1
|
Zheng Y, Chen J. Voltage-gated potassium channels and genetic epilepsy. Front Neurol 2024; 15:1466075. [PMID: 39434833 PMCID: PMC11492950 DOI: 10.3389/fneur.2024.1466075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Recent advances in exome and targeted sequencing have significantly improved the aetiological diagnosis of epilepsy, revealing an increasing number of epilepsy-related pathogenic genes. As a result, the diagnosis and treatment of epilepsy have become more accessible and more traceable. Voltage-gated potassium channels (Kv) regulate electrical excitability in neuron systems. Mutate Kv channels have been implicated in epilepsy as demonstrated in case reports and researches using gene-knockout mouse models. Both gain and loss-of-function of Kv channels lead to epilepsy with similar phenotypes through different mechanisms, bringing new challenges to the diagnosis and treatment of epilepsy. Research on genetic epilepsy is progressing rapidly, with several drug candidates targeting mutated genes or channels emerging. This article provides a brief overview of the symptoms and pathogenesis of epilepsy associated with voltage-gated potassium ion channels dysfunction and highlights recent progress in treatments. Here, we reviewed case reports of gene mutations related to epilepsy in recent years and summarized the proportion of Kv genes. Our focus is on the progress in precise treatments for specific voltage-gated potassium channel genes linked to epilepsy, including KCNA1, KCNA2, KCNB1, KCNC1, KCND2, KCNQ2, KCNQ3, KCNH1, and KCNH5.
Collapse
Affiliation(s)
| | - Jing Chen
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Rajan R, Christian-Hinman CA. Sex-Dependent Changes in Gonadotropin-Releasing Hormone Neuron Voltage-Gated Potassium Currents in a Mouse Model of Temporal Lobe Epilepsy. eNeuro 2024; 11:ENEURO.0324-24.2024. [PMID: 39375030 PMCID: PMC11493494 DOI: 10.1523/eneuro.0324-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common focal epilepsy in adults, and people with TLE exhibit higher rates of reproductive endocrine dysfunction. Hypothalamic gonadotropin-releasing hormone (GnRH) neurons regulate reproductive function in mammals by regulating gonadotropin secretion from the anterior pituitary. Previous research demonstrated GnRH neuron hyperexcitability in both sexes in the intrahippocampal kainic acid (IHKA) mouse model of TLE. Fast-inactivating A-type (I A) and delayed rectifier K-type (I K) K+ currents play critical roles in modulating neuronal excitability, including in GnRH neurons. Here, we tested the hypothesis that GnRH neuron hyperexcitability is associated with reduced I A and I K conductances. At 2 months after IHKA or control saline injection, when IHKA mice exhibit chronic epilepsy, we recorded GnRH neuron excitability, I A, and I K using whole-cell patch-clamp electrophysiology. GnRH neurons from both IHKA male and diestrus female GnRH-GFP mice exhibited hyperexcitability compared with controls. In IHKA males, although maximum I A current density was increased, I K recovery from inactivation was significantly slower, consistent with a hyperexcitability phenotype. In IHKA females, however, both I A and I K were unchanged. Sex differences were not observed in I A or I K properties in controls, but IHKA mice exhibited sex effects in I A properties. These results indicate that although the emergent phenotype of increased GnRH neuron excitability is similar in IHKA males and diestrus females, the underlying mechanisms are distinct. This study thus highlights sex-specific changes in voltage-gated K+ currents in GnRH neurons in a mouse model of TLE and suggesting potential sex differences in GnRH neuron ion channel properties.
Collapse
Affiliation(s)
- Remya Rajan
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Catherine A Christian-Hinman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
3
|
Jędrychowska J, Vardanyan V, Wieczor M, Marciniak A, Czub J, Amini R, Jain R, Shen H, Choi H, Kuznicki J, Korzh V. Mutant analysis of Kcng4b reveals how the different functional states of the voltage-gated potassium channel regulate ear development. Dev Biol 2024; 513:50-62. [PMID: 38492873 DOI: 10.1016/j.ydbio.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
The voltage gated (Kv) slow-inactivating delayed rectifier channel regulates the development of hollow organs of the zebrafish. The functional channel consists of the tetramer of electrically active Kcnb1 (Kv2.1) subunits and Kcng4b (Kv6.4) modulatory or electrically silent subunits. The two mutations in zebrafish kcng4b gene - kcng4b-C1 and kcng4b-C2 (Gasanov et al., 2021) - have been studied during ear development using electrophysiology, developmental biology and in silico structural modelling. kcng4b-C1 mutation causes a C-terminal truncation characterized by mild Kcng4b loss-of-function (LOF) manifested by failure of kinocilia to extend and formation of ectopic otoliths. In contrast, the kcng4b-C2-/- mutation causes the C-terminal domain to elongate and the ectopic seventh transmembrane (TM) domain to form, converting the intracellular C-terminus to an extracellular one. Kcng4b-C2 acts as a Kcng4b gain-of-function (GOF) allele. Otoliths fail to develop and kinocilia are reduced in kcng4b-C2-/-. These results show that different mutations of the silent subunit Kcng4 can affect the activity of the Kv channel and cause a wide range of developmental defects.
Collapse
Affiliation(s)
- Justyna Jędrychowska
- International Institute of Molecular and Cell Biology in Warsaw, Poland; Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Vitya Vardanyan
- Institute of Molecular Biology, Armenian Academy of Sciences, Yerevan, Armenia
| | - Milosz Wieczor
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Antoni Marciniak
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Razieh Amini
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Ruchi Jain
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Hongyuan Shen
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| | - Hyungwon Choi
- Cardiovascular Research Institute, National University Health Sciences, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jacek Kuznicki
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Poland.
| |
Collapse
|
4
|
Smith CC, Nascimento F, Özyurt MG, Beato M, Brownstone RM. Kv2 channels do not function as canonical delayed rectifiers in spinal motoneurons. iScience 2024; 27:110444. [PMID: 39148717 PMCID: PMC11325356 DOI: 10.1016/j.isci.2024.110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 08/17/2024] Open
Abstract
The increased muscular force output required for some behaviors is achieved via amplification of motoneuron output via cholinergic C-bouton synapses. Work in neonatal mouse motoneurons suggested that modulation of currents mediated by post-synaptically clustered KV2.1 channels is crucial to C-bouton amplification. By focusing on more mature motoneurons, we show that conditional knockout of KV2.1 channels minimally affects either excitability or response to exogenously applied muscarine. Similarly, unlike in neonatal motoneurons or cortical pyramidal neurons, pharmacological blockade of KV2 currents has minimal effect on mature motoneuron firing in vitro. Furthermore, in vivo amplification of electromyography activity and high-force task performance was unchanged following KV2.1 knockout. Finally, we show that KV2.2 is also expressed by spinal motoneurons, colocalizing with KV2.1 opposite C-boutons. We suggest that the primary function of KV2 proteins in motoneurons is non-conducting and that KV2.2 can function in this role in the absence of KV2.1.
Collapse
Affiliation(s)
- Calvin C Smith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Filipe Nascimento
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - M Görkem Özyurt
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Marco Beato
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK
| | - Robert M Brownstone
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
5
|
Singh V, Auerbach DS. Neurocardiac pathologies associated with potassium channelopathies. Epilepsia 2024. [PMID: 39087855 DOI: 10.1111/epi.18066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Voltage-gated potassium channels are expressed throughout the human body and are essential for physiological functions. These include delayed rectifiers, A-type channels, outward rectifiers, and inward rectifiers. They impact electrical function in the heart (repolarization) and brain (repolarization and stabilization of the resting membrane potential). KCNQx and KCNHx encode Kv7.x and Kv11.x proteins, which form delayed rectifier potassium channels. KCNQx and KCNHx channelopathies are associated with both cardiac and neuronal pathologies. These include electrocardiographic abnormalities, cardiac arrhythmias, sudden cardiac death (SCD), epileptiform discharges, seizures, bipolar disorder, and sudden unexpected death in epilepsy (SUDEP). Due to the ubiquitous expression of KCNQx and KCNHx channels, abnormalities in their function can be particularly harmful, increasing the risk of sudden death. For example, KCNH2 variants have a dual role in both cardiac and neuronal pathologies, whereas KCNQ2 and KCNQ3 variants are associated with severe and refractory epilepsy. Recurrent and uncontrolled seizures lead to secondary abnormalities, which include autonomics, cardiac electrical function, respiratory drive, and neuronal electrical activity. Even with a wide array of anti-seizure therapies available on the market, one-third of the more than 70 million people worldwide with epilepsy have uncontrolled seizures (i.e., intractable/drug-resistant epilepsy), which negatively impact neurodevelopment and quality of life. To capture the current state of the field, this review examines KCNQx and KCNHx expression patterns and electrical function in the brain and heart. In addition, it discusses several KCNQx and KCNHx variants that have been clinically and electrophysiologically characterized. Because these channel variants are associated with multi-system pathologies, such as epileptogenesis, Kv7 channel modulators provide a potential anti-seizure therapy, particularly for people with intractable epilepsy. Ultimately an increased understanding of the role of Kv channels throughout the body will fuel the development of innovative, safe, and effective therapies for people at a high risk of sudden death (SCD and SUDEP).
Collapse
Affiliation(s)
- Veronica Singh
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - David S Auerbach
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
6
|
Manville RW, Block SD, Illeck CL, Kottmeier J, Sidlow R, Abbott GW. A novel autism-associated KCNB1 mutation dramatically slows Kv2.1 potassium channel activation, deactivation and inactivation. Front Cell Neurosci 2024; 18:1438101. [PMID: 39135902 PMCID: PMC11317242 DOI: 10.3389/fncel.2024.1438101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
KCNB1, on human chromosome 20q13.3, encodes the alpha subunit of the Kv2.1 voltage gated potassium channel. Kv2.1 is ubiquitously expressed throughout the brain and is critical in controlling neuronal excitability, including in the hippocampus and pyramidal neurons. Human KCNB1 mutations are known to cause global development delay or plateauing, epilepsy, and behavioral disorders. Here, we report a sibling pair with developmental delay, absence seizures, autism spectrum disorder, hypotonia, and dysmorphic features. Whole exome sequencing revealed a heterozygous variant of uncertain significance (c. 342 C>A), p. (S114R) in KCNB1, encoding a serine to arginine substitution (S114R) in the N-terminal cytoplasmic region of Kv2.1. The siblings' father demonstrated autistic features and was determined to be an obligate KCNB1 c. 342 C>A carrier based on familial genetic testing results. Functional investigation of Kv2.1-S114R using cellular electrophysiology revealed slowing of channel activation, deactivation, and inactivation, resulting in increased net current after longer membrane depolarizations. To our knowledge, this is the first study of its kind that compares the presentation of siblings each with a KCNB1 disorder. Our study demonstrates that Kv2.1-S114R has profound cellular and phenotypic consequences. Understanding the mechanisms underlying KCNB1-linked disorders aids clinicians in diagnosis and treatment and provides potential therapeutic avenues to pursue.
Collapse
Affiliation(s)
- Rían W. Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States
| | - Samantha D. Block
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- Medical School for International Health, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Claire L. Illeck
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States
| | - Jessica Kottmeier
- Department of Pediatric Genetics, Children’s Hospital, University of Missouri, Columbia, MO, United States
| | - Richard Sidlow
- Department of Pediatric Genetics, Children’s Hospital, University of Missouri, Columbia, MO, United States
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States
| |
Collapse
|
7
|
Zhao T, Wang L, Chen F. Potassium channel-related epilepsy: Pathogenesis and clinical features. Epilepsia Open 2024; 9:891-905. [PMID: 38560778 PMCID: PMC11145612 DOI: 10.1002/epi4.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
Variants in potassium channel-related genes are one of the most important mechanisms underlying abnormal neuronal excitation and disturbances in the cellular resting membrane potential. These variants can cause different forms of epilepsy, which can seriously affect the physical and mental health of patients, especially those with refractory epilepsy or status epilepticus, which are common among pediatric patients and are potentially life-threatening. Variants in potassium ion channel-related genes have been reported in few studies; however, to our knowledge, no systematic review has been published. This study aimed to summarize the epilepsy phenotypes, functional studies, and pharmacological advances associated with different potassium channel gene variants to assist clinical practitioners and drug development teams to develop evidence-based medicine and guide research strategies. PubMed and Google Scholar were searched for relevant literature on potassium channel-related epