sanger sequencing. Allele A of rs537889666, a rare variation located in the 3' UTR of PSEN2, was found in all AD patients, but not in the healthy control in the family. Cosegregation analysis (n = 5) revealed that allele A of rs537889666 may be a pathogenic rare variation. The dual-luciferase assay revealed that allele A suppressed the combination of miR-183-5p and the 3' UTR of PSEN2, which may block the miR-183-5p-mediated suppression of PSEN2 expression. Further study showed an elevated ratio of Aβ42/40 under overexpressed PSEN2 conditions. Measurements of the cerebrospinal fluid showed that PSEN2 levels were increased in both sporadic and AD in this family, suggesting that elevated PSEN2 was associated with the disease. In addition, the miR-183-5p inhibitor or mimic can increase or decrease Aβ42/40 ratios. In conclusion, the results indicate that allele A of rs537889666 upregulated PSEN2 levels, increasing the Aβ42/40 ratio and contributing to AD development.
Collapse
Affiliation(s)
- Yana Pang
- Innovation Center for Neurological Disorders and Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100000, China
| | - Tingting Li
- Innovation Center for Neurological Disorders and Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100000, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100000, China
| | - Wei Qin
- Innovation Center for Neurological Disorders and Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100000, China
| | - Ying Li
- Innovation Center for Neurological Disorders and Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100000, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100000, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100000, China.
| |
Collapse
|
45
|
Tong TM, Dao TTH, Doan LP, Nguyen DT, Nguyen QTT, Do TTT, Truong KD, Phan MD, Nguyen HN, Tran TC, Giang H. Genetic analysis of Vietnamese patients with early-onset Alzheimer's disease. Int J Neurosci 2021; 132:1190-1197. [PMID: 33397166 DOI: 10.1080/00207454.2020.1870974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Purpose of the study: Alzheimer's disease (AD) is the most common type of dementia and its prevalence is rapidly increasing worldwide. Early-onset Alzheimer's disease (EOAD) constitutes of patients with age of onset earlier than 65 year-old and is known to be associated with genetic mutations. In this study, we reported the first genetic analysis of Vietnamese patients with EOAD.Materials and methods: We analyzed targeted sequencing data obtained from a cohort of 51 Vietnamese EOAD patients to identify pathogenic variants in twenty nine well-characterized neurodengerative genes.Results: We identified four missense mutations in APP/PSEN1 genes from six individuals, which accounts for 11.8% of all tested cases. Three of these mutations were previously reported as pathogenic and one mutation in the APP gene was newly identified and might be specific for Vietnamese patients. Our study also found eight individuals carrying homozygous APOE ε4 allele, the main risk factor gene for late-onset AD.Conclusions: Our findings showed that mutation rate in APP/PSEN genes in Vietnamese EOAD patients is consistent with that in other ethnic groups. Although further functional studies are required to validate the pathogenesis of the new mutations, our study demonstrated the necessity of genetic screening for EOAD patients as well as additional genetic data collection in Vietnamese population.
Collapse
Affiliation(s)
- Trang Mai Tong
- Department of Neurology, University Medical Center, Ho Chi Minh City, Vietnam
| | | | | | | | | | | | | | - Minh-Duy Phan
- Medical Genetics Institute, Ho Chi Minh City, Vietnam
| | - Hoai-Nghia Nguyen
- Center for Molecular Biomedicine, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Thang Cong Tran
- Department of Neurology, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Hoa Giang
- Medical Genetics Institute, Ho Chi Minh City, Vietnam
| |
Collapse
|
46
|
Kung WM, Lin MS. The NFκB Antagonist CDGSH Iron-Sulfur Domain 2 Is a Promising Target for the Treatment of Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22020934. [PMID: 33477809 PMCID: PMC7832822 DOI: 10.3390/ijms22020934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Proinflammatory response and mitochondrial dysfunction are related to the pathogenesis of neurodegenerative diseases (NDs). Nuclear factor κB (NFκB) activation has been shown to exaggerate proinflammation and mitochondrial dysfunction, which underlies NDs. CDGSH iron-sulfur domain 2 (CISD2) has been shown to be associated with peroxisome proliferator-activated receptor-β (PPAR-β) to compete for NFκB and antagonize the two aforementioned NFκB-provoked pathogeneses. Therefore, CISD2-based strategies hold promise in the treatment of NDs. CISD2 protein belongs to the human NEET protein family and is encoded by the CISD2 gene (located at 4q24 in humans). In CISD2, the [2Fe-2S] cluster, through coordinates of 3-cysteine-1-histidine on the CDGSH domain, acts as a homeostasis regulator under environmental stress through the transfer of electrons or iron-sulfur clusters. Here, we have summarized the features of CISD2 in genetics and clinics, briefly outlined the role of CISD2 as a key physiological regulator, and presented modalities to increase CISD2 activity, including biomedical engineering or pharmacological management. Strategies to increase CISD2 activity can be beneficial for the prevention of inflammation and mitochondrial dysfunction, and thus, they can be applied in the management of NDs.
Collapse
Affiliation(s)
- Woon-Man Kung
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan;
| | - Muh-Shi Lin
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung 43303, Taiwan
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
- Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Correspondence: ; Tel.: +886-4-2665-1900
| |
Collapse
|
47
|
Tang X, Liu S, Cai J, Chen Q, Xu X, Mo CB, Xu M, Mai T, Li S, He H, Qin J, Zhang Z. Effects of Gene and Plasma Tau on Cognitive Impairment in Rural Chinese Population. Curr Alzheimer Res 2021; 18:56-66. [PMID: 33761861 DOI: 10.2174/1567205018666210324122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 01/13/2021] [Accepted: 03/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sufficient attention was not paid to the effects of microtubule-associated protein tau (MAPT) and plasma tau protein on cognition. OBJECTIVE A total of 3072 people in rural China were recruited. They were provided with questionnaires, and blood samples were obtained. METHODS The MMSE score was used to divide the population into cognitive impairment group and control group. First, logistic regression analysis was used to explore the possible factors influencing cognitive function. Second, 1837 samples were selected for SNP detection through stratified sampling. Third, 288 samples were selected to test three plasma biomarkers (tau, phosphorylated tau, and Aβ-42). RESULTS For the MAPT rs242557, people with AG genotypes were 1.32 times more likely to develop cognitive impairment than those with AA genotypes, and people with GG genotypes were 1.47 times more likely to develop cognitive impairment than those with AG phenotypes. The plasma tau protein concentration was also increased in the population carrying G (P = 0.020). The plasma tau protein was negatively correlated with the MMSE score (P = 0.004). CONCLUSION The mutation of MAPT rs242557 (A > G) increased the risk of cognitive impairment and the concentration of plasma tau protein.
Collapse
Affiliation(s)
- Xu Tang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Shuzhen Liu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Jiansheng Cai
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Quanhui Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Xia Xu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Chun B Mo
- Guilin Medical University, No. 109, North Second Huancheng Road, Guilin 541004,China
| | - Min Xu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Tingyu Mai
- Guilin Medical University, No. 109, North Second Huancheng Road, Guilin 541004,China
| | - Shengle Li
- Guilin Medical University, No. 109, North Second Huancheng Road, Guilin 541004,China
| | - Haoyu He
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Jian Qin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Zhiyong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| |
Collapse
|
48
|
Mutational analysis in familial Alzheimer's disease of Han Chinese in Taiwan with a predominant mutation PSEN1 p.Met146Ile. Sci Rep 2020; 10:19769. [PMID: 33188256 PMCID: PMC7666133 DOI: 10.1038/s41598-020-76794-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022] Open
Abstract
Mutations in PSEN1, PSEN2, or APP genes are known to be causative for autosomal dominant Alzheimer’s disease (ADAD). While more than 400 mutations were reported worldwide, predominantly PSEN1, over 40 mutations have been reported in Han Chinese and were associated with earlier onset and more affected family members. Between 2002 and 2018, 77 patients in the neurological clinic of Taipei Veterans General Hospital with a history suggestive of ADAD were referred for mutational analysis. We retrospectively collected demographics, initial symptoms, neurological features and inheritance. We identified 16 patients with PSEN1 and 1 with APP mutation. Among the mutations identified, PSEN1 p.Pro117Leu, p.Met146Ile, p.Gly206Asp, p.Gly209Glu, p.Glu280Lys and p.Leu286Val and APP p.Asp678His were known pathogenic mutations; PSEN1 p.His131Arg and p.Arg157Ser were classified as likely pathogenic and variance of unknown significance respectively. The mean age at onset was 46.2 ± 6.2 years in patients with mutation found. PSEN1 p.Met146Ile, occurred in 56.2% (9/16) of patients with PSEN1 mutations, was the most frequent mutation in the cohort. The additional neurological features occurring in 9 PSEN1 p.Met146Ile index patients were similar with the literature. We found patients with genetic diagnoses were more likely to have positive family history, younger age at onset and less brain white matter hyperintensity.
