1
|
Wu J, Santos-Garcia I, Eiriz I, Brüning T, Kvasnička A, Friedecký D, Nyman TA, Pahnke J. Sex-dependent efficacy of sphingosine-1-phosphate receptor agonist FTY720 in mitigating Huntington's disease. Pharmacol Res 2025; 211:107557. [PMID: 39725338 DOI: 10.1016/j.phrs.2024.107557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative disorder characterized by severe motor deficits, cognitive decline and psychiatric disturbances. An early and significant morphological hallmark of HD is the activation of astrocytes triggered by mutant huntingtin, leading to the release of inflammatory mediators. Fingolimod (FTY), an FDA-approved sphingosine-1-phosphate (S1P) receptor agonist is used to treat multiple sclerosis (MS), a neuroinflammatory disease, and has shown therapeutic promise in other neurological conditions. Our study aimed to investigate the therapeutic potential of FTY for treating HD by utilizing a well-characterized mouse model of HD (zQ175dn) and wild-type littermates. The study design included a crossover, long-term oral treatment with 1 mg/kg to 2 mg/kg FTY from the age of 15-46 weeks (n = 128). Different motor behavior and physiological parameters were assessed throughout the study. The findings revealed that FTY rescued disease-related body weight loss in a sex-dependent manner, indicating its potential to regulate metabolic disturbances and to counteract neurodegenerative processes in HD. FTY intervention also rescued testicular atrophy, restored testis tissue structure in male mice suggesting a broader impact on peripheral tissues affected by huntingtin pathology. Histological analyses of the brain revealed delayed accumulation of activated astrocytes contributing to the preservation of the neural microenvironment by reducing neuroinflammation. The extent of FTY-related disease improvement was sex-dependent. Motor functions and body weight improved mostly in female mice with sustained estrogen levels, whereas males had to compensate for the ongoing, disease-related testis atrophy and the loss of androgen production. Our study underscores the beneficial therapeutic effects of FTY on HD involving endogenous steroid hormones and their important anabolic effects. It positions FTY as a promising candidate for therapeutic interventions targeting various aspects of HD pathology. Further studies are needed to fully evaluate its therapeutic potential in patients.
Collapse
Affiliation(s)
- Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo N-0372, Norway
| | - Irene Santos-Garcia
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo N-0372, Norway
| | - Ivan Eiriz
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo N-0372, Norway
| | - Thomas Brüning
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo N-0372, Norway
| | - Aleš Kvasnička
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, Zdravotníků 248/7, Olomouc CZ-77900, Czech Republic
| | - David Friedecký
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, Zdravotníků 248/7, Olomouc CZ-77900, Czech Republic
| | - Tuula A Nyman
- Proteomics Core Facility (PCF), Department of Immunology, Oslo University Hospital (OUS) and University of Oslo (UiO), Faculty of Medicine, Sognsvannsveien 20, Oslo NO-0372, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo N-0372, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, Lübeck D-23538, Germany; Department of Neuromedicine and Neuroscience, Faculty of Medicine and Life Sciences, University of Latvia (LU), Jelgavas iela 3, Rīga LV-1004, Latvia; Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Ramat Aviv IL-6997801, Israel.
| |
Collapse
|
2
|
Shang Y, Zheng L, Du Y, Shang T, Liu X, Zou W. Role of Regulatory T Cells in Intracerebral Hemorrhage. Mol Neurobiol 2025; 62:518-532. [PMID: 38877366 DOI: 10.1007/s12035-024-04281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Intracerebral hemorrhage (ICH) is a common cerebrovascular disease that can lead to severe neurological dysfunction in surviving patients, resulting in a heavy burden on patients and their families. When ICH occurs, the blood‒brain barrier is disrupted, thereby promoting immune cell migration into damaged brain tissue. As important immunosuppressive T cells, regulatory T (Treg) cells are involved in the maintenance of immune homeostasis and the suppression of immune responses after ICH. Treg cells mitigate brain tissue damage after ICH in a variety of ways, such as inhibiting the neuroinflammatory response, protecting against blood‒brain barrier damage, reducing oxidative stress damage and promoting nerve repair. In this review, we discuss the changes in Treg cells in ICH clinical patients and experimental animals, the mechanisms by which Treg cells regulate ICH and treatments targeting Treg cells in ICH, aiming to support new therapeutic strategies for clinical treatment.
Collapse
Affiliation(s)
- Yaxin Shang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Lei Zheng
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Yunpeng Du
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Tong Shang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Xueting Liu
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China.
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China.
| |
Collapse
|
3
|
Chen XD, Xiao KH, Zhou CB. Drug-induced retinal vein occlusion: a disproportionality analysis from the FDA adverse event reporting system (2004-2023). Front Pharmacol 2024; 15:1480269. [PMID: 39734405 PMCID: PMC11671269 DOI: 10.3389/fphar.2024.1480269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/19/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Retinal vein occlusion (RVO) often causes irreversible visual impairment, making early prevention crucial. This study aims to identify associations between different medications and RVO and provide information for clinical practice. Method This study included reports of RVO from the FDA Adverse Event Reporting System (FAERS) database from the first quarter (Q1) of 2004 to the fourth quarter (Q4) of 2023. The reported drugs were analyzed for adverse drug reaction (ADR) signals using four disproportionality algorithms. Kaplan-Meier curves and median time to onset were used to evaluate the drugs. Results From 2004 to 2023, the FAERS database recorded 6,151 reports associated with RVO. Disproportionality analyses identified 25 drugs significantly associated with RVO. Mirabegron showed the highest risk signal, followed by Raloxifene, Tadalafil, Fingolimod, and Bimatoprost. These high-risk drugs are distributed across different therapeutic areas, including urogenital system and sex hormones, ophthalmic drugs, nervous system drugs, musculoskeletal system drugs, anti-tumor and immune-modulating drugs, and anti-parasitic drugs. Specific drug targets such as adrenergic receptor agonists, hormone regulators, and PDE5 inhibitors were identified as high risk. Ophthalmic drugs exhibited the longest median time to adverse ocular reactions at 532.01 days, followed by anti-parasitic drugs, nervous system drugs, urogenital system and sex hormone drugs, anti-tumor and immune-modulating drugs, and musculoskeletal system drugs. Conclusion This study provides an overview of drug-induced RVO, identifying potential culprit drugs and their distribution characteristics. These findings enhance understanding of medication safety and help optimize clinical practice.
Collapse
Affiliation(s)
- Xiao-Dong Chen
- Department of Ophthalmology, Hui’an County Hospital, Quanzhou, Fujian, China
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology and Optometry, Fujian Medical University, Fuzhou, China
| | - Kun-Hong Xiao
- Department of Ophthalmology and Optometry, Fujian Medical University, Fuzhou, China
| | - Chao-Bing Zhou
- Department of Ophthalmology, Hui’an County Hospital, Quanzhou, Fujian, China
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
4
|
El Mahdaoui S, von Essen MR, Hansen MM, Romme Christensen J, Sellebjerg F, Søndergaard HB. Profiling of B cells and their subsets by whole blood gene expression analysis versus flow cytometry in multiple sclerosis. Mult Scler Relat Disord 2024; 91:105898. [PMID: 39317145 DOI: 10.1016/j.msard.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
We investigated if differentially expressed mRNA targets could be used as surrogate markers for circulating B cells and subsets. In paired blood samples from patients with untreated, anti-CD20-treated, fingolimod-treated, and natalizumab-treated multiple sclerosis, whole blood expression of CD19 correlated with B cell counts determined by flow cytometry, ROR1 with transitional B cells, TCL1A and ZNF727 with naïve B cells, NEXMIF with memory B cells and BCMA with plasmablasts. CD19 expression distinguished patients with B cell repletion and may be used as an alternative to flow cytometry, but NEXMIF was unsuitable for memory B cell monitoring in rituximab-treated patients.
Collapse
Affiliation(s)
- Sahla El Mahdaoui
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.
| | - Marina Rode von Essen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Marie Mathilde Hansen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Jeppe Romme Christensen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Helle Bach Søndergaard
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
5
|
Shalaby NM, Rushdi R, Alroughany R, Ahmed S, Merghany N, Shehata H, Al-Hashel J, Nada M, Gad A, Hassan A, Kishk N, Hamdy S, Abdelnaseer M, Hegazy M, Ahmed S, Abdel-Aal AR, El Shebawy H. Impact of Fingolimod Discontinuation Strategy on Recurrence of Disease Activity in Individuals With Multiple Sclerosis. Int J MS Care 2024; 26:329-340. [PMID: 39588274 PMCID: PMC11588075 DOI: 10.7224/1537-2073.2023-050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
BACKGROUND For individuals with multiple sclerosis (MS), treatment interruption can result in relapse/recurrence of the disease activity. Currently, there are no consensus guidelines about whether an abrupt stop with a short washout period or gradual tapering is better for fingolimod (Gilenya) cessation. We investigated the impact of the fingolimod discontinuation strategy on the recurrence of disease activity and the rebound occurrence of symptoms during washout. METHODS This was a retrospective, observational, multicenter study of individuals with MS in Egypt and Kuwait. The charts of patients on fingolimod therapy were screened to collect data on the impact of drug cessation strategies on disease activity and relapse occurrence. Disease relapse after cessation was defined as a relapse that occurred in the previous 12 months despite using a first-line treatment option or 2 relapses in the previous 12 months. RESULTS In a cohort of 100 patients, 58 had an abrupt cessation and 42 had a gradual tapering. Compared with abrupt cessation, gradual tapering was associated with a significantly lower rate of disease relapse (4.8% vs 81%, respectively; P = .001). Abrupt cessation also resulted in increased MRI findings of new lesions (24.1%; P = .29), enhancing lesions (32.8%; P = .5), and enlarging lesions (6.9%; P = .59); however, none of the MRI findings were significant. Other risk factors showed no significant association with disease relapse after fingolimod cessation. CONCLUSIONS Gradual fingolimod tapering is highly recommended to decrease the risk of rebound and severe disease reactivation. A prolonged washout should be avoided for lymphocyte recovery.
Collapse
Affiliation(s)
- Nevin M. Shalaby
- From the Department of Neurology, Cairo University, Cairo, Egypt
| | - Rufaidah Rushdi
- the Department of Pediatrics, Cairo University, Cairo, Egypt
| | - Raed Alroughany
- the Department of Neurology, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Samar Ahmed
- the Department of Neurology, Minia University, Minia, Egypt
- the Department of Neurology, Ibn Sina Hospital, Kuwait City, Kuwait
| | - Nahla Merghany
- From the Department of Neurology, Cairo University, Cairo, Egypt
| | - Hatem Shehata
- From the Department of Neurology, Cairo University, Cairo, Egypt
| | - Jasem Al-Hashel
- the Department of Neurology, Ibn Sina Hospital, Kuwait City, Kuwait
| | - Mona Nada
- From the Department of Neurology, Cairo University, Cairo, Egypt
| | - Adel Gad
- From the Department of Neurology, Cairo University, Cairo, Egypt
| | - Amr Hassan
- From the Department of Neurology, Cairo University, Cairo, Egypt
| | - Nirmeen Kishk
- From the Department of Neurology, Cairo University, Cairo, Egypt
| | - Sherif Hamdy
- From the Department of Neurology, Cairo University, Cairo, Egypt
| | | | - Mohamed Hegazy
- From the Department of Neurology, Cairo University, Cairo, Egypt
| | - Sandra Ahmed
- From the Department of Neurology, Cairo University, Cairo, Egypt
| | | | - Haidy El Shebawy
- From the Department of Neurology, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Li C, Zhuo C, Ma X, Li R, Chen X, Li Y, Zhang Q, Yang L, Wang L. Exploring the molecular targets of fingolimod and siponimod for treating the impaired cognition of schizophrenia using network pharmacology and molecular docking. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:80. [PMID: 39349481 PMCID: PMC11442674 DOI: 10.1038/s41537-024-00504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/06/2024] [Indexed: 10/02/2024]
Abstract
The treatment of cognitive impairment in schizophrenia is an unaddressed need due to the absence of novel treatments. Recent studies demonstrated that fingolimod and siponimod have neuroprotective effects in several neuropsychiatric disorders; however, their pharmacological mechanisms are unclear. The objective of this study was to identify potential molecular mechanisms of fingolimod and siponimod for improving cognition of schizophrenia through network pharmacology and molecular docking. The putative target genes of ingredients, schizophrenia, and impaired cognition were obtained from online databases, including SwissTargetPrediction, PharmMapper, GeneCards, CTD, DisGeNET, and OMIM. A protein-protein interaction network was constructed to identify core targets. The DAVID database was used for GO and KEGG pathway enrichment analyses. An ingredient-target-pathway-disease network was constructed using Cytoscape. Finally, the interactions between ingredients and core targets were assessed with molecular docking. The analysis revealed 260 targets shared by fingolimod and siponimod, 257 unique targets for fingolimod, and 88 unique targets for siponimod. Two signaling pathways were involved in fingolimod-mediated improvements in the cognition of schizophrenia, including the PI3K-Akt and MAPK signaling pathways. The core targets that regulated these two pathways included IL1B, AKT1, TNF, IL6, INS, BCL2, and BDNF. The MAPK signaling pathway was involved in siponimod-mediated improvement in the cognition of schizophrenia. The MAPK pathway was regulated by three core targets, namely TNF, AKT1, and CASP3. Docking scores ranged from -5.0 to -10.4 kcal/mol. Our analysis revealed that fingolimod regulates the PI3K-Akt and MAPK signaling pathways via the core targets IL1B, AKT1, TNF, IL6, INS, BCL2, and BDNF, and siponimod regulates the MAPK signaling pathways via the core targets AKT1, TNF, and CASP3 to improve the cognition of schizophrenia. Our results provide potential targets and a theoretical basis for the design of new drugs to treat the impaired cognition of schizophrenia.
Collapse
Affiliation(s)
- Chao Li
- Computational Biology Center (CBC), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Chuanjun Zhuo
- Computational Biology Center (CBC), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China.
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China.
| | - Xiaoyan Ma
- Computational Biology Center (CBC), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Ranli Li
- Computational Biology Center (CBC), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Ximing Chen
- Computational Biology Center (CBC), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Yachen Li
- Computational Biology Center (CBC), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Qiuyu Zhang
- Computational Biology Center (CBC), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Lei Yang
- Computational Biology Center (CBC), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Lina Wang
- Computational Biology Center (CBC), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| |
Collapse
|
7
|
Kanakura M, Kihara K, Kinoshita M, Sugimoto T, Murata H, Beppu S, Shiraishi N, Sugiyama Y, Koda T, Takahashi MP, Chinen I, Okuno T, Mochizuki H. Switching disease-modifying therapies from sphingosine-1-phosphate receptor modulators to natalizumab or dimethyl fumarate restores immune responses after SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis. Clin Neurol Neurosurg 2024; 243:108378. [PMID: 38901377 DOI: 10.1016/j.clineuro.2024.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVES This study aimed to evaluate whether switching disease-modifying therapies (DMTs) from sphingosine-1 phosphate (S1P) receptor modulators to either natalizumab (NTZ) or dimethyl fumarate (DMF) could restore the effectiveness of SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis (MS). METHODS This study included 9 controls and 33 patients with MS: 7 patients treated with DMF, 7 patients treated with NTZ, 9 patients treated with S1P receptor modulators, and 10 patients who had switched DMTs from S1P receptor modulators to DMF or NTZ by the second vaccine dose. The patients who had switched DMTs were classified into two groups, based on whether their lymphocyte counts were above or below 1000/μL at the time of vaccination. In addition, relapses within 6 months after switching DMTs were also evaluated in these patients. Six months after the second dose of the vaccination, anti-SARS-CoV-2 spike antibodies were evaluated in all participants, and spike specific CD4+ T cells were also assessed in patients who had switched DMTs from S1P receptor modulators. RESULTS Patients treated with S1P receptor modulators had lower levels of anti-SARS-CoV-2 spike antibodies than the controls and patients treated with DMF and NTZ. On the other hand, in patients who had switched DMTs from S1P receptor modulators, a recovery of lymphocyte counts above 1000/µL resulted in restored humoral and cellular immune responses to the vaccination. There were no neurological relapses in patients who had switched DMTs from S1P receptor modulators to NTZ. CONCLUSION SARS-CoV-2 mRNA vaccination is expected to be effective in patients whose lymphocyte counts have recovered due to switching DMTs from S1P receptor modulators. Switching DMTs from S1P receptor modulators to NTZ before vaccination may be beneficial in achieving efficacy for SARS-CoV-2 mRNA vaccination, with a reduced risk of relapse.
Collapse
Affiliation(s)
- Minami Kanakura
- Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keigo Kihara
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Kinoshita
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Tomoyuki Sugimoto
- Graduate School of Data Science, Shiga University, Hikone, Shiga, Japan
| | - Hisashi Murata
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shohei Beppu
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naoyuki Shiraishi
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasuko Sugiyama
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toru Koda
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masanori P Takahashi
- Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
8
|
Zhao Y, Li Q, Niu J, Guo E, Zhao C, Zhang J, Liu X, Wang L, Rao L, Chen X, Yang K. Neutrophil Membrane-Camouflaged Polyprodrug Nanomedicine for Inflammation Suppression in Ischemic Stroke Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311803. [PMID: 38519052 DOI: 10.1002/adma.202311803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Neuroinflammation has emerged as a major concern in ischemic stroke therapy because it exacebates neurological dysfunction and suppresses neurological recovery after ischemia/reperfusion. Fingolimod hydrochloride (FTY720) is an FDA-approved anti-inflammatory drug which exhibits potential neuroprotective effects in ischemic brain parenchyma. However, delivering a sufficient amount of FTY720 through the blood-brain barrier into brain lesions without inducing severe cardiovascular side effects remains challenging. Here, a neutrophil membrane-camouflaged polyprodrug nanomedicine that can migrate into ischemic brain tissues and in situ release FTY720 in response to elevated levels of reactive oxygen species. This nanomedicine delivers 15.2-fold more FTY720 into the ischemic brain and significantly reduces the risk of cardiotoxicity and infection compared with intravenously administered free drug. In addition, single-cell RNA-sequencing analysis identifies that the nanomedicine attenuates poststroke inflammation by reprogramming microglia toward anti-inflammatory phenotypes, which is realized via modulating Cebpb-regulated activation of NLRP3 inflammasomes and secretion of CXCL2 chemokine. This study offers new insights into the design and fabrication of polyprodrug nanomedicines for effective suppression of inflammation in ischemic stroke therapy.
Collapse
Affiliation(s)
- Ya Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, P. R. China
| | - Qian Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Jingyan Niu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Erliang Guo
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, P. R. China
| | - Chenchen Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, P. R. China
| | - Jian Zhang
- Biofunctional Experiment Teaching Center, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Xue Liu
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Kuikun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, P. R. China
| |
Collapse
|
9
|
Nagahashi M, Miyoshi Y. Targeting Sphingosine-1-Phosphate Signaling in Breast Cancer. Int J Mol Sci 2024; 25:3354. [PMID: 38542328 PMCID: PMC10970081 DOI: 10.3390/ijms25063354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 01/04/2025] Open
Abstract
In recent years, newly emerging therapies, such as immune checkpoint inhibitors and antibody-drug conjugates, have further improved outcomes for breast cancer patients. However, recurrent and metastatic breast cancer often eventually develops resistance to these drugs, and cure is still rare. As such, the development of new therapies for refractory breast cancer that differ from conventional mechanisms of action is necessary. Sphingosine-1-phosphate (S1P) is a key molecule with a variety of bioactive activities, including involvement in cancer cell proliferation, invasion, and metastasis. S1P also contributes to the formation of the cancer microenvironment by inducing surrounding vascular- and lymph-angiogenesis and regulating the immune system. In this article, we outline the basic mechanism of action of S1P, summarize previous findings on the function of S1P in cancer cells and the cancer microenvironment, and discuss the clinical significance of S1P in breast cancer and the therapeutic potential of targeting S1P signaling.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan;
| | | |
Collapse
|
10
|
Lei T, Yang Z, Jiang C, Wang X, Yang W, Yang X, Xie R, Tong F, Xia X, Huang Q, Du Y, Huang Y, Gao H. Mannose-Integrated Nanoparticle Hitchhike Glucose Transporter 1 Recycling to Overcome Various Barriers of Oral Delivery for Alzheimer's Disease Therapy. ACS NANO 2024; 18:3234-3250. [PMID: 38214975 DOI: 10.1021/acsnano.3c09715] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A brain-targeting nanodelivery system has been a hot topic and has undergone rapid progression. However, due to various obstacles such as the intestinal epithelial barrier (IEB) and the blood-brain barrier (BBB), few nanocarriers can achieve brain-targeting through oral administration. Herein, an intelligent oral brain-targeting nanoparticle (FTY@Man NP) constructed from a PLGA-PEG skeleton loaded with fingolimod (FTY) and externally modified with mannose was designed in combination with a glucose control strategy for the multitarget treatment of Alzheimer's disease (AD). The hydrophilic and electronegative properties of the nanoparticle facilitated its facile penetration through the mucus barrier, while the mannose ligand conferred IEB targeting abilities to the nanoparticle. Subsequently, glycemic control allowed the mannose-integrated nanoparticle to hitchhike the glucose transporter 1 (GLUT1) circulation across the BBB. Finally, the released FTY modulated the polarity of microglia from pro-inflammatory M1 to anti-inflammatory M2 and normalized the activated astrocyte, enhancing the clearance of toxic protein Amyloid-β (Aβ) while alleviating oxidative stress and neuroinflammation. Notably, both in vitro and in vivo results have consistently demonstrated that the oral administration of FTY@Man NP could effectively traverse the multiple barriers, thereby exerting significant therapeutic effects. This breakthrough holds the promise of realizing a highly effective orally administered treatment for AD.
Collapse
Affiliation(s)
- Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zixiao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chaoqing Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaotong Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rou Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fan Tong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qianqian Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yufan Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Li N, Han X, Ruan M, Huang F, Yang L, Xu T, Wang H, Wu H, Shi S, Wang Y, Wu X, Wang S. Prebiotic inulin controls Th17 cells mediated central nervous system autoimmunity through modulating the gut microbiota and short chain fatty acids. Gut Microbes 2024; 16:2402547. [PMID: 39287045 PMCID: PMC11409507 DOI: 10.1080/19490976.2024.2402547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory demyelination occurring in the central nervous system (CNS). Inulin is a common prebiotic that can improve metabolic disorders by modulating the gut microbiota. However, its capacity to affect CNS autoimmunity is poorly recognized. Experimental autoimmune encephalomyelitis (EAE) is a classical mouse model of MS. Herein, we found that oral administration of inulin ameliorated the severity EAE in mice, accompanied by reductions in inflammatory cell infiltration and demyelination in the CNS. These reductions were associated with decreased proportion and numbers of Th17 cells in brain and spleen. Consistent with the findings, the serum concentrations of IL-17, IL-6, and TNF-α were reduced in inulin treated EAE mice. Moreover, the proliferation of auto-reactive lymphocytes, against MOG35-55 antigen, was attenuated ex vivo. Mechanistically, inulin treatment altered the composition of gut microbiota. It increased Lactobacillus and Dubosiella whereas decreased g_Prevotellaceae_NK3B31_group at the genus level, alongside with elevated concentration of butyric acid in fecal content and serum. In vitro, butyrate, but not inulin, could inhibit the activation of MOG35-55 stimulated lymphocytes. Furthermore, fecal microbiota transplantation assay confirmed that fecal contents of inulin-treated normal mice had an ameliorative effect on EAE mice. In contrast, antibiotic cocktail (ABX) treatment diminished the therapeutic effect of inulin in EAE mice as well as the reduction of Th17 cells, while supplementation with Lactobacillus reuteri restored the amelioration effect. These results confirmed that the attenuation of inulin on Th17 cells and inflammatory demyelination in EAE mice was dependent on its modulation on gut microbiota and metabolites. Our findings provide a potential therapeutic regimen for prebiotic inulin supplementation in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Ning Li
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyan Han
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Ruan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianhao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Jonnalagadda D, Kihara Y, Groves A, Ray M, Saha A, Ellington C, Lee-Okada HC, Furihata T, Yokomizo T, Quadros EV, Rivera R, Chun J. FTY720 requires vitamin B 12-TCN2-CD320 signaling in astrocytes to reduce disease in an animal model of multiple sclerosis. Cell Rep 2023; 42:113545. [PMID: 38064339 PMCID: PMC11066976 DOI: 10.1016/j.celrep.2023.113545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Vitamin B12 (B12) deficiency causes neurological manifestations resembling multiple sclerosis (MS); however, a molecular explanation for the similarity is unknown. FTY720 (fingolimod) is a sphingosine 1-phosphate (S1P) receptor modulator and sphingosine analog approved for MS therapy that can functionally antagonize S1P1. Here, we report that FTY720 suppresses neuroinflammation by functionally and physically regulating the B12 pathways. Genetic and pharmacological S1P1 inhibition upregulates a transcobalamin 2 (TCN2)-B12 receptor, CD320, in immediate-early astrocytes (ieAstrocytes; a c-Fos-activated astrocyte subset that tracks with experimental autoimmune encephalomyelitis [EAE] severity). CD320 is also reduced in MS plaques. Deficiency of CD320 or dietary B12 restriction worsens EAE and eliminates FTY720's efficacy while concomitantly downregulating type I interferon signaling. TCN2 functions as a chaperone for FTY720 and sphingosine, whose complex induces astrocytic CD320 internalization, suggesting a delivery mechanism of FTY720/sphingosine via the TCN2-CD320 pathway. Taken together, the B12-TCN2-CD320 pathway is essential for the mechanism of action of FTY720.
Collapse
Affiliation(s)
- Deepa Jonnalagadda
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Aran Groves
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Neuroscience Graduate Program, School of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Manisha Ray
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Arjun Saha
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Clayton Ellington
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hyeon-Cheol Lee-Okada
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Edward V Quadros
- Department of Medicine, SUNY-Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Richard Rivera
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Vališ M, Achiron A, Hartung HP, Mareš J, Tichá V, Štourač P, Halusková S, Angelucci F, Pavelek Z. The Benefits and Risks of Switching from Fingolimod to Siponimod for the Treatment of Relapsing-Remitting and Secondary Progressive Multiple Sclerosis. Drugs R D 2023; 23:331-338. [PMID: 37640862 PMCID: PMC10676342 DOI: 10.1007/s40268-023-00434-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/31/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease that affects the central nervous system (CNS). Currently, MS treatment is limited to several Food and Drug Administration (FDA)- and European Medicines Agency (EMA)-approved medications that slow disease progression by immunomodulatory action. Fingolimod and siponimod have similar mechanisms of action, and consequently, their therapeutic effects may be comparable. However, while fingolimod is mainly used for relapsing-remitting MS (RRMS), siponimod, according to EMA label, is recommended for active secondary progressive MS (SPMS). Clinicians and scientists are analysing whether patients can switch from fingolimod to siponimod and identifying the advantages or disadvantages of such a switch from a therapeutic point of view. In this review, we aim to discuss the therapeutic effects of these two drugs and the advantages/disadvantages of switching treatment from fingolimod to siponimod in patients with the most common forms of MS, RRMS and SPMS.
Collapse
Affiliation(s)
- Martin Vališ
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Tel-Hashomer, Israel
- Neurology Department, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Hans Peter Hartung
- Department of Neurology, Medical School, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Faculty of Medicine at Palacký University and University Hospital in Olomouc, I. P. Pavlova 6, Olomouc, Czech Republic
- Brain and Mind Center, University of Sydney, Sydney, Australia
| | - Jan Mareš
- Department of Neurology, Faculty of Medicine at Palacký University and University Hospital in Olomouc, I. P. Pavlova 6, Olomouc, Czech Republic
| | - Veronika Tichá
- First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Pavel Štourač
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Simona Halusková
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Francesco Angelucci
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Zbyšek Pavelek
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
14
|
Mohammed S, Bindu A, Viswanathan A, Harikumar KB. Sphingosine 1-phosphate signaling during infection and immunity. Prog Lipid Res 2023; 92:101251. [PMID: 37633365 DOI: 10.1016/j.plipres.2023.101251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Sphingolipids are essential components of all eukaryotic membranes. The bioactive sphingolipid molecule, Sphingosine 1-Phosphate (S1P), regulates various important biological functions. This review aims to provide a comprehensive overview of the role of S1P signaling pathway in various immune cell functions under different pathophysiological conditions including bacterial and viral infections, autoimmune disorders, inflammation, and cancer. We covered the aspects of S1P pathways in NOD/TLR pathways, bacterial and viral infections, autoimmune disorders, and tumor immunology. This implies that targeting S1P signaling can be used as a strategy to block these pathologies. Our current understanding of targeting various components of S1P signaling for therapeutic purposes and the present status of S1P pathway inhibitors or modulators in disease conditions where the host immune system plays a pivotal role is the primary focus of this review.
Collapse
Affiliation(s)
- Sabira Mohammed
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India
| | - Anu Bindu
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India
| | - Arun Viswanathan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India; Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India.
| |
Collapse
|
15
|
Yang J, Guan X, He S, Ge L, Gao Q, Wu X. FTY720 attenuates acute colitis via colonic T cells reduction and inhibition of M1 macrophages polarization independent of CCR2-mediated monocytes input. Int Immunopharmacol 2023; 123:110731. [PMID: 37541109 DOI: 10.1016/j.intimp.2023.110731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Ulcerative colitis (UC) is a complex multifactorial disease, of which the exact etiology is not fully understood. The inappropriate aggressive inflammatory response is closely related to the disease progression of UC. FTY720 is a sphingosine-1-phosphate receptor agonist and acts as a key immunomodulator in inflammation. This study aims to investigate the protective influence of FTY720 on inflammation in the DSS-induced colitis model. In the present study, the C57BL/6 mice and the CCR2-/- mice were exposed to 5% Dextran Sodium Sulfate (DSS) drinking water for 6 days followed by an injection of FTY720 (1 mg/kg/d) or vehicle (PBS) 6 times starting on the next day. The body weight, stool consistency, and occult blood were assessed daily. The inflammatory cytokines level in colon tissues and serum were assessed. Leukocyte subsets of bone marrow (BM), spleen, and colon were analyzed by flow cytometry. Our results demonstrated that FTY720 ameliorated the aberrant immune responses by trapping T cells and inhibiting the polarization of M1 macrophages in colitis mice. The effect of FTY720 on the increased number of colonic macrophages did not dependent on CCR2-mediated monocyte influx, despite most monocytes being reduced after DSS administration in the inflamed colon of CCR2-/- mice. Rather, depletion of CCR2 did not impact the protective influence of FTY720 on colonic injury in acute colitis. All these findings unravel a beneficial function of FTY720 in the inflammatory response to DSS-induced acute colitis, provided further insights into monocyte migration and might provide potential opportunities for UC therapeutic intervention.
Collapse
Affiliation(s)
- Jing Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Nankai University Affiliated Nankai Hospital, Tianjin, China.
| | - Xin Guan
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Nankai University Affiliated Nankai Hospital, Tianjin, China
| | - Simeng He
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lixiu Ge
- Department of Clinical Laboratory, Nankai University Affiliated Nankai Hospital, Tianjin, China
| | - Qiaoying Gao
- Department of Clinical Laboratory, Nankai University Affiliated Nankai Hospital, Tianjin, China
| | - Xiaoyang Wu
- Department of Anesthesiology and Critical Care Medicine, Nankai University Affiliated Nankai Hospital, Tianjin, China
| |
Collapse
|
16
|
Liu Q, Shi K, Wang Y, Shi FD. Neurovascular Inflammation and Complications of Thrombolysis Therapy in Stroke. Stroke 2023; 54:2688-2697. [PMID: 37675612 DOI: 10.1161/strokeaha.123.044123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Intravenous thrombolysis via tPA (tissue-type plasminogen activator) is the only approved pharmacological treatment for acute ischemic stroke, but its benefits are limited by hemorrhagic transformation. Emerging evidence reveals that tPA swiftly mobilizes immune cells which extravasate into the brain parenchyma via the cerebral vasculature, augmenting neurovascular inflammation, and tissue injury. In this review, we summarize the pronounced alterations of immune cells induced by tPA in patients with stroke and experimental stroke models. We argue that neuroinflammation, triggered by ischemia-induced cell death and exacerbated by tPA, compromises neurovascular integrity and the microcirculation, leading to hemorrhagic transformation. Finally, we discuss current and future approaches to attenuate thrombolysis-associated hemorrhagic transformation via uncoupling immune cells from the neurovascular unit.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neurology, Tianjin Medical University General Hospital, China (Q.L., F.-D.S.)
| | - Kaibin Shi
- Department of Neurology, National Clinical Research Center for Neurological Diseases of China, Beijing Tiantan Hospital, Capital Medical University (K.S., Y.W., F.-D.S.)
| | - Yongjun Wang
- Department of Neurology, National Clinical Research Center for Neurological Diseases of China, Beijing Tiantan Hospital, Capital Medical University (K.S., Y.W., F.-D.S.)
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Medical University General Hospital, China (Q.L., F.-D.S.)
- Department of Neurology, National Clinical Research Center for Neurological Diseases of China, Beijing Tiantan Hospital, Capital Medical University (K.S., Y.W., F.-D.S.)
| |
Collapse
|
17
|
Koca N, Seferoğlu M. Effects of disease-modifying therapies on lipid parameters in patients with multiple sclerosis. Mult Scler Relat Disord 2023; 77:104876. [PMID: 37423049 DOI: 10.1016/j.msard.2023.104876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Cholesterol and lipids are essential components of nerve cells. Myelin synthesis and stabilization is a cholesterol-dependent process. It has been shown in several studies that high plasma cholesterol levels may be associated with clinical deterioration in Multiple Sclerosis (MS). There is scarce information about the effects of disease-modifying treatment (DMTs) on lipid profile. In this study, we aimed to investigate the effect of DMTs on plasma lipid profiles in MS patients. METHOD The records of 380 MS patients who were still under follow-up were analyzed in terms of age, sex, disease duration, EDSS scores, serum lipid levels, and used DMTs. The data of patients receiving Interferon (n = 53), Glatiramer acetate (n = 25), Fingolimod (n = 44), Teriflunomide (n = 24), Dimethyl fumarate (n = 7) and Ocrelizumab (n = 14) were compared with the data of control group (n = 53). RESULTS A total of 220 patients, 157 women, and 63 men, were included in the study. The average age of the participants in the study was 39.83 ± 10.21 years, mean disease duration was 8.45 ± 6.56 years, and the EDSS score was 2.25 ± 1.97. Although, Lipid parameters were higher in MS patients using Fingolimod the difference cannot reach the statistical significance. CONCLUSION No significant relationship was found between the DMTs that MS patients had been using for the last six months and their cholesterol levels.
Collapse
Affiliation(s)
- Nizameddin Koca
- University of Health Sciences, Bursa Sehir Training & Research Hospital, Department of Internal Medicine, Bursa, Turkey
| | - Meral Seferoğlu
- University of Health Sciences, Bursa Yuksek Ihtisas Training and Research Hospital, Department of Neurology, Bursa, Turkey
| |
Collapse
|
18
|
Sorensen PS, Magyari M, Sellebjerg F. An update on combination therapies for multiple sclerosis: where are we now? Expert Rev Neurother 2023; 23:1173-1187. [PMID: 38058171 DOI: 10.1080/14737175.2023.2289572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION In theory, combination of two agents, which are suboptimal when given individually, may result in a significant increase in therapeutic effect. Combination therapies have proven particularly effective against infections such as HIV, cancer, and also chronic autoimmune diseases such as rheumatoid arthritis. AREAS COVERED The authors review the literature, searching for randomized placebo-controlled or comparative, double-blind or investigator-blinded clinical trials, not including open label clinical trials, of treatment of multiple sclerosis (MS) with combination therapy or add-on therapy, including trials of induction therapy, trials for prevention of disease activity or worsening, amelioration of adverse effects, and treatment of relapses, and trials to increase remyelination. EXPERT OPINION Combination of two platform therapies (Interferon-beta or glatiramer acetate) was without additional effect. Clinical trials with add-on, often applying repurposed drugs (e.g. simvastatin, atorvastatin, minocycline, estriol, cyclophosphamide, azathioprine, albuterol, vitamin D), have been negative, apart from monthly methylprednisolone that, however, had low tolerability. Combination therapy for neuroprotection/remyelination showed some interesting results, though we are still awaiting results of phase III trials. The results of combination of anti-inflammatory therapies have in general been disappointing. In the future, combination of new effective neuroprotective/remyelinating drugs and highly effective anti-inflammatory treatments may benefit people with MS.
Collapse
Affiliation(s)
- Per Soelberg Sorensen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Melinda Magyari
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- The Danish Multiple Sclerosis Registry, Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Burgio AL, Shrader CW, Kharel Y, Huang T, Salamoun JM, Lynch KR, Santos WL. 2-Aminobenzoxazole Derivatives as Potent Inhibitors of the Sphingosine-1-Phosphate Transporter Spinster Homolog 2 (Spns2). J Med Chem 2023; 66:5873-5891. [PMID: 37010497 PMCID: PMC10167756 DOI: 10.1021/acs.jmedchem.3c00149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
The S1P1 receptor is the target of four marketed drugs for the treatment of multiple sclerosis and ulcerative colitis. Targeting an S1P exporter, specifically Spns2, that is "upstream" of S1P receptor engagement is an alternate strategy that might recapitulate the efficacy of S1P receptor modulators without cardiac toxicity. We recently reported the first Spns2 inhibitor SLF1081851 (16d) that has modest potency with in vivo activity. To develop more potent compounds, we initiated a structure-activity relationship study that identified 2-aminobenzoxazole as a viable scaffold. Our studies revealed SLB1122168 (33p), which is a potent inhibitor (IC50 = 94 ± 6 nM) of Spns2-mediated S1P release. Administration of 33p to mice and rats resulted in a dose-dependent decrease in circulating lymphocytes, a pharmacodynamic indication of Spns2 inhibition. 33p provides a valuable tool compound to explore both the therapeutic potential of targeting Spns2 and the physiologic consequences of selective S1P export inhibition.
Collapse
Affiliation(s)
- Ariel L. Burgio
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061
| | - Christopher W. Shrader
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Joseph M. Salamoun
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Webster L. Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
20
|
Gonzalez P, Debnath S, Chen YA, Hernandez E, Jha P, Dakanali M, Hsieh JT, Sun X. A Theranostic Small-Molecule Prodrug Conjugate for Neuroendocrine Prostate Cancer. Pharmaceutics 2023; 15:481. [PMID: 36839802 PMCID: PMC9967013 DOI: 10.3390/pharmaceutics15020481] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
After androgen deprivation therapy, a significant number of prostate cancer cases progress with a therapy-resistant neuroendocrine phenotype (NEPC). This represents a challenge for diagnosis and treatment. Based on our previously reported design of theranostic small-molecule prodrug conjugates (T-SMPDCs), herein we report a T-SMPDC tailored for targeted positron emission tomography (PET) imaging and chemotherapy of NEPC. The T-SMPDC is built upon a triazine core (TZ) to present three functionalities: (1) a chelating moiety (DOTA: 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) for PET imaging when labeled with 68Ga (t1/2 = 68 min) or other relevant radiometals; (2) an octreotide (Octr) that targets the somatostatin receptor 2 (SSTR2), which is overexpressed in the innervated tumor microenvironment (TME); and (3) fingolimod, FTY720-an antagonist of sphingosine kinase 1 that is an intracellular enzyme upregulated in NEPC. Polyethylene glycol (PEG) chains were incorporated via conventional conjugation methods or a click chemistry reaction forming a 1,4-disubstituted 1,2,3-triazole (Trz) linkage for the optimization of in vivo kinetics as necessary. The T-SMPDC, DOTA-PEG3-TZ(PEG4-Octr)-PEG2-Trz-PEG3-Val-Cit-pABOC-FTY720 (PEGn: PEG with n repeating ethyleneoxy units (n = 2, 3, or 4); Val: valine; Cit: citrulline; pABOC: p-amino-benzyloxycarbonyl), showed selective SSTR2 binding and mediated internalization of the molecule in SSTR2 high cells. Release of FTY720 was observed when the T-SMPDC was exposed to cathepsin B, and the released FTY720 exerted cytotoxicity in cells. In vivo PET imaging showed significantly higher accumulation (2.1 ± 0.3 %ID/g; p = 0.02) of [68Ga]Ga-DOTA-PEG3-TZ(PEG4-Octr)-PEG2-Trz-PEG3-Val-Cit-pABOC-FTY720 in SSTR2high prostate cancer xenografts than in the SSTR2low xenografts (1.5 ± 0.4 %ID/g) at 13 min post-injection (p.i.) with a rapid excretion through the kidneys. Taken together, these proof-of-concept results validate the design concept of the T-SMPDC, which may hold a great potential for targeted diagnosis and therapy of NEPC.
Collapse
Affiliation(s)
- Paulina Gonzalez
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sashi Debnath
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth Hernandez
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Preeti Jha
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marianna Dakanali
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
21
|
Senol H, Ozgun-Acar O, Dağ A, Eken A, Guner H, Aykut ZG, Topcu G, Sen A. Synthesis and Comprehensive in Vivo Activity Profiling of Olean-12-en-28-ol, 3β-Pentacosanoate in Experimental Autoimmune Encephalomyelitis: A Natural Remyelinating and Anti-Inflammatory Agent. JOURNAL OF NATURAL PRODUCTS 2023; 86:103-118. [PMID: 36598820 PMCID: PMC9887603 DOI: 10.1021/acs.jnatprod.2c00798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 06/17/2023]
Abstract
Multiple sclerosis (MS) treatment has received much attention, yet there is still no certain cure. We herein investigate the therapeutic effect of olean-12-en-28-ol, 3β-pentacosanoate (OPCA) on a preclinical model of MS. First, OPCA was synthesized semisynthetically and characterized. Then, the mice with MOG35-55-induced experimental autoimmune/allergic encephalomyelitis (EAE) were given OPCA along with a reference drug (FTY720). Biochemical, cellular, and molecular analyses were performed in serum and brain tissues to measure anti-inflammatory and neuroprotective responses. OPCA treatment protected EAE-induced changes in mouse brains maintaining blood-brain barrier integrity and preventing inflammation. Moreover, the protein and mRNA levels of MS-related genes such as HLD-DR1, CCL5, TNF-α, IL6, and TGFB1 were significantly reduced in OPCA-treated mouse brains. Notably, the expression of genes, including PLP, MBP, and MAG, involved in the development and structure of myelin was significantly elevated in OPCA-treated EAE. Furthermore, therapeutic OPCA effects included a substantial reduction in pro-inflammatory cytokines in the serum of treated EAE animals. Lastly, following OPCA treatment, the promoter regions for most inflammatory regulators were hypermethylated. These data support that OPCA is a valuable and appealing candidate for human MS treatment since OPCA not only normalizes the pro- and anti-inflammatory immunological bias but also stimulates remyelination in EAE.
Collapse
Affiliation(s)
- Halil Senol
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| | - Ozden Ozgun-Acar
- Seed
Breeding & Genetics Application Research Center, Pamukkale University, 20070 Denizli, Turkey
| | - Aydan Dağ
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| | - Ahmet Eken
- Department
of Basic Medical Sciences, Faculty of Medicine, Medical Biology Erciyes University, 38039 Kayseri, Turkey
| | - Hüseyin Guner
- Department
of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, University of Abdullah Gul 38080 Kayseri, Turkey
| | | | - Gulacti Topcu
- Department
of Pharmacognosy & Phytochemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| | - Alaattin Sen
- Department
of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, University of Abdullah Gul 38080 Kayseri, Turkey
- Department
of Biology, Faculty of Arts & Sciences, Pamukkale University, 20070 Kınıklı, Denizli, Turkey
| |
Collapse
|
22
|
Zhang Y, Ren Y, Zhang Y, Li Y, Xu C, Peng Z, Jia Y, Qiao S, Zhang Z, Shi L. T-cell infiltration in the central nervous system and their association with brain calcification in Slc20a2-deficient mice. Front Mol Neurosci 2023; 16:1073723. [PMID: 36741925 PMCID: PMC9894888 DOI: 10.3389/fnmol.2023.1073723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Primary familial brain calcification (PFBC) is a rare neurodegenerative and neuropsychiatric disorder characterized by bilateral symmetric intracranial calcification along the microvessels or inside neuronal cells in the basal ganglia, thalamus, and cerebellum. Slc20a2 homozygous (HO) knockout mice are the most commonly used model to simulate the brain calcification phenotype observed in human patients. However, the cellular and molecular mechanisms related to brain calcification, particularly at the early stage much prior to the emergence of brain calcification, remain largely unknown. In this study, we quantified the central nervous system (CNS)-infiltrating T-cells of different age groups of Slc20a2-HO and matched wild type mice and found CD45+CD3+ T-cells to be significantly increased in the brain parenchyma, even in the pre-calcification stage of 1-month-old -HO mice. The accumulation of the CD3+ T-cells appeared to be associated with the severity of brain calcification. Further immunophenotyping revealed that the two main subtypes that had increased in the brain were CD3+ CD4- CD8- and CD3+ CD4+ T-cells. The expression of endothelial cell (EC) adhesion molecules increased, while that of tight and adherents junction proteins decreased, providing the molecular precondition for T-cell recruitment to ECs and paracellular migration into the brain. The fusion of lymphocytes and EC membranes and transcellular migration of CD3-related gold particles were captured, suggesting enhancement of transcytosis in the brain ECs. Exogenous fluorescent tracers and endogenous IgG and albumin leakage also revealed an impairment of transcellular pathway in the ECs. FTY720 significantly alleviated brain calcification, probably by reducing T-cell infiltration, modulating neuroinflammation and ossification process, and enhancing the autophagy and phagocytosis of CNS-resident immune cells. This study clearly demonstrated CNS-infiltrating T-cells to be associated with the progression of brain calcification. Impairment of blood-brain barrier (BBB) permeability, which was closely related to T-cell invasion into the CNS, could be explained by the BBB alterations of an increase in the paracellular and transcellular pathways of brain ECs. FTY720 was found to be a potential drug to protect patients from PFBC-related lesions in the future.
Collapse
Affiliation(s)
- Yi Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yaqiong Ren
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yueni Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ying Li
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Chao Xu
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziyue Peng
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Jia
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Shupei Qiao
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Zitong Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lei Shi
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China,*Correspondence: Lei Shi,
| |
Collapse
|
23
|
Gerganova G, Riddell A, Miller AA. CNS border-associated macrophages in the homeostatic and ischaemic brain. Pharmacol Ther 2022; 240:108220. [PMID: 35667516 DOI: 10.1016/j.pharmthera.2022.108220] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022]
Abstract
CNS border-associated macrophages (BAMs) are a small population of specialised macrophages localised in the choroid plexus, meningeal and perivascular spaces. Until recently, the function of this elusive cell type was poorly understood and largely overlooked, especially in comparison to microglia, the primary brain resident immune cell. However, the recent single cell immunophenotyping or transcriptomic analysis of BAM subsets in the homeostatic brain, coupled with the rapid emergence of new studies exploring BAM functions in various cerebral pathologies, including Alzheimer's disease, hypertension-induced neurovascular and cognitive dysfunction, and ischaemic stroke, has unveiled previously unrecognised heterogeneity and spatial-temporal complexity in BAM populations as well as their contributions to brain homeostasis and disease. In this review, we discuss the implications of this new-found knowledge on our current understanding of BAM function in ischaemic stroke. We first provide a comprehensive overview and discussion of the cell-surface expression profiles, transcriptional signatures and potential functional phenotypes of homeostatic BAM subsets described in recent studies. Evidence for their putative physiological roles is examined, including their involvement in immunological surveillance, waste clearance, and vascular permeability. We discuss the evidence supporting the accumulation and genetic transformation of BAMs in response to ischaemia and appraise the experimental evidence that BAM function might be deleterious in the acute phase of stroke, while considering the mechanisms by which BAMs may influence stroke outcomes in the longer term. Finally, we review the therapeutic potential of immunomodulatory strategies as an approach to stroke management, highlighting current challenges in the field and key issues relating to BAMs, and how BAMs could be harnessed experimentally to support future translational research.
Collapse
Affiliation(s)
- Gabriela Gerganova
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Alexandra Riddell
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Alyson A Miller
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom.
| |
Collapse
|
24
|
Constantinescu V, Haase R, Akgün K, Ziemssen T. S1P receptor modulators and the cardiovascular autonomic nervous system in multiple sclerosis: a narrative review. Ther Adv Neurol Disord 2022; 15:17562864221133163. [PMID: 36437849 PMCID: PMC9685213 DOI: 10.1177/17562864221133163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/29/2022] [Indexed: 01/21/2024] Open
Abstract
UNLABELLED Sphingosine 1-phosphate (S1P) receptor (S1PR) modulators have a complex mechanism of action, which are among the most efficient therapeutic options in multiple sclerosis (MS) and represent a promising approach for other immune-mediated diseases. The S1P signaling pathway involves the activation of five extracellular S1PR subtypes (S1PR1-S1PR5) that are ubiquitous and have a wide range of effects. Besides the immunomodulatory beneficial outcome in MS, S1P signaling regulates the cardiovascular function via S1PR1-S1PR3 subtypes, which reside on cardiac myocytes, endothelial, and vascular smooth muscle cells. In our review, we describe the mechanisms and clinical effects of S1PR modulators on the cardiovascular system. In the past, mostly short-term effects of S1PR modulators on the cardiovascular system have been studied, while data on long-term effects still need to be investigated. Immediate effects detected after treatment initiation are due to parasympathetic overactivation. In contrast, long-term effects may arise from a shift of the autonomic regulation toward sympathetic predominance along with S1PR1 downregulation. A mild increase in blood pressure has been reported in long-term studies, as well as decreased baroreflex sensitivity. In most studies, sustained hypertension was found to represent a significant adverse event related to treatment. The shift in the autonomic control and blood pressure values could not be just a consequence of disease progression but also related to S1PR modulation. Reduced cardiac autonomic activation and decreased heart rate variability during the long-term treatment with S1PR modulators may increase the risk for subsequent cardiac events. For second-generation S1PR modulators, this observation has to be confirmed in further studies with longer follow-ups. The periodic surveillance of cardiovascular function and detection of any cardiac autonomic dysfunction can help predict cardiac outcomes not only after the first dose but also throughout treatment. PLAIN LANGUAGE SUMMARY What is the cardiovascular effect of S1P receptor modulator therapy in multiple sclerosis? Sphingosine 1-phosphate (S1P) receptor (S1PR) modulators are among the most efficient therapies for multiple sclerosis. As small molecules, they are not only acting on the immune but on cardiovascular and nervous systems as well. Short-term effects of S1PR modulators on the cardiovascular system have already been extensively described, while long-term effects are less known. Our review describes the mechanisms of action and the short- and long-term effects of these therapeutic agents on the cardiovascular system in different clinical trials. We systematically reviewed the literature that had been published by January 2022. One hundred seven articles were initially identified by title and abstract using targeted keywords, and thirty-nine articles with relevance to cardiovascular effects of S1PR therapy in multiple sclerosis patients were thereafter considered, including their references for further accurate clarification. Studies on fingolimod, the first S1PR modulator approved for treating multiple sclerosis, primarily support the safety profile of this therapeutic class. The second-generation therapeutic agents along with a different treatment initiation approach helped mitigate several of the cardiovascular adverse effects that had previously been observed at the start of treatment. The heart rate may decrease when initiating S1PR modulators and, less commonly, the atrioventricular conduction may be prolonged, requiring cardiac monitoring for the first 6 h of medication. Continuous therapy with S1PR modulators can increase blood pressure values; therefore, the presence of arterial hypertension should be checked during long-term treatment. Periodic surveillance of the cardiovascular and autonomic functions can help predict cardiac outcomes and prevent possible adverse events in S1PR modulators treatment. Further studies with longer follow-ups are needed, especially for the second-generation of S1PR modulators, to confirm the safety profile of this therapeutic class.
Collapse
Affiliation(s)
- Victor Constantinescu
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Dresden, Germany
| | - Rocco Haase
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Dresden, Germany
| | - Katja Akgün
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Dresden, Germany
| | - Tjalf Ziemssen
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Fetscherstrasse 74, D-01307 Dresden, Germany
| |
Collapse
|
25
|
Eren F, Yilmaz SE. Neuroprotective approach in acute ischemic stroke: A systematic review of clinical and experimental studies. Brain Circ 2022; 8:172-179. [PMID: 37181847 PMCID: PMC10167855 DOI: 10.4103/bc.bc_52_22] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a disease with worldwide economic and social negative effects. It is a serious disease with high disability and mortality. Ionic imbalance, excitotoxicity, oxidative stress, and inflammation are induced during and after ischemic stroke. Cellular dysfunction, apoptosis, and necrosis are activated directly or indirectly mechanisms. The studies about neuroprotection in neurodegenerative diseases have increased in recent years. Data about the mechanisms of progressive molecular improvement in the brain tissue are increasing in acute ischemic stroke. Based on these data, preclinical and clinical studies on new neuroprotective treatments are being designed. An effective neuroprotective strategy can prolong the indication period of recanalization treatments in the acute stage of ischemic stroke. In addition, it can reduce neuronal necrosis and protect the brain against ischemia-related reperfusion injury. The current review has evaluated the recent clinical and experimental studies. The molecular mechanism of each of the neuroprotective strategies is also summarized. This review may help develop future strategies for combination treatment to protect the cerebral tissue from ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Fettah Eren
- Department of Neurology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Sueda Ecem Yilmaz
- Department of Neurology, School of Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
26
|
Kihara Y, Zhu Y, Jonnalagadda D, Romanow W, Palmer C, Siddoway B, Rivera R, Dutta R, Trapp BD, Chun J. Single-Nucleus RNA-seq of Normal-Appearing Brain Regions in Relapsing-Remitting vs. Secondary Progressive Multiple Sclerosis: Implications for the Efficacy of Fingolimod. Front Cell Neurosci 2022; 16:918041. [PMID: 35783097 PMCID: PMC9247150 DOI: 10.3389/fncel.2022.918041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease that alters central nervous system (CNS) functions. Relapsing-remitting MS (RRMS) is the most common form, which can transform into secondary-progressive MS (SPMS) that is associated with progressive neurodegeneration. Single-nucleus RNA sequencing (snRNA-seq) of MS lesions identified disease-related transcriptomic alterations; however, their relationship to non-lesioned MS brain regions has not been reported and which could identify prodromal or other disease susceptibility signatures. Here, snRNA-seq was used to generate high-quality RRMS vs. SPMS datasets of 33,197 nuclei from 8 normal-appearing MS brains, which revealed divergent cell type-specific changes. Notably, SPMS brains downregulated astrocytic sphingosine kinases (SPHK1/2) - the enzymes required to phosphorylate and activate the MS drug, fingolimod. This reduction was modeled with astrocyte-specific Sphk1/2 null mice in which fingolimod lost activity, supporting functionality of observed transcriptomic changes. These data provide an initial resource for studies of single cells from non-lesioned RRMS and SPMS brains.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Yunjiao Zhu
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Deepa Jonnalagadda
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - William Romanow
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Carter Palmer
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Benjamin Siddoway
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Richard Rivera
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Bruce D. Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
27
|
Wang F, Zhang X, Liu Y, Li Z, Wei R, Zhang Y, Zhang R, Khan S, Yong VW, Xue M. Neuroprotection by Ozanimod Following Intracerebral Hemorrhage in Mice. Front Mol Neurosci 2022; 15:927150. [PMID: 35782389 PMCID: PMC9242004 DOI: 10.3389/fnmol.2022.927150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022] Open
Abstract
The destruction of the blood-brain barrier (BBB) after intracerebral hemorrhage (ICH) is associated with poor prognosis. Modulation of sphingosine 1-phosphate receptor (S1PR) may improve outcomes from ICH. Ozanimod (RPC-1063) is a newly developed S1PR regulator which can selectively modulate type 1/5 sphingosine receptors. Here, we studied the impact of Ozanimod on neuroprotection in an experimental mouse model of ICH, induced by injecting collagenase type VII into the basal ganglia. Ozanimod was administered by gavage 2 h after surgery and once a day thereafter until sacrifice. The results demonstrate that Ozanimod treatment improved neurobehavioral deficits in mice and decreased weight loss after ICH. Ozanimod significantly reduced the density of activated microglia and infiltrated neutrophils in the perihematoma region. Furthermore, Ozanimod reduced hematoma volume and water content of the ICH brain. The results of TUNEL staining indicate that Ozanimod mitigated brain cell death. The quantitative data of Evans blue (EB) staining showed that Ozanimod reduced EB dye leakage. Overall, Ozanimod reduces the destruction of the BBB and exert neuroprotective roles following ICH in mice.
Collapse
Affiliation(s)
- Fei Wang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Ruiyi Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - V. Wee Yong
- Department of Clinical Neurosciences, The Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- *Correspondence: V. Wee Yong,
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Mengzhou Xue,
| |
Collapse
|
28
|
Bai P, Zhu R, Wang P, Jiang F, Zhen J, Yao Y, Zhao C, Liang Z, Wang M, Liu B, Li M, Li N, Yuan J. The efficacy and safety of fingolimod plus standardized treatment versus standardized treatment alone for acute ischemic stroke: A systematic review and meta-analysis. Pharmacol Res Perspect 2022; 10:e00972. [PMID: 35585652 PMCID: PMC9117458 DOI: 10.1002/prp2.972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Acute ischemic stroke (AIS) is the most common type of stroke. Fingolimod is a sphingosine analog that acts on sphingosine‐1‐phosphate receptors (S1PR). Recently, the safety and efficacy of fingolimod in both patients with intracerebral hemorrhage and patients with AIS have been investigated in proof‐of‐concept trials. In this review, we performed a meta‐analysis to evaluate the efficacy and safety of fingolimod for AIS. This study was conducted according to the PRISMA (Preferred Reporting Items for Systemic review and Meta‐Analysis) statement. We searched for publications on the PubMed, Embase, Cochrane Central Register of Controlled Trials, Clinical trials, CNKI, Wanfang Data, VIP, CBM up to August 2021. We compiled five studies; a main meta‐analysis forest plots were conducted for the values of the proportion of patients whose modified Rankin scale (MRS) score was 0–1 at day 90. There were heterogeneities in each study; the method of sensitivity analysis was performed. A sensitivity analysis was performed with a mean difference (MD) of the efficacy of fingolimod plus standardized treatment versus standardized treatment alone. Random effect model is used for meta‐analysis regardless of the I2 index. The analysis was carried out for categorical variables using the risk ratio (RR), LogRR, and its 95% CI. The methodological quality of each randomized controlled trial (RCTs) was assessed according to the Cochrane Collaboration tool to assess the risk of bias (ROB). A meta‐analysis of five studies with 228 participants was conducted. The risk ratio of patients whose MRS score was 0–1 at day 90 between fingolimod plus standardized treatment and standardized treatment alone was 2.59 (95%CI, 1.48–4.56). The Fingolimod plus standard treatment group decreased infarct growth and improved clinical function than the standard treatment.
Collapse
Affiliation(s)
- Peng Bai
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Runxiu Zhu
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Ping Wang
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Feng Jiang
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Jin Zhen
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Yuan Yao
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Chenhui Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Zihong Liang
- Department of Psychiatry, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Meiling Wang
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Bin Liu
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Min Li
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Na Li
- Nursing Department, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Jun Yuan
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| |
Collapse
|
29
|
Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2022; 19:351-366. [PMID: 35165437 DOI: 10.1038/s41575-021-00574-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
Immune cell trafficking is a critical element of the intestinal immune response, both in homeostasis and in pathological conditions associated with inflammatory bowel disease (IBD). This process involves adhesion molecules, chemoattractants and receptors expressed on immune cell surfaces, blood vessels and stromal intestinal tissue as well as signalling pathways, including those modulated by sphingosine 1-phosphate (S1P). The complex biological processes of leukocyte recruitment, activation, adhesion and migration have been targeted by various monoclonal antibodies (vedolizumab, etrolizumab, ontamalimab). Promising preclinical and clinical data with several oral S1P modulators suggest that inhibition of lymphocyte egress from the lymph nodes to the bloodstream might be a safe and efficacious alternative mechanism for reducing inflammation in immune-mediated disorders, including Crohn's disease and ulcerative colitis. Although various questions remain, including the potential positioning of S1P modulators in treatment algorithms and their long-term safety, this novel class of compounds holds great promise. This Review summarizes the critical mediators and mechanisms involved in immune cell trafficking in IBD and the available evidence for efficacy, safety and pharmacokinetics of S1P receptor modulators in IBD and other immune-mediated disorders. Further, it discusses potential future approaches to incorporate S1P modulators into the treatment of IBD.
Collapse
|
30
|
Jan Z, Mollazadeh S, Abnous K, Taghdisi SM, Danesh A, Ramezani M, Alibolandi M. Targeted Delivery Platforms for the Treatment of Multiple Sclerosis. Mol Pharm 2022; 19:1952-1976. [PMID: 35501974 DOI: 10.1021/acs.molpharmaceut.1c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative condition of the central nervous system (CNS) that presents with varying levels of disability in patients, displaying the significance of timely and effective management of this complication. Though several treatments have been developed to protect nerves, comprehensive improvement of MS is still considered an essential bottleneck. Therefore, the development of innovative treatment methods for MS is one of the core research areas. In this regard, nanoscale platforms can offer practical and ideal approaches to the diagnosis and treatment of various diseases, especially immunological disorders such as MS, to improve the effectiveness of conventional therapies. It should be noted that there is significant progress in the development of neuroprotective strategies through the implementation of various nanoparticles, monoclonal antibodies, peptides, and aptamers. In this study, we summarize different particle systems as well as targeted therapies, such as antibodies, peptides, nucleic acids, and engineered cells for the treatment of MS, and discuss their potential in the treatment of MS in the preclinical and clinical stages. Future advances in targeted delivery of medical supplies may offer new strategies for complete recovery as well as practical treatment of progressive forms of MS.
Collapse
Affiliation(s)
- Zeinab Jan
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, F82C+G8V Bojnurd, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Abolghasem Danesh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| |
Collapse
|
31
|
Biernacki T, Sandi D, Füvesi J, Fricska-Nagy Z, Kincses TZ, Ács P, Rózsa C, Dobos E, Cseh B, Horváth L, Nagy Z, Csányi A, Kovács K, Csépány T, Vécsei L, Bencsik K. The safety and efficacy of fingolimod: Real-world data from a long-term, non-interventional study on the treatment of RRMS patients spanning up to 5 years from Hungary. PLoS One 2022; 17:e0267346. [PMID: 35452476 PMCID: PMC9032373 DOI: 10.1371/journal.pone.0267346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Fingolimod was approved and reimbursed by the healthcare provider in Hungary for the treatment of highly active relapsing-remitting multiple sclerosis (RRMS) in 2012. The present study aimed to assess the effectiveness, safety profile, and persistence to fingolimod in a real-life setting in Hungary in RRMS patients who were either therapy naïve before enrollment or have changed to fingolimod from another disease-modifying therapy (DMT) for any reason. METHODS This cross-sectional, observational study with prospective data collection was performed nationwide at 21 sites across Hungary. To avoid selection bias, sites were asked to document eligible patients in consecutive chronological order. Demographic, clinical, safety and efficacy data were analysed for up to 5 years from 570 consenting adult patients with RRMS who had received treatment with fingolimod for at least one year. RESULTS 69.6% of patients remained free from relapses for the whole study duration; in the first year, 85.1% of patients did not experience a relapse, which rose to 94.6% seen in the 5th year. Compared to baseline at study end, 28.2% had higher, and 9.1% had lower, meanwhile, 62.7% of the patients had stable EDSS scores. Overall, the annualized relapse rate decreased from 0.804 observed at baseline to 0.185, 0.149, 0.122, 0.091, and 0.097 (77.0%, 82.1%, 85.2%, 89.7%, and 89.0% relative reduction, respectively) after 1, 2, 3, 4, and 5 years of treatment. The greatest reduction rate was seen in the group of therapy naïve patients. Treatment persistence on fingolimod after 60 months was 73.4%. CONCLUSION In this nationwide Hungarian cohort, most patients under fingolimod treatment were free from relapses and disability progression. In addition, fingolimod has proven to be a well-tolerated DMT that has sustained its manageable safety profile, high efficacy, and positive benefit/risk ratio for up to 5 years in a real-life setting.
Collapse
Affiliation(s)
- Tamás Biernacki
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Dániel Sandi
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Judit Füvesi
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Zsanett Fricska-Nagy
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Tamás Zsigmond Kincses
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Péter Ács
- Department of Neurology, Faculty of General Medicine, University of Pécs, Pécs, Hungary
| | - Csilla Rózsa
- Jahn Ferenc South-Pest Hospital and Clinic, Budapest, Hungary
| | | | - Botond Cseh
- Borsod-Abaúj-Zemplén County Hospital, Miskolc, Hungary
| | | | - Zsuzsanna Nagy
- Szent Rafael Zala County Hospital, Zalaegerszeg, Hungary
| | | | | | - Tünde Csépány
- Department of Neurology, Faculty of General Medicine, University of Debrecen, Deberecen, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Krisztina Bencsik
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | | |
Collapse
|
32
|
The Integration of Cell Therapy and Biomaterials as Treatment Strategies for Remyelination. Life (Basel) 2022; 12:life12040474. [PMID: 35454965 PMCID: PMC9027199 DOI: 10.3390/life12040474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic degenerative autoimmune disease of the central nervous system that causes inflammation, demyelinating lesions, and axonal damage and is associated with a high rate of early-onset disability. Disease-modifying therapies are used to mitigate the inflammatory process in MS but do not promote regeneration or remyelination; cell therapy may play an important role in these processes, modulating inflammation and promoting the repopulation of oligodendrocytes, which are responsible for myelin repair. The development of genetic engineering has led to the emergence of stable, biocompatible biomaterials that may promote a favorable environment for exogenous cells. This review summarizes the available evidence about the effects of transplantation of different types of stem cells reported in studies with several animal models of MS and clinical trials in human patients. We also address the advantages of combining cell therapy with biomaterials.
Collapse
|
33
|
Ghasemi-Kasman M, Nosratiyan N, Hashemian M, Ahmadian SR, Parsian H, Rostami-Mansoor S. Intranasal administration of fingolimod (FTY720) attenuates demyelination area in lysolecithin-induced demyelination model of rat optic chiasm. Mult Scler Relat Disord 2022; 59:103518. [DOI: 10.1016/j.msard.2022.103518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/19/2021] [Accepted: 01/09/2022] [Indexed: 11/16/2022]
|
34
|
Kihara Y, Jonnalagadda D, Zhu Y, Ray M, Ngo T, Palmer C, Rivera R, Chun J. Ponesimod inhibits astrocyte-mediated neuroinflammation and protects against cingulum demyelination via S1P 1 -selective modulation. FASEB J 2022; 36:e22132. [PMID: 34986275 PMCID: PMC8740777 DOI: 10.1096/fj.202101531r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 01/01/2023]
Abstract
Ponesimod is a sphingosine 1‐phosphate (S1P) receptor (S1PR) modulator that was recently approved for treating relapsing forms of multiple sclerosis (MS). Three other FDA‐approved S1PR modulators for MS—fingolimod, siponimod, and ozanimod—share peripheral immunological effects via common S1P1 interactions, yet ponesimod may access distinct central nervous system (CNS) mechanisms through its selectivity for the S1P1 receptor. Here, ponesimod was examined for S1PR internalization and binding, human astrocyte signaling and single‐cell RNA‐seq (scRNA‐seq) gene expression, and in vivo using murine cuprizone‐mediated demyelination. Studies confirmed ponesimod’s selectivity for S1P1 without comparable engagement to the other S1PR subtypes (S1P2,3,4,5). Ponesimod showed pharmacological properties of acute agonism followed by chronic functional antagonism of S1P1. A major locus of S1P1 expression in the CNS is on astrocytes, and scRNA‐seq of primary human astrocytes exposed to ponesimod identified a gene ontology relationship of reduced neuroinflammation and reduction in known astrocyte disease‐related genes including those of immediate early astrocytes that have been strongly associated with disease progression in MS animal models. Remarkably, ponesimod prevented cuprizone‐induced demyelination selectively in the cingulum, but not in the corpus callosum. These data support the CNS activities of ponesimod through S1P1, including protective, and likely selective, effects against demyelination in a major connection pathway of the brain, the limbic fibers of the cingulum, lesions of which have been associated with several neurologic impairments including MS fatigue.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, Translational Neuroscience Initiative, La Jolla, California, USA
| | - Deepa Jonnalagadda
- Sanford Burnham Prebys Medical Discovery Institute, Translational Neuroscience Initiative, La Jolla, California, USA
| | - Yunjiao Zhu
- Sanford Burnham Prebys Medical Discovery Institute, Translational Neuroscience Initiative, La Jolla, California, USA
| | - Manisha Ray
- Sanford Burnham Prebys Medical Discovery Institute, Translational Neuroscience Initiative, La Jolla, California, USA
| | - Tony Ngo
- Sanford Burnham Prebys Medical Discovery Institute, Translational Neuroscience Initiative, La Jolla, California, USA
| | - Carter Palmer
- Sanford Burnham Prebys Medical Discovery Institute, Translational Neuroscience Initiative, La Jolla, California, USA.,Biomedical Sciences Program, University of California, San Diego, La Jolla, California, USA
| | - Richard Rivera
- Sanford Burnham Prebys Medical Discovery Institute, Translational Neuroscience Initiative, La Jolla, California, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, Translational Neuroscience Initiative, La Jolla, California, USA
| |
Collapse
|
35
|
Cohan SL, Benedict RHB, Cree BAC, DeLuca J, Hua LH, Chun J. The Two Sides of Siponimod: Evidence for Brain and Immune Mechanisms in Multiple Sclerosis. CNS Drugs 2022; 36:703-719. [PMID: 35725892 PMCID: PMC9259525 DOI: 10.1007/s40263-022-00927-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 12/13/2022]
Abstract
Siponimod is a selective sphingosine 1-phosphate receptor subtype 1 (S1P1) and 5 (S1P5) modulator approved in the United States and the European Union as an oral treatment for adults with relapsing forms of multiple sclerosis (RMS), including active secondary progressive multiple sclerosis (SPMS). Preclinical and clinical studies provide support for a dual mechanism of action of siponimod, targeting peripherally mediated inflammation and exerting direct central effects. As an S1P1 receptor modulator, siponimod reduces lymphocyte egress from lymph nodes, thus inhibiting their migration from the periphery to the central nervous system. As a result of its peripheral immunomodulatory effects, siponimod reduces both magnetic resonance imaging (MRI) lesion (gadolinium-enhancing and new/enlarging T2 hyperintense) and relapse activity compared with placebo. Independent of these effects, siponimod can penetrate the blood-brain barrier and, by binding to S1P1 and S1P5 receptors on a variety of brain cells, including astrocytes, oligodendrocytes, neurons, and microglia, exert effects to modulate neural inflammation and neurodegeneration. Clinical data in patients with SPMS have shown that, compared with placebo, siponimod treatment is associated with reductions in levels of neurofilament light chain (a marker of neuroaxonal damage) and thalamic and cortical gray matter atrophy, with smaller reductions in MRI magnetization transfer ratio and reduced confirmed disability progression. This review examines the preclinical and clinical data supporting the dual mechanism of action of siponimod in RMS.
Collapse
Affiliation(s)
- Stanley L Cohan
- Providence Multiple Sclerosis Center, Providence Brain Institute, 9135 SW Barnes Rd Suite 461, Portland, OR, 97225, USA.
| | | | - Bruce A C Cree
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Le H Hua
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
36
|
Zhang Z, Li Y, Shi J, Zhu L, Dai Y, Fu P, Liu S, Hong M, Zhang J, Wang J, Jiang C. Lymphocyte-Related Immunomodulatory Therapy with Siponimod (BAF-312) Improves Outcomes in Mice with Acute Intracerebral Hemorrhage. Aging Dis 2022; 14:966-991. [PMID: 37191423 DOI: 10.14336/ad.2022.1102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Modulators of the sphingosine-1-phosphate receptor (S1PR) have been proposed as a promising strategy for treating stroke. However, the detailed mechanisms and the potential translational value of S1PR modulators for intracerebral hemorrhage (ICH) therapy warrant exploration. Using collagenase VII-S-induced ICH in the left striatum of mice, we investigated the effects of siponimod on cellular and molecular immunoinflammatory responses in the hemorrhagic brain in the presence or absence of anti-CD3 monoclonal antibodies (Abs). We also assessed the severity of short- and long-term brain injury and evaluated the efficacy of siponimod in long-term neurologic function. Siponimod treatment significantly decreased brain lesion volume and brain water content on day 3 and the volume of the residual lesion and brain atrophy on day 28. It also inhibited neuronal degeneration on day 3 and improved long-term neurologic function. These protective effects may be associated with a reduction in the expression of lymphotactin (XCL1) and T-helper 1 (Th1)-type cytokines (interleukin 1β and interferon-γ). It may also be associated with inhibition of neutrophil and lymphocyte infiltration and alleviation of T lymphocyte activation in perihematomal tissues on day 3. However, siponimod did not affect the infiltration of natural killer cells (NK) or the activation of CD3-negative immunocytes in perihematomal tissues. Furthermore, it did not influence the activation or proliferation of microglia or astrocytes around the hematoma on day 3. Siponimod appears to have a profound impact on infiltration and activation of T lymphocytes after ICH. The effects of neutralized anti-CD3 Abs-induced T-lymphocyte tolerance on siponimod immunomodulation further confirmed that siponimod alleviated the cellular and molecular Th1 response in the hemorrhagic brain. This study provides preclinical evidence that encourages future investigation of immunomodulators, including siponimod, which target the lymphocyte-related immunoinflammatory reaction in ICH therapy.
Collapse
|
37
|
G-protein-coupled receptor P2Y10 facilitates chemokine-induced CD4 T cell migration through autocrine/paracrine mediators. Nat Commun 2021; 12:6798. [PMID: 34815397 PMCID: PMC8611058 DOI: 10.1038/s41467-021-26882-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
G-protein-coupled receptors (GPCRs), especially chemokine receptors, play a central role in the regulation of T cell migration. Various GPCRs are upregulated in activated CD4 T cells, including P2Y10, a putative lysophospholipid receptor that is officially still considered an orphan GPCR, i.e., a receptor with unknown endogenous ligand. Here we show that in mice lacking P2Y10 in the CD4 T cell compartment, the severity of experimental autoimmune encephalomyelitis and cutaneous contact hypersensitivity is reduced. P2Y10-deficient CD4 T cells show normal activation, proliferation and differentiation, but reduced chemokine-induced migration, polarization, and RhoA activation upon in vitro stimulation. Mechanistically, CD4 T cells release the putative P2Y10 ligands lysophosphatidylserine and ATP upon chemokine exposure, and these mediators induce P2Y10-dependent RhoA activation in an autocrine/paracrine fashion. ATP degradation impairs RhoA activation and migration in control CD4 T cells, but not in P2Y10-deficient CD4 T cells. Importantly, the P2Y10 pathway appears to be conserved in human T cells. Taken together, P2Y10 mediates RhoA activation in CD4 T cells in response to auto-/paracrine-acting mediators such as LysoPS and ATP, thereby facilitating chemokine-induced migration and, consecutively, T cell-mediated diseases.
Collapse
|
38
|
Li C, Zhao Z, Luo Y, Ning T, Liu P, Chen Q, Chu Y, Guo Q, Zhang Y, Zhou W, Chen H, Zhou Z, Wang Y, Su B, You H, Zhang T, Li X, Song H, Li C, Sun T, Jiang C. Macrophage-Disguised Manganese Dioxide Nanoparticles for Neuroprotection by Reducing Oxidative Stress and Modulating Inflammatory Microenvironment in Acute Ischemic Stroke. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101526. [PMID: 34436822 PMCID: PMC8529435 DOI: 10.1002/advs.202101526] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/14/2021] [Indexed: 05/06/2023]
Abstract
Reperfusion injury is still a major challenge that impedes neuronal survival in ischemic stroke. However, the current clinical treatments are remained on single pathological process, which are due to lack of comprehensive neuroprotective effects. Herein, a macrophage-disguised honeycomb manganese dioxide (MnO2 ) nanosphere loaded with fingolimod (FTY) is developed to salvage the ischemic penumbra. In particular, the biomimetic nanoparticles can accumulate actively in the damaged brain via macrophage-membrane protein-mediated recognition with cell adhesion molecules that are overexpressed on the damaged vascular endothelium. MnO2 nanosphere can consume excess hydrogen peroxide (H2 O2 ) and convert it into desiderated oxygen (O2 ), and can be decomposed in acidic lysosome for cargo release, so as to reduce oxidative stress and promote the transition of M1 microglia to M2 type, eventually reversing the proinflammatory microenvironment and reinforcing the survival of damaged neuron. This biomimetic nanomedicine raises new strategy for multitargeted combined treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Zhenhao Zhao
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yifan Luo
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Tingting Ning
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Peixin Liu
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Qinjun Chen
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yongchao Chu
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Qin Guo
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yiwen Zhang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Wenxi Zhou
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Hongyi Chen
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Zheng Zhou
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yu Wang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Boyu Su
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Haoyu You
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Tongyu Zhang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Xuwen Li
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Haolin Song
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Chufeng Li
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Tao Sun
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Chen Jiang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| |
Collapse
|
39
|
Tammam SN, El Safy S, Ramadan S, Arjune S, Krakor E, Mathur S. Repurpose but also (nano)-reformulate! The potential role of nanomedicine in the battle against SARS-CoV2. J Control Release 2021; 337:258-284. [PMID: 34293319 PMCID: PMC8289726 DOI: 10.1016/j.jconrel.2021.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
The coronavirus disease-19 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has taken the world by surprise. To date, a worldwide approved treatment remains lacking and hence in the context of rapid viral spread and the growing need for rapid action, drug repurposing has emerged as one of the frontline strategies in the battle against SARS-CoV2. Repurposed drugs currently being evaluated against COVID-19 either tackle the replication and spread of SARS-CoV2 or they aim at controlling hyper-inflammation and the rampaged immune response in severe disease. In both cases, the target for such drugs resides in the lungs, at least during the period where treatment could still provide substantial clinical benefit to the patient. Yet, most of these drugs are administered systemically, questioning the percentage of administered drug that actually reaches the lung and as a consequence, the distribution of the remainder of the dose to off target sites. Inhalation therapy should allow higher concentrations of the drug in the lungs and lower concentrations systemically, hence providing a stronger, more localized action, with reduced adverse effects. Therefore, the nano-reformulation of the repurposed drugs for inhalation is a promising approach for targeted drug delivery to lungs. In this review, we critically analyze, what nanomedicine could and ought to do in the battle against SARS-CoV2. We start by a brief description of SARS-CoV2 structure and pathogenicity and move on to discuss the current limitations of repurposed antiviral and immune-modulating drugs that are being clinically investigated against COVID-19. This account focuses on how nanomedicine could address limitations of current therapeutics, enhancing the efficacy, specificity and safety of such drugs. With the appearance of new variants of SARS-CoV2 and the potential implication on the efficacy of vaccines and diagnostics, the presence of an effective therapeutic solution is inevitable and could be potentially achieved via nano-reformulation. The presence of an inhaled nano-platform capable of delivering antiviral or immunomodulatory drugs should be available as part of the repertoire in the fight against current and future outbreaks.
Collapse
Affiliation(s)
- Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt.
| | - Sara El Safy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Shahenda Ramadan
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Sita Arjune
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Eva Krakor
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| |
Collapse
|
40
|
Critical Roles of Lysophospholipid Receptors in Activation of Neuroglia and Their Neuroinflammatory Responses. Int J Mol Sci 2021; 22:ijms22157864. [PMID: 34360625 PMCID: PMC8346064 DOI: 10.3390/ijms22157864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Activation of microglia and/or astrocytes often releases proinflammatory molecules as critical pathogenic mediators that can promote neuroinflammation and secondary brain damages in diverse diseases of the central nervous system (CNS). Therefore, controlling the activation of glial cells and their neuroinflammatory responses has been considered as a potential therapeutic strategy for treating neuroinflammatory diseases. Recently, receptor-mediated lysophospholipid signaling, sphingosine 1-phosphate (S1P) receptor- and lysophosphatidic acid (LPA) receptor-mediated signaling in particular, has drawn scientific interest because of its critical roles in pathogenies of diverse neurological diseases such as neuropathic pain, systemic sclerosis, spinal cord injury, multiple sclerosis, cerebral ischemia, traumatic brain injury, hypoxia, hydrocephalus, and neuropsychiatric disorders. Activation of microglia and/or astrocytes is a common pathogenic event shared by most of these CNS disorders, indicating that lysophospholipid receptors could influence glial activation. In fact, many studies have reported that several S1P and LPA receptors can influence glial activation during the pathogenesis of cerebral ischemia and multiple sclerosis. This review aims to provide a comprehensive framework about the roles of S1P and LPA receptors in the activation of microglia and/or astrocytes and their neuroinflammatory responses in CNS diseases.
Collapse
|
41
|
Zhang L, Guo K, Zhou J, Zhang X, Yin S, Peng J, Liao Y, Jiang Y. Ponesimod protects against neuronal death by suppressing the activation of A1 astrocytes in early brain injury after experimental subarachnoid hemorrhage. J Neurochem 2021; 158:880-897. [PMID: 34143505 DOI: 10.1111/jnc.15457] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/04/2021] [Accepted: 06/12/2021] [Indexed: 12/16/2022]
Abstract
As an important initiator and responder of brain inflammation in the central nervous system (CNS), astrocytes transform into two new reactive phenotypes with changed morphology, altered gene expression and secretion profiles, termed detrimental A1 and beneficial A2. Inflammatory events have been shown to occur during the phase of early brain injury (EBI) after subarachnoid hemorrhage (SAH). However, the phenotype transformation of astrocytes as well as its potential contribution to inflammatory status in the EBI of SAH has yet to be determined. In the present study, both in vivo and in vitro models of SAH were established, and the polarization of astrocytes after SAH was analyzed by RNA-seq, western blotting, and immunofluorescence staining. The effect of astrocytic phenotype transformation on neuroinflammation was examined by real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). We demonstrated that astrocytes were transformed into A1 astrocytes and caused neuronal death through the release of pro-inflammatory factors in EBI after SAH. Importantly, Ponesimod, an S1PR1 specific modulator, exerted neuroprotective effects through the prevention of astrocytic polarization to the A1 phenotype as proved by immunofluorescence, neurological tests, and TUNEL study. We also revealed the role of Ponesimod in modulating astrocytic response was mediated by the signal transducer and activator of transcription 3 (STAT3) signaling. Our study suggested that Ponesimod may be a promising therapeutic target for the treatment of brain injury following SAH.
Collapse
Affiliation(s)
- Lifang Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kecheng Guo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Clinical Medical Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, China.,Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xianhui Zhang
- Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Clinical Medical Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shigang Yin
- Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Clinical Medical Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuyan Liao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Clinical Medical Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
42
|
Coppi E, Cencetti F, Cherchi F, Venturini M, Donati C, Bruni P, Pedata F, Pugliese AM. A 2 B Adenosine Receptors and Sphingosine 1-Phosphate Signaling Cross-Talk in Oligodendrogliogenesis. Front Neurosci 2021; 15:677988. [PMID: 34135730 PMCID: PMC8202686 DOI: 10.3389/fnins.2021.677988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocyte-formed myelin sheaths allow fast synaptic transmission in the brain. Impairments in the process of myelination, or demyelinating insults, might cause chronic diseases such as multiple sclerosis (MS). Under physiological conditions, remyelination is an ongoing process throughout adult life consisting in the differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes (OLs). During pathological events, this process fails due to unfavorable environment. Adenosine and sphingosine kinase/sphingosine 1-phosphate signaling axes (SphK/S1P) play important roles in remyelination processes. Remarkably, fingolimod (FTY720), a sphingosine analog recently approved for MS treatment, plays important roles in OPC maturation. We recently demonstrated that the selective stimulation of A2 B adenosine receptors (A2 B Rs) inhibit OPC differentiation in vitro and reduce voltage-dependent outward K+ currents (I K ) necessary to OPC maturation, whereas specific SphK1 or SphK2 inhibition exerts the opposite effect. During OPC differentiation A2 B R expression increases, this effect being prevented by SphK1/2 blockade. Furthermore, selective silencing of A2 B R in OPC cultures prompts maturation and, intriguingly, enhances the expression of S1P lyase, the enzyme responsible for irreversible S1P catabolism. Finally, the existence of an interplay between SphK1/S1P pathway and A2 B Rs in OPCs was confirmed since acute stimulation of A2 B Rs activates SphK1 by increasing its phosphorylation. Here the role of A2 B R and SphK/S1P signaling during oligodendrogenesis is reviewed in detail, with the purpose to shed new light on the interaction between A2 B Rs and S1P signaling, as eventual innovative targets for the treatment of demyelinating disorders.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
43
|
Berger AA, Sottosanti ER, Winnick A, Izygon J, Berardino K, Cornett EM, Kaye AD, Varrassi G, Viswanath O, Urits I. Monomethyl Fumarate (MMF, Bafiertam) for the Treatment of Relapsing Forms of Multiple Sclerosis (MS). Neurol Int 2021; 13:207-223. [PMID: 34069538 PMCID: PMC8162564 DOI: 10.3390/neurolint13020022] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/18/2021] [Accepted: 04/15/2021] [Indexed: 01/29/2023] Open
Abstract
Multiple sclerosis (MS) is a prevalent neurologic autoimmune disorder affecting two million people worldwide. Symptoms include gait abnormalities, perception and sensory losses, cranial nerve pathologies, pain, cognitive dysfunction, and emotional aberrancies. Traditional therapy includes corticosteroids for the suppression of relapses and injectable interferons. Recently, several modern therapies-including antibody therapy and oral agents-were approved as disease-modifying agents. Monomethyl fumarate (MMF, Bafiertam) is a recent addition to the arsenal available in the fight against MS and appears to be well-tolerated, safe, and effective. In this paper, we review the evidence available regarding the use of monomethyl fumarate (Bafiertam) in the treatment of relapsing-remitting MS.
Collapse
Affiliation(s)
- Amnon A. Berger
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Correspondence: (A.A.B.); (E.M.C.); Tel.: +1-(617)-667-7000 (A.A.B.); Fax: +1-(617)-667-5050 (A.A.B.)
| | - Emily R. Sottosanti
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA 02115, USA;
| | - Ariel Winnick
- Soroka University Medical Center and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva 8400100, Israel; (A.W.); (J.I.)
