1
|
Lipsky RH, Witkin JM, Shafique H, Smith JL, Cerne R, Marini AM. Traumatic brain injury: molecular biomarkers, genetics, secondary consequences, and medical management. Front Neurosci 2024; 18:1446076. [PMID: 39450122 PMCID: PMC11500614 DOI: 10.3389/fnins.2024.1446076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Traumatic brain injury (TBI) has reached epidemic proportions worldwide. The consequences of TBI can be severe even with repetitive mild trauma. If death and coma are avoided, the consequences of TBI in the long term typically involve dizziness, sleep disturbances, headache, seizures, cognitive impairment, focal deficits, depression, and anxiety. The severity of brain injury is a significant predictor of outcome. However, the heterogenous nature of the injury makes prognosis difficult. The present review of the literature focuses on the genetics of TBI including genome wide (GWAS) data and candidate gene associations, among them brain-derived neurotrophic factor (BDNF) with TBI and development of post-traumatic epilepsy (PTE). Molecular biomarkers of TBI are also discussed with a focus on proteins and the inflammatory protein IL1-β. The secondary medical sequela to TBI of cognitive impairment, PTE, headache and risk for neurodegenerative disorders is also discussed. This overview of TBI concludes with a review and discussion of the medical management of TBI and the medicines used for and being developed at the preclinical and clinical stages for the treatment of TBI and its host of life-debilitating symptoms.
Collapse
Affiliation(s)
- Robert H. Lipsky
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
- Departments of Neuroscience and Trauma Research Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Hana Shafique
- Duke University School of Medicine, Durham, NC, United States
| | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Ann M. Marini
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
2
|
Dooley J, Hughes JG, Needham EJ, Palios KA, Liston A. The potential of gene delivery for the treatment of traumatic brain injury. J Neuroinflammation 2024; 21:183. [PMID: 39069631 DOI: 10.1186/s12974-024-03156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Therapeutics for traumatic brains injuries constitute a global unmet medical need. Despite the advances in neurocritical care, which have dramatically improved the survival rate for the ~ 70 million patients annually, few treatments have been developed to counter the long-term neuroinflammatory processes and accompanying cognitive impairments, frequent among patients. This review looks at gene delivery as a potential therapeutic development avenue for traumatic brain injury. We discuss the capacity of gene delivery to function in traumatic brain injury, by producing beneficial biologics within the brain. Gene delivery modalities, promising vectors and key delivery routes are discussed, along with the pathways that biological cargos could target to improve long-term outcomes for patients. Coupling blood-brain barrier crossing with sustained local production, gene delivery has the potential to convert proteins with useful biological properties, but poor pharmacodynamics, into effective therapeutics. Finally, we review the limitations and health economics of traumatic brain injury, and whether future gene delivery approaches will be viable for patients and health care systems.
Collapse
Affiliation(s)
- James Dooley
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Jasmine G Hughes
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Edward J Needham
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Gathings A, Zaman V, Banik NL, Haque A. Insights into Calpain Activation and Rho-ROCK Signaling in Parkinson's Disease and Aging. Biomedicines 2024; 12:1074. [PMID: 38791036 PMCID: PMC11117523 DOI: 10.3390/biomedicines12051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disease, has no cure, and current therapies are not effective at halting disease progression. The disease affects mid-brain dopaminergic neurons and, subsequently, the spinal cord, contributing to many debilitating symptoms associated with PD. The GTP-binding protein, Rho, plays a significant role in the cellular pathology of PD. The downstream effector of Rho, Rho-associated kinase (ROCK), plays multiple functions, including microglial activation and induction of inflammatory responses. Activated microglia have been implicated in the pathology of many neurodegenerative diseases, including PD, that initiate inflammatory responses, leading to neuron death. Calpain expression and activity is increased following glial activation, which triggers the Rho-ROCK pathway and induces inflammatory T cell activation and migration as well as mediates toxic α-synuclein (α-syn) aggregation and neuron death, indicating a pivotal role for calpain in the inflammatory and degenerative processes in PD. Increased calpain activity and Rho-ROCK activation may represent a new mechanism for increased oxidative damage in aging. This review will summarize calpain activation and the role of the Rho-ROCK pathway in oxidative stress and α-syn aggregation, their influence on the neurodegenerative process in PD and aging, and possible strategies and research directions for therapeutic intervention.
Collapse
Affiliation(s)
- Amy Gathings
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| | - Narendra L. Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| |
Collapse
|
4
|
Reynoso A, Torricelli R, Jacobs BM, Shi J, Aslibekyan S, Norcliffe-Kaufmann L, Noyce AJ, Heilbron K. Gene-Environment Interactions for Parkinson's Disease. Ann Neurol 2024; 95:677-687. [PMID: 38113326 DOI: 10.1002/ana.26852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) is a neurodegenerative disorder with complex etiology. Multiple genetic and environmental factors have been associated with PD, but most PD risk remains unexplained. The aim of this study was to test for statistical interactions between PD-related genetic and environmental exposures in the 23andMe, Inc. research dataset. METHODS Using a validated PD polygenic risk score and common PD-associated variants in the GBA gene, we explored interactions between genetic susceptibility factors and 7 lifestyle and environmental factors: body mass index (BMI), type 2 diabetes (T2D), tobacco use, caffeine consumption, pesticide exposure, head injury, and physical activity (PA). RESULTS We observed that T2D, as well as higher BMI, caffeine consumption, and tobacco use, were associated with lower odds of PD, whereas head injury, pesticide exposure, GBA carrier status, and PD polygenic risk score were associated with higher odds. No significant association was observed between PA and PD. In interaction analyses, we found statistical evidence for an interaction between polygenic risk of PD and the following environmental/lifestyle factors: T2D (p = 6.502 × 10-8), PA (p = 8.745 × 10-5), BMI (p = 4.314 × 10-4), and tobacco use (p = 2.236 × 10-3). Although BMI and tobacco use were associated with lower odds of PD regardless of the extent of individual genetic liability, the direction of the relationship between odds of PD and T2D, as well as PD and PA, varied depending on polygenic risk score. INTERPRETATION We provide preliminary evidence that associations between some environmental and lifestyle factors and PD may be modified by genotype. ANN NEUROL 2024;95:677-687.
Collapse
Affiliation(s)
| | - Roberta Torricelli
- Center for Preventive Neurology, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Benjamin Meir Jacobs
- Center for Preventive Neurology, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | | - Alastair J Noyce
- Center for Preventive Neurology, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Karl Heilbron
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
5
|
Jannace KC, Pompeii L, Gimeno Ruiz de Porras D, Perkison WB, Yamal JM, Trone DW, Rull RP. Lifetime Traumatic Brain Injury and Risk of Post-Concussive Symptoms in the Millennium Cohort Study. J Neurotrauma 2024; 41:613-622. [PMID: 37358384 PMCID: PMC10902500 DOI: 10.1089/neu.2022.0213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Traumatic brain injury (TBI) is prevalent among active duty military service members, with studies reporting up to 23% experiencing at least one TBI, with 10-60% of service members reporting at least one subsequent repeat TBI. A TBI has been associated with an increased risk of cumulative effects and long-term neurobehavioral symptoms, impacting operational readiness in the short-term and overall health in the long term. The association between multiple TBI and post-concussive symptoms (PCS), however, defined as symptoms that follow a concussion or TBI, in the military has not been adequately examined. Previous studies in military populations are limited by methodological issues including small sample sizes, the use of non-probability sampling, or failure to include the total number of TBI. To overcome these limitations, we examined the association between the total lifetime number of TBI and total number of PCS among U.S. active duty military service members who participated in the Millennium Cohort Study. A secondary data analysis was conducted using the Millennium Cohort Study's 2014 survey (n = 28,263) responses on self-reported TBI and PCS (e.g., fatigue, restlessness, sleep disturbances, poor concentration, or memory loss). Zero-inflated negative binomial models calculated prevalence ratios (PRs) and 95% confidence intervals (CIs) for the unadjusted and adjusted associations between lifetime TBIs and PCS. A third of military participants reported experiencing one or more TBIs during their lifetime with 72% reporting at least one PCS. As the mean number of PCS increased, mean lifetime TBIs increased. The mean number of PCS by those with four or more TBI (4.63) was more than twice that of those with no lifetime TBI (2.28). One, two, three, and four or more TBI had 1.10 (95% CI: 1.06-1.15), 1.19 (95% CI: 1.14-1.25), 1.23 (95% CI: 1.17-1.30), and 1.30 times (95% CI: 1.24-1.37) higher prevalence of PCS, respectively. The prevalence of PCS was 2.4 (95% CI: 2.32-2.48) times higher in those with post-traumatic stress disorder than their counterparts. Active duty military service members with a history of TBI are more likely to have PCS than those with no history of TBI. These results suggest an elevated prevalence of PCS as the number of TBI increased. This highlights the need for robust, longitudinal studies that can establish a temporal relationship between repetitive TBI and incidence of PCS. These findings have practical relevance for designing both workplace safety prevention measures and treatment options regarding the effect on and from TBI among military personnel.
Collapse
Affiliation(s)
- Kalyn C. Jannace
- Southwest Center for Occupational and Environmental Health, UT Health School of Public Health, West Houston, Texas, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- The Center for Rehabilitation Sciences Research, Uniformed Services University for the Health Sciences, Bethesda, Maryland, USA
| | - Lisa Pompeii
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - David Gimeno Ruiz de Porras
- Southwest Center for Occupational and Environmental Health, UT Health School of Public Health, West Houston, Texas, USA
| | - William Brett Perkison
- Southwest Center for Occupational and Environmental Health, UT Health School of Public Health, West Houston, Texas, USA
| | - Jose-Miguel Yamal
- Coordinating Center for Clinical Trials, UT Health School of Public Health, Houston, Texas, USA
| | - Daniel W. Trone
- Deployment Health Research Department, Naval Health Research Center, San Diego, California, USA
| | - Rudolph P. Rull
- Deployment Health Research Department, Naval Health Research Center, San Diego, California, USA
| |
Collapse
|
6
|
Ratan Y, Rajput A, Pareek A, Pareek A, Jain V, Sonia S, Farooqui Z, Kaur R, Singh G. Advancements in Genetic and Biochemical Insights: Unraveling the Etiopathogenesis of Neurodegeneration in Parkinson's Disease. Biomolecules 2024; 14:73. [PMID: 38254673 PMCID: PMC10813470 DOI: 10.3390/biom14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative movement disorder worldwide, which is primarily characterized by motor impairments. Even though multiple hypotheses have been proposed over the decades that explain the pathogenesis of PD, presently, there are no cures or promising preventive therapies for PD. This could be attributed to the intricate pathophysiology of PD and the poorly understood molecular mechanism. To address these challenges comprehensively, a thorough disease model is imperative for a nuanced understanding of PD's underlying pathogenic mechanisms. This review offers a detailed analysis of the current state of knowledge regarding the molecular mechanisms underlying the pathogenesis of PD, with a particular emphasis on the roles played by gene-based factors in the disease's development and progression. This study includes an extensive discussion of the proteins and mutations of primary genes that are linked to PD, including α-synuclein, GBA1, LRRK2, VPS35, PINK1, DJ-1, and Parkin. Further, this review explores plausible mechanisms for DAergic neural loss, non-motor and non-dopaminergic pathologies, and the risk factors associated with PD. The present study will encourage the related research fields to understand better and analyze the current status of the biochemical mechanisms of PD, which might contribute to the design and development of efficacious and safe treatment strategies for PD in future endeavors.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Zeba Farooqui
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
7
|
Jones CMA, Kamintsky L, Parker E, Kureshi N, Audas L, Wilson L, Champagne AA, Boulanger MM, DiStefano V, Fenerty L, Bowen C, Beyea S, Atkinson C, Clarke DB, Friedman A. Blood-Brain Barrier Dysfunction and Exposure to Head Impacts in University Football Players. Clin J Sport Med 2024; 34:61-68. [PMID: 37285595 DOI: 10.1097/jsm.0000000000001164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/21/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To investigate the link between dysfunction of the blood-brain barrier (BBB) and exposure to head impacts in concussed football athletes. DESIGN This was a prospective, observational pilot study. SETTING Canadian university football. PARTICIPANTS The study population consisted of 60 university football players, aged 18 to 25. Athletes who sustained a clinically diagnosed concussion over the course of a single football season were invited to undergo an assessment of BBB leakage. INDEPENDENT VARIABLES Head impacts detected using impact-sensing helmets were the measured variables. MAIN OUTCOME MEASURES Clinical diagnosis of concussion and BBB leakage assessed using dynamic contrast-enhanced MRI (DCE-MRI) within 1 week of concussion were the outcome measures. RESULTS Eight athletes were diagnosed with a concussion throughout the season. These athletes sustained a significantly higher number of head impacts than nonconcussed athletes. Athletes playing in the defensive back position were significantly more likely to sustain a concussion than remain concussion free. Five of the concussed athletes underwent an assessment of BBB leakage. Logistic regression analysis indicated that region-specific BBB leakage in these 5 athletes was best predicted by impacts sustained in all games and practices leading up to the concussion-as opposed to the last preconcussion impact or the impacts sustained during the game when concussion occurred. CONCLUSIONS These preliminary findings raise the potential for the hypothesis that repeated exposure to head impacts may contribute to the development of BBB pathology. Further research is needed to validate this hypothesis and to test whether BBB pathology plays a role in the sequela of repeated head trauma.
Collapse
Affiliation(s)
- Casey M A Jones
- Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Lyna Kamintsky
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ellen Parker
- Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Nelofar Kureshi
- Division of Neurosurgery, Dalhousie University QEII Health Sciences Centre, Nova Scotia Health Authority, Halifax, NS, Canada
| | - Lorelei Audas
- Division of Neurosurgery, Dalhousie University QEII Health Sciences Centre, Nova Scotia Health Authority, Halifax, NS, Canada
| | | | | | | | - Vincent DiStefano
- School of Applied Child Psychology, McGill University, Montréal, QC, Canada
| | - Lynne Fenerty
- Division of Neurosurgery, Dalhousie University QEII Health Sciences Centre, Nova Scotia Health Authority, Halifax, NS, Canada
| | - Chris Bowen
- Biomedical Translational Imaging Centre (BIOTIC), Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
- Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada
| | - Steven Beyea
- Biomedical Translational Imaging Centre (BIOTIC), Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
- Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada
| | - Christina Atkinson
- Department of Family Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; and
| | - David B Clarke
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Division of Neurosurgery, Dalhousie University QEII Health Sciences Centre, Nova Scotia Health Authority, Halifax, NS, Canada
| | - Alon Friedman
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Departments of Cognitive and Brain Sciences, Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
8
|
Khan N, Romila L, Ciobica A, Burlui V, Kamal FZ, Mavroudis I. Mild Traumatic Brain Injury as a Risk Factor for Parkinsonism, Tics, and Akathisia: A Systematic Review and Meta-Analysis. Life (Basel) 2023; 14:32. [PMID: 38255648 PMCID: PMC10820893 DOI: 10.3390/life14010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
This meta-analysis aimed to assess the association between mild traumatic brain injury (mTBI) and the risk of developing Parkinsonism. A systematic literature review was conducted using PubMed, Embase, and Cochrane Library databases. Studies were eligible if they reported on the association between MTBI and Parkinsonism. Pooled odds ratios (ORs) were calculated using a random-effects model. Publication bias was assessed using Egger's and Begg's tests. A total of 18 studies were included in this meta-analysis, with 1,484,752 participants. The overall OR for Parkinsonism in individuals with a history of mTBI was 1.637 (95% CI, 1.203-2.230; p = 0.01), indicating a significant association. The OR for Parkinson's disease (PD) specifically was 1.717 (95% CI, 1.206-2.447; p = 0.01). However, insufficient data on tics and akathisia limited a meta-analysis. There was no evidence of publication bias according to Egger's (p = 0.8107) and Begg's (p = 0.4717) tests. This meta-analysis provides evidence that mTBI is a significant risk factor for Parkinsonism, particularly PD. However, the findings should be interpreted with caution due to the heterogeneity among the studies included and the study's limitations. Further research is needed to confirm these findings and to investigate the underlying mechanisms of the mTBI-Parkinsonism association.
Collapse
Affiliation(s)
- Nashaba Khan
- Department of Neurosciences, Leeds Teaching Hospitals, NHS Trust, Leeds LS97TF, UK (I.M.)
| | - Laura Romila
- Departament of Preclinical Disciplines, Apollonia University, 700511 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 20th Carol I Avenue, 700506 Iasi, Romania
| | - Vasile Burlui
- Department of Biomaterials, Faculty of Dental Medicine, Apollonia University, 700511 Iasi, Romania;
| | - Fatima Zahra Kamal
- Laboratory of Physical Chemistry of Processes, Faculty of Sciences and Techniques, Hassan First University, B.P. 539, Settat 26000, Morocco;
| | - Ioannis Mavroudis
- Department of Neurosciences, Leeds Teaching Hospitals, NHS Trust, Leeds LS97TF, UK (I.M.)
| |
Collapse
|
9
|
Song Q, Geng H, Zhen H, Liu H, Deng H, Yuan Z, Zhang J, Cao Z, Pang Q, Zhao B. DjFARP Contributes to the Regeneration and Maintenance of the Brain through Activation of DjRac1 in Dugesia japonica. Mol Neurobiol 2023; 60:6294-6306. [PMID: 37442859 DOI: 10.1007/s12035-023-03478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 07/02/2023] [Indexed: 07/15/2023]
Abstract
FERM, RhoGEF, and Pleckstrin domain protein (FARP) mediated RhoGTPase pathways are involved in diverse biological processes, such as neuronal development and tumorigenesis. However, little is known about their role in neural regeneration. We uncovered for the first time that FARP-Rac1 signaling plays an important role in neural regeneration in Dugesia japonica, a planarian that possesses unparalleled regenerative capacities. The planarian FARP homolog DjFARP was primarily expressed in both intact and regenerating brain and pharynx tissue. Functional studies suggested that downregulation of DjFARP with dsRNA in Dugesia japonica led to smaller brain sizes, defects in brain lateral branches, and loss of cholinergic, GABAergic, and dopaminergic neurons in both intact and regenerating animals. Moreover, the Rho GTPase DjRac1 was shown to play a similar role in neural regeneration and maintenance. Rac1 activation assay showed that DjFARP acts as a guanine nucleotide exchange factor (GEF) for DjRac1. Together, these findings indicate that the brain defects seen in DjFARP knockdown animals may be attributable to DjRac1 inactivation. In conclusion, our study demonstrated that DjFARP-DjRac1 signaling was required for the maintenance and proper regeneration of the brain in Dugesia japonica.
Collapse
Affiliation(s)
- Qian Song
- Laboratory of Developmental and Evolutionary Biology, Shandong University of Technology, 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Huazhi Geng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Hui Zhen
- Laboratory of Developmental and Evolutionary Biology, Shandong University of Technology, 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Hongjin Liu
- Zibo Maternal and Child Health Hospital, Zibo, 255000, China
| | - Hongkuan Deng
- Zibo Maternal and Child Health Hospital, Zibo, 255000, China
| | - Zuoqing Yuan
- Zibo Maternal and Child Health Hospital, Zibo, 255000, China
| | - Jianyong Zhang
- Zibo Maternal and Child Health Hospital, Zibo, 255000, China
| | - Zhonghong Cao
- Zibo Maternal and Child Health Hospital, Zibo, 255000, China
| | - Qiuxiang Pang
- Zibo Maternal and Child Health Hospital, Zibo, 255000, China
| | - Bosheng Zhao
- Laboratory of Developmental and Evolutionary Biology, Shandong University of Technology, 266 Xincun West Road, Zibo, 255049, People's Republic of China.
- Zibo Maternal and Child Health Hospital, Zibo, 255000, China.
| |
Collapse
|
10
|
Smolen P, Dash PK, Redell JB. Traumatic brain injury-associated epigenetic changes and the risk for neurodegenerative diseases. Front Neurosci 2023; 17:1259405. [PMID: 37795186 PMCID: PMC10546067 DOI: 10.3389/fnins.2023.1259405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Epidemiological studies have shown that traumatic brain injury (TBI) increases the risk for developing neurodegenerative diseases (NDs). However, molecular mechanisms that underlie this risk are largely unidentified. TBI triggers widespread epigenetic modifications. Similarly, NDs such as Alzheimer's or Parkinson's are associated with numerous epigenetic changes. Although epigenetic changes can persist after TBI, it is unresolved if these modifications increase the risk of later ND development and/or dementia. We briefly review TBI-related epigenetic changes, and point out putative feedback loops that might contribute to long-term persistence of some modifications. We then focus on evidence suggesting persistent TBI-associated epigenetic changes may contribute to pathological processes (e.g., neuroinflammation) which may facilitate the development of specific NDs - Alzheimer's disease, Parkinson's disease, or chronic traumatic encephalopathy. Finally, we discuss possible directions for TBI therapies that may help prevent or delay development of NDs.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | | | | |
Collapse
|
11
|
Goldman SM, Weaver FM, Stroupe KT, Cao L, Gonzalez B, Colletta K, Brown EG, Tanner CM. Risk of Parkinson Disease Among Service Members at Marine Corps Base Camp Lejeune. JAMA Neurol 2023; 80:673-681. [PMID: 37184848 PMCID: PMC10186205 DOI: 10.1001/jamaneurol.2023.1168] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/03/2023] [Indexed: 05/16/2023]
Abstract
Importance An increased risk of Parkinson disease (PD) has been associated with exposure to the solvent trichloroethylene (TCE), but data are limited. Millions of people in the US and worldwide are exposed to TCE in air, food, and water. Objective To test whether the risk of PD is higher in veterans who served at Marine Corps Base Camp Lejeune, whose water supply was contaminated with TCE and other volatile organic compounds (VOCs), compared with veterans who did not serve on that base. Design, Setting, and Participants This population-based cohort study examined the risk for PD among all Marines and Navy personnel who resided at Camp Lejeune, North Carolina (contaminated water) (n = 172 128), or Camp Pendleton, California (uncontaminated water) (n = 168 361), for at least 3 months between 1975 and 1985, with follow-up from January 1, 1997, until February 17, 2021. Veterans Health Administration and Medicare databases were searched for International Classification of Diseases diagnostic codes for PD or other forms of parkinsonism and related medications and for diagnostic codes indicative of prodromal disease. Parkinson disease diagnoses were confirmed by medical record review. Exposures Water supplies at Camp Lejeune were contaminated with several VOCs. Levels were highest for TCE, with monthly median values greater than 70-fold the permissible amount. Main Outcome and Measures Risk of PD in former residents of Camp Lejeune relative to residents of Camp Pendleton. In those without PD or another form of parkinsonism, the risk of being diagnosed with features of prodromal PD were assessed individually and cumulatively using likelihood ratio tests. Results Health data were available for 158 122 veterans (46.4%). Demographic characteristics were similar between Camp Lejeune (5.3% women, 94.7% men; mean [SD] attained age of 59.64 [4.43] years; 29.7% Black, 6.0% Hispanic, 67.6% White; and 2.7% other race and ethnicity) and Camp Pendleton (3.8% women, 96.2% men; mean [SD] age, 59.80 [4.62] years; 23.4% Black, 9.4% Hispanic, 71.1% White, and 5.5% other race and ethnicity). A total of 430 veterans had PD, with 279 from Camp Lejeune (prevalence, 0.33%) and 151 from Camp Pendleton (prevalence, 0.21%). In multivariable models, Camp Lejeune veterans had a 70% higher risk of PD (odds ratio, 1.70; 95% CI, 1.39-2.07; P < .001). No excess risk was found for other forms of neurodegenerative parkinsonism. Camp Lejeune veterans also had a significantly increased risk of prodromal PD diagnoses, including tremor, anxiety, and erectile dysfunction, and higher cumulative prodromal risk scores. Conclusions and Relevance The study's findings suggest that the risk of PD is higher in persons exposed to TCE and other VOCs in water 4 decades ago. Millions worldwide have been and continue to be exposed to this ubiquitous environmental contaminant.
Collapse
Affiliation(s)
- Samuel M. Goldman
- Division of Occupational and Environmental Medicine, University of California, San Francisco
- San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Frances M. Weaver
- Center of Innovation for Complex Chronic Healthcare, Hines Veterans Affairs Hospital, Hines, Illinois
- Parkinson School of Health Sciences and Public Health, Loyola University, Maywood, Illinois
| | - Kevin T. Stroupe
- Center of Innovation for Complex Chronic Healthcare, Hines Veterans Affairs Hospital, Hines, Illinois
- Parkinson School of Health Sciences and Public Health, Loyola University, Maywood, Illinois
| | - Lishan Cao
- Center of Innovation for Complex Chronic Healthcare, Hines Veterans Affairs Hospital, Hines, Illinois
| | - Beverly Gonzalez
- Center of Innovation for Complex Chronic Healthcare, Hines Veterans Affairs Hospital, Hines, Illinois
| | - Kalea Colletta
- Center of Innovation for Complex Chronic Healthcare, Hines Veterans Affairs Hospital, Hines, Illinois
| | - Ethan G. Brown
- San Francisco Veterans Affairs Health Care System, San Francisco, California
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco
| | - Caroline M. Tanner
- San Francisco Veterans Affairs Health Care System, San Francisco, California
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco
| |
Collapse
|
12
|
Datta S, Lin F, Jones LD, Pingle SC, Kesari S, Ashili S. Traumatic brain injury and immunological outcomes: the double-edged killer. Future Sci OA 2023; 9:FSO864. [PMID: 37228857 PMCID: PMC10203904 DOI: 10.2144/fsoa-2023-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of mortality and morbidity worldwide resulting from falls, car accidents, sports, and blast injuries. TBI is characterized by severe, life-threatening consequences due to neuroinflammation in the brain. Contact and collision sports lead to higher disability and death rates among young adults. Unfortunately, no therapy or drug protocol currently addresses the complex pathophysiology of TBI, leading to the long-term chronic neuroinflammatory assaults. However, the immune response plays a crucial role in tissue-level injury repair. This review aims to provide a better understanding of TBI's immunobiology and management protocols from an immunopathological perspective. It further elaborates on the risk factors, disease outcomes, and preclinical studies to design precisely targeted interventions for enhancing TBI outcomes.
Collapse
Affiliation(s)
- Souvik Datta
- Rhenix Lifesciences, 237 Arsha Apartments, Kalyan Nagar, Hyderabad, TG 500038, India
| | - Feng Lin
- CureScience, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | | | | | - Santosh Kesari
- Saint John's Cancer Institute, Santa Monica, CA 90404, USA
| | | |
Collapse
|
13
|
Kopp KO, Greer ME, Glotfelty EJ, Hsueh SC, Tweedie D, Kim DS, Reale M, Vargesson N, Greig NH. A New Generation of IMiDs as Treatments for Neuroinflammatory and Neurodegenerative Disorders. Biomolecules 2023; 13:biom13050747. [PMID: 37238617 DOI: 10.3390/biom13050747] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The immunomodulatory imide drug (IMiD) class, which includes the founding drug member thalidomide and later generation drugs, lenalidomide and pomalidomide, has dramatically improved the clinical treatment of specific cancers, such as multiple myeloma, and it combines potent anticancer and anti-inflammatory actions. These actions, in large part, are mediated by IMiD binding to the human protein cereblon that forms a critical component of the E3 ubiquitin ligase complex. This complex ubiquitinates and thereby regulates the levels of multiple endogenous proteins. However, IMiD-cereblon binding modifies cereblon's normal targeted protein degradation towards a new set of neosubstrates that underlies the favorable pharmacological action of classical IMiDs, but also their adverse actions-in particular, their teratogenicity. The ability of classical IMiDs to reduce the synthesis of key proinflammatory cytokines, especially TNF-α levels, makes them potentially valuable to reposition as drugs to mitigate inflammatory-associated conditions and, particularly, neurological disorders driven by an excessive neuroinflammatory element, as occurs in traumatic brain injury, Alzheimer's and Parkinson's diseases, and ischemic stroke. The teratogenic and anticancer actions of classical IMiDs are substantial liabilities for effective drugs in these disorders and can theoretically be dialed out of the drug class. We review a select series of novel IMiDs designed to avoid binding with human cereblon and/or evade degradation of downstream neosubstrates considered to underpin the adverse actions of thalidomide-like drugs. These novel non-classical IMiDs hold potential as new medications for erythema nodosum leprosum (ENL), a painful inflammatory skin condition associated with Hansen's disease for which thalidomide remains widely used, and, in particular, as a new treatment strategy for neurodegenerative disorders in which neuroinflammation is a key component.
Collapse
Affiliation(s)
- Katherine O Kopp
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., NIH, Baltimore, MD 21224, USA
| | - Margaret E Greer
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., NIH, Baltimore, MD 21224, USA
- Faculty of Medicine, Georgetown University School of Medicine, Washington, DC 20007, USA
| | - Elliot J Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., NIH, Baltimore, MD 21224, USA
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Shih-Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., NIH, Baltimore, MD 21224, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., NIH, Baltimore, MD 21224, USA
| | - Dong Seok Kim
- Aevisbio Inc., Gaithersburg, MD 20878, USA
- Aevis Bio Inc., Daejeon 34141, Republic of Korea
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, G. d'Annunzio University of Chieti and Pescara, 66100 Chieti, Italy
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., NIH, Baltimore, MD 21224, USA
| |
Collapse
|
14
|
Lillian A, Zuo W, Laham L, Hilfiker S, Ye JH. Pathophysiology and Neuroimmune Interactions Underlying Parkinson's Disease and Traumatic Brain Injury. Int J Mol Sci 2023; 24:7186. [PMID: 37108349 PMCID: PMC10138999 DOI: 10.3390/ijms24087186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder clinically defined by motor instability, bradykinesia, and resting tremors. The clinical symptomatology is seen alongside pathologic changes, most notably the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of α-synuclein and neuromelanin aggregates throughout numerous neural circuits. Traumatic brain injury (TBI) has been implicated as a risk factor for developing various neurodegenerative diseases, with the most compelling argument for the development of PD. Dopaminergic abnormalities, the accumulation of α-synuclein, and disruptions in neural homeostatic mechanisms, including but not limited to the release of pro-inflammatory mediators and the production of reactive oxygen species (ROS), are all present following TBI and are closely related to the pathologic changes seen in PD. Neuronal iron accumulation is discernable in degenerative and injured brain states, as is aquaporin-4 (APQ4). APQ4 is an essential mediator of synaptic plasticity in PD and regulates edematous states in the brain after TBI. Whether the cellular and parenchymal changes seen post-TBI directly cause neurodegenerative diseases such as PD is a point of considerable interest and debate; this review explores the vast array of neuroimmunological interactions and subsequent analogous changes that occur in TBI and PD. There is significant interest in exploring the validity of the relationship between TBI and PD, which is a focus of this review.
Collapse
Affiliation(s)
- Alyssa Lillian
- New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 08901, USA
| | - Wanhong Zuo
- New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 08901, USA
| | - Linda Laham
- New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 08901, USA
| | - Sabine Hilfiker
- New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 08901, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 08901, USA
| |
Collapse
|
15
|
Balabandian M, Noori M, Lak B, Karimizadeh Z, Nabizadeh F. Traumatic brain injury and risk of Parkinson's disease: a meta-analysis. Acta Neurol Belg 2023:10.1007/s13760-023-02209-x. [PMID: 36781627 DOI: 10.1007/s13760-023-02209-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Association between traumatic brain injury (TBI) and Parkinson's disease (PD) has been a hot topic of discussion for a long time. Previous studies reported that the incidence of PD is significantly higher among elderly adults with a history of TBI. Due to contradictory results of previous investigations, we aimed to perform a systematic review and meta-analysis to investigate the role of TBI as a risk factor for PD. METHODS We conducted a systematic literature search in the electronic databases PubMed, Web of Science, and Scopus. In this study, we included published papers on the risk of PD in patients with previous TBI compared to the healthy control group. RESULTS After the screening, 15 studies entered our systematic review and meta-analysis. The risk ratio of TBI among PD and controls by a combination of 15 studies using a random-effect model was 1.48 (95% CI 1.22-1.74). The prevalence of TBI by a combination of 14 studies was 18% (95% CI 12-24%). CONCLUSION Our result suggests that TBI is a major risk factor for developing PD later in life. At this time, there is a lack of populous prospective cohort studies with sufficient follow-up period to provide a well-documented association between the onset of PD and severity, frequency, and location of prior TBI, which warrants special efforts and consideration for years to come.
Collapse
Affiliation(s)
- Mohammad Balabandian
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Urology Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Behina Lak
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Karimizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Nabizadeh
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Nikitina MA, Alifirova VM, Bragina EY, Babushkina NP, Gomboeva DE, Nazarenko SM. Environmental and genetic risk factors for Parkinson’s disease. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-105-113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aim. To analyze risk factors in the group of patients with Parkinson’s disease (PD) and compare them with the literature data.Materials and methods. The study included 439 patients with PD and 354 controls, comparable by gender and age. For each individual, a registration card was filled in containing demographic, epidemiological, clinical, and neuropsychological data. The severity of the disease was studied according to the MDS-UPDRS scale; the stage of PD was determined according to the Hoehn and Yahr scale. Cognitive functions were assessed by the MoCA test and MMSE. The length of the (CAG)n repeat region in the HTT gene was determined using fragment analysis on the ABI 3730 DNA analyzer. The obtained results were analyzed using GeneMapper Software v4.1 (Applied Biosystems, USA).Results. When comparing patients with PD and the control group, the odds ratio (OR) for PD in individuals with traumatic brain injury was 3.13 (95% confidence interval (CI): 2,27–4.34; p = 4.94 × 10–13), which showed the significance of this risk factor for PD. Consumption of coffee in the anamnesis distinguished the group of PD patients from the control group (OR = 0.41 (95% CI: 0.30–0.56); p < 0.0001), confirming its neuroprotective effect. Analysis of the variability in the length of the (CAG)n repeat regions in the HTT gene showed that patients whose genotype contained an allele with 17 repeats in combination with any allele other than an allele containing 18 repeats had a protective effect (OR = 0.50 (95% CI: 0.27–0.92); p = 0.025). All genotypes containing an allele with 18 repeats were predisposed to PD (OR = 2.57 (95% CI: 1.66–4.28); p = 0.007). The predisposing effect of the allele to PD, unrelated to the expansion of CAG repeats in the HTT gene, was revealed for the first time.Conclusion. Traumatic brain injury and the allele with 18 CAG repeats in the HTT gene are risk factors for PD. Coffee consumption can be attributed to protective factors in relation to PD.
Collapse
Affiliation(s)
| | | | - E. Yu. Bragina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - N. P. Babushkina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - D. E. Gomboeva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - S. M. Nazarenko
- Siberian State Medical University;
Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| |
Collapse
|
17
|
Allwright M, Mundell H, Sutherland G, Austin P, Guennewig B. Machine learning analysis of the UK Biobank reveals IGF-1 and inflammatory biomarkers predict Parkinson's disease risk. PLoS One 2023; 18:e0285416. [PMID: 37159450 PMCID: PMC10168570 DOI: 10.1371/journal.pone.0285416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/24/2023] [Indexed: 05/11/2023] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is the most common movement disorder, and its prevalence is increasing rapidly worldwide with an ageing population. The UK Biobank is the world's largest and most comprehensive longitudinal study of ageing community volunteers. The cause of the common form of PD is multifactorial, but the degree of causal heterogeneity among patients or the relative importance of one risk factor over another is unclear. This is a major impediment to the discovery of disease-modifying therapies. METHODS We used an integrated machine learning algorithm (IDEARS) to explore the relative effects of 1,753 measured non-genetic variables in 334,062 eligible UK Biobank participants, including 2,719 who had developed PD since their recruitment into the study. RESULTS Male gender was the highest-ranked risk factor, followed by elevated serum insulin-like growth factor 1 (IGF-1), lymphocyte count, and neutrophil/lymphocyte ratio. A group of factors aligned with the symptoms of frailty also ranked highly. IGF-1 and neutrophil/lymphocyte ratio were also elevated in both sexes before PD diagnosis and at the point of diagnosis. DISCUSSION The use of machine learning with the UK Biobank provides the best opportunity to explore the multidimensional nature of PD. Our results suggest that novel risk biomarkers, including elevated IGF-1 and NLR, may play a role in, or are indicative of PD pathomechanisms. In particular, our results are consistent with PD being a central manifestation of a systemic inflammatory disease. These biomarkers may be used clinically to predict future PD risk, improve early diagnosis and provide new therapeutic avenues.
Collapse
Affiliation(s)
- Michael Allwright
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Hamish Mundell
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Greg Sutherland
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Paul Austin
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Boris Guennewig
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
18
|
Chiu LS, Anderton RS. The role of the microbiota-gut-brain axis in long-term neurodegenerative processes following traumatic brain injury. Eur J Neurosci 2023; 57:400-418. [PMID: 36494087 PMCID: PMC10107147 DOI: 10.1111/ejn.15892] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) can be a devastating and debilitating disease to endure. Due to improvements in clinical practice, declining mortality rates have led to research into the long-term consequences of TBI. For example, the incidence and severity of TBI have been associated with an increased susceptibility of developing neurodegenerative disorders, such as Parkinson's or Alzheimer's disease. However, the mechanisms linking this alarming association are yet to be fully understood. Recently, there has been a groundswell of evidence implicating the microbiota-gut-brain axis in the pathogenesis of these diseases. Interestingly, survivors of TBI often report gastrointestinal complaints and animal studies have demonstrated gastrointestinal dysfunction and dysbiosis following injury. Autonomic dysregulation and chronic inflammation appear to be the main driver of these pathologies. Consequently, this review will explore the potential role of the microbiota-gut-brain axis in the development of neurodegenerative diseases following TBI.
Collapse
Affiliation(s)
- Li Shan Chiu
- School of Medicine, The University Notre Dame Australia, Fremantle, Western Australia, Australia
- Ear Science Institute Australia, Nedlands, Western Australia, Australia
| | - Ryan S Anderton
- Institute for Health Research, The University Notre Dame Australia, Fremantle, Western Australia, Australia
| |
Collapse
|
19
|
Costantini E, Jarlapoodi S, Serra F, Aielli L, Khan H, Belwal T, Falasca K, Reale M. Neuroprotective Potential of Bacopa monnieri: Modulation of Inflammatory Signals. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:441-451. [PMID: 35021981 DOI: 10.2174/1871527321666220111124047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND To date, much evidence has shown the increased interest in natural molecules and traditional herbal medicine as alternative bioactive compounds to fight many inflammatory conditions, both in relation to immunomodulation and in terms of their wound healing potential. Bacopa monnieri is a herb that is used in the Ayurvedic medicine tradition for its anti-inflammatory activity. OBJECTIVE In this study, we evaluate the anti-inflammatory and regenerative properties of the Bacopa monnieri extract (BME) in vitro model of neuroinflammation. METHODS Neuronal SH-SY5Y cells were stimulated with TNFα and IFNγ and used to evaluate the effect of BME on cell viability, cytotoxicity, cytokine gene expression, and healing rate. RESULTS Our results showed that BME protects against the Okadaic acid-induced cytotoxicity in SH-SY5Y cells. Moreover, in TNFα and IFNγ primed cells, BME reduces IL-1β, IL-6, COX-2, and iNOS, mitigates the mechanical trauma injury-induced damage, and accelerates the healing of wounds. CONCLUSION This study indicates that BME might become a promising candidate for the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Erica Costantini
- Department of Medicine and Science of Aging, University "G.d'Annunzio", Via dei Vestini 66100 Chieti, Italy
| | - Srinivas Jarlapoodi
- Department of Innovative Technologies in Medicine and Dentistry, University "G.d'Annunzio", Via dei Vestini 66100 Chieti, Italy
| | - Federica Serra
- Department of Pharmacy, University "G.d'Annunzio", Via dei Vestini 66100 Chieti, Italy
| | - Lisa Aielli
- Department of Innovative Technologies in Medicine and Dentistry, University "G.d'Annunzio", Via dei Vestini 66100 Chieti, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Katia Falasca
- Department of Medicine and Science of Aging, University "G.d'Annunzio", Via dei Vestini 66100 Chieti, Italy
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, University "G.d'Annunzio", Via dei Vestini 66100 Chieti, Italy
| |
Collapse
|
20
|
Risk Factors of Parkinson’s Disease: A Case-Control Study in Moroccan Patients. ARCHIVES OF NEUROSCIENCE 2022. [DOI: 10.5812/ans-126351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Parkinson’s disease (PD) remains a significant health concern in Morocco. Multivariate analysis was not used in any study to evaluate the role of various factors that contributed to the onset of the disease. Objectives: This study investigates the role of family, environmental, and professional factors in PD development. Methods: The present study is an age-matched case-control study with risk estimation based on odds ratios (OR) with a 95% confidence interval (CI). In total, 180 cases were matched with 360 controls. Results: The average age of participants was 68.3 ± 11.2 years. Adjusted logistic regression analysis showed that the family history of PD (ORa = 7.19, CI 95% 3.41 - 15.13), male sex (ORa = 1.92, CI 95% 1.16 - 3.16), spring water consumption (ORa = 3.31, CI 95% 2.05 - 5.34), drug use (ORa = 2.12, CI 95% 1.33 - 3.38), a history of head injury (ORa = 3.38, CI 95% 1.16 - 9.83) and non - consumption of coffee (ORa = 3.04, CI 95% 1.56 - 5.90) were significantly associated with the onset of the disease. In a univariate analysis, well water consumption was observed as a significant risk factor but could not be shown to be significant in a multivariate analysis. Previous work on a farm (ORa = 0.30, CI 95% 0.16 - 0.54) and history of general anesthesia (ORa = 0.47, CI 95% 0.27 - 0.83) were inversely associated with PD risk. No statistical significance was observed in the data on occupational exposure and disease risk, although there was a 30% decrease in risk for the service occupations (ORa = 0.05, CI 95% 0.01 - 0.18). Conclusions: As a result, further research is needed to determine additional risk factors.