Collapse
|
49
|
Han LH, Xue YY, Zheng YC, Li XY, Lin RR, Wu ZY, Tao QQ. Genetic Analysis of Chinese Patients with Early-Onset Dementia Using Next-Generation Sequencing. Clin Interv Aging 2020; 15:1831-1839. [PMID: 33061333 PMCID: PMC7538001 DOI: 10.2147/cia.s271222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022] Open
Abstract
Objective Early-onset dementia (EOD) is a relatively uncommon form of dementia that afflicts people before age 65. Only a few studies analyzing the genetics of EOD have been performed in the Chinese Han population. Diagnosing EOD remains a challenge due to the diverse genetic and clinical heterogeneity of these diseases. The aim of this study was to investigate the genetic spectrum and clinical features of Chinese patients with EOD. Materials and Methods A total of 49 EOD patients were recruited. Targeted next-generation (NGS) analyses were performed to screen for all of the known genes associated with dementia. Possible pathogenic variants were confirmed by performing Sanger sequencing. The genetic spectrum and clinical features of the EOD patients were analyzed. Results Seven previously reported pathogenic variants (p.I213T and p.W165C in PSEN1; p.D678N in APP; c.1349_1352del in TBK1; p.P301L and p.R406W in MAPT; p.R110C in NOTCH3) and two novel variants of uncertain significance (p.P436L in PSEN2; c.239-11G>A in TARDBP) were identified. Conclusion Our study demonstrated the genetic spectrum and clinical features of EOD patients, and it reveals that genetic testing of known causal genes in EOD patients can help to make a precise diagnosis.
Collapse
Affiliation(s)
- Li-Hong Han
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Department of Neurology, Second People's Hospital of Luqiao District, Taizhou, People's Republic of China
| | - Yan-Yan Xue
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yi-Cen Zheng
- Department of Psychology, Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Xiao-Yan Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Rong-Rong Lin
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qing-Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
50
|
Jia L, Xu H, Chen S, Wang X, Yang J, Gong M, Wei C, Tang Y, Qu Q, Chu L, Shen L, Zhou C, Wang Q, Zhao T, Zhou A, Li Y, Li F, Li Y, Jin H, Qin Q, Jiao H, Li Y, Zhang H, Lyu D, Shi Y, Song Y, Jia J. The APOE ε4 exerts differential effects on familial and other subtypes of Alzheimer's disease. Alzheimers Dement 2020; 16:1613-1623. [PMID: 32881347 PMCID: PMC7984370 DOI: 10.1002/alz.12153] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/24/2020] [Accepted: 06/28/2020] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The genetic risk effects of apolipoprotein E (APOE) on familial Alzheimer's disease (FAD) with or without gene mutations, sporadic AD (SAD), and normal controls (NC) remain unclear in the Chinese population. METHODS In total, 15 119 subjects, including 311 FAD patients without PSEN1, PSEN2, APP, TREM2, and SORL1 pathogenic mutations (FAD [unknown]); 126 FAD patients with PSENs/APP mutations (FAD [PSENs/APP]); 7234 SAD patients; and 7448 NC were enrolled. The risk effects of APOE ε4 were analyzed across groups. RESULTS The prevalence of the APOE ε4 genotype in FAD (unknown), FAD (PSENs/APP), SAD, and NC groups was 56.27%, 26.19%, 36.23%, and 19.54%, respectively. Further, the APOE ε4 positive genotype had predictive power for FAD (unknown) risk (odds ratio: 4.51, 95% confidence interval: 3.57-5.45, P < .001). DISCUSSION APOE ε4 positive genotype may cause familial aggregation, and the investigation of multiple interventions targeting APOE pathological function to reduce the risk for this disease warrants attention.
Collapse
Affiliation(s)
- Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Hui Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shuoqi Chen
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xiu Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jianwei Yang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Min Gong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Cuibai Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Lan Chu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital Central South University, Changsha, China
| | - Chunkui Zhou
- Department of Neurology, The First Teaching Hospital of Jilin University, Changchun, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Tan Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Aihong Zhou
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ying Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Fangyu Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Hongmei Jin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Haishan Jiao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Heng Zhang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Diyang Lyu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yuqing Shi
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yang Song
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|