1
|
Picart T, Hervey-Jumper S. Central nervous system regulation of diffuse glioma growth and invasion: from single unit physiology to circuit remodeling. J Neurooncol 2024; 169:1-10. [PMID: 38834748 PMCID: PMC11269341 DOI: 10.1007/s11060-024-04719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE Understanding the complex bidirectional interactions between neurons and glioma cells could help to identify new therapeutic targets. Herein, the techniques and application of novel neuroscience tools implemented to study the complex interactions between brain and malignant gliomas, their results, and the potential therapeutic opportunities were reviewed. METHODS Literature search was performed on PubMed between 2001 and 2023 using the keywords "glioma", "glioblastoma", "circuit remodeling", "plasticity", "neuron networks" and "cortical networks". Studies including grade 2 to 4 gliomas, diffuse midline gliomas, and diffuse intrinsic pontine gliomas were considered. RESULTS Glioma cells are connected through tumour microtubes and form a highly connected network within which pacemaker cells drive tumorigenesis. Unconnected cells have increased invasion capabilities. Glioma cells are also synaptically integrated within neural circuitry. Neurons promote tumour growth via paracrine and direct electrochemical mechanisms, including glutamatergic AMPA-receptors. Increased glutamate release in the tumor microenvironment and loss of peritumoral GABAergic inhibitory interneurons result in network hyperexcitability and secondary epilepsy. Functional imaging, local field potentials and subcortical mapping, performed in awake patients, have defined patterns of malignant circuit remodeling. Glioma-induced remodeling is frequent in language and even motor cortical networks, depending on tumour biological parameters, and influences functional outcomes. CONCLUSION These data offer new insights into glioma tumorigenesis. Future work will be needed to understand how tumor intrinsic molecular drivers influence neuron-glioma interactions but also to integrate these results to design new therapeutic options for patients.
Collapse
Affiliation(s)
- Thiebaud Picart
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, Hospices Civils de Lyon, Bron, France
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Liu Y, Cui M, Gao X, Yang H, Chen H, Guan B, Ma X. Structural connectome combining DTI features predicts postoperative language decline and its recovery in glioma patients. Eur Radiol 2024; 34:2759-2771. [PMID: 37736802 DOI: 10.1007/s00330-023-10212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVES A decline in language function is a common complication after glioma surgery, affecting patients' quality of life and survival. This study predicts the postoperative decline in language function and whether it can be recovered based on the preoperative white matter structural network. MATERIALS AND METHODS Eighty-one right-handed patients with glioma involving the left hemisphere were retrospectively included. Their language function was assessed using the Western Aphasia Battery before and 1 week and 3 months after surgery. Structural connectome combining DTI features was selected to predict postoperative language decline and recovery. Nested cross-validation was used to optimize the models, evaluate the prediction performance of the models, and identify the most predictive features. RESULTS Five, seven, and seven features were finally selected as the predictive features in each model and used to establish predictive models for postoperative language decline (1 week after surgery), long-term language decline (3 months after surgery), and language recovery, respectively. The overall accuracy of the three models in nested cross-validation and overall area under the receiver operating characteristic curve were 0.840, 0.790, and 0.867, and 0.841, 0.778, and 0.901, respectively. CONCLUSION We used machine learning algorithms to establish models to predict whether the language function of glioma patients will decline after surgery and whether postoperative language deficit can recover, which may help improve the development of treatment strategies. The difference in features in the non-language decline or the language recovery group may reflect the structural basis for the protection and compensation of language function in gliomas. CLINICAL RELEVANCE STATEMENT Models can predict the postoperative language decline and whether it can recover in glioma patients, possibly improving the development of treatment strategies. The difference in selected features may reflect the structural basis for the protection and compensation of language function. KEY POINTS • Structural connectome combining diffusion tensor imaging features predicted glioma patients' language decline after surgery. • Structural connectome combining diffusion tensor imaging features predicted language recovery of glioma patients with postoperative language disorder. • Diffusion tensor imaging and connectome features related to language function changes imply plastic brain regions and connections.
Collapse
Affiliation(s)
- Yukun Liu
- Department of Neurosurgery, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Meng Cui
- Department of Emergency Medicine, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
| | - Xin Gao
- Department of Neurosurgery, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, China
| | - Hui Yang
- Department of Neurosurgery, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, China
| | - Hewen Chen
- Department of Neurosurgery, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, China
| | - Bing Guan
- Health Economics Department, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Xiaodong Ma
- Department of Neurosurgery, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
3
|
Ek L, Elwin M, Neander K. Neuropsychological longitudinal study of patients with low-grade gliomas: Cognitive impairment. APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-11. [PMID: 38470840 DOI: 10.1080/23279095.2024.2325546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
This study is part of a longitudinal research program, in which patients diagnosed with low-grade gliomas (LGG: n = 13), as well as healthy controls (n = 13), were consecutively recruited and neuropsychologically followed for 7 years. The patients are followed up regardless of variations in treatment. A composite score is used (Global Deficit Score: GDS) included cognitive measures where at least five patients had a negative change: information processing speed, speed of naming, construction ability, verbal fluency, non-verbal thinking, and immediate non-verbal memory. The most important finding in this 7-year follow-up study is that two-thirds of the patients developed cognitive impairment. The remaining third of the patients showed stability in their cognitive ability and were still alive 17 years after diagnosis. Younger patients with tumors in the right frontal or posterior regions showed a more favorable development. Patients with frontal tumors and a declined GDS show also significant changes in executive functions. Given the limited number, no firm conclusions can be drawn regarding the impact of tumor localization. The impact of LGG on cognition and the survival time after diagnosis varies considerably between patients. However, most of the patients (69%) showed cognitive impairment during the seven years we followed them.
Collapse
Affiliation(s)
- Lena Ek
- Department of Rehabilitation, Hässleholm Hospital, Hässleholm, Sweden
| | - Marie Elwin
- Faculty of Medicine and Health, University Health Care Research Centre, Örebro University, Örebro, Sweden
| | - Kerstin Neander
- Faculty of Medicine and Health, University Health Care Research Centre, Örebro University, Örebro, Sweden
| |
Collapse
|
4
|
Pasquini L, Yildirim O, Silveira P, Tamer C, Napolitano A, Lucignani M, Jenabi M, Peck KK, Holodny A. Effect of tumor genetics, pathology, and location on fMRI of language reorganization in brain tumor patients. Eur Radiol 2023; 33:6069-6078. [PMID: 37074422 PMCID: PMC10415458 DOI: 10.1007/s00330-023-09610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVES Language reorganization may follow tumor invasion of the dominant hemisphere. Tumor location, grade, and genetics influence the communication between eloquent areas and tumor growth dynamics, which are drivers of language plasticity. We evaluated tumor-induced language reorganization studying the relationship of fMRI language laterality to tumor-related variables (grade, genetics, location), and patient-related variables (age, sex, handedness). METHODS The study was retrospective cross-sectional. We included patients with left-hemispheric tumors (study group) and right-hemispheric tumors (controls). We calculated five fMRI laterality indexes (LI): hemispheric, temporal lobe, frontal lobe, Broca's area (BA), Wernicke's area (WA). We defined LI ≥ 0.2 as left-lateralized (LL) and LI < 0.2 as atypical lateralized (AL). Chi-square test (p < 0.05) was employed to identify the relationship between LI and tumor/patient variables in the study group. For those variables having significant results, confounding factors were evaluated in a multinomial logistic regression model. RESULTS We included 405 patients (235 M, mean age: 51 years old) and 49 controls (36 M, mean age: 51 years old). Contralateral language reorganization was more common in patients than controls. The statistical analysis demonstrated significant association between BA LI and patient sex (p = 0.005); frontal LI, BA LI, and tumor location in BA (p < 0.001); hemispheric LI and fibroblast growth factor receptor (FGFR) mutation (p = 0.019); WA LI and O6-methylguanine-DNA methyltransferase promoter (MGMT) methylation in high-grade gliomas (p = 0.016). CONCLUSIONS Tumor genetics, pathology, and location influence language laterality, possibly due to cortical plasticity. Increased fMRI activation in the right hemisphere was seen in patients with tumors in the frontal lobe, BA and WA, FGFR mutation, and MGMT promoter methylation. KEY POINTS • Patients harboring left-hemispheric tumors present with contralateral translocation of language function. Influential variables for this phenomenon included frontal tumor location, BA location, WA location, sex, MGMT promoter methylation, and FGFR mutation. • Tumor location, grade, and genetics may influence language plasticity, thereby affecting both communication between eloquent areas and tumor growth dynamics. • In this retrospective cross-sectional study, we evaluated language reorganization in 405 brain tumor patients by studying the relationship of fMRI language laterality to tumor-related variables (grade, genetics, location), and patient-related variables (age, sex, handedness).
Collapse
Affiliation(s)
- Luca Pasquini
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- NESMOS Department, Neuroradiology Unit, Sant'Andrea Hospital, La Sapienza University, 00189, Rome, Italy.
| | - Onur Yildirim
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Patrick Silveira
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christel Tamer
- Diagnostic Radiology Department, American University of Beirut Medical Center, Beirut, 1107 2020, Lebanon
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Martina Lucignani
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Mehrnaz Jenabi
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kyung K Peck
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Andrei Holodny
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York, NY, 10065, USA
| |
Collapse
|
5
|
Deng D, Liang L. Talking about speaking: what do we know about language reorganization in brain tumors before surgery. Eur Radiol 2023; 33:6066-6068. [PMID: 37405506 DOI: 10.1007/s00330-023-09900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Affiliation(s)
- Demao Deng
- Department of Radiology, Guangxi Academy of Medical Science, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| | - Lingyan Liang
- Department of Radiology, Guangxi Academy of Medical Science, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| |
Collapse
|
6
|
Boerger TF, Pahapill P, Butts AM, Arocho-Quinones E, Raghavan M, Krucoff MO. Large-scale brain networks and intra-axial tumor surgery: a narrative review of functional mapping techniques, critical needs, and scientific opportunities. Front Hum Neurosci 2023; 17:1170419. [PMID: 37520929 PMCID: PMC10372448 DOI: 10.3389/fnhum.2023.1170419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/16/2023] [Indexed: 08/01/2023] Open
Abstract
In recent years, a paradigm shift in neuroscience has been occurring from "localizationism," or the idea that the brain is organized into separately functioning modules, toward "connectomics," or the idea that interconnected nodes form networks as the underlying substrates of behavior and thought. Accordingly, our understanding of mechanisms of neurological function, dysfunction, and recovery has evolved to include connections, disconnections, and reconnections. Brain tumors provide a unique opportunity to probe large-scale neural networks with focal and sometimes reversible lesions, allowing neuroscientists the unique opportunity to directly test newly formed hypotheses about underlying brain structural-functional relationships and network properties. Moreover, if a more complete model of neurological dysfunction is to be defined as a "disconnectome," potential avenues for recovery might be mapped through a "reconnectome." Such insight may open the door to novel therapeutic approaches where previous attempts have failed. In this review, we briefly delve into the most clinically relevant neural networks and brain mapping techniques, and we examine how they are being applied to modern neurosurgical brain tumor practices. We then explore how brain tumors might teach us more about mechanisms of global brain dysfunction and recovery through pre- and postoperative longitudinal connectomic and behavioral analyses.