Collapse
|
21
|
Guo M, Ji X, Liu J. Hypoxia and Alpha-Synuclein: Inextricable Link Underlying the Pathologic Progression of Parkinson's Disease. Front Aging Neurosci 2022; 14:919343. [PMID: 35959288 PMCID: PMC9360429 DOI: 10.3389/fnagi.2022.919343] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease, with typical motor symptoms as the main clinical manifestations. At present, there are about 10 million patients with PD in the world, and its comorbidities and complications are numerous and incurable. Therefore, it is particularly important to explore the pathogenesis of PD and find possible therapeutic targets. Because the etiology of PD is complex, involving genes, environment, and aging, finding common factors is the key to identifying intervention targets. Hypoxia is ubiquitous in the natural environment and disease states, and it is considered to be closely related to the etiology of PD. Despite research showing that hypoxia increases the expression and aggregation of alpha-synuclein (α-syn), the most important pathogenic protein, there is still a lack of systematic studies on the role of hypoxia in α-syn pathology and PD pathogenesis. Considering that hypoxia is inextricably linked with various causes of PD, hypoxia may be a co-participant in many aspects of the PD pathologic process. In this review, we describe the risk factors for PD, and we discuss the possible role of hypoxia in inducing PD pathology by these risk factors. Furthermore, we attribute the pathological changes caused by PD etiology to oxygen uptake disorder and oxygen utilization disorder, thus emphasizing the possibility of hypoxia as a critical link in initiating or promoting α-syn pathology and PD pathogenesis. Our study provides novel insight for exploring the pathogenesis and therapeutic targets of PD.
Collapse
Affiliation(s)
- Mengyuan Guo
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Xunming Ji
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- *Correspondence: Jia Liu
| |
Collapse
|
22
|
Rogers EA, Beauclair T, Thyen A, Shi R. Utilizing novel TBI-on-a-chip device to link physical impacts to neurodegeneration and decipher primary and secondary injury mechanisms. Sci Rep 2022; 12:11838. [PMID: 35821510 PMCID: PMC9276772 DOI: 10.1038/s41598-022-14937-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
While clinical observations have confirmed a link between the development of neurodegenerative diseases and traumatic brain injuries (TBI), there are currently no treatments available and the underlying mechanisms remain elusive. In response, we have developed an in vitro pendulum trauma model capable of imparting rapid acceleration injuries to neuronal networks grown on microelectrode arrays within a clinically relevant range of g forces, with real-time electrophysiological and morphological monitoring. By coupling a primary physical insult with the quantification of post-impact levels of known biochemical pathological markers, we demonstrate the capability of our system to delineate and investigate the primary and secondary injury mechanisms leading to post-impact neurodegeneration. Specifically, impact experiments reveal significant, force-dependent increases in the pro-inflammatory, oxidative stress marker acrolein at 24 h post-impact. The elevation of acrolein was augmented by escalating g force exposures (30-200 g), increasing the number of rapidly repeated impacts (4-6 s interval, 3, 5 and 10×), and by exposing impacted cells to 40 mM ethanol, a known comorbidity of TBI. The elevated levels of acrolein following multiple impacts could be reduced by increasing time-intervals between repeated hits. In addition, we show that conditioned media from maximally-impacted cultures can cause cellular acrolein elevation when introduced to non-impact, control networks, further solidifying acrolein's role as a diffusive-factor in post-TBI secondary injuries. Finally, morphological data reveals post-impact acrolein generation to be primarily confined to soma, with some emergence in cellular processes. In conclusion, this novel technology provides accurate, physical insults with a unique level of structural and temporal resolution, facilitating the investigation of post-TBI neurodegeneration.
Collapse
Affiliation(s)
- Edmond A Rogers
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Timothy Beauclair
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrew Thyen
- Indiana University School of Medicine, Indianapolis, IN, 46033, USA
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
23
|
Chauhan AV, Guralnik J, dosReis S, Sorkin JD, Badjatia N, Albrecht JS. Repetitive Traumatic Brain Injury Among Older Adults. J Head Trauma Rehabil 2022; 37:E242-E248. [PMID: 34320558 PMCID: PMC8789954 DOI: 10.1097/htr.0000000000000719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To determine the incidence of and assess risk factors for repetitive traumatic brain injury (TBI) among older adults in the United States. DESIGN Retrospective cohort study. SETTING Administrative claims data obtained from the Centers for Medicare & Medicaid Services' Chronic Conditions Data Warehouse. PARTICIPANTS Individuals 65 years or older and diagnosed with TBI between July 2008 and September 2012 drawn from a 5% random sample of US Medicare beneficiaries. MAIN MEASURES Repetitive TBI was identified as a second TBI occurring at least 90 days after the first occurrence of TBI following an 18-month TBI-free period. We identified factors associated with repetitive TBI using a log-binomial model. RESULTS A total of 38 064 older Medicare beneficiaries experienced a TBI. Of these, 4562 (12%) beneficiaries sustained at least one subsequent TBI over up to 5 years of follow-up. The unadjusted incidence rate of repetitive TBI was 3022 (95% CI, 2935-3111) per 100 000 person-years. Epilepsy was the strongest predictor of repetitive TBI (relative risk [RR] = 1.44; 95% CI, 1.25-1.56), followed by Alzheimer disease and related dementias (RR = 1.32; 95% CI 1.20-1.45), and depression (RR = 1.30; 95% CI, 1.21-1.38). CONCLUSIONS Injury prevention and fall-reduction interventions could be targeted to identify groups of older adults at an increased risk of repetitive head injury. Future work should focus on injury-reduction initiatives to reduce the risk of repetitive TBI as well as assessment of outcomes related to repetitive TBI.
Collapse
Affiliation(s)
- Aparna Vadlamani Chauhan
- Departments of Epidemiology and Public Health (Drs Chauhan, Guralnik, and Albrecht) and Neurology (Dr Badjatia), University of Maryland School of Medicine, Baltimore; Department of Pharmaceutical Health Services Research, University of Maryland School of Pharmacy, Baltimore (Dr dosReis); Baltimore VA Geriatric Research, Education and Clinical Center (Dr Sorkin); and Department of Medicine, Division of Gerontology and Geriatrics, University of Maryland School of Medicine, Baltimore (Dr Sorkin)
| | | | | | | | | | | |
Collapse
|
24
|
Reducing neuroinflammation via therapeutic compounds and lifestyle to prevent or delay progression of Parkinson's disease. Ageing Res Rev 2022; 78:101618. [PMID: 35395416 DOI: 10.1016/j.arr.2022.101618] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the second most common age-associated neurodegenerative disorder and is characterised by progressive loss of dopamine neurons in the substantia nigra. Peripheral immune cell infiltration and activation of microglia and astrocytes are observed in PD, a process called neuroinflammation. Neuroinflammation is a fundamental response to protect the brain but, when chronic, it triggers neuronal damage. In the last decade, central and peripheral inflammation were suggested to occur at the prodromal stage of PD, sustained throughout disease progression, and may play a significant role in the pathology. Understanding the pathological mechanisms of PD has been a high priority in research, primarily to find effective treatments once symptoms are present. Evidence indicates that early life exposure to neuroinflammation as a consequence of life events, environmental or behaviour factors such as exposure to infections, pollution or a high fat diet increase the risk of developing PD. Many studies show healthy habits and products that decrease neuroinflammation also reduce the risk of PD. Here, we aim to stimulate discussion about the role of neuroinflammation in PD onset and progression. We highlight that reducing neuroinflammation throughout the lifespan is critical for preventing idiopathic PD, and present epidemiological studies that detail risk and protective factors. It is possible that introducing lifestyle changes that reduce neuroinflammation at the time of PD diagnosis may slow symptom progression. Finally, we discuss compounds and therapeutics to treat the neuroinflammation associated with PD.
Collapse
|
25
|
Morais VA, Vos M. Reduced penetrance of Parkinson's disease models. MED GENET-BERLIN 2022; 34:117-124. [PMID: 38835909 PMCID: PMC11006373 DOI: 10.1515/medgen-2022-2138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The etiology and progression of Parkinson's Disease (PD), the second most prevalent neurological disorder, have been widely investigated for several decades; however, a cure is still lacking. Despite the development of several neurotoxins and animal models to study this rather heterogeneous disease, a complete recapitulation of the neurophysiology and neuropathology of PD has not been fully achieved. One underlying cause for this could be that mutations in PD-associated genes have reduced penetrance. Therefore, the quest for novel PD models is required where a double hit approach needs to be evoked - a combination of genetic alterations and environmental factors need to be accounted for in one unique model simultaneously.
Collapse
Affiliation(s)
- Vanessa A Morais
- iMM, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal
| | - Melissa Vos
- Institute of Neurogenetics, University of Luebeck, Ratzeburger Allee 160 building 67, 23562 Luebeck, Germany
| |
Collapse
|
26
|
Gao L, Xue Q, Gong S, Li G, Tong W, Fan M, Chen X, Yin J, Song Y, Chen S, Huang J, Wang C, Dong Y. Structural and Functional Alterations of Substantia Nigra and Associations With Anxiety and Depressive Symptoms Following Traumatic Brain Injury. Front Neurol 2022; 13:719778. [PMID: 35449518 PMCID: PMC9017679 DOI: 10.3389/fneur.2022.719778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Backgrounds Although there are a certain number of studies dedicated to the disturbances of the dopaminergic system induced by traumatic brain injury (TBI), the associations of abnormal dopaminergic systems with post-traumatic anxiety and depressive disorders and their underlying mechanisms have not been clarified yet. In the midbrain, dopaminergic neurons are mainly situated in the substantia nigra (SN) and the ventral tegmental area (VTA). Thus, we selected SN and VTA as regions of interest and performed a seed-based global correlation to evaluate the altered functional connectivity throughout the dopaminergic system post-TBI. Methods Thirty-three individuals with TBI and 21 healthy controls were recruited in the study. Anxiety and depressive symptoms were examined by the Hospital Anxiety and Depression Scale. All MRI data were collected using a Siemens Prisma 3.0 Tesla MRI system. The volume of SN and the global functional connectivity of the SN and VTA were analyzed. Results In the present study, patients with TBI reported more anxiety and depressive symptoms. More importantly, some structural and functional alterations, such as smaller SN and reduced functional connectivity in the left SN, were seen in individuals with TBI. Patients with TBI had smaller substantia nigra on both right and left sides, and the left substantia nigra was relatively small in contrast with the right one. Among these findings, functional connectivity between left SN and left angular gyrus was positively associated with post-traumatic anxiety symptoms and negatively associated with depressive symptoms. Conclusions The TBI causes leftward lateralization of structural and functional alterations in the substantia nigra. An impaired mesocortical functional connectivity might be implicated in post-traumatic anxiety and depression.
Collapse
Affiliation(s)
- Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Xue
- Department of Neurosurgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Shun Gong
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Gaoyi Li
- Department of Neurosurgery, People's Hospital of Putuo District, Tongji University School of Medicine, Shanghai, China
| | - Wusong Tong
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Xianzhen Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia Yin
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Song
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Songyu Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingrong Huang
- Psychology Honors Program, University of California, San Diego, San Diego, CA, United States
| | - Chengbin Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Dong
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth People's Hospital Clinical Medicine Scientific and Technical Innovation Park, Shanghai, China
| |
Collapse
|
27
|
Qubty D, Frid K, Har-Even M, Rubovitch V, Gabizon R, Pick CG. Nano-PSO Administration Attenuates Cognitive and Neuronal Deficits Resulting from Traumatic Brain Injury. Molecules 2022; 27:molecules27092725. [PMID: 35566074 PMCID: PMC9105273 DOI: 10.3390/molecules27092725] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Traumatic Brain Injury (TBI), is one of the most common causes of neurological damage in young populations. It is widely considered as a risk factor for neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s (PD) disease. These diseases are characterized in part by the accumulation of disease-specific misfolded proteins and share common pathological features, such as neuronal death, as well as inflammatory and oxidative damage. Nano formulation of Pomegranate seed oil [Nano-PSO (Granagard TM)] has been shown to target its active ingredient to the brain and thereafter inhibit memory decline and neuronal death in mice models of AD and genetic Creutzfeldt Jacob disease. In this study, we show that administration of Nano-PSO to mice before or after TBI application prevents cognitive and behavioral decline. In addition, immuno-histochemical staining of the brain indicates that preventive Nano-PSO treatment significantly decreased neuronal death, reduced gliosis and prevented mitochondrial damage in the affected cells. Finally, we examined levels of Sirtuin1 (SIRT1) and Synaptophysin (SYP) in the cortex using Western blotting. Nano-PSO consumption led to higher levels of SIRT1 and SYP protein postinjury. Taken together, our results indicate that Nano-PSO, as a natural brain-targeted antioxidant, can prevent part of TBI-induced damage.
Collapse
Affiliation(s)
- Doaa Qubty
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.Q.); (M.H.-E.); (V.R.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Kati Frid
- The Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah University Hospital, Medical School, The Hebrew University, Jerusalem 91120, Israel; (K.F.); (R.G.)
| | - Meirav Har-Even
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.Q.); (M.H.-E.); (V.R.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.Q.); (M.H.-E.); (V.R.)
| | - Ruth Gabizon
- The Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah University Hospital, Medical School, The Hebrew University, Jerusalem 91120, Israel; (K.F.); (R.G.)
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.Q.); (M.H.-E.); (V.R.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
- The Dr. Miriam and Sheldon G. Adelson Chair and Center for the Biology of Addictive Diseases, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence:
| |
Collapse
|
28
|
Brett BL, Gardner RC, Godbout J, Dams-O’Connor K, Keene CD. Traumatic Brain Injury and Risk of Neurodegenerative Disorder. Biol Psychiatry 2022; 91:498-507. [PMID: 34364650 PMCID: PMC8636548 DOI: 10.1016/j.biopsych.2021.05.025] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI), particularly of greater severity (i.e., moderate to severe), has been identified as a risk factor for all-cause dementia and Parkinson's disease, with risk for specific dementia subtypes being more variable. Among the limited studies involving neuropathological (postmortem) confirmation, the association between TBI and risk for neurodegenerative disease increases in complexity, with polypathology often reported on examination. The heterogeneous clinical and neuropathological outcomes associated with TBI are likely reflective of the multifaceted postinjury acute and chronic processes that may contribute to neurodegeneration. Acutely in TBI, axonal injury and disrupted transport influences molecular mechanisms fundamental to the formation of pathological proteins, such as amyloid-β peptide and hyperphosphorylated tau. These protein deposits may develop into amyloid-β plaques, hyperphosphorylated tau-positive neurofibrillary tangles, and dystrophic neurites. These and other characteristic neurodegenerative disease pathologies may then spread across brain regions. The acute immune and neuroinflammatory response involves alteration of microglia, astrocytes, oligodendrocytes, and endothelial cells; release of downstream pro- and anti-inflammatory cytokines and chemokines; and recruitment of peripheral immune cells. Although thought to be neuroprotective and reparative initially, prolongation of these processes may promote neurodegeneration. We review the evidence for TBI as a risk factor for neurodegenerative disorders, including Alzheimer's dementia and Parkinson's disease, in clinical and neuropathological studies. Further, we describe the dynamic interactions between acute response to injury and chronic processes that may be involved in TBI-related pathogenesis and progression of neurodegeneration.
Collapse
Affiliation(s)
- Benjamin L. Brett
- Department of Neurosurgery, Medical College of
Wisconsin,Corresponding author: Benjamin L.
Brett, 414-955-7316, , Medical College of
Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Raquel C. Gardner
- Department of Neurology, Memory and Aging Center, Weill
Institute for Neurosciences, University of California San Francisco and the San
Francisco Veterans Affairs Medical Center
| | - Jonathan Godbout
- Department of Neuroscience, Chronic Brain Injury Program,
The Ohio State Wexner Medical Center, Columbus, OH
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance,
Department of Neurology, Icahn School of Medicine at Mount Sinai, New York NY
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University
of Washington School of Medicine, Seattle, WA
| |
Collapse
|
29
|
Marin C, Fuentes M, Alobid I, Tubita V, Rojas-Lechuga MJ, Mullol J. Olfactory Bulb Excitotoxicity as a Gap-Filling Mechanism Underlying the Link Between Traumatic Brain Injury-Induced Secondary Neuronal Degeneration and Parkinson's Disease-Like Pathology. Neurochem Res 2022; 47:1025-1036. [PMID: 35067829 DOI: 10.1007/s11064-021-03503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022]
Abstract
There is increasing preclinical and clinical data supporting a potential association between Traumatic Brain Injury (TBI) and Parkinson's disease (PD). It has been suggested that the glutamate-induced excitotoxicity underlying TBI secondary neuronal degeneration (SND) might be associated with further development of PD. Interestingly, an accumulation of extracellular glutamate and olfactory dysfunction are both sharing pathological conditions in TBI and PD. The possible involvement of glutamate excitotoxicity in olfactory dysfunction has been recently described, however, the role of olfactory bulbs (OB) glutamate excitotoxicity as a possible mechanism involved in the association between TBI and PD-related neurodegeneration has not been investigated yet. We examined the number of nigral dopaminergic neurons (TH +), nigral α-synuclein expression, the striatal dopamine transporter (DAT) expression, and motor performance after bilateral OB N-Methyl-D-Aspartate (NMDA)-induced excitotoxic lesions in rodents. Bulbar NMDA administration induced a decrease in the number of correct choices in the discrimination tests one week after lesions (p < 0.01) and a significant decrease in the number of nigral DAergic neurons (p < 0.01) associated with an increase in α-synuclein expression (p < 0.01). No significant striatal changes in DAT expression or motor alterations were observed. Our results show an association between TBI-induced SND and PD-related neurodegeneration suggesting that the OB excitotoxicity occurring in TBI SND may be a filling gap mechanism underlying the link between TBI and PD-like pathology.
Collapse
Affiliation(s)
- Concepció Marin
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), IDIBAPS-CELLEX, Department 2B, Rosselló 149-153, 08036, Barcelona, Catalonia, Spain. .,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Barcelona, Spain.
| | - Mireya Fuentes
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), IDIBAPS-CELLEX, Department 2B, Rosselló 149-153, 08036, Barcelona, Catalonia, Spain.,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Barcelona, Spain
| | - Isam Alobid
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), IDIBAPS-CELLEX, Department 2B, Rosselló 149-153, 08036, Barcelona, Catalonia, Spain.,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Barcelona, Spain.,Rhinology Unit and Smell Clinic, ENT Department, Hospital Clinic, Villarroel 170, 08036, Barcelona, Catalonia, Spain
| | - Valeria Tubita
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), IDIBAPS-CELLEX, Department 2B, Rosselló 149-153, 08036, Barcelona, Catalonia, Spain.,Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - María Jesús Rojas-Lechuga
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), IDIBAPS-CELLEX, Department 2B, Rosselló 149-153, 08036, Barcelona, Catalonia, Spain.,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Barcelona, Spain.,Rhinology Unit and Smell Clinic, ENT Department, Hospital Clinic, Villarroel 170, 08036, Barcelona, Catalonia, Spain
| | - Joaquim Mullol
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), IDIBAPS-CELLEX, Department 2B, Rosselló 149-153, 08036, Barcelona, Catalonia, Spain. .,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Barcelona, Spain. .,Rhinology Unit and Smell Clinic, ENT Department, Hospital Clinic, Villarroel 170, 08036, Barcelona, Catalonia, Spain.
| |
Collapse
|
30
|
MohanMarugaRaja MK, Devarajan A, Dhote VV. Dietary supplementation for traumatic brain injury. DIAGNOSIS AND TREATMENT OF TRAUMATIC BRAIN INJURY 2022:485-494. [DOI: 10.1016/b978-0-12-823347-4.00038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
31
|
Moon D. Disorders of Movement due to Acquired and Traumatic Brain Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2022; 10:311-323. [PMID: 36164499 PMCID: PMC9493170 DOI: 10.1007/s40141-022-00368-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 12/14/2022]
Abstract
Purpose of Review Both traumatic and acquired brain injury can result in diffuse multifocal injury affecting both the pyramidal and extrapyramidal tracts. Thus, these patients may exhibit signs of both upper motor neuron syndrome and movement disorder simultaneously which can further complicate diagnosis and management. We will be discussing movement disorders following acquired and traumatic brain injury. Recent Findings Multiple functions including speech, swallowing, posture, mobility, and activities of daily living can all be affected. Medical treatment and rehabilitation-based therapy can be especially challenging due to accompanying cognitive deficits and severity of the disorder which can involve multiple limbs in addition to muscles of the face and axial skeleton. Tremor and dystonia are the most reported movement disorders following traumatic brain injury. Dystonia and myoclonus are well documented following hypoxic ischemic brain injuries. Electrophysiological studies such as dynamic surface poly-electromyography can assist with identifying phenomenology, especially differentiating between jerk-like phenomenon and help guide further work up and management. Management with medications remains challenging due to potential adverse effects. Surgical interventions including stereotactic surgery, deep brain stimulation, and intrathecal baclofen pumps have been reported, but most of the evidence supporting them has been limited to primarily case reports except for post-traumatic tremor. Summary Brain injury can lead to motor disorders, movement disorders, visual (processing) deficits, and vestibular deficits which often coexist with cognitive deficits making it challenging to treat and rehabilitate these patients. Unfortunately, the evidence regarding the medical management and rehabilitation of brain injury patients with movement disorders is sparse and leaves much to be desired.
Collapse
Affiliation(s)
- Daniel Moon
- grid.421874.c0000 0001 0016 6543Moss Rehabilitation Hospital, Elkins Park, PA USA
| |
Collapse
|
32
|
Parker E, Aboghazleh R, Mumby G, Veksler R, Ofer J, Newton J, Smith R, Kamintsky L, Jones CMA, O'Keeffe E, Kelly E, Doelle K, Roach I, Yang LT, Moradi P, Lin JM, Gleason AJ, Atkinson C, Bowen C, Brewer KD, Doherty CP, Campbell M, Clarke DB, van Hameren G, Kaufer D, Friedman A. Concussion susceptibility is mediated by spreading depolarization-induced neurovascular dysfunction. Brain 2021; 145:2049-2063. [PMID: 34927674 PMCID: PMC9246711 DOI: 10.1093/brain/awab450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/17/2021] [Accepted: 11/14/2021] [Indexed: 11/21/2022] Open
Abstract
The mechanisms underlying the complications of mild traumatic brain injury, including post-concussion syndrome, post-impact catastrophic death, and delayed neurodegeneration remain poorly understood. This limited pathophysiological understanding has hindered the development of diagnostic and prognostic biomarkers and has prevented the advancement of treatments for the sequelae of mild traumatic brain injury. We aimed to characterize the early electrophysiological and neurovascular alterations following repetitive mild traumatic brain injury and sought to identify new targets for the diagnosis and treatment of individuals at risk of severe post-impact complications. We combined behavioural, electrophysiological, molecular, and neuroimaging techniques in a rodent model of repetitive mild traumatic brain injury. In humans, we used dynamic contrast-enhanced MRI to quantify blood–brain barrier dysfunction after exposure to sport-related concussive mild traumatic brain injury. Rats could clearly be classified based on their susceptibility to neurological complications, including life-threatening outcomes, following repetitive injury. Susceptible animals showed greater neurological complications and had higher levels of blood–brain barrier dysfunction, transforming growth factor β (TGFβ) signalling, and neuroinflammation compared to resilient animals. Cortical spreading depolarizations were the most common electrophysiological events immediately following mild traumatic brain injury and were associated with longer recovery from impact. Triggering cortical spreading depolarizations in mild traumatic brain injured rats (but not in controls) induced blood–brain barrier dysfunction. Treatment with a selective TGFβ receptor inhibitor prevented blood–brain barrier opening and reduced injury complications. Consistent with the rodent model, blood–brain barrier dysfunction was found in a subset of human athletes following concussive mild traumatic brain injury. We provide evidence that cortical spreading depolarization, blood–brain barrier dysfunction, and pro-inflammatory TGFβ signalling are associated with severe, potentially life-threatening outcomes following repetitive mild traumatic brain injury. Diagnostic-coupled targeting of TGFβ signalling may be a novel strategy in treating mild traumatic brain injury.
Collapse
Affiliation(s)
- Ellen Parker
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada.,Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Refat Aboghazleh
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Griffin Mumby
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Ronel Veksler
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan Ofer
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jillian Newton
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Rylan Smith
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada.,Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Lyna Kamintsky
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Casey M A Jones
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada.,Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Eoin O'Keeffe
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Eoin Kelly
- FutureNeuro SFI Research Centre, The Royal College of Surgeons in Ireland, Dublin, Ireland.,Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Klara Doelle
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Isabelle Roach
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Lynn T Yang
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Pooyan Moradi
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Jessica M Lin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Allison J Gleason
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christina Atkinson
- Department of Family Medicine, Dalhousie University, Halifax, NS, Canada
| | - Chris Bowen
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada.,Biomedical Translational Imaging Centre (BIOTIC), Halifax, NS, Canada
| | - Kimberly D Brewer
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada.,Biomedical Translational Imaging Centre (BIOTIC), Halifax, NS, Canada
| | - Colin P Doherty
- FutureNeuro SFI Research Centre, The Royal College of Surgeons in Ireland, Dublin, Ireland.,Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - David B Clarke
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada.,Department of Surgery (Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gerben van Hameren
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Helen Wills Neuroscience Institute & Berkeley Stem Cell Center, University of California Berkeley, Berkeley, CA 94720, USA
| | - Alon Friedman
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada.,Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
33
|
Qubty D, Schreiber S, Rubovitch V, Boag A, Pick CG. No Significant Effects of Cellphone Electromagnetic Radiation on Mice Memory or Anxiety: Some Mixed Effects on Traumatic Brain Injured Mice. Neurotrauma Rep 2021; 2:381-390. [PMID: 34723249 PMCID: PMC8550818 DOI: 10.1089/neur.2021.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Current literature details an array of contradictory results regarding the effect of radiofrequency electromagnetic radiation (RF-EMR) on health, both in humans and in animal models. The present study was designed to ascertain the conflicting data published regarding the possible impact of cellular exposure (radiation) on male and female mice as far as spatial memory, anxiety, and general well-being is concerned. To increase the likelihood of identifying possible "subtle" effects, we chose to test it in already cognitively impaired (following mild traumatic brain injury; mTBI) mice. Exposure to cellular radiation by itself had no significant impact on anxiety levels or spatial/visual memory in mice. When examining the dual impact of mTBI and cellular radiation on anxiety, no differences were found in the anxiety-like behavior as seen at the elevated plus maze (EPM). When exposed to both mTBI and cellular radiation, our results show improvement of visual memory impairment in both female and male mice, but worsening of the spatial memory of female mice. These results do not allow for a decisive conclusion regarding the possible hazards of cellular radiation on brain function in mice, and the mTBI did not facilitate identification of subtle effects by augmenting them.
Collapse
Affiliation(s)
- Doaa Qubty
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shaul Schreiber
- Department of Psychiatry, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Boag
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Psychiatry, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,The Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Tel Aviv University, Tel Aviv, Israel.,Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
34
|
Dhote VV, Raja MKMM, Samundre P, Sharma S, Anwikar S, Upaganlawar AB. Sports Related Brain Injury and Neurodegeneration in Athletes. Curr Mol Pharmacol 2021; 15:51-76. [PMID: 34515018 DOI: 10.2174/1874467214666210910114324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/03/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
Sports deserve a special place in human life to impart healthy and refreshing wellbeing. However, sports activities, especially contact sports, renders athlete vulnerable to brain injuries. Athletes participating in a contact sport like boxing, rugby, American football, wrestling, and basketball are exposed to traumatic brain injuries (TBI) or concussions. The acute and chronic nature of these heterogeneous injuries provides a spectrum of dysfunctions that alters the neuronal, musculoskeletal, and behavioral responses of an athlete. Many sports-related brain injuries go unreported, but these head impacts trigger neurometabolic disruptions that contribute to long-term neuronal impairment. The pathophysiology of post-concussion and its underlying mechanisms are undergoing intense research. It also shed light on chronic disorders like Parkinson's disease, Alzheimer's disease, and dementia. In this review, we examined post-concussion neurobehavioral changes, tools for early detection of signs, and their impact on the athlete. Further, we discussed the role of nutritional supplements in ameliorating neuropsychiatric diseases in athletes.
Collapse
Affiliation(s)
- Vipin V Dhote
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| | | | - Prem Samundre
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| | - Supriya Sharma
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| | - Shraddha Anwikar
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| | - Aman B Upaganlawar
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| |
Collapse
|
35
|
Ihbe N, Le Prieult F, Wang Q, Distler U, Sielaff M, Tenzer S, Thal SC, Mittmann T. Adaptive Mechanisms of Somatostatin-Positive Interneurons after Traumatic Brain Injury through a Switch of α Subunits in L-Type Voltage-Gated Calcium Channels. Cereb Cortex 2021; 32:1093-1109. [PMID: 34411234 DOI: 10.1093/cercor/bhab268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/28/2022] Open
Abstract
Unilateral traumatic brain injury (TBI) causes cortical dysfunctions spreading to the primarily undamaged hemisphere. This phenomenon, called transhemispheric diaschisis, is mediated by an imbalance of glutamatergic versus GABAergic neurotransmission. This study investigated the role of GABAergic, somatostatin-positive (SST) interneurons in the contralateral hemisphere 72 h after unilateral TBI. The brain injury was induced to the primary motor/somatosensory cortex of glutamate decarboxylase 67-green fluorescent protein (GAD67-GFP) knock-in mice at postnatal days 19-21 under anesthesia in vivo. Single GFP+ interneurons of the undamaged, contralateral cortex were isolated by fluorescence-activated cell sorting and analyzed by mass spectrometry. TBI caused a switch of 2 α subunits of pore-forming L-type voltage-gated calcium channels (VGCC) in GABAergic interneurons, an increased expression of CaV1.3, and simultaneous ablation of CaV1.2. This switch was associated with 1) increased excitability of single SST interneurons in patch-clamp recordings and (2) a recovery from early network hyperactivity in the contralateral hemisphere in microelectrode array recordings of acute slices. The electrophysiological changes were sensitive to pharmacological blockade of CaV1.3 (isradipine, 100 nM). These data identify a switch of 2 α subunits of VGCCs in SST interneurons early after TBI as a mechanism to counterbalance post-traumatic hyperexcitability.
Collapse
Affiliation(s)
- Natascha Ihbe
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Florie Le Prieult
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Qi Wang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Malte Sielaff
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Serge C Thal
- Clinic for Anesthesiology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Thomas Mittmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
36
|
Buchmann Godinho D, da Silva Fiorin F, Schneider Oliveira M, Furian AF, Rechia Fighera M, Freire Royes LF. The immunological influence of physical exercise on TBI-induced pathophysiology: Crosstalk between the spleen, gut, and brain. Neurosci Biobehav Rev 2021; 130:15-30. [PMID: 34400178 DOI: 10.1016/j.neubiorev.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a non-degenerative and non-congenital insult to the brain and is recognized as a global public health problem, with a high incidence of neurological disorders. Despite the causal relationship not being entirely known, it has been suggested that multiorgan inflammatory response involving the autonomic nervous system and the spleen-gut brain axis dysfunction exacerbate the TBI pathogenesis in the brain. Thus, applying new therapeutic tools, such as physical exercise, have been described in the literature to act on the immune modulation induced by brain injuries. However, there are caveats to consider when interpreting the effects of physical exercise on this neurological injury. Given the above, this review will highlight the main findings of the literature involving peripheral immune responses in TBI-induced neurological damage and how changes in the cellular metabolism of the spleen-gut brain axis elicited by different protocols of physical exercise alter the pathophysiology induced by this neurological injury.
Collapse
Affiliation(s)
- Douglas Buchmann Godinho
- Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernando da Silva Fiorin
- Programa de Pós-Graduação em Neuroengenharia, Instituto Internacional de Neurociências Edmond e Lily Safra, Instituto Santos Dumont, Macaíba, RN, Brazil
| | - Mauro Schneider Oliveira
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Ana Flavia Furian
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michele Rechia Fighera
- Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Departamento de Clínica Médica e Pediatria, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | |
Collapse
|
37
|
Anderson EN, Morera AA, Kour S, Cherry JD, Ramesh N, Gleixner A, Schwartz JC, Ebmeier C, Old W, Donnelly CJ, Cheng JP, Kline AE, Kofler J, Stein TD, Pandey UB. Traumatic injury compromises nucleocytoplasmic transport and leads to TDP-43 pathology. eLife 2021; 10:e67587. [PMID: 34060470 PMCID: PMC8169113 DOI: 10.7554/elife.67587] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a predisposing factor for many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although defects in nucleocytoplasmic transport (NCT) is reported ALS and other neurodegenerative diseases, whether defects in NCT occur in TBI remains unknown. We performed proteomic analysis on Drosophila exposed to repeated TBI and identified resultant alterations in several novel molecular pathways. TBI upregulated nuclear pore complex (NPC) and nucleocytoplasmic transport (NCT) proteins as well as alter nucleoporin stability. Traumatic injury disrupted RanGAP1 and NPC protein distribution in flies and a rat model and led to coaggregation of NPC components and TDP-43. In addition, trauma-mediated NCT defects and lethality are rescued by nuclear export inhibitors. Importantly, genetic upregulation of nucleoporins in vivo and in vitro triggered TDP-43 cytoplasmic mislocalization, aggregation, and altered solubility and reduced motor function and lifespan of animals. We also found NUP62 pathology and elevated NUP62 concentrations in postmortem brain tissues of patients with mild or severe CTE as well as co-localization of NUP62 and TDP-43 in CTE. These findings indicate that TBI leads to NCT defects, which potentially mediate the TDP-43 pathology in CTE.
Collapse
Affiliation(s)
- Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Andrés A Morera
- Department of Chemistry and Biochemistry, University of ArizonaTucsonUnited States
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Jonathan D Cherry
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBostonUnited States
- Boston VA Healthcare SystemBostonUnited States
| | - Nandini Ramesh
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Amanda Gleixner
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
- LiveLike Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Jacob C Schwartz
- Department of Chemistry and Biochemistry, University of ArizonaTucsonUnited States
| | - Christopher Ebmeier
- Molecular, Cellular & Developmental Biology, University of ColoradoBoulderUnited States
| | - William Old
- Molecular, Cellular & Developmental Biology, University of ColoradoBoulderUnited States
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
- LiveLike Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation; Safar Center for Resuscitation Research, University of PittsburghPittsburghUnited States
| | - Anthony E Kline
- Physical Medicine & Rehabilitation; Safar Center for Resuscitation Research, University of PittsburghPittsburghUnited States
- Center for Neuroscience; Center for the Neural Basis of Cognition; Critical Care Medicine, University of PittsburghPittsburghUnited States
| | - Julia Kofler
- Department of Pathology, University of PittsburghPittsburghUnited States
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBostonUnited States
- Boston VA Healthcare SystemBostonUnited States
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
- Department of Human Genetics, University of Pittsburgh School of Public HealthPittsburghUnited States
| |
Collapse
|
38
|
Gonzalez-Latapi P, Bayram E, Litvan I, Marras C. Cognitive Impairment in Parkinson's Disease: Epidemiology, Clinical Profile, Protective and Risk Factors. Behav Sci (Basel) 2021; 11:bs11050074. [PMID: 34068064 PMCID: PMC8152515 DOI: 10.3390/bs11050074] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cognitive impairment is a common non-motor symptom in Parkinson's Disease (PD) and an important source of patient disability and caregiver burden. The timing, profile and rate of cognitive decline varies widely among individuals with PD and can range from normal cognition to mild cognitive impairment (PD-MCI) and dementia (PDD). Beta-amyloid and tau brain accumulation, oxidative stress and neuroinflammation are reported risk factors for cognitive impairment. Traumatic brain injury and pesticide and tobacco exposure have also been described. Genetic risk factors including genes such as COMT, APOE, MAPT and BDNF may also play a role. Less is known about protective factors, although the Mediterranean diet and exercise may fall in this category. Nonetheless, there is conflicting evidence for most of the factors that have been studied. The use of inconsistent criteria and lack of comprehensive assessment in many studies are important methodological issues. Timing of exposure also plays a crucial role, although identification of the correct time window has been historically difficult in PD. Our understanding of the mechanism behind these factors, as well as the interactions between gene and environment as determinants of disease phenotype and the identification of modifiable risk factors will be paramount, as this will allow for potential interventions even in established PD.
Collapse
Affiliation(s)
- Paulina Gonzalez-Latapi
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON M5T2S8, Canada;
| | - Ece Bayram
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; (E.B.); (I.L.)
| | - Irene Litvan
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; (E.B.); (I.L.)
| | - Connie Marras
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON M5T2S8, Canada;
- Correspondence:
| |
Collapse
|
39
|
Ghiam MK, Patel SD, Hoffer A, Selman WR, Hoffer BJ, Hoffer ME. Drug Repurposing in the Treatment of Traumatic Brain Injury. Front Neurosci 2021; 15:635483. [PMID: 33833663 PMCID: PMC8021906 DOI: 10.3389/fnins.2021.635483] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/19/2021] [Indexed: 01/02/2023] Open
Abstract
Traumatic brain injury (TBI) is the most common cause of morbidity among trauma patients; however, an effective pharmacological treatment has not yet been approved. Individuals with TBI are at greater risk of developing neurological illnesses such as Alzheimer's disease (AD) and Parkinson's disease (PD). The approval process for treatments can be accelerated by repurposing known drugs to treat the growing number of patients with TBI. This review focuses on the repurposing of N-acetyl cysteine (NAC), a drug currently approved to treat hepatotoxic overdose of acetaminophen. NAC also has antioxidant and anti-inflammatory properties that may be suitable for use in therapeutic treatments for TBI. Minocycline (MINO), a tetracycline antibiotic, has been shown to be effective in combination with NAC in preventing oligodendrocyte damage. (-)-phenserine (PHEN), an anti-acetylcholinesterase agent with additional non-cholinergic neuroprotective/neurotrophic properties initially developed to treat AD, has demonstrated efficacy in treating TBI. Recent literature indicates that NAC, MINO, and PHEN may serve as worthwhile repositioned therapeutics in treating TBI.
Collapse
Affiliation(s)
- Michael K. Ghiam
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shrey D. Patel
- University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alan Hoffer
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Warren R. Selman
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Barry J. Hoffer
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Michael E. Hoffer
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
40
|
Wang H, Pujos-Guillot E, Comte B, de Miranda JL, Spiwok V, Chorbev I, Castiglione F, Tieri P, Watterson S, McAllister R, de Melo Malaquias T, Zanin M, Rai TS, Zheng H. Deep learning in systems medicine. Brief Bioinform 2021; 22:1543-1559. [PMID: 33197934 PMCID: PMC8382976 DOI: 10.1093/bib/bbaa237] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Systems medicine (SM) has emerged as a powerful tool for studying the human body at the systems level with the aim of improving our understanding, prevention and treatment of complex diseases. Being able to automatically extract relevant features needed for a given task from high-dimensional, heterogeneous data, deep learning (DL) holds great promise in this endeavour. This review paper addresses the main developments of DL algorithms and a set of general topics where DL is decisive, namely, within the SM landscape. It discusses how DL can be applied to SM with an emphasis on the applications to predictive, preventive and precision medicine. Several key challenges have been highlighted including delivering clinical impact and improving interpretability. We used some prototypical examples to highlight the relevance and significance of the adoption of DL in SM, one of them is involving the creation of a model for personalized Parkinson's disease. The review offers valuable insights and informs the research in DL and SM.
Collapse
Affiliation(s)
| | - Estelle Pujos-Guillot
- metabolomic platform dedicated to metabolism studies in nutrition and health in the French National Research Institute for Agriculture, Food and Environment
| | - Blandine Comte
- French National Research Institute for Agriculture, Food and Environment
| | - Joao Luis de Miranda
- (ESTG/IPP) and a Researcher (CERENA/IST) in optimization methods and process systems engineering
| | - Vojtech Spiwok
- Molecular Modelling Researcher applying machine learning to accelerate molecular simulations
| | - Ivan Chorbev
- Faculty for Computer Science and Engineering, University Ss Cyril and Methodius in Skopje, North Macedonia working in the area of eHealth and assistive technologies
| | | | - Paolo Tieri
- National Research Council of Italy (CNR) and a lecturer at Sapienza University in Rome, working in the field of network medicine and computational biology
| | | | - Roisin McAllister
- Research Associate working in CTRIC, University of Ulster, Derry, and has worked in clinical and academic roles in the fields of molecular diagnostics and biomarker discovery
| | | | - Massimiliano Zanin
- Researcher working in the Institute for Cross-Disciplinary Physics and Complex Systems, Spain, with an interest on data analysis and integration using statistical physics techniques
| | - Taranjit Singh Rai
- Lecturer in cellular ageing at the Centre for Stratified Medicine. Dr Rai’s research interests are in cellular senescence, which is thought to promote cellular and tissue ageing in disease, and the development of senolytic compounds to restrict this process
| | - Huiru Zheng
- Professor of computer sciences at Ulster University
| |
Collapse
|
41
|
Alkaslasi MR, Cho NE, Dhillon NK, Shelest O, Haro-Lopez PS, Linaval NT, Ghoulian J, Yang AR, Vit JP, Avalos P, Ley EJ, Thomsen GM. Poor Corticospinal Motor Neuron Health Is Associated with Increased Symptom Severity in the Acute Phase Following Repetitive Mild TBI and Predicts Early ALS Onset in Genetically Predisposed Rodents. Brain Sci 2021; 11:brainsci11020160. [PMID: 33530492 PMCID: PMC7911729 DOI: 10.3390/brainsci11020160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a well-established risk factor for several neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease, however, a link between TBI and amyotrophic lateral sclerosis (ALS) has not been clearly elucidated. Using the SOD1G93A rat model known to recapitulate the human ALS condition, we found that exposure to mild, repetitive TBI lead ALS rats to experience earlier disease onset and shortened survival relative to their sham counterparts. Importantly, increased severity of early injury symptoms prior to the onset of ALS disease symptoms was linked to poor health of corticospinal motor neurons and predicted worsened outcome later in life. Whereas ALS rats with only mild behavioral injury deficits exhibited no observable changes in corticospinal motor neuron health and did not present with early onset or shortened survival, those with more severe injury-related deficits exhibited alterations in corticospinal motor neuron health and presented with significantly earlier onset and shortened lifespan. While these studies do not imply that TBI causes ALS, we provide experimental evidence that head injury is a risk factor for earlier disease onset in a genetically predisposed ALS population and is associated with poor health of corticospinal motor neurons.
Collapse
Affiliation(s)
- Mor R. Alkaslasi
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.R.A.); (N.E.C.); (O.S.); (P.S.H.-L.); (P.A.)
| | - Noell E. Cho
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.R.A.); (N.E.C.); (O.S.); (P.S.H.-L.); (P.A.)
| | - Navpreet K. Dhillon
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.K.D.); (N.T.L.); (J.G.); (A.R.Y.); (E.J.L.)
| | - Oksana Shelest
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.R.A.); (N.E.C.); (O.S.); (P.S.H.-L.); (P.A.)
| | - Patricia S. Haro-Lopez
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.R.A.); (N.E.C.); (O.S.); (P.S.H.-L.); (P.A.)
| | - Nikhil T. Linaval
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.K.D.); (N.T.L.); (J.G.); (A.R.Y.); (E.J.L.)
| | - Josh Ghoulian
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.K.D.); (N.T.L.); (J.G.); (A.R.Y.); (E.J.L.)
| | - Audrey R. Yang
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.K.D.); (N.T.L.); (J.G.); (A.R.Y.); (E.J.L.)
| | - Jean-Philippe Vit
- Biobehavioral Research Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Pablo Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.R.A.); (N.E.C.); (O.S.); (P.S.H.-L.); (P.A.)
| | - Eric J. Ley
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.K.D.); (N.T.L.); (J.G.); (A.R.Y.); (E.J.L.)
| | - Gretchen M. Thomsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.R.A.); (N.E.C.); (O.S.); (P.S.H.-L.); (P.A.)
- Correspondence:
| |
Collapse
|
42
|
Liraz-Zaltsman S, Friedman-Levi Y, Shabashov-Stone D, Gincberg G, Atrakcy-Baranes D, Joy MT, Carmichael ST, Silva AJ, Shohami E. Chemokine Receptors CC Chemokine Receptor 5 and C-X-C Motif Chemokine Receptor 4 Are New Therapeutic Targets for Brain Recovery after Traumatic Brain Injury. J Neurotrauma 2021; 38:2003-2017. [PMID: 33256497 DOI: 10.1089/neu.2020.7015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recently, chemokine receptor CC chemokine receptor 5 (CCR5) was found to be a negative modulator of learning and memory. Its inhibition improved outcome after stroke and traumatic brain injury (TBI). To better understand its role after TBI and establish therapeutic strategies, we investigated the effect of reduced CCR5 signaling as a neuroprotective strategy and of the temporal changes of CCR5 expression after TBI in different brain cell types. To silence CCR5 expression, ccr5 short hairpin RNA (shRNA) or dsred shRNA (control) was injected into the cornu ammonis (CA) 1 and CA3 regions of the hippocampus 2 weeks before induction of closed-head injury in mice. Animals were then monitored for 32 days and euthanized at different time points to assess lesion area, inflammatory components of the glial response (immunohistochemistry; IHC), cytokine levels (enzyme-linked immunosorbent array), and extracellular signal-regulated kinase (ERK) phosphorylation (western blot). Fluorescence-activated cell sorting (FACS) analysis was performed to study post-injury temporal changes of CCR5 and C-X-C motif chemokine receptor 4 (CXCR4) expression in cortical and hippocampal cell populations (neurons, astrocytes, and microglia). Phosphorylation of the N-methyl-d-aspartate subunit 1 (NR1) subunit of N-methyl-d-aspartate (western blot) and cAMP-response-element-binding protein (CREB; IHC) were also assessed. The ccr5 shRNA mice displayed reduced lesion area, dynamic alterations in levels of inflammation-related CCR5 ligands and cytokines, and higher levels of phosphorylated ERK. The ccr5 shRNA also reduced astrocytosis in the lesioned and sublesioned cortex. FACS analysis revealed increased cortical CCR5 and CXCR4 expression in CD11b-positive cells, astrocytes, and neurons, which was most evident in cells expressing both receptors, at 3 and 11 days post-injury. The lowest levels of phosphorylated NR1 and phosphorylated CREB were found at day 3 post-injury, suggesting that this is the critical time point for therapeutic intervention.
Collapse
Affiliation(s)
- Sigal Liraz-Zaltsman
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel.,Institute for Health and Medical Professions, Department of Sports Therapy, Ono Academic College, Qiryat Ono, Israel
| | - Yael Friedman-Levi
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dalia Shabashov-Stone
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galit Gincberg
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Mary Teena Joy
- Department of Neurology, David Geffen School of Medicine, Psychiatry and Biobehavioral Sciences, Psychology, Integrative Center for Learning and Memory and Brain Research Institute, UCLA, Los Angeles, California, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, Psychiatry and Biobehavioral Sciences, Psychology, Integrative Center for Learning and Memory and Brain Research Institute, UCLA, Los Angeles, California, USA
| | - Alcino J Silva
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, Psychology, Integrative Center for Learning and Memory and Brain Research Institute, UCLA, Los Angeles, California, USA
| | - Esther Shohami
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
43
|
Friedman-Levi Y, Liraz-Zaltsman S, Shemesh C, Rosenblatt K, Kesner EL, Gincberg G, Carmichael ST, Silva AJ, Shohami E. Pharmacological blockers of CCR5 and CXCR4 improve recovery after traumatic brain injury. Exp Neurol 2021; 338:113604. [PMID: 33453212 DOI: 10.1016/j.expneurol.2021.113604] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/27/2020] [Accepted: 01/09/2021] [Indexed: 11/16/2022]
Abstract
CCR5 and CXCR4 are structurally related chemokine receptors that belong to the superfamily of G-protein coupled receptors through which the HIV virus enters and infects cells. Both receptors are also related to HIV-associated neurocognitive disorders that include difficulties in concentration and memory, impaired executive functions, psychomotor slowing, depression and irritability, which are also hallmarks of the long-term sequelae of TBI. Moreover, A growing body of evidence attributes negative influences to CCR5 activation on cognition, particularly after stroke and traumatic brain injury (TBI). Here we investigated the effect of their blockage on motor and cognitive functions, on brain tissue loss and preservation and on some of the biochemical pathways involved. We examined the effect of maraviroc, a CCR5 antagonist used in HIV patients as a viral entry inhibitor, and of plerixafor (AMD3100), a CXCR4 antagonist used in cancer patients as an immune-modulator, on mice subjected to closed head injury (CHI). Mice were treated with maraviroc or plerixafor after CHI for the following 4 or 5 days, respectively. Neurobehavior was assessed according to the Neurological Severity Score; cognitive tests were performed by using the Y-maze, Barnes maze and the novel object recognition test; anxiety was evaluated with the open field test. The mice were sacrificed and brain tissues were collected for Western blot, pathological and immunohistochemical analyses. Both drugs enhanced tissue preservation in the cortex, hippocampus, periventricular areas, corpus callosum and striatum, and reduced astrogliosis)GFAP expression). They also increased the levels of synaptic cognition-related signaling molecules such as phosphorylated NR1 and CREB, and the synaptic plasticity protein PSD95. Both treatments also enhanced the expression of CCR5 and CXCR4 on different brain cell types. In summary, the beneficial effects of blocking CCR5 and CXCR4 after CHI suggest that the drugs used in this study, both FDA approved and in clinical use, should be considered for translational research in TBI patients.
Collapse
Affiliation(s)
- Yael Friedman-Levi
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Sigal Liraz-Zaltsman
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel; Institute for Health and Medical Professions, Department of Sports Therapy, Ono Academic College, Kiryat Ono, Israel.
| | - Chen Shemesh
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel.
| | | | - Efrat L Kesner
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galit Gincberg
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, UCLA, LA, CA, USA.
| | - Alcino J Silva
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, Psychology, Integrative Center for Learning and Memory and Brain Research Institute, UCLA, LA, CA, USA.
| | - Esther Shohami
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
44
|
Qubty D, Rubovitch V, Benromano T, Ovadia M, Pick CG. Orally Administered Cinnamon Extract Attenuates Cognitive and Neuronal Deficits Following Traumatic Brain Injury. J Mol Neurosci 2020; 71:178-186. [PMID: 32901372 DOI: 10.1007/s12031-020-01688-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
The present paper shows how cinnamon extract (CE) consumption mitigates neuronal loss and memory impairment following traumatic brain injury (TBI), one of the world's most common neurodegenerative diseases. TBI patients suffer short- and long-term behavioral, cognitive, and emotional impairments, including difficulties in concentration, memory loss, and depression. Research shows that CE application can mitigate cognitive and behavioral impairments in animal models for Alzheimer's and Parkinson's disease, whose pathophysiology is similar to that of TBI. This study builds on prior research by showing similar results in TBI mice models. After drinking CE for a week, mice were injured using our 70-g weight drop TBI device. For 2 weeks thereafter, the mice continued drinking CE alongside standard lab nutrition. Subsequently, the mice underwent behavioral tests to assess their memory, motor activity, and anxiety. The mice brains were harvested for immunohistochemistry staining to evaluate overall neuronal survival. Our results show that CE consumption almost completely mitigates memory impairment and decreases neuronal loss after TBI. Mice that did not consume CE demonstrated impaired memory. Our results also show that CE consumption attenuated neuronal loss in the temporal cortex and the dentate gyrus. Mice that did not consume CE suffered a significant neuronal loss. There were no significant differences in anxiety levels and motor activity between all groups. These findings show a new therapeutic approach to improve cognitive function and decrease memory loss after TBI.
Collapse
Affiliation(s)
- Doaa Qubty
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Tali Benromano
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michael Ovadia
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,The Dr. Miriam and Sheldon G. Adelson Chair and Center for the Biology of Addictive Diseases, Tel-Aviv University, Tel-Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. .,Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
45
|
A critical review of radiotracers in the positron emission tomography imaging of traumatic brain injury: FDG, tau, and amyloid imaging in mild traumatic brain injury and chronic traumatic encephalopathy. Eur J Nucl Med Mol Imaging 2020; 48:623-641. [DOI: 10.1007/s00259-020-04926-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
|
46
|
Selvakumar GP, Ahmed ME, Iyer SS, Thangavel R, Kempuraj D, Raikwar SP, Bazley K, Wu K, Khan A, Kukulka K, Bussinger B, Zaheer S, Burton C, James D, Zaheer A. Absence of Glia Maturation Factor Protects from Axonal Injury and Motor Behavioral Impairments after Traumatic Brain Injury. Exp Neurobiol 2020; 29:230-248. [PMID: 32565489 PMCID: PMC7344375 DOI: 10.5607/en20017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) causes disability and death, accelerating the progression towards Alzheimer's disease and Parkinson's disease (PD). TBI causes serious motor and cognitive impairments, as seen in PD that arise during the period of the initial insult. However, this has been understudied relative to TBI induced neuroinflammation, motor and cognitive decline that progress towards PD. Neuronal ubiquitin-C-terminal hydrolase- L1 (UCHL1) is a thiol protease that breaks down ubiquitinated proteins and its level represents the severity of TBI. Previously, we demonstrated the molecular action of glia maturation factor (GMF); a proinflammatory protein in mediating neuroinflammation and neuronal loss. Here, we show that the weight drop method induced TBI neuropathology using behavioral tests, western blotting, and immunofluorescence techniques on sections from wild type (WT) and GMF-deficient (GMF-KO) mice. Results reveal a significant improvement in substantia nigral tyrosine hydroxylase and dopamine transporter expression with motor behavioral performance in GMF-KO mice following TBI. In addition, a significant reduction in neuroinflammation was manifested, as shown by activation of nuclear factor-kB, reduced levels of inducible nitric oxide synthase, and cyclooxygenase- 2 expressions. Likewise, neurotrophins including brain-derived neurotrophic factor and glial-derived neurotrophic factor were significantly improved in GMF-KO mice than WT 72 h post-TBI. Consistently, we found that TBI enhances GFAP and UCHL-1 expression and reduces the number of dopaminergic TH-positive neurons in WT compared to GMF-KO mice 72 h post-TBI. Interestingly, we observed a reduction of THpositive tanycytes in the median eminence of WT than GMF-KO mice. Overall, we found that absence of GMF significantly reversed these neuropathological events and improved behavioral outcome. This study provides evidence that PD-associated pathology progression can be initiated upon induction of TBI.
Collapse
Affiliation(s)
- Govindhasamy Pushpavathi Selvakumar
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Mohammad Ejaz Ahmed
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Shankar S Iyer
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Sudhanshu P Raikwar
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Kieran Bazley
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Kristopher Wu
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Asher Khan
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Klaudia Kukulka
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Bret Bussinger
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Smita Zaheer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | - Asgar Zaheer
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
47
|
Datta A, Sarmah D, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Advances in Studies on Stroke-Induced Secondary Neurodegeneration (SND) and Its Treatment. Curr Top Med Chem 2020; 20:1154-1168. [DOI: 10.2174/1568026620666200416090820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/23/2022]
Abstract
Background:
The occurrence of secondary neurodegeneration has exclusively been observed
after the first incidence of stroke. In humans and rodents, post-stroke secondary neurodegeneration
(SND) is an inevitable event that can lead to progressive neuronal loss at a region distant to initial infarct.
SND can lead to cognitive and motor function impairment, finally causing dementia. The exact
pathophysiology of the event is yet to be explored. It is seen that the thalami, in particular, are susceptible
to cause SND. The reason behind this is because the thalamus functioning as the relay center and is
positioned as an interlocked structure with direct synaptic signaling connection with the cortex. As SND
proceeds, accumulation of misfolded proteins and microglial activation are seen in the thalamus. This
leads to increased neuronal loss and worsening of functional and cognitive impairment.
Objective:
There is a necessity of specific interventions to prevent post-stroke SND, which are not properly
investigated to date owing to sparsely reproducible pre-clinical and clinical data. The basis of this
review is to investigate about post-stroke SND and its updated treatment approaches carefully.
Methods:
Our article presents a detailed survey of advances in studies on stroke-induced secondary neurodegeneration
(SND) and its treatment.
Results:
This article aims to put forward the pathophysiology of SND. We have also tabulated the latest
treatment approaches along with different neuroimaging systems that will be helpful for future reference
to explore.
Conclusion:
In this article, we have reviewed the available reports on SND pathophysiology, detection
techniques, and possible treatment modalities that have not been attempted to date.
Collapse
Affiliation(s)
- Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
48
|
Zhou Y, Chen Q, Wang Y, Wu H, Xu W, Pan Y, Gao S, Dong X, Zhang JH, Shao A. Persistent Neurovascular Unit Dysfunction: Pathophysiological Substrate and Trigger for Late-Onset Neurodegeneration After Traumatic Brain Injury. Front Neurosci 2020; 14:581. [PMID: 32581697 PMCID: PMC7296179 DOI: 10.3389/fnins.2020.00581] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) represents one of the major causes of death worldwide and leads to persisting neurological deficits in many of the survivors. One of the most significant long-term sequelae deriving from TBI is neurodegenerative disease, which is a group of incurable diseases that impose a heavy socio-economic burden. However, mechanisms underlying the increased susceptibility of TBI to neurodegenerative disease remain elusive. The neurovascular unit (NVU) is a functional unit composed of neurons, neuroglia, vascular cells, and the basal lamina matrix. The key role of NVU dysfunction in many central nervous system diseases has been revealed. Studies have proved the presence of prolonged structural and functional abnormalities of the NVU after TBI. Moreover, growing evidence suggests impaired NVU function is also implicated in neurodegenerative diseases. Therefore, we propose the Neurovascular Unit Dysfunction (NVUD) Hypothesis, in which the persistent NVU dysfunction is thought to underlie the development of post-TBI neurodegeneration. We deduce NVUD Hypothesis through relational inference and supporting evidence, and suggest continued NVU abnormalities following TBI serve as the pathophysiological substrate and trigger yielding chronic neuroinflammation, proteinopathies and oxidative stress, consequently leading to the progression of neurodegenerative diseases. The NVUD Hypothesis may provide potential treatment and prevention strategies for TBI and late-onset neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiang Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanbo Pan
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Dong
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - John H. Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Jenkins PO, Roussakis AA, De Simoni S, Bourke N, Fleminger J, Cole J, Piccini P, Sharp D. Distinct dopaminergic abnormalities in traumatic brain injury and Parkinson's disease. J Neurol Neurosurg Psychiatry 2020; 91:631-637. [PMID: 32381639 DOI: 10.1136/jnnp-2019-321759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/05/2019] [Accepted: 01/09/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Traumatic brain injury (TBI) and rapid eye movement sleep behavioural disorder (RBD) are risk factors for Parkinson's disease (PD). Dopaminergic abnormalities are often seen after TBI, but patients usually lack parkinsonian features. We test whether TBI, PD and RBD have distinct striatal dopamine abnormalities using dopamine transporter (DaT) imaging. METHODS 123I-ioflupane single-photon emission CT scans were used in a cross-sectional study to measure DaT levels in moderate/severe TBI, healthy controls, patients with early PD and RBD. Caudate and putamen DaT, putamen to caudate ratios and left-right symmetry of DaT were compared. RESULTS 108 participants (43 TBI, 26 PD, 8 RBD, 31 controls) were assessed. Patients with early PD scored significantly higher on the Unified Parkinson's Disease Rating Scale motor subscale than other groups. Patients with TBI and PD had reduced DaT levels in the caudate (12.2% and 18.7%, respectively) and putamen (9.0% and 42.6%, respectively) compared with controls. Patients with RBD had reduced DaT levels in the putamen (12.8%) but not in the caudate compared with controls. Patients with PD and TBI showed distinct patterns of DaT reduction, with patients with PD showing a lower putamen to caudate ratio. DaT asymmetry was greater in the PD group than other groups. CONCLUSIONS The results show that patients with early PD and TBI have distinct patterns of striatal dopamine abnormalities. Patients with early PD and moderate/severe TBI showed similar reductions in caudate DaT binding, but patients with PD showed a greater reduction in putamen DaT and a lower putamen to caudate ratio. The results suggest that parkinsonian motor signs are absent in these patients with TBI because of relatively intact putaminal dopamine levels.
Collapse
Affiliation(s)
- Peter Owen Jenkins
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College, London, United Kingdom
| | - Andreas-Antonios Roussakis
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London, London, UK
| | - Sara De Simoni
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College, London, United Kingdom
| | - Niall Bourke
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College, London, United Kingdom
| | - Jessica Fleminger
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College, London, United Kingdom
| | - James Cole
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College, London, United Kingdom
| | - Paola Piccini
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London, London, UK
| | - David Sharp
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College, London, United Kingdom .,UK Dementia Research Institute, Care Research & Technology Centre, Imperial College, London, United Kingdom
| |
Collapse
|
50
|
White DL, Kunik ME, Yu H, Lin HL, Richardson PA, Moore S, Sarwar AI, Marsh L, Jorge RE. Post-Traumatic Stress Disorder is Associated with further Increased Parkinson's Disease Risk in Veterans with Traumatic Brain Injury. Ann Neurol 2020; 88:33-41. [PMID: 32232880 DOI: 10.1002/ana.25726] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Determining if traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) are risk factors for Parkinson's disease (PD). This constitutes a research priority for the Veterans Administration (VA) with implications for screening policy and prevention. METHODS Population-based, matched case-control study among veterans using VA health care facilities from October 1, 1999, to September 30, 2013. We identified 176,871 PD cases and 707,484 randomly selected PD-free matched controls. PD, TBI, and PTSD were ascertained by validated International Classification of Disease 9th revision (ICD)-9 code-based algorithms. We examined the association between both risk factors and PD using race-adjusted conditional logistic regression. RESULTS The overall study cohort prevalence for TBImild , TBInon-mild , and PTSD was 0.65%, 0.69%, and 5.5%, respectively. Both TBI and PTSD were significantly associated with PD in single-risk factor race-adjusted analyses (conditional odds ratio [cOR] = 2.99; 95% confidence interval [CI]: 2.69-3.32), 3.82 (95% CI: 3.67-3.97), and 2.71 (95% CI: 2.66-2.77) for TBImild , TBInon-mild , and PTSD, respectively). There was suggestive positive interaction observed with comorbid PTSD/TBI in dual-risk factor analyses, with significant 2.69-fold and 3.70-fold excess relative PD risk in veterans with TBImild and TBInon-mild versus those without TBI when PTSD was present versus 2.17-fold and 2.80-fold excess risk when PTSD was absent. INTERPRETATION Our study was the first to demonstrate that both TBI and PTSD are independently associated with increased relative PD risk in a diverse nationwide cohort of military service veterans, and the first to suggest a potential modest synergistic excess risk in those with comorbid TBI/PTSD. Longitudinal research is needed to confirm these suggestive findings. ANN NEUROL 2020 ANN NEUROL 2020;88:33-41.
Collapse
Affiliation(s)
- Donna L White
- Department of Medicine, Clinical Epidemiology and Comparative Effectiveness Program, Michael E. DeBakey VA Health Services Research Center of Innovations (IQuESt), Houston, TX, USA.,Section of Health Services Research and Development, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Center for Translational Research in Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Mark E Kunik
- Section of Health Services Research and Development, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,VA South Central Mental Illness Research, Education and Clinical Center, Houston, TX, USA.,Mental Health Care Line, Michael E. DeBakey VA Medical Center and Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Hong Yu
- Department of Medicine, Clinical Epidemiology and Comparative Effectiveness Program, Michael E. DeBakey VA Health Services Research Center of Innovations (IQuESt), Houston, TX, USA
| | - Helen L Lin
- VA South Central Mental Illness Research, Education and Clinical Center, Houston, TX, USA
| | - Peter A Richardson
- Section of Health Services Research and Development, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Suzanne Moore
- Parkinson's Disease Research, Education and Clinical Centers (PADRECC), Michael E DeBakey VA Medical Center, Houston, TX, USA.,Neurology Care Line, Michael E. DeBakey VA Medical Center and Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Aliya I Sarwar
- Parkinson's Disease Research, Education and Clinical Centers (PADRECC), Michael E DeBakey VA Medical Center, Houston, TX, USA.,Neurology Care Line, Michael E. DeBakey VA Medical Center and Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Laura Marsh
- VA South Central Mental Illness Research, Education and Clinical Center, Houston, TX, USA.,Mental Health Care Line, Michael E. DeBakey VA Medical Center and Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Ricardo E Jorge
- VA South Central Mental Illness Research, Education and Clinical Center, Houston, TX, USA.,Mental Health Care Line, Michael E. DeBakey VA Medical Center and Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|