- School of Optometry, University of California, Berkeley, CA 94720, USA
| | - Jonathan Izygon
- Soroka University Medical Center and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva 8400100, Israel; (A.W.); (J.I.)
| | - Kevin Berardino
- School of Medicine, Georgetown University, Washington, DC 20007, USA;
| | - Elyse M. Cornett
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA; (A.D.K.); (O.V.); (I.U.)
- Correspondence: (A.A.B.); (E.M.C.); Tel.: +1-(617)-667-7000 (A.A.B.); Fax: +1-(617)-667-5050 (A.A.B.)
| | - Alan D. Kaye
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA; (A.D.K.); (O.V.); (I.U.)
| | | | - Omar Viswanath
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA; (A.D.K.); (O.V.); (I.U.)
- Department of Anesthesiology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Valley Anesthesiology and Pain Consultants—Envision Physician Services, Phoenix, AZ 85001, USA
- Department of Anesthesiology, School of Medicine, Creighton University, Omaha, NE 68124, USA
| | - Ivan Urits
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA; (A.D.K.); (O.V.); (I.U.)
- Southcoast Health, Southcoast Health Physician Group Pain Medicine, North Dartmouth, MA 02747, USA
| |
Collapse
|
44
|
Qu X, Zhang Z, Xu X, Wang J, Lei C, Zhou G, Wu W, Huang L, Chen X, Yu S, Wang T. Selective sphingosine-1-phosphate receptor 1 modulation ameliorates TBI-induced neurological deficit after CCI. Neurosci Lett 2021; 750:135748. [PMID: 33610668 DOI: 10.1016/j.neulet.2021.135748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE The inflammatory response after traumatic brain injury (TBI) can contribute to secondary brain injury. RP101075, a sphingosine-1-phosphate receptor modulator, can attenuate various inflammatory responses. Here, we hypothesized that consecutive administration of RP101075 over 3 days could broadly suppress the TBI-induced inflammatory response and ameliorate the outcomes of TBI. METHODS AND RESULTS Young C57/BL6 mice were subjected to a controlled cortical impact (CCI) model. RP101075-treated mice exhibited significantly reduced scores on the modified neurological severity score (mNSS) test on days 3, 7, 14, and 21 after TBI, in comparison to TBI mice that received the vehicle. RP101075-treated mice had a remarkably decreased percentage of foot faults on the foot fault test on days 7, 14, and 21 after surgery, in comparison to TBI mice that received the vehicle. Using the wet brain weight/dry brain weight method, we found that RP101075 attenuated brain edema at 3 days post-TBI. According to the results of the Morris water maze (MWM), TBI mice treated with RP101075 exhibited reduced latency time and an increased percentage of target quadrant time from day 24 to day 25 after TBI, in comparison to TBI mice that received the vehicle. In addition, flow cytometry and immunohistochemistry showed that RP101075 markedly decreased the number of infiltrated T cells, B cells and NK cells at 3 days after TBI. Analysis of Western blot data showed that RP101075 lowered the expression of proinflammatory factors on day 3 after TBI. CONCLUSIONS Our study demonstrated that consecutive administration of RP101075 over 3 days suppressed the TBI-induced inflammatory response and ameliorated neurological deficits after TBI. Thus, this procedure may be a potential treatment strategy for TBI in the clinical setting.
Collapse
Affiliation(s)
- Xingguang Qu
- Department of Critical Care Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Zhaohui Zhang
- Department of Critical Care Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Xiaoyun Xu
- Department of Critical Care Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Jiahui Wang
- Department of Critical Care Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Chao Lei
- Department of Critical Care Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Gaosheng Zhou
- Department of Critical Care Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Wen Wu
- Department of Critical Care Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Lin Huang
- Department of Critical Care Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Xing Chen
- Department of Critical Care Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Su Yu
- Institute of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Tao Wang
- Institute of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| |
Collapse
|
45
|
Zhang J, Shi S, Zhang Y, Luo J, Tang J, Luo J. Ozanimod for relapsing-remitting multiple sclerosis. Hippokratia 2021. [DOI: 10.1002/14651858.cd013869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jian Zhang
- Department of Neurology; The Second Affiliated Hospital, Guangxi Medical University; Nanning China
| | - Shengliang Shi
- Department of Neurology; The Second Affiliated Hospital, Guangxi Medical University; Nanning China
| | - Yueling Zhang
- Department of Neurology; The Second Affiliated Hospital, Guangxi Medical University; Nanning China
| | - Jiefeng Luo
- Department of Neurology; The Second Affiliated Hospital, Guangxi Medical University; Nanning China
| | - Jian Tang
- Department of Neurology; The Second Affiliated Hospital, Guangxi Medical University; Nanning China
| | - Jinglian Luo
- Department of Neurology; The Second Affiliated Hospital, Guangxi Medical University; Nanning China
| |
Collapse
|
46
|
|
47
|
Pergakis M, Badjatia N, Simard JM. An update on the pharmacological management and prevention of cerebral edema: current therapeutic strategies. Expert Opin Pharmacother 2021; 22:1025-1037. [PMID: 33467932 DOI: 10.1080/14656566.2021.1876663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Cerebral edema is a common complication of multiple neurological diseases and is a strong predictor of outcome, especially in traumatic brain injury and large hemispheric infarction.Areas Covered: Traditional and current treatments of cerebral edema include treatment with osmotherapy or decompressive craniectomy at the time of clinical deterioration. The authors discuss preclinical and clinical models of a variety of neurological disease states that have identified receptors, ion transporters, and channels involved in the development of cerebral edema as well as modulation of these receptors with promising agents.Expert opinion: Further study is needed on the safety and efficacy of the agents discussed. IV glibenclamide has shown promise in preclinical and clinical trials of cerebral edema in large hemispheric infarct and traumatic brain injury. Consideration of underlying pathophysiology and pharmacodynamics is vital, as the synergistic use of agents has the potential to drastically mitigate cerebral edema and secondary brain injury thusly transforming our treatment paradigms.
Collapse
Affiliation(s)
- Melissa Pergakis
- Program in Trauma Department of Neurology University of Maryland School of Medicine,Baltimore MD USA
| | - Neeraj Badjatia
- Program in Trauma Department of Neurology University of Maryland School of Medicine,Baltimore MD USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
48
|
Yevgi R, Demir R. Oxidative stress activity of fingolimod in multiple sclerosis. Clin Neurol Neurosurg 2021; 202:106500. [PMID: 33508648 DOI: 10.1016/j.clineuro.2021.106500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Multiple sclerosis (MS) is a demyelinating chronic inflammatory disease of the central nervous system (CNS). Recent studies have shown that oxidative stress plays an important role in MS pathogenesis. This study aimed to investigate the relationship between total oxidative stress (TOS) and total antioxidant capacity (TAC), which were reported to be effective in the pathogenesis of MS, and therapeutic efficacy of fingolimod used in the treatment of MS. MATERIALS AND METHODS Serum TOS and total TAC levels of 25 patients with relapsing-remitting MS (RRMS) were measured before fingolimod treatment was initiated and in the third month of treatment and compared with those of 40 healthy individuals. Measurement of TOS activity was performed with TOS Assay Kit (Rel Assay Diagnostics, Turkey). Measurement of TAC activity was also performed with TAC Assay Kit (Rel Assay Diagnostics, Turkey). RESULTS A statistically significant increase was observed in the TOS levels measured before fingolimod treatment in the patient group compared to the control group. The TOS levels measured in the third month of the treatment were found to decrease significantly compared to the pre-treatment TOS levels. An increase was observed in TAC levels after the treatment; however, no significant difference was found between the groups in terms of TAC levels. There was a positive correlation between the pre- and post-treatment Expanded Disability Status Scale (EDSS) scores and TOS values whereas no significant correlation was observed between the pre- and post-treatment EDSS scores and TAC values. CONCLUSION The present study has revealed that fingolimod reduced oxidative stress. There was a positive correlation between the pre- and post-treatment EDSS and TOS values, which confirmed that there was a close correlation between the MS and oxidative stress. There are some limitations in this study. The small number of patients and the short follow-up times can be listed among these limitations. Our study does not contain a definitive answer to what is the mechanism of increased TOS in MS patients and how fingolimod reduces TOS levels. More detailed studies are needed on this subject.
Collapse
Affiliation(s)
- Recep Yevgi
- Ataturk University, Faculty of Medicine, Department of Neurology, Erzurum, Turkey.
| | - Recep Demir
- Kocaeli Medical Park Hospital, Department of Neurology, Kocaeli, Turkey.
| |
Collapse
|
49
|
Luo R, Cheng Y, Chang D, Liu T, Liu L, Pei G, Zhang N, Wang Z, Guo K, Chen W, Li M, Fan L, Zhang C, Li Y, Dai W, Zuo M, Xu Y, Yao Y, Ge S, Xu G. Tertiary lymphoid organs are associated with the progression of kidney damage and regulated by interleukin-17A. Am J Cancer Res 2021; 11:117-131. [PMID: 33391465 PMCID: PMC7681089 DOI: 10.7150/thno.48624] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Tertiary lymphoid organs (TLOs) occur after multiple chronic kidney injuries. interleukin-17A (IL-17A) has been reported to associate with the development of TLOs in inflammatory diseases. However, regulation of the renal TLOs and its clinical significance to the pathogenesis of chronic kidney injury are unknown. Methods: To evaluate the clinical significance and regulation of renal TLOs, we analyzed the progression of patients with kidney damage based on the existence and absence of TLOs in a larger multicenter cohort. We also blocked the recruitment of lymphocyte cells into the kidney by FTY720 (fingolimod) in vivo. Besides, we used aged IL-17A genetic knocked out mice and IL-17A-neutralizing antibody to explore the role of IL-17A in renal TLOs formation. Results: We demonstrated that renal TLOs of IgA nephropathy patients were associated with disease severity and were independent risk factors for renal progression after adjustment for age, sex, mean arterial pressure, proteinuria and, baseline eGFR and MEST-C score, especially in the early stage. Plasma levels of TLO-related chemokines CXCL13, CCL19, and CCL21 were higher in patients with renal TLOs. Inhibiting the formation of renal TLOs by FTY720 could reduce the intrarenal inflammation and fibrosis, and early intervention was found to be more effective. IL-17A was increased in renal TLOs models, and genetic depletion of IL-17A or treatment with anti-IL-17A antibody resulted in a marked reduction of the TLOs formation as well as alleviation of renal inflammation and fibrosis. Conclusion: These results indicate that TLOs are associated with the progression of kidney damage and regulated by IL-17A and may be effective targets for the treatment of kidney damage.
Collapse
|
50
|
Cheng H, Di G, Gao CC, He G, Wang X, Han YL, Sun LA, Zhou ML, Jiang X. FTY720 Reduces Endothelial Cell Apoptosis and Remodels Neurovascular Unit after Experimental Traumatic Brain Injury. Int J Med Sci 2021; 18:304-313. [PMID: 33390799 PMCID: PMC7757143 DOI: 10.7150/ijms.49066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. A sequence of pathological processes occurred when there is TBI. Previous studies showed that sphingosine-1-phosphate receptor 1 (S1PR1) played a critical role in inflammatory response in the brain after TBI. Thus, the present study was designed to evaluate the effects of the S1PR1 modulator FTY720 on neurovascular unit (NVU) after experimental TBI in mice. The weight-drop TBI method was used to induce TBI. Western blot (WB) was performed to determine the levels of SIPR1, claudin-5 and occludin at different time points. FTY720 was intraperitoneally administered to mice after TBI was induced. The terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL) assay was used to assess endothelial cell apoptosis. Immunofluorescence and WB were performed to measure the expression of tight junction proteins: claudin-5 and occludin. Evans blue (EB) permeability assay and brain water content were applied to evaluate the blood-brain barrier (BBB) permeability and brain edema. Immunohistochemistry was performed to assess the activation of astrocytes and microglia. The results showed that FTY720 administration reduced endothelial cell apoptosis and improved BBB permeability. FTY720 also attenuated astrocytes and microglia activation. Furthermore, treatment with FTY720 not only improved neurological function, but also increased the survival rate of mice significantly. These findings suggest that FTY720 administration restored the structure of the NVU after experimental TBI by decreasing endothelial cell apoptosis and attenuating the activation of astrocytes. Moreover, FTY720 might reduce inflammation in the brain by reducing the activation of microglia in TBI mice.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| | - Guangfu Di
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| | - Chao-Chao Gao
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, China
| | - Guoyuan He
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| | - Xue Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Yan-Ling Han
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Le-An Sun
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| | - Meng-Liang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Xiaochun Jiang
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| |
Collapse
|