Collapse
Affiliation(s)
- Timothy F. Boerger
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Peter Pahapill
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alissa M. Butts
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
- Mayo Clinic, Rochester, MN, United States
| | - Elsa Arocho-Quinones
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Manoj Raghavan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Max O. Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
7
|
Nieberlein L, Rampp S, Gussew A, Prell J, Hartwigsen G. Reorganization and Plasticity of the Language Network in Patients with Cerebral Gliomas. Neuroimage Clin 2023; 37:103326. [PMID: 36736198 PMCID: PMC9926312 DOI: 10.1016/j.nicl.2023.103326] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/15/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Language is organized in large-scale networks in the human brain that show a strong potential for flexible interactions and adaptation. Neuroplasticity is the central mechanism that allows such dynamic modulation to changing conditions across the life span and is particularly important for network reorganization after brain lesions. Most studies on language reorganization focused on language recovery after stroke. Yet, a strong degree of adaptive neuroplasticity can also be observed in patients with brain tumors in language-eloquent brain areas. This review discusses key mechanisms for neural reorganization in patients with brain tumors. Our main aim is to elucidate the underlying mechanisms for intra- and interhemispheric plasticity in the language network in these patients. The following reorganization patterns are discussed: 1) Persisting function within the tumor; 2) Reorganization in perilesional regions; 3) Reorganization in a distributed network of the affected hemisphere; 4) Reorganization to the contralesional hemisphere. In this context, we shed light on language-related reorganization patterns in frontal and temporo-parietal areas and discuss their functional relevance. We also address tumor-related changes in structural and functional connectivity between eloquent brain regions. Thereby, we aim to expand the general understanding of the plastic potential of the neural language network and facilitate clinical decision-making processes for effective, function-preserving tumor treatment.
Collapse
Affiliation(s)
- Laura Nieberlein
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Halle (Saale), Germany; Department of Neurosurgery, University Hospital Erlangen, Germany
| | - Alexander Gussew
- Department of Medical Physics, University Hospital Halle (Saale), Germany
| | - Julian Prell
- Department of Neurosurgery, University Hospital Halle (Saale), Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Wilhelm Wundt Institute for Psychology, Leipzig University, Germany
| |
Collapse
|
8
|
Bennett C, González M, Tapia G, Riveros R, Torres F, Loyola N, Veloz A, Chabert S. Cortical mapping in glioma surgery: correlation of fMRI and direct electrical stimulation with Human Connectome Project parcellations. Neurosurg Focus 2022; 53:E2. [PMID: 36455268 DOI: 10.3171/2022.9.focus2283] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Noninvasive brain mapping with functional MRI (fMRI) and mapping with direct electrical stimulation (DES) are important tools in glioma surgery, but the evidence is inconclusive regarding the sensitivity and specificity of fMRI. The Human Connectome Project (HCP) proposed a new cortical parcellation that has not been thoroughly tested in a clinical setting. The main goal of this study was to evaluate the correlation of fMRI and DES mapping with HCP areas in a clinical setting, and to evaluate the performance of fMRI mapping in motor and language tasks in patients with glioma, using DES as the gold standard. METHODS Forty patients with supratentorial gliomas were examined using preoperative fMRI and underwent awake craniotomy with DES. Functional activation maps were visualized on a 3D representation of the cortex, classified according to HCP areas, and compared with surgical mapping. RESULTS Functional MRI was successful in identifying language and motor HCP areas in most cases, including novel areas such as 55b and the superior longitudinal fasciculus (SLF). Functional MRI had a sensitivity and specificity of 100% and 71%, respectively, for motor function in HCP area 4. Sensitivity and specificity were different according to the area and fMRI protocol; i.e., semantic protocols performed better in Brodmann area (BA) 55b/peri-sylvian language areas with 100% sensitivity and 20% specificity, and word production protocols in BAs 44 and 45 with 70% sensitivity and 80% specificity. Some compensation patterns could be observed, such as motor activation of the postcentral gyrus in precentral gliomas. CONCLUSIONS HCP areas can be detected in clinical scenarios of glioma surgery. These areas appear relatively stable across patients, but compensation patterns seem to differ, allowing occasional resection of activating areas. Newly described areas such as 55b and SLF can act as critical areas in language networks. Surgical planning should account for these parcellations.
Collapse
Affiliation(s)
- Carlos Bennett
- 1Department of Neurosurgery, Hospital Carlos van Buren, Valparaíso.,2School of Medicine, Universidad de Valparaíso
| | - Matías González
- 1Department of Neurosurgery, Hospital Carlos van Buren, Valparaíso.,2School of Medicine, Universidad de Valparaíso
| | - Gisella Tapia
- 2School of Medicine, Universidad de Valparaíso.,3Department of Neurology, Hospital Carlos van Buren, Valparaíso
| | - Rodrigo Riveros
- 2School of Medicine, Universidad de Valparaíso.,4Department of Radiology, Hospital Carlos van Buren, Valparaíso
| | - Francisco Torres
- 2School of Medicine, Universidad de Valparaíso.,4Department of Radiology, Hospital Carlos van Buren, Valparaíso
| | - Nicole Loyola
- 1Department of Neurosurgery, Hospital Carlos van Buren, Valparaíso.,2School of Medicine, Universidad de Valparaíso
| | - Alejandro Veloz
- 5School of Biomedical Engineering, Universidad de Valparaíso.,6Centro de Investigación y Desarrollo en Ingeniería en Salud CINGS, Universidad de Valparaíso
| | - Stéren Chabert
- 5School of Biomedical Engineering, Universidad de Valparaíso.,8Instituto Milenio Intelligent Healthcare Engineering, Santiago, Chile
| |
Collapse
|
9
|
Krishna S, Hervey-Jumper SL. Neural Regulation of Cancer: Cancer-Induced Remodeling of the Central Nervous System. Adv Biol (Weinh) 2022; 6:e2200047. [PMID: 35802914 PMCID: PMC10182823 DOI: 10.1002/adbi.202200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/01/2022] [Indexed: 01/28/2023]
Abstract
In recent years, there have been significant advances in understanding the neuronal influence on the biology of solid tumors such as prostate, pancreatic, gastric, and brain cancers. An increasing amount of experimental evidence across multiple tumor types strongly suggests the existence of bidirectional crosstalk between cancer cells and the neural microenvironment. However, unlike cancers affecting many solid organs, brain tumors, namely gliomas, can synaptically integrate into neural circuits and thus can exert a greater potential to induce dynamic remodeling of functional circuits resulting in long-lasting behavioral changes. The first part of the review describes dynamic changes in language, sensory, and motor networks following glioma development and presents evidence focused on how different patterns of glioma-induced cortical reorganization may predict the degree and time course of functional recovery in brain tumor patients. The second part focuses on the network and cellular-level mechanisms underlying glioma-induced cerebral reorganization. Finally, oncological and clinical factors influencing glioma-induced network remodeling in glioma patients are reviewed.
Collapse
Affiliation(s)
- Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA
- Weill Neurosciences Institute, University of California, San Francisco, CA, 94143, USA
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
10
|
Zhang Y, Xu H, Liu Y, Yang K, Zou Y, Liu H. Stable functional compensation within hippocampal-subregion networks in patients with temporal glioma before and after surgery. Front Neurosci 2022; 16:991406. [PMID: 36117628 PMCID: PMC9475067 DOI: 10.3389/fnins.2022.991406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Objective To identify whether tumor invasion of the temporal lobe induces functional compensation of the hippocampal-subregion (HIPsub) network connectivity before surgery, and to further validate the stability of this functional compensation within the HIPsub network in patients with temporal glioma tumor (TTumor) after surgical resection of the tumor. Methods In the first cohort, analysis of HIPsub functional connectivity (FC) was conducted to identify the functional compensation of the altered HIPsub connectivity pattern in TTumor through a pattern classification approach. Then, the second cohort investigated whether functional compensation in TTumor patients changed after surgical resection of the tumor. Results In the first cohort, this study identified altered HIPsub network connectivity patterns and its functional compensation regions (i.e., left parahippocampal gyrus and bilateral cerebellum anterior lobe) in TTumor patients. Second, the altered HIPsub network connectivity patterns had the power to discriminate TTumor patients from healthy controls (CN) on an individual subject basis, with an AUC of 97.0%, sensitivity of 93.5%, and specificity of 90.3%. Finally, in the second cohort, we found that functional connectivities of functional compensation regions within the HIPsub network in TTumor patients did not change between before and after surgery. Conclusion This study provides novel evidence regarding functional compensation within the HIPsub network in TTumor patients. It has been suggested that the fine hippocampal subregion was more sensitive, which reveals functional compensation induced by tumor invasion of the temporal lobe. Furthermore, this study verified the stability and persistence of this functional compensation in TTumor patients after surgical resection of the tumor.
Collapse
Affiliation(s)
- Yuhai Zhang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Honghao Xu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanjie Zou
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Hongyi Liu,
| |
Collapse
|
11
|
An S, Oh SJ, Jun SB, Sung JE. Aging-Related Dissociation of Spatial and Temporal N400 in Sentence-Level Semantic Processing: Evidence From Source Analyses. Front Aging Neurosci 2022; 14:877235. [PMID: 35754967 PMCID: PMC9226558 DOI: 10.3389/fnagi.2022.877235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Age-related differences in sentence-level lexical-semantic processes have been extensively studied, based on the N400 component of event-related potential (ERP). However, there is still a lack of understanding in this regard at the brain-region level. This study explores aging effects on sentence-level semantic processing by comparing the characteristics of the N400 ERP component and brain engagement patterns within individual N400 time windows for two age groups (16 younger adults aged 24.38 ± 3.88 years and 15 older adults aged 67.00 ± 5.04 years) during sentence processing with different plausibility conditions. Our results demonstrated that the N400 effect according to the plausibility condition occurred in different temporal windows in the two age groups, with a delay in the older group. Moreover, it was identified that there was a distinct difference between the groups in terms of the source location of the condition-dependent N400 effect even though no significant difference was derived in its magnitude itself at the sensor-level. Interestingly, the source analysis results indicated that the two groups involved different functional networks to resolve the same semantic violations: the younger group activated the regions corresponding to the typical lexical-semantic network more, whereas the older group recruited the regions belonging to the multiple-demand network more. The findings of this study could be used as a basis for understanding the aging brain in a linguistic context.
Collapse
Affiliation(s)
- Sora An
- Department of Communication Disorders, Ewha Womans University, Seoul, South Korea
| | - Se Jin Oh
- Department of Communication Disorders, Ewha Womans University, Seoul, South Korea
| | - Sang Beom Jun
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul, South Korea.,Graduate Program in Smart Factory, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Jee Eun Sung
- Department of Communication Disorders, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
12
|
Mitolo M, Zoli M, Testa C, Morandi L, Rochat MJ, Zaccagna F, Martinoni M, Santoro F, Asioli S, Badaloni F, Conti A, Sturiale C, Lodi R, Mazzatenta D, Tonon C. Neuroplasticity Mechanisms in Frontal Brain Gliomas: A Preliminary Study. Front Neurol 2022; 13:867048. [PMID: 35720068 PMCID: PMC9204970 DOI: 10.3389/fneur.2022.867048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022] Open
Abstract
Background Pathological brain processes may induce adaptive cortical reorganization, however, the mechanisms underlying neuroplasticity that occurs in the presence of lesions in eloquent areas are not fully explained. The aim of this study was to evaluate functional compensatory cortical activations in patients with frontal brain gliomas during a phonemic fluency task and to explore correlations with cognitive performance, white matter tracts microstructural alterations, and tumor histopathological and molecular characterization. Methods Fifteen patients with frontal glioma were preoperatively investigated with an MRI study on a 3T scanner and a subgroup underwent an extensive neuropsychological assessment. The hemispheric laterality index (LI) was calculated through phonemic fluency task functional MRI (fMRI) activations in the frontal, parietal, and temporal lobe parcellations. Diffusion-weighted images were acquired for all patients and for a group of 24 matched healthy volunteers. Arcuate Fasciculus (AF) and Frontal Aslant Tract (FAT) tractography was performed using constrained spherical deconvolution diffusivity modeling and probabilistic fiber tracking. All patients were operated on with a resective aim and underwent adjuvant therapies, depending on the final diagnosis. Results All patients during the phonemic fluency task fMRI showed left hemispheric dominance in temporal and parietal regions. Regarding frontal regions (i.e., frontal operculum) we found right hemispheric dominance that increases when considering only those patients with tumors located on the left side. These latter activations positively correlate with verbal and visuo-spatial short-term memory, and executive functions. No correlations were found between the left frontal operculum and cognitive performance. Furthermore, patients with IDH-1 mutation and without TERT mutation, showed higher rightward frontal operculum fMRI activations and better cognitive performance in tests measuring general cognitive abilities, semantic fluency, verbal short-term memory, and executive functions. As for white matter tracts, we found left and right AF and FAT microstructural alterations in patients with, respectively, left-sided and right-side glioma compared to controls. Conclusions Compensatory cortical activation of the corresponding region in the non-dominant hemisphere and its association with better cognitive performance and more favorable histopathological and molecular tumor characteristics shed light on the neuroplasticity mechanisms that occur in the presence of a tumor, helping to predict the rate of post-operative deficit, with the final goal of improving patients'quality of life.
Collapse
Affiliation(s)
- Micaela Mitolo
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Matteo Zoli
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudia Testa
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Luca Morandi
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Magali Jane Rochat
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fulvio Zaccagna
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Martinoni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Francesca Santoro
- Neurology Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Anatomic Pathology Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Filippo Badaloni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alfredo Conti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Carmelo Sturiale
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Raffaele Lodi
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Diego Mazzatenta
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Yeh C, Chen MH, Chen PH, Lee CL. Lateralization as a symphony: Joint influence of interhemispheric inhibition and transmission on brain asymmetry and syntactic processing. BRAIN AND LANGUAGE 2022; 228:105095. [PMID: 35248863 DOI: 10.1016/j.bandl.2022.105095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 01/16/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the roles of cross-hemispheric communications in promoting left-lateralized syntactic processing in the brain. Fifty-six young right-handers without familial sinistrality background underwent a divided visual field ERP grammaticality judgment experiment to assess syntactic processing in each hemisphere. Two behavioral tasks -the bilateral flanker task and bilateral word matching task, were used to assess cross-hemispheric inhibition and transmission. Grand average ERP data showed a significant P600 grammaticality effect in the left hemisphere (LH) only; however, individual variations in the P600 responses were observed in both hemispheres. Results of correlational analyses showed that larger LH P600 effects were associated with slower inter-hemispheric transmissions; smaller right hemisphere (RH) P600 effects were associated with more effective RH inhibition. These results yielded support for both the callosal distance hypothesis and the inhibition hypothesis for language lateralization and demonstrated that different aspects of cross-hemispheric communications jointly influence the degree of syntactic lateralization.
Collapse
Affiliation(s)
- Chih Yeh
- Max Planck School of Cognition, Germany; Graduate Institute of Linguistics, National Taiwan University, Taiwan
| | - Min-Hsin Chen
- Graduate Institute of Linguistics, National Taiwan University, Taiwan
| | - Po-Heng Chen
- Graduate Institute of Linguistics, National Taiwan University, Taiwan
| | - Chia-Lin Lee
- Graduate Institute of Linguistics, National Taiwan University, Taiwan; Department of Psychology, National Taiwan University, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taiwan; Neurobiology and Cognitive Neuroscience Center, National Taiwan University, Taiwan.
| |
Collapse
|
14
|
Changes in Cognitive Functioning After Surgical Resection of Language-related, Eloquent-area, High-grade Gliomas Under Awake Craniotomy. Cogn Behav Neurol 2022; 35:130-139. [PMID: 35486526 DOI: 10.1097/wnn.0000000000000307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/01/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Dominant-hemisphere tumors, especially gliomas, as infiltrative tumors, frequently affect cognitive functioning. Establishing a balance between extensive resection, which is proven to result in longer survival, and less extensive resection, in order to maintain more cognitive abilities, is challenging. OBJECTIVE To evaluate changes in cognitive functioning before and after surgical resection of language-related, eloquent-area, high-grade gliomas under awake craniotomy. METHOD We provided individuals with newly diagnosed high-grade gliomas of the language-related eloquent areas with the same standard of care, including surgical resection of the glioma using intraoperative sensory-motor and cognitive mapping under awake craniotomy, and the same protocol for chemoradiotherapy. Cognitive functioning was assessed using Addenbrooke's Cognitive Examination-Revised (ACE-R) at four time points (preoperatively, early after surgery, and 3 and 6 months postoperatively). RESULTS The preoperative evaluation revealed a range of cognitive impairments in 70.7% of the individuals, affecting all of the cognitive subdomains (mostly attention and visuospatial abilities). Overall cognitive functioning (ie, ACE-R score) dropped by 13.5% (P= 0.169) early postoperatively. At the 3-month evaluation, an average of 15.3% (P= 0.182) recovery in cognitive functioning was observed (mostly in verbal fluency: 39.1%). This recovery improved further, reaching 29% (P< 0.001) at the 6-month evaluation. The greatest improvement occurred in verbal fluency: 68.8%,P= 0.001. CONCLUSION Extensive resection of eloquent-area gliomas with the aid of modern neuroimaging and neuromonitoring techniques under awake craniotomy is possible without significant long-term cognitive sequela.
Collapse
|
15
|
Pasquini L, Di Napoli A, Rossi-Espagnet MC, Visconti E, Napolitano A, Romano A, Bozzao A, Peck KK, Holodny AI. Understanding Language Reorganization With Neuroimaging: How Language Adapts to Different Focal Lesions and Insights Into Clinical Applications. Front Hum Neurosci 2022; 16:747215. [PMID: 35250510 PMCID: PMC8895248 DOI: 10.3389/fnhum.2022.747215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
When the language-dominant hemisphere is damaged by a focal lesion, the brain may reorganize the language network through functional and structural changes known as adaptive plasticity. Adaptive plasticity is documented for triggers including ischemic, tumoral, and epileptic focal lesions, with effects in clinical practice. Many questions remain regarding language plasticity. Different lesions may induce different patterns of reorganization depending on pathologic features, location in the brain, and timing of onset. Neuroimaging provides insights into language plasticity due to its non-invasiveness, ability to image the whole brain, and large-scale implementation. This review provides an overview of language plasticity on MRI with insights for patient care. First, we describe the structural and functional language network as depicted by neuroimaging. Second, we explore language reorganization triggered by stroke, brain tumors, and epileptic lesions and analyze applications in clinical diagnosis and treatment planning. By comparing different focal lesions, we investigate determinants of language plasticity including lesion location and timing of onset, longitudinal evolution of reorganization, and the relationship between structural and functional changes.
Collapse
Affiliation(s)
- Luca Pasquini
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Alberto Di Napoli
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
- Radiology Department, Castelli Hospital, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Emiliano Visconti
- Neuroradiology Unit, Cesena Surgery and Trauma Department, M. Bufalini Hospital, AUSL Romagna, Cesena, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Andrea Romano
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Alessandro Bozzao
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Kyung K. Peck
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Andrei I. Holodny
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States
- Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York, NY, United States
| |
Collapse
|
16
|
Yamamoto AK, Sanjuán A, Pope R, Parker Jones O, Hope TMH, Prejawa S, Oberhuber M, Mancini L, Ekert JO, Garjardo-Vidal A, Creasey M, Yousry TA, Green DW, Price CJ. The Effect of Right Temporal Lobe Gliomas on Left and Right Hemisphere Neural Processing During Speech Perception and Production Tasks. Front Hum Neurosci 2022; 16:803163. [PMID: 35652007 PMCID: PMC9148966 DOI: 10.3389/fnhum.2022.803163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/28/2022] [Indexed: 11/28/2022] Open
Abstract
Using fMRI, we investigated how right temporal lobe gliomas affecting the posterior superior temporal sulcus alter neural processing observed during speech perception and production tasks. Behavioural language testing showed that three pre-operative neurosurgical patients with grade 2, grade 3 or grade 4 tumours had the same pattern of mild language impairment in the domains of object naming and written word comprehension. When matching heard words for semantic relatedness (a speech perception task), these patients showed under-activation in the tumour infiltrated right superior temporal lobe compared to 61 neurotypical participants and 16 patients with tumours that preserved the right postero-superior temporal lobe, with enhanced activation within the (tumour-free) contralateral left superior temporal lobe. In contrast, when correctly naming objects (a speech production task), the patients with right postero-superior temporal lobe tumours showed higher activation than both control groups in the same right postero-superior temporal lobe region that was under-activated during auditory semantic matching. The task dependent pattern of under-activation during the auditory speech task and over-activation during object naming was also observed in eight stroke patients with right hemisphere infarcts that affected the right postero-superior temporal lobe compared to eight stroke patients with right hemisphere infarcts that spared it. These task-specific and site-specific cross-pathology effects highlight the importance of the right temporal lobe for language processing and motivate further study of how right temporal lobe tumours affect language performance and neural reorganisation. These findings may have important implications for surgical management of these patients, as knowledge of the regions showing functional reorganisation may help to avoid their inadvertent damage during neurosurgery.
Collapse
Affiliation(s)
- Adam Kenji Yamamoto
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
- *Correspondence: Adam Kenji Yamamoto,
| | - Ana Sanjuán
- Neuropsychology and Functional Imaging Group, Departamento de Psicología Básica, Clínica y Psicobiología, Universitat Jaume I, Castellón de La Plana, Spain
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rebecca Pope
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Oiwi Parker Jones
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- FMRIB Centre and Jesus College, University of Oxford, Oxford, United Kingdom
| | - Thomas M. H. Hope
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Susan Prejawa
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Faculty of Medicine, Collaborative Research Centre 1052 “Obesity Mechanisms”, University Leipzig, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Marion Oberhuber
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Laura Mancini
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Justyna O. Ekert
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Andrea Garjardo-Vidal
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Faculty of Health Sciences, Universidad del Desarrollo, Concepcion, Chile
| | - Megan Creasey
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Tarek A. Yousry
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - David W. Green
- Experimental Psychology, University College London, London, United Kingdom
| | - Cathy J. Price
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
17
|
Functional alterations in cortical processing of speech in glioma-infiltrated cortex. Proc Natl Acad Sci U S A 2021; 118:2108959118. [PMID: 34753819 DOI: 10.1073/pnas.2108959118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
Recent developments in the biology of malignant gliomas have demonstrated that glioma cells interact with neurons through both paracrine signaling and electrochemical synapses. Glioma-neuron interactions consequently modulate the excitability of local neuronal circuits, and it is unclear the extent to which glioma-infiltrated cortex can meaningfully participate in neural computations. For example, gliomas may result in a local disorganization of activity that impedes the transient synchronization of neural oscillations. Alternatively, glioma-infiltrated cortex may retain the ability to engage in synchronized activity in a manner similar to normal-appearing cortex but exhibit other altered spatiotemporal patterns of activity with subsequent impact on cognitive processing. Here, we use subdural electrocorticography to sample both normal-appearing and glioma-infiltrated cortex during speech. We find that glioma-infiltrated cortex engages in synchronous activity during task performance in a manner similar to normal-appearing cortex but recruits a diffuse spatial network. On a temporal scale, we show that signals from glioma-infiltrated cortex have decreased entropy, which may affect its ability to encode information during nuanced tasks such as production of monosyllabic versus polysyllabic words. Furthermore, we show that temporal decoding strategies for distinguishing monosyllabic from polysyllabic words were feasible for signals arising from normal-appearing cortex but not from glioma-infiltrated cortex. These findings inform our understanding of cognitive processing in chronic disease states and have implications for neuromodulation and prosthetics in patients with malignant gliomas.
Collapse
|
18
|
Truzman T, Rochon E, Meltzer J, Leonard C, Bitan T. Simultaneous Normalization and Compensatory Changes in Right Hemisphere Connectivity during Aphasia Therapy. Brain Sci 2021; 11:1330. [PMID: 34679395 PMCID: PMC8534113 DOI: 10.3390/brainsci11101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
Changes in brain connectivity during language therapy were examined among participants with aphasia (PWA), aiming to shed light on neural reorganization in the language network. Four PWA with anomia following left hemisphere stroke and eight healthy controls (HC) participated in the study. Two fMRI scans were administered to all participants with a 3.5-month interval. The fMRI scans included phonological and semantic tasks, each consisting of linguistic and perceptual matching conditions. Between the two fMRI scans, PWA underwent Phonological Components Analysis treatment. Changes in effective connectivity during the treatment were examined within right hemisphere (RH) architecture. The results illustrate that following the treatment, the averaged connectivity of PWA across all perceptual and linguistic conditions in both tasks increased resemblance to HC, reflecting the normalization of neural processes associated with silent object name retrieval. In contrast, connections that were specifically enhanced by the phonological condition in PWA decreased in their resemblance to HC, reflecting emerging compensatory reorganization in RH connectivity to support phonological processing. These findings suggest that both normalization and compensation play a role in neural language reorganization at the chronic stage, occurring simultaneously in the same brain.
Collapse
Affiliation(s)
- Tammar Truzman
- Communication Sciences and Disorders Department and IIPDM, University of Haifa, Haifa 3498838, Israel
- The Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel
| | - Elizabeth Rochon
- Department of Speech Language Pathology and Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada; (E.R.); (J.M.); (C.L.); (T.B.)
- KITE Research Institute, Toronto Rehab, University Health Network (UHN), Toronto, ON M5G 2A2, Canada
| | - Jed Meltzer
- Department of Speech Language Pathology and Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada; (E.R.); (J.M.); (C.L.); (T.B.)
- Psychology Department, University of Toronto, Toronto, ON M5S 1A1, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada
| | - Carol Leonard
- Department of Speech Language Pathology and Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada; (E.R.); (J.M.); (C.L.); (T.B.)
- School of Rehabilitation Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Tali Bitan
- The Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel
- Department of Speech Language Pathology and Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada; (E.R.); (J.M.); (C.L.); (T.B.)
- Psychology Department and IIPDM, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
19
|
Ma R, Taphoorn MJB, Plaha P. Advances in the management of glioblastoma. J Neurol Neurosurg Psychiatry 2021; 92:1103-1111. [PMID: 34162730 DOI: 10.1136/jnnp-2020-325334] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/08/2021] [Indexed: 01/08/2023]
Abstract
Glioblastoma (GB) is the most common and most malignant primary brain tumour in adults. Despite much effort, gold standard therapy has not changed since the introduction of adjuvant temozolomide in 2005 and prognosis remains poor. Despite this, there has been significant improvement in the surgical technology and technique, that has allowed for increased rates of safe maximal resection of the tumour. In addition, our increased knowledge of the biology of GB has revealed more potential targets, especially in the field of immunotherapy, which has been successful in revolutionising treatment of other cancers. We review the current best practice for the treatment of GB and explore some of the more recent advances in GB management from both a surgical and molecular therapeutic perspective.
Collapse
Affiliation(s)
- Ruichong Ma
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK.,Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Nuffield Department of Surgery, University of Oxford, Oxford, UK
| | - Martin J B Taphoorn
- Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Neurology, Medical Center Haaglanden, The Hague, The Netherlands
| | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK .,Nuffield Department of Surgery, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Automated eloquent cortex localization in brain tumor patients using multi-task graph neural networks. Med Image Anal 2021; 74:102203. [PMID: 34474216 DOI: 10.1016/j.media.2021.102203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
Localizing the eloquent cortex is a crucial part of presurgical planning. While invasive mapping is the gold standard, there is increasing interest in using noninvasive fMRI to shorten and improve the process. However, many surgical patients cannot adequately perform task-based fMRI protocols. Resting-state fMRI has emerged as an alternative modality, but automated eloquent cortex localization remains an open challenge. In this paper, we develop a novel deep learning architecture to simultaneously identify language and primary motor cortex from rs-fMRI connectivity. Our approach uses the representational power of convolutional neural networks alongside the generalization power of multi-task learning to find a shared representation between the eloquent subnetworks. We validate our method on data from the publicly available Human Connectome Project and on a brain tumor dataset acquired at the Johns Hopkins Hospital. We compare our method against feature-based machine learning approaches and a fully-connected deep learning model that does not account for the shared network organization of the data. Our model achieves significantly better performance than competing baselines. We also assess the generalizability and robustness of our method. Our results clearly demonstrate the advantages of our graph convolution architecture combined with multi-task learning and highlight the promise of using rs-fMRI as a presurgical mapping tool.
Collapse
|
21
|
Połczyńska MM. Organizing Variables Affecting fMRI Estimates of Language Dominance in Patients with Brain Tumors. Brain Sci 2021; 11:brainsci11060694. [PMID: 34070413 PMCID: PMC8226970 DOI: 10.3390/brainsci11060694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
Numerous variables can affect the assessment of language dominance using presurgical functional magnetic resonance (fMRI) in patients with brain tumors. This work organizes the variables into confounding and modulating factors. Confounding factors give the appearance of changed language dominance. Most confounding factors are fMRI-specific and they can substantially disrupt the evaluation of language dominance. Confounding factors can be divided into two categories: tumor-related and fMRI analysis. The tumor-related confounds further subdivide into tumor characteristics (e.g., tumor grade) and tumor-induced conditions (aphasia). The fMRI analysis confounds represent technical aspects of fMRI methods (e.g., a fixed versus an individual threshold). Modulating factors can modify language dominance without confounding it. They are not fMRI-specific, and they can impact language dominance both in healthy individuals and neurosurgical patients. The effect of most modulating factors on fMRI language dominance is smaller than that of confounding factors. Modulating factors include demographics (e.g., age) and linguistic variables (e.g., early bilingualism). Three cases of brain tumors in the left hemisphere are presented to illustrate how modulating confounding and modulating factors can impact fMRI estimates of language dominance. Distinguishing between confounding and modulating factors can help interpret the results of presurgical language mapping with fMRI.
Collapse
Affiliation(s)
- Monika M Połczyńska
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90025, USA
| |
Collapse
|
22
|
Prior Neurosurgery Decreases fMRI Estimates of Language Laterality in Patients with Gliomas within Anterior Language Sites. J Clin Med 2021; 10:jcm10071491. [PMID: 33916728 PMCID: PMC8038372 DOI: 10.3390/jcm10071491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
The impact of previous surgery on the assessment of language dominance with preoperative fMRI remains inconclusive in patients with recurrent brain tumors. Samples in this retrospective study included 17 patients with prior brain surgery and 21 patients without prior surgery (38 patients total; mean age 43.2, SD = 11.9; 18 females; seven left-handed). All the patients were left language dominant, as determined clinically. The two samples were matched on 10 known confounds, including, for example, tumor laterality and location (all tumors affected Brodmann areas 44/45/47). We calculated fMRI language dominance with laterality indices using a whole-brain and region of interest approach (ROI; Broca’s and Wernicke’s area). Patients with prior surgery had decreased fMRI language dominance (p = 0.03) with more activity in the right hemisphere (p = 0.03) than patients without surgery. Patients with prior brain surgery did not display less language activity in the left hemisphere than patients without surgery. These results were replicated using an ROI approach in the affected Broca’s area. Further, we observed no differences between our samples in the unaffected Wernicke’s area. In sum, prior brain surgery affecting Broca’s area could be a confounding factor that needs to be considered when evaluating fMRI language dominance.
Collapse
|
23
|
Lee AT, Faltermeier C, Morshed RA, Young JS, Kakaizada S, Valdivia C, Findlay AM, Tarapore PE, Nagarajan SS, Hervey-Jumper SL, Berger MS. The impact of high functional connectivity network hub resection on language task performance in adult low- and high-grade glioma. J Neurosurg 2021; 134:1102-1112. [PMID: 32244221 PMCID: PMC8011942 DOI: 10.3171/2020.1.jns192267] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/13/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Gliomas are intrinsic brain tumors with the hallmark of diffuse white matter infiltration, resulting in short- and long-range network dysfunction. Preoperative magnetoencephalography (MEG) can assist in maximizing the extent of resection while minimizing morbidity. While MEG has been validated in motor mapping, its role in speech mapping remains less well studied. The authors assessed how the resection of intraoperative electrical stimulation (IES)-negative, high functional connectivity (HFC) network sites, as identified by MEG, impacts language performance. METHODS Resting-state, whole-brain MEG recordings were obtained from 26 patients who underwent perioperative language evaluation and glioma resection that was guided by awake language and IES mapping. The functional connectivity of an individual voxel was determined by the imaginary coherence between the index voxel and the rest of the brain, referenced to its contralesional pair. The percentage of resected HFC voxels was correlated with postoperative language outcomes in tasks of increasing complexity: text reading, 4-syllable repetition, picture naming, syntax (SYN), and auditory stimulus naming (AN). RESULTS Overall, 70% of patients (14/20) in whom any HFC tissue was resected developed an early postoperative language deficit (mean 2.3 days, range 1-8 days), compared to 33% of patients (2/6) in whom no HFC tissue was resected (p = 0.16). When bifurcated by the amount of HFC tissue that was resected, 100% of patients (3/3) with an HFC resection > 25% displayed deficits in AN, compared to 30% of patients (6/20) with an HFC resection < 25% (p = 0.04). Furthermore, there was a linear correlation between the severity of AN and SYN decline with percentage of HFC sites resected (p = 0.02 and p = 0.04, respectively). By 2.2 months postoperatively (range 1-6 months), the correlation between HFC resection and both AN and SYN decline had resolved (p = 0.94 and p = 1.00, respectively) in all patients (9/9) except two who experienced early postoperative tumor progression or stroke involving inferior frontooccipital fasciculus. CONCLUSIONS Imaginary coherence measures of functional connectivity using MEG are able to identify HFC network sites within and around low- and high-grade gliomas. Removal of IES-negative HFC sites results in early transient postoperative decline in AN and SYN, which resolved by 3 months in all patients without stroke or early tumor progression. Measures of functional connectivity may therefore be a useful means of counseling patients about postoperative risk and assist with preoperative surgical planning.
Collapse
Affiliation(s)
- Anthony T. Lee
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Claire Faltermeier
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Ramin A. Morshed
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Sofia Kakaizada
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Claudia Valdivia
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Anne M. Findlay
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Phiroz E. Tarapore
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Srikantan S. Nagarajan
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | | | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, California
| |
Collapse
|
24
|
Abstract
Functional magnetic resonance imaging (fMRI) is useful for localizing eloquent cortex in the brain prior to neurosurgery. Language and motor paradigms offer a wide range of tasks to test brain regions within the language and motor networks. With the help of fMRI, hemispheric language dominance can be determined. It also is possible to localize specific motor and sensory areas within the motor and sensory gyri. These findings are critical for presurgical planning. The most important factor in presurgical fMRI is patient performance. Patient interview and instruction time are crucial to ensure that patients understand and comply with the fMRI paradigm.
Collapse
Affiliation(s)
- Madeleine Gene
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | - Andrei I Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
25
|
Direct Evidence of Plasticity within Human Primary Motor and Somatosensory Cortices of Patients with Glioblastoma. Neural Plast 2020; 2020:8893708. [PMID: 33029127 PMCID: PMC7527884 DOI: 10.1155/2020/8893708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a devastating disease without cure. It is also the most common primary brain tumor in adults. Although aggressive surgical resection is standard of care, these operations are limited by tumor infiltration of critical cortical and subcortical regions. A better understanding of how the brain can recover and reorganize function in response to GBM would provide valuable clinical data. This ability, termed neuroplasticity, is not well understood in the adult human brain. A better understanding of neuroplasticity in GBM could allow for improved extent of resection, even in areas classically thought to have critical, static function. The best evidence to date has demonstrated neuroplasticity only in slower growing tumors or through indirect measures such as functional MRI or transcranial magnetic stimulation. In this novel study, we utilize a unique experimental paradigm to show direct evidence of plasticity via serial direct electrocortical stimulation (DES) within primary motor (M1) and somatosensory (S1) cortices in GBM patients. Six patients with glioblastoma multiforme in or near the primary motor or somatosensory cortex were included in this retrospective observational study. These patients had two awake craniotomies with DES to map cortical motor and sensory sites in M1 and S1. Five of six patients exhibited at least one site of neuroplasticity within M1 or S1. Out of the 51 total sites stimulated, 32 (62.7%) demonstrated plasticity. Of these sites, 14 (43.7%) were in M1 and 18 (56.3%) were in S1. These data suggest that even in patients with GBM in or near primary brain regions, significant functional reorganization is possible. This is a new finding which may lead to a better understanding of the fundamental factors promoting or inhibiting plasticity. Further exploration may aid in treatment of patients with brain tumors and other neurologic disorders.
Collapse
|
26
|
Cargnelutti E, Ius T, Skrap M, Tomasino B. What do we know about pre- and postoperative plasticity in patients with glioma? A review of neuroimaging and intraoperative mapping studies. NEUROIMAGE-CLINICAL 2020; 28:102435. [PMID: 32980599 PMCID: PMC7522801 DOI: 10.1016/j.nicl.2020.102435] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
Brain reorganization can take place before and after surgery of low- and high-grade gliomas. Plasticity is observed for low-grade but also for high-grade gliomas. The contralesional hemisphere can be vital for successful compensation. There is evidence of plasticity for both the language system and the sensorimotor system. Partial compensation can also occur at the white-matter level. Subcortical connectivity is crucial for brain reorganization.
Brain plasticity potential is a central theme in neuro-oncology and is currently receiving increased attention. Advances in treatment have prolonged life expectancy in neuro-oncological patients and the long-term preservation of their quality of life is, therefore, a new challenge. To this end, a better understanding of brain plasticity mechanisms is vital as it can help prevent permanent deficits following neurosurgery. Indeed, reorganization processes can be fundamental to prevent or recover neurological and cognitive deficits by reallocating brain functions outside the lesioned areas. According to more recent studies in the literature, brain reorganization taking place following neurosurgery is associated with good neurofunctioning at follow-up. Interestingly, in the last few years, the number of reports on plasticity has notably increased. Aim of the current review was to provide a comprehensive overview of pre- and postoperative neuroplasticity patterns. Within this framework, we aimed to shed light on some tricky issues, including i) involvement of the contralateral healthy hemisphere, ii) role and potential changes of white matter and connectivity patterns, and iii) reorganization in low- versus high-grade gliomas. We finally discussed the practical implications of these aspects and role of additional potentially relevant factors to be explored. Final purpose was to provide a guideline helpful in promoting increase in the extent of tumor resection while preserving the patients’ neurological and cognitive functioning.
Collapse
Affiliation(s)
- Elisa Cargnelutti
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Udine, Italy
| | - Tamara Ius
- SOC Neurochirurgia, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Miran Skrap
- SOC Neurochirurgia, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Barbara Tomasino
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Udine, Italy.
| |
Collapse
|
27
|
Vanacôr CN, Isolan GR, Yu YH, Telles JPM, Oberman DZ, Rabelo NN, Figueiredo EG. Microsurgical anatomy of language. Clin Anat 2020; 34:154-168. [PMID: 32918507 DOI: 10.1002/ca.23681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/21/2020] [Accepted: 09/05/2020] [Indexed: 11/09/2022]
Abstract
The localizationist model, which focused on classical cortical areas such as Broca's and Wernicke's, can no longer explain how language processing works. Over recent years, several studies have revealed new language-related cortical and subcortical areas, resulting in a transition from localizationist concepts to a hodotopical model. These studies have described language processing as an extensive and complex network of multiple interconnected cortical areas and subcortical pathways, differing from the classical circuit described by the localizationist perspective. The hodotopical model was made possible by a paradigm shift in the treatment of cerebral tumors, especially low-grade gliomas: total or subtotal tumor resections with cortical and subcortical mapping on awake patients have become the gold standard treatment for lesions located in the dominant hemisphere. In this article, we review current understating of the microsurgical anatomy of language.
Collapse
Affiliation(s)
- Clarissa Nunes Vanacôr
- Postgraduate Program in Medicine - Surgical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,CEANNE (Centro Avançado de Neurologia e Neurocirurgia), Porto Alegre, Brazil.,Moinhos De Vento Hospital, Porto Alegre, Brazil
| | - Gustavo Rassier Isolan
- Postgraduate Program in Medicine - Surgical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,CEANNE (Centro Avançado de Neurologia e Neurocirurgia), Porto Alegre, Brazil
| | - Yang Han Yu
- Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - João Paulo Mota Telles
- Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Nícollas Nunes Rabelo
- Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Eberval Gadelha Figueiredo
- Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Interhemispheric compensation: A hypothesis of TMS-induced effects on language-related areas. Eur Psychiatry 2020; 23:281-8. [DOI: 10.1016/j.eurpsy.2007.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/01/2007] [Accepted: 10/07/2007] [Indexed: 11/22/2022] Open
Abstract
AbstractRepetitive transcranial magnetic stimulation (rTMS) applied over brain regions responsible for language processing is used to curtail potentially auditory hallucinations in schizophrenia patients and to investigate the functional organisation of language-related areas. Variability of effects is, however, marked across studies and between subjects. Furthermore, the mechanisms of action of rTMS are poorly understood.Here, we reviewed different factors related to the structural and functional organisation of the brain that might influence rTMS-induced effects. Then, by analogy with aphasia studies, and the plastic-adaptive changes in both the left and right hemispheres following aphasia recovery, a hypothesis is proposed about rTMS mechanisms over language-related areas (e.g. Wernicke, Broca). We proposed that the local interference induced by rTMS in language-related areas might be analogous to aphasic stroke and might lead to a functional reorganisation in areas connected to the virtual lesion for language recovery.
Collapse
|
29
|
Lizarazu M, Gil-Robles S, Pomposo I, Nara S, Amoruso L, Quiñones I, Carreiras M. Spatiotemporal dynamics of postoperative functional plasticity in patients with brain tumors in language areas. BRAIN AND LANGUAGE 2020; 202:104741. [PMID: 31931399 DOI: 10.1016/j.bandl.2019.104741] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 12/17/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Postoperative functional neuroimaging provides a unique opportunity to investigate the neural mechanisms that facilitate language network reorganization. Previous studies in patients with low grade gliomas (LGGs) in language areas suggest that postoperative recovery is likely due to functional neuroplasticity in peritumoral and contra-tumoral healthy regions, but have attributed varying degrees of importance to specific regions. In this study, we used Magnetoencephalography (MEG) to investigate functional connectivity changes in peritumoral and contra-tumoral regions after brain tumor resection. MEG recordings of cortical activity during resting-state were obtained from 12 patients with LGGs in left-hemisphere language brain areas. MEG data were recorded before (Pre session), and 3 (Post_1 session) and 6 (Post_2 session) months after awake craniotomy. For each MEG session, we measured the functional connectivity of the peritumoral and contra-tumoral regions to the rest of the brain across the 1-100 Hz frequency band. We found that functional connectivity in the Post_1 and Post_2 sessions was higher than in the Pre session only in peritumoral regions and within the alpha frequency band. Functional connectivity in peritumoral regions did not differ between the Post_1 and Post_2 sessions. Alpha connectivity enhancement in peritumoral regions was observed in all patients regardless of the LGG location. Together, these results suggest that postoperative language functional reorganization occurs in peritumoral regions regardless of the location of the tumor and mostly develops within 3 months after surgery.
Collapse
Affiliation(s)
- Mikel Lizarazu
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastián, Spain; Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, EHESS, CNRS), Ecole Normale Supérieure, PSL Research University, Paris, France.
| | - Santiago Gil-Robles
- Department of Neurosurgery, Hospital Quirón, Madrid, Spain; BioCruces Research Institute, Bilbao, Spain
| | | | - Sanjeev Nara
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastián, Spain
| | - Lucía Amoruso
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastián, Spain
| | - Ileana Quiñones
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastián, Spain
| | - Manuel Carreiras
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; University of the Basque Country, UPV/EHU, Bilbao, Spain
| |
Collapse
|
30
|
The neural and neurocomputational bases of recovery from post-stroke aphasia. Nat Rev Neurol 2019; 16:43-55. [DOI: 10.1038/s41582-019-0282-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
|
31
|
Zimmermann M, Rössler K, Kaltenhäuser M, Grummich P, Yang B, Buchfelder M, Doerfler A, Kölble K, Stadlbauer A. Refined Functional Magnetic Resonance Imaging and Magnetoencephalography Mapping Reveals Reorganization in Language-Relevant Areas of Lesioned Brains. World Neurosurg 2019; 136:e41-e59. [PMID: 31606506 DOI: 10.1016/j.wneu.2019.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neurosurgical decisions regarding interventions close to brain areas with language-related functions remain highly challenging because of the risk of postoperative dysfunction. To minimize these risks, improvements in the preoperative mapping of language-related regions are required, especially as space-occupying lesions often lead to altered cortical topography and language area reorganization. METHODS The degree of deviation and language area reorganization were investigated in 26 functional magnetic resonance imaging- and magnetoencephalography-dissociable cortical sub-areas displaying language-related activations in each of 18 patients with brain lesions and 3 healthy volunteers (during visual language tasks). RESULTS Both modalities showed good congruency of the language areas. The mean spatial distance of the centroids and maxima was 9.06 mm and 10.58 mm, respectively, allowing us to define more specific anatomical positions. Postoperatively, language abilities increased in 11% (2 of 18) of the patients, remained unchanged in 83% (15 of 18) of the patients, and decreased in 6% (1 of 18) of the patients, respectively. Signs of language function reorganization detected on both functional magnetic resonance imaging and magnetoencephalography were present in 29% (5 of 17) of the patients. Attenuation of neurovascular coupling was found postoperatively in 17% (3 of 18) of the patients. Monohemispheric language processing cannot be assumed always in patients with brain lesions. CONCLUSIONS The more detailed subdivision of language-relevant brain areas shown in this study can help to achieve more radical tumor resection without postoperative language deficits.
Collapse
Affiliation(s)
- Max Zimmermann
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany; Department of Neuroradiology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Karl Rössler
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany; Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Martin Kaltenhäuser
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Grummich
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Bing Yang
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Konrad Kölble
- Department of Neuropathology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Stadlbauer
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany; Institute of Medical Radiology, University Clinic of St. Pölten, St. Pölten, Austria
| |
Collapse
|
32
|
Schlaug G. Even when right is all that's left: There are still more options for recovery from aphasia. Ann Neurol 2019; 83:661-663. [PMID: 29573028 DOI: 10.1002/ana.25217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Gottfried Schlaug
- Department of Neurology; Division of Stroke Recovery and Neurorestoration, and Division of Cerebrovascular Diseases, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
33
|
Characterising neural plasticity at the single patient level using connectivity fingerprints. NEUROIMAGE-CLINICAL 2019; 24:101952. [PMID: 31357148 PMCID: PMC6664196 DOI: 10.1016/j.nicl.2019.101952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
The occurrence of wide-scale neuroplasticity in the injured human brain raises hopes for biomarkers to guide personalised treatment. At the individual level, functional reorganisation has proven challenging to quantify using current techniques that are optimised for population-based analyses. In this cross-sectional study, we acquired functional MRI scans in 44 patients (22 men, 22 women, mean age: 39.4 ± 14 years) with a language-dominant hemisphere brain tumour prior to surgery and 23 healthy volunteers (11 men, 12 women, mean age: 36.3 ± 10.9 years) during performance of a verbal fluency task. We applied a recently developed approach to characterise the normal range of functional connectivity patterns during task performance in healthy controls. Next, we statistically quantified differences from the normal in individual patients and evaluated factors driving these differences. We show that the functional connectivity of brain regions involved in language fluency identifies “fingerprints” of brain plasticity in individual patients, not detected using standard task-evoked analyses. In contrast to healthy controls, patients with a tumour in their language dominant hemisphere showed highly variable fingerprints that uniquely distinguished individuals. Atypical fingerprints were influenced by tumour grade and tumour location relative to the typical fluency-activated network. Our findings show how alterations in brain networks can be visualised and statistically quantified from connectivity fingerprints in individual brains. We propose that connectivity fingerprints offer a statistical metric of individually-specific network organisation through which behaviourally-relevant adaptations could be formally quantified and monitored across individuals, treatments and time. Personalised treatment awaits individualised measures of brain adaptation. Connectivity patterns from FMRI offer unique “fingerprints” of brain networks. Individual brain tumours disrupt the language fluency network in unique ways. By fingerprint matching, networks can be tested and visualised in single patients.
Collapse
|
34
|
Briggs RG, Chakraborty AR, Anderson CD, Abraham CJ, Palejwala AH, Conner AK, Pelargos PE, O'Donoghue DL, Glenn CA, Sughrue ME. Anatomy and white matter connections of the inferior frontal gyrus. Clin Anat 2019; 32:546-556. [DOI: 10.1002/ca.23349] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Robert G. Briggs
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Arpan R. Chakraborty
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Christopher D. Anderson
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Carol J. Abraham
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Ali H. Palejwala
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Andrew K. Conner
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Panayiotis E. Pelargos
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Daniel L. O'Donoghue
- Department of Cell BiologyUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Chad A. Glenn
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Michael E. Sughrue
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| |
Collapse
|
35
|
Nenert R, Allendorfer JB, Martin AM, Banks C, Vannest J, Holland SK, Hart KW, Lindsell CJ, Szaflarski JP. Longitudinal fMRI study of language recovery after a left hemispheric ischemic stroke. Restor Neurol Neurosci 2018; 36:359-385. [PMID: 29782329 DOI: 10.3233/rnn-170767] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Recovery from stroke-induced aphasia is typically protracted and involves complex functional reorganization. The relative contributions of the lesioned and non-lesioned hemispheres to this process have been examined in several cross-sectional studies but longitudinal studies involving several time-points and large numbers of subjects are scarce. OBJECTIVE The aim of this study was to address the gaps in the literature by longitudinally studying the evolution of post-stroke lateralization and localization of language-related fMRI activation in the first year after single left hemispheric ischemic stroke. METHOD Seventeen patients with stroke-induced aphasia were enrolled to undergo detailed behavioral testing and fMRI at 2, 6, 12, 26, and 52 weeks post-stroke. Matched for age, handedness and sex participants were also enrolled to visualize canonical language regions. RESULTS Behavioral results showed improvements over time for all but one of the behavioral scores (Semantic Fluency Test). FMRI results showed that the left temporal area participates in compensation for language deficits in the first year after stroke, that there is a correlation between behavioral improvement and the left cerebellar activation over time, and that there is a shift towards stronger frontal left-lateralization of the fMRI activation over the first year post-stroke. Temporary compensation observed in the initial phases of post-stroke recovery that involves the non-lesioned hemisphere may not be as important as previously postulated, since in this study the recovery was driven by activations in the left fronto-temporal regions. CONCLUSION Language recovery after left hemispheric ischemic stroke is likely driven by the previously involved in language and attention left hemispheric networks.
Collapse
Affiliation(s)
- Rodolphe Nenert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jane B Allendorfer
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amber M Martin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christi Banks
- Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Jennifer Vannest
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Scott K Holland
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kimberly W Hart
- Department of Emergency Medicine, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Christopher J Lindsell
- Department of Emergency Medicine, University of Cincinnati Academic Health Center, Cincinnati, OH, USA.,currently at Department of Biostatistics, Vanderbilt University, Department of Biostatistics, Nashville, TN, USA
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| |
Collapse
|
36
|
Chu R, Meltzer JA, Bitan T. Interhemispheric interactions during sentence comprehension in patients with aphasia. Cortex 2018; 109:74-91. [PMID: 30312780 DOI: 10.1016/j.cortex.2018.08.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 05/03/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Right-hemisphere involvement in language processing following left-hemisphere damage may reflect either compensatory processes, or a release from homotopic transcallosal inhibition, resulting in excessive right-to-left suppression that is maladaptive for language performance. Using fMRI, we assessed inter-hemispheric effective connectivity in fifteen patients with post-stroke aphasia, along with age-matched and younger controls during a sentence comprehension task. Dynamic Causal Modeling was used with four bilateral regions including inferior frontal gyri (IFG) and primary auditory cortices (A1). Despite the presence of lesions, satisfactory model fit was obtained in 9/15 patients. In young controls, the only significant homotopic connection (RA1-LA1), was excitatory, while inhibitory connections emanated from LIFG to both left and right A1's. Interestingly, these connections were also correlated with language comprehension scores in patients. The results for homotopic connections show that excitatory connectivity from RA1-to-LA1 and inhibitory connectivity from LA1-to-RA1 are associated with general auditory verbal comprehension. Moreover, negative correlations were found between sentence comprehension and top-down coupling for both heterotopic (LIFG-to-RA1) and intra-hemispheric (LIFG-to-LA1) connections. These results do not show an emergence of a new compensatory right to left excitation in patients nor do they support the existence of left to right transcallosal suppression in controls. Nevertheless, the correlations with performance in patients are consistent with some aspects of both the compensation model, and the transcallosal suppression account for the role of the RH. Altogether our results suggest that changes to both excitatory and inhibitory homotopic and heterotopic connections due to LH damage may be maladaptive, as they disrupt the normal inter-hemispheric coordination and communication.
Collapse
Affiliation(s)
- Ronald Chu
- Baycrest Health Sciences, Rotman Research Institute, Toronto, ON, Canada; University of Toronto, Department of Psychology, Toronto, ON, Canada.
| | - Jed A Meltzer
- Baycrest Health Sciences, Rotman Research Institute, Toronto, ON, Canada; University of Toronto, Department of Psychology, Toronto, ON, Canada; University of Toronto, Department of Speech-Language Pathology, Toronto, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Tali Bitan
- University of Toronto, Department of Speech-Language Pathology, Toronto, ON, Canada; University of Haifa, Department of Psychology and IIPDM, Haifa, Israel
| |
Collapse
|
37
|
Chivukula S, Pikul BK, Black KL, Pouratian N, Bookheimer SY. Contralateral functional reorganization of the speech supplementary motor area following neurosurgical tumor resection. BRAIN AND LANGUAGE 2018; 183:41-46. [PMID: 29783125 PMCID: PMC6499625 DOI: 10.1016/j.bandl.2018.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 04/22/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
We evaluated plasticity in speech supplemental motor area (SMA) tissue in two patients using functional magnetic resonance imaging (fMRI), following resection of tumors in or associated with the dominant hemisphere speech SMA. Patient A underwent resection of a anaplastic astrocytoma NOS associated with the left speech SMA, experienced SMA syndrome related mutism postoperatively, but experienced full recovery 14 months later. FMRI performed 32 months after surgery demonstrated a migration of speech SMA to homologous contralateral hemispheric regional tissue. Patient B underwent resection of a oligodendroglioma NOS in the left speech SMA, and postoperatively experienced speech hesitancy, latency and poor fluency, which gradually resolved over 18 months. FMRI performed at 64 months after surgery showed a reorganization of speech SMA to the contralateral hemisphere. These data support the hypothesis of dynamic, time based plasticity in speech SMA tissue, and may represent a noninvasive neural marker for SMA syndrome recovery.
Collapse
Affiliation(s)
- Srinivas Chivukula
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
| | - Brian K Pikul
- Kaiser Permanente, Los Angeles Medical Center, Los Angeles, CA, United States
| | - Keith L Black
- Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Susan Y Bookheimer
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Semel Neuropsychiatric Institute, Brain Research Institute, Center for Cognitive Neurosciences and Department of Pscychology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
38
|
Zhang N, Xia M, Qiu T, Wang X, Lin CP, Guo Q, Lu J, Wu Q, Zhuang D, Yu Z, Gong F, Farrukh Hameed NU, He Y, Wu J, Zhou L. Reorganization of cerebro-cerebellar circuit in patients with left hemispheric gliomas involving language network: A combined structural and resting-state functional MRI study. Hum Brain Mapp 2018; 39:4802-4819. [PMID: 30052314 DOI: 10.1002/hbm.24324] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 06/13/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
The role of cerebellum and cerebro-cerebellar system in neural plasticity induced by cerebral gliomas involving language network has long been ignored. Moreover, whether or not the process of reorganization is different in glioma patients with different growth kinetics remains largely unknown. To address this issue, we utilized preoperative structural and resting-state functional MRI data of 78 patients with left cerebral gliomas involving language network areas, including 46 patients with low-grade glioma (LGG, WHO grade II), 32 with high-grade glioma (HGG, WHO grade III/IV), and 44 healthy controls. Spontaneous brain activity, resting-state functional connectivity and gray matter volume alterations of the cerebellum were examined. We found that both LGG and HGG patients exhibited bidirectional alteration of brain activity in language-related cerebellar areas. Brain activity in areas with increased alteration was significantly correlated with the language and MMSE scores. Structurally, LGG patients exhibited greater gray matter volume in regions with increased brain activity, suggesting a structure-function coupled alteration in cerebellum. Furthermore, we observed that cerebellar regions with decreased brain activity exhibited increased functional connectivity with contralesional cerebro-cerebellar system in LGG patients. Together, our findings provide empirical evidence for a vital role of cerebellum and cerebro-cerebellar circuit in neural plasticity following lesional damage to cerebral language network. Moreover, we highlight the possible different reorganizational mechanisms of brain functional connectivity underlying different levels of behavioral impairments in LGG and HGG patients.
Collapse
Affiliation(s)
- Nan Zhang
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tianming Qiu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xindi Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ching-Po Lin
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Qihao Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Junfeng Lu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qizhu Wu
- Sinorad Medical Electronics Co., Ltd, Shenzhen, China
| | - Dongxiao Zhuang
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhengda Yu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangyuan Gong
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - N U Farrukh Hameed
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jinsong Wu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai, China
| | - Liangfu Zhou
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai, China
| |
Collapse
|
39
|
Picart T, Herbet G, Moritz-Gasser S, Duffau H. Iterative Surgical Resections of Diffuse Glioma With Awake Mapping: How to Deal With Cortical Plasticity and Connectomal Constraints? Neurosurgery 2018; 85:105-116. [DOI: 10.1093/neuros/nyy218] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/28/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
- Thiébaud Picart
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Team “Plasticity of Central Nervous System, Stem Cells and Glial Tumors,” INSERM U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Team “Plasticity of Central Nervous System, Stem Cells and Glial Tumors,” INSERM U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Team “Plasticity of Central Nervous System, Stem Cells and Glial Tumors,” INSERM U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| |
Collapse
|
40
|
Gunal V, Savardekar AR, Devi BI, Bharath RD. Preoperative functional magnetic resonance imaging in patients undergoing surgery for tumors around left (dominant) inferior frontal gyrus region. Surg Neurol Int 2018; 9:126. [PMID: 30034917 PMCID: PMC6034353 DOI: 10.4103/sni.sni_414_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/26/2018] [Indexed: 01/24/2023] Open
Abstract
Background: Preoperative functional magnetic resonance imaging (fMRI) helps to preserve neurological function and ensure maximal tumor tissue excision. We studied the lateralization and localization of speech centers in select cases of tumors around the left (dominant) inferior frontal gyrus (IFG). Methods: Twenty-three right-handed patients, harboring tumors involving the left (dominant) IFG or causing mass effect or edema extending onto the left IFG, were recruited over 17 months. Preoperatively, all patients underwent language and speech assessment followed by MRI and fMRI with paradigm (picture naming). Normative data for language fMRI was taken from the institute's imaging data bank. Results: The study included 23 patients [mean age: 38.9 (±11.9) years; M: F = 16:7; 9 – normal speech, 14 – abnormal speech]. Group analysis of controls showed significant activation in the region of interest (ROI) – left Brodmann's areas (BAs) 44,45. Group analysis of patients with normal speech showed no activation in the left BAs 44,45; however, activation was noted in the immediate adjacent areas, left BAs 13,47 and contralateral prefrontal cortex. Group analysis of patients with impaired speech showed no activation in BAs 44,45 or in the immediate adjacent areas. Conclusions: Neuroplasticity in the brain may enable functional language areas to shift to adjoining or distant regions in the brain when the primary areas are involved by intrinsic tumors. This phenomenon is more likely in slow-growing compared to fast-growing tumors. Preoperative language fMRI may help us in identifying and protecting these areas during surgery.
Collapse
Affiliation(s)
- V Gunal
- Department of Neurosurgery, NIMHANS, Bengaluru, Karnataka, India
| | | | - B Indira Devi
- Department of Neurosurgery, NIMHANS, Bengaluru, Karnataka, India
| | - Rose D Bharath
- Department of Neuroradiology, NIMHANS, Bengaluru, Karnataka, India
| |
Collapse
|
41
|
Surgery of language-eloquent tumors in patients not eligible for awake surgery: the impact of a protocol based on navigated transcranial magnetic stimulation on presurgical planning and language outcome, with evidence of tumor-induced intra-hemispheric plasticity. Clin Neurol Neurosurg 2018; 168:127-139. [PMID: 29549813 DOI: 10.1016/j.clineuro.2018.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/28/2018] [Accepted: 03/06/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Awake surgery and intraoperative monitoring represent the gold standard for surgery of brain tumors located in the perisylvian region of the dominant hemisphere due to their ability to map and preserve the language network during surgery. Nevertheless, in some cases awake surgery is not feasible. This could increase the risk of postoperative language deficit. Navigated transcranial magnetic stimulation (nTMS) and nTMS-based DTI fiber tracking (DTI-FT) provide a preoperative mapping and reconstruction of the cortico-subcortical language network. This can be used to plan and guide the surgical strategy to preserve the language function. The objective if this study is to describe the impact of a non-invasive preoperative protocol for mapping the language network through the nTMS and nTMS-based DTI-FT in patients not eligible for awake surgery and thereby operated under general anesthesia for suspected language-eloquent brain tumors. PATIENTS AND METHODS We reviewed clinical data of patients not eligible for awake surgery and operated under general anaesthesia between 2015 and 2016. All patients underwent nTMS language cortical mapping and nTMS-based DTI-FT of subcortical language fascicles. The nTMS findings were used to plan and guide the maximal safe resection of the tumor. The impact on postoperative language outcome and the accuracy of the nTMS-based mapping in predicting language deficits were evaluated. RESULTS Twenty patients were enrolled in the study. The nTMS-based reconstruction of the language network was successful in all patients. Interestingly, we observed a significant association between tumor localization and the cortical distribution of the nTMS errors (p = 0.004), thereby suggesting an intra-hemispheric plasticity of language cortical areas, probably induced by the tumor itself. The nTMS mapping disclosed the true-eloquence of lesions in 12 (60%) of all suspected cases. In the remaining 8 cases (40%) the suspected eloquence of the lesion was disproved. The nTMS-based findings guided the planning and surgery through the visual feedback of navigation. This resulted in a slight reduction of the postoperative language performance at discharge that was completely recovered after one month from surgery. The accuracy of the nTMS-based protocol in predicting postoperative permanent deficits was significantly high, especially for false-eloquent lesions (p = 0.04; sensitivity 100%, specificity 57.14%, negative predictive value 100%, positive predicitive value 50%). CONCLUSIONS The nTMS-based preoperative mapping allows for a reliable visualization of the language network, being also able to identify an intra-hemispheric tumor-induced cortical plasticity. It allows for a customized surgical strategy that could preserve post-operative language function. This approach should be considered as a support for neurosurgeons whenever approaching patients affected by suspected language-eloquent tumors but not eligible for awake surgery.
Collapse
|
42
|
Schwarzer V, Bährend I, Rosenstock T, Dreyer FR, Vajkoczy P, Picht T. Aphasia and cognitive impairment decrease the reliability of rnTMS language mapping. Acta Neurochir (Wien) 2018; 160:343-356. [PMID: 29224085 DOI: 10.1007/s00701-017-3397-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Navigated transcranial magnetic stimulation (nTMS) is a non-invasive mapping tool to locate functional areas of the brain. While gaining importance in the preoperative planning process in motor eloquent regions, its usefulness for reliably identifying language areas is still being discussed. The aim of this study was to identify biometric factors which might influence and therefore bias the results of repetitive nTMS (rnTMS) over cortex areas relevant for language. METHOD We included data of 101 patients with language eloquent brain lesions who underwent preoperative rnTMS examination bihemispherically. Prior to rnTMS mapping, all patients performed two to three baseline runs of a picture-naming paradigm without stimulation, and only promptly and correctly named objects were retained for TMS mapping. Nine biometric factors (age, gender, baseline dataset, cognitive performance score, aphasia score, histology of lesion, affected hemisphere, location of lesion on the hemisphere, pain caused by examination) were included in the statistical analysis measuring their correlation with the incidence of errors during baseline naming as well as during rnTMS mapping. RESULTS The incidence of baseline errors correlated with aphasia (p < 0.0001) and cognitive impairment (p < 0.0001). No significant correlation was observed between most biometric factors and errors during rnTMS mapping. Factors significantly affecting the incidence of errors during rnTMS mapping were again aphasia (p < 0.023) and cognitive impairment (p < 0.038). Patients affected by those factors showed a significantly higher baseline error rate, starting at 28% error rate. CONCLUSIONS Patients with pre-existing aphasia or severe cognitive impairment did still make significantly more mistakes during rnTMS mapping than non-aphasic patients despite baseline stratification, rendering the question of whether the procedure is reliable in those patient groups. Baseline testing revealed a cut-off point at 28% error rate. Interestingly, age or pain (caused by the examination) did not bias the results.
Collapse
|
43
|
|
44
|
Lemaitre AL, Herbet G, Duffau H, Lafargue G. Preserved metacognitive ability despite unilateral or bilateral anterior prefrontal resection. Brain Cogn 2017; 120:48-57. [PMID: 29122369 DOI: 10.1016/j.bandc.2017.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/28/2017] [Accepted: 10/31/2017] [Indexed: 11/30/2022]
Abstract
Brodmann area 10 (BA10) is thought to be at the summit of the prefrontal cortex's hierarchical organization. It is widely accepted that metacognitive abilities depend on the structural and functional properties of BA10. Our objective was to assess whether metacognition can be maintained after low-grade glioma surgery with BA10 resection. Three groups of participants were recruited: (i) patients having undergone resection of the right prefrontal cortex, including BA10 (n = 9); (ii) patients having undergone resection of the right prefrontal cortex but not BA10 (n = 10); and (iii) healthy controls (n = 38). Importantly, we also included a patient (referred to as "PR") with resection of BA10 in the two hemispheres. The patients with resection of right BA10 had metacognitive performances that were indistinguishable from those of brain-damaged control patients and healthy controls. Crucially, PR's metacognitive ability was not only maintained but was even in the upper quartile of normal performances. Our findings demonstrate that the brain can redistribute and remap metacognition in response to injury. We thus provide experimental evidence against the conventional hypothesis whereby cognitive functions are directly and lastingly linked to particular cortical structures. The latter hypothesis seems to be particularly false for the highest levels of human cognition and for BA10.
Collapse
Affiliation(s)
- Anne-Laure Lemaitre
- Psychologie: Interactions, Temps, Emotions, Cognition, PSITEC, EA 4072, Université de Lille, France; Département de Neurochirurgie, Hôpital Gui de Chauliac, Université de Montpellier, France
| | - Guillaume Herbet
- Département de Neurochirurgie, Hôpital Gui de Chauliac, Université de Montpellier, France; Institut des Neurosciences de Montpellier, INSERM U1051, Hôpital Saint Eloi, Université de Montpellier, France
| | - Hugues Duffau
- Département de Neurochirurgie, Hôpital Gui de Chauliac, Université de Montpellier, France; Institut des Neurosciences de Montpellier, INSERM U1051, Hôpital Saint Eloi, Université de Montpellier, France
| | - Gilles Lafargue
- Laboratoire Cognition, Santé, Socialisation, C2S, EA 6291, Université de Reims Champagne-Ardenne, Reims, France.
| |
Collapse
|
45
|
A hitchhiker's guide to lesion-behaviour mapping. Neuropsychologia 2017; 115:5-16. [PMID: 29066325 DOI: 10.1016/j.neuropsychologia.2017.10.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/09/2023]
Abstract
Lesion-behaviour mapping is an influential and popular approach to anatomically localise cognitive brain functions in the human brain. Multiple considerations, ranging from patient selection, assessment of lesion location and patient behaviour, spatial normalisation, statistical testing, to the anatomical interpretation of obtained results, are necessary to optimize a lesion-behaviour mapping study and arrive at meaningful conclusions. Here, we provide a hitchhiker's guide, giving practical guidelines and references for each step of the typical lesion-behaviour mapping study pipeline.
Collapse
|
46
|
Heiss W. Positron emission tomography
imaging in gliomas: applications in clinical diagnosis, for assessment of prognosis and of treatment effects, and for detection of recurrences. Eur J Neurol 2017; 24:1255-e70. [DOI: 10.1111/ene.13385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Affiliation(s)
- W.‐D. Heiss
- Max Planck Institute for Metabolism Research Cologne Germany
| |
Collapse
|
47
|
Pagnozzi AM, Dowson N, Doecke J, Fiori S, Bradley AP, Boyd RN, Rose S. Identifying relevant biomarkers of brain injury from structural MRI: Validation using automated approaches in children with unilateral cerebral palsy. PLoS One 2017; 12:e0181605. [PMID: 28763455 PMCID: PMC5538741 DOI: 10.1371/journal.pone.0181605] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 05/02/2017] [Indexed: 11/19/2022] Open
Abstract
Previous studies have proposed that the early elucidation of brain injury from structural Magnetic Resonance Images (sMRI) is critical for the clinical assessment of children with cerebral palsy (CP). Although distinct aetiologies, including cortical maldevelopments, white and grey matter lesions and ventricular enlargement, have been categorised, these injuries are commonly only assessed in a qualitative fashion. As a result, sMRI remains relatively underexploited for clinical assessments, despite its widespread use. In this study, several automated and validated techniques to automatically quantify these three classes of injury were generated in a large cohort of children (n = 139) aged 5–17, including 95 children diagnosed with unilateral CP. Using a feature selection approach on a training data set (n = 97) to find severity of injury biomarkers predictive of clinical function (motor, cognitive, communicative and visual function), cortical shape and regional lesion burden were most often chosen associated with clinical function. Validating the best models on the unseen test data (n = 42), correlation values ranged between 0.545 and 0.795 (p<0.008), indicating significant associations with clinical function. The measured prevalence of injury, including ventricular enlargement (70%), white and grey matter lesions (55%) and cortical malformations (30%), were similar to the prevalence observed in other cohorts of children with unilateral CP. These findings support the early characterisation of injury from sMRI into previously defined aetiologies as part of standard clinical assessment. Furthermore, the strong and significant association between quantifications of injury observed on structural MRI and multiple clinical scores accord with empirically established structure-function relationships.
Collapse
Affiliation(s)
- Alex M. Pagnozzi
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
- The School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
- * E-mail:
| | - Nicholas Dowson
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | - James Doecke
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | | | - Andrew P. Bradley
- The School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Roslyn N. Boyd
- Queensland Cerebral Palsy and Rehabilitation Research Centre, School of Medicine and Science, Centre for Children’s Health Research, The University of Queensland, Brisbane, Australia
| | - Stephen Rose
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| |
Collapse
|
48
|
Nenert R, Allendorfer JB, Martin AM, Banks C, Ball A, Vannest J, Dietz AR, Szaflarski JP. Neuroimaging Correlates of Post-Stroke Aphasia Rehabilitation in a Pilot Randomized Trial of Constraint-Induced Aphasia Therapy. Med Sci Monit 2017; 23:3489-3507. [PMID: 28719572 PMCID: PMC5529460 DOI: 10.12659/msm.902301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background Recovery from post-stroke aphasia is a long and complex process with an uncertain outcome. Various interventions have been proposed to augment the recovery, including constraint-induced aphasia therapy (CIAT). CIAT has been applied to patients suffering from post-stroke aphasia in several unblinded studies to show mild-to-moderate linguistic gains. The aim of the present study was to evaluate the neuroimaging correlates of CIAT in patients with chronic aphasia related to left middle cerebral artery stroke. Material/Methods Out of 24 patients recruited in a pilot randomized blinded trial of CIAT, 19 patients received fMRI of language. Eleven of them received CIAT (trained) and eight served as a control group (untrained). Each patient participated in three fMRI sessions (before training, after training, and 3 months later) that included semantic decision and verb generation fMRI tasks, and a battery of language tests. Matching healthy control participants were also included (N=38; matching based on age, handedness, and sex). Results Language testing showed significantly improved performance on Boston Naming Test (BNT; p<0.001) in both stroke groups over time and fMRI showed differences in the distribution of the areas involved in language production between groups that were not present at baseline. Further, regression analysis with BNT indicated changes in brain regions correlated with behavioral performance (temporal gyrus, postcentral gyrus, precentral gyrus, thalamus, left middle and superior frontal gyri). Conclusions Overall, our results suggest the possibility of language-related cortical plasticity following stroke-induced aphasia with no specific effect from CIAT training.
Collapse
Affiliation(s)
- Rodolphe Nenert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jane B Allendorfer
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amber M Martin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christi Banks
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Jennifer Vannest
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| |
Collapse
|
49
|
Veldsman M, Loetscher T, Wood A, Brodtmann A. Reading on the right when there's nothing left? Probabilistic tractography reveals hemispheric asymmetry in pure alexia. Neurocase 2017; 23:201-209. [PMID: 28789579 DOI: 10.1080/13554794.2017.1364775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We present a patient with reading inexpertise and right hemianopia following left posterior cerebral artery (PCA) stroke. We examine the extent of disruption to reading performance and the extent of white matter tract damage relative to a patient with more limited PCA infarction and isolated right hemianopia. We show white matter disconnection of the temporal occipital fusiform cortex in our pure alexia patient. Connectivity-based laterality indices revealed right hemisphere laterality in the alexia patient; this was not associated with improved reading function. We speculate that the degree of premorbid laterality may be a critical factor affecting the extent of reading dysfunction in alexia.
Collapse
Affiliation(s)
- Michele Veldsman
- a Nuffield Department of Clinical Neuroscience , University of Oxford , Oxford , UK.,b Behavioural Neuroscience and Stroke Divisions , Florey Institute for Neuroscience and Mental Health , Melbourne , Australia
| | - Tobias Loetscher
- c School of Psychology, Social Work and Social Policy , University of South Australia , Adelaide , Australia
| | - Amanda Wood
- d School of Life and Health Sciences & Aston Brain Centre , Aston University , Birmingham , UK.,e Clinical Sciences , Murdoch Childrens Research Institute , Melbourne , Australia.,f Austin Health , University of Melbourne , Melbourne , Australia
| | - Amy Brodtmann
- b Behavioural Neuroscience and Stroke Divisions , Florey Institute for Neuroscience and Mental Health , Melbourne , Australia.,f Austin Health , University of Melbourne , Melbourne , Australia
| |
Collapse
|
50
|
Moberget T, Hilland E, Andersson S, Lundar T, Due-Tønnessen BJ, Heldal A, Ivry RB, Endestad T. Patients with focal cerebellar lesions show reduced auditory cortex activation during silent reading. BRAIN AND LANGUAGE 2016; 161:18-27. [PMID: 26341544 PMCID: PMC4775464 DOI: 10.1016/j.bandl.2015.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 07/28/2015] [Accepted: 08/06/2015] [Indexed: 06/05/2023]
Abstract
Functional neuroimaging studies consistently report language-related cerebellar activations, but evidence from the clinical literature is less conclusive. Here, we attempt to bridge this gap by testing the effect of focal cerebellar lesions on cerebral activations in a reading task previously shown to involve distinct cerebellar regions. Patients (N=10) had lesions primarily affecting medial cerebellum, overlapping cerebellar regions activated during the presentation of random word sequences, but distinct from activations related to semantic prediction generation and prediction error processing. In line with this pattern of activation-lesion overlap, patients did not differ from matched healthy controls (N=10) in predictability-related activations. However, whereas controls showed increased activation in bilateral auditory cortex and parietal operculum when silently reading familiar words relative to viewing letter strings, this effect was absent in the patients. Our results highlight the need for careful lesion mapping and suggest possible roles for the cerebellum in visual-to-auditory mapping and/or inner speech.
Collapse
Affiliation(s)
| | - Eva Hilland
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Stein Andersson
- Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychosomatic Medicine, Oslo University Hospital, Oslo, Norway
| | - Tryggve Lundar
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | | | - Aasta Heldal
- Department of Psychosomatic Medicine, Oslo University Hospital, Oslo, Norway
| | - Richard B Ivry
- Psychology Department, University of California, Berkeley, Berkeley, CA, USA
| | - Tor Endestad
- Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychosomatic Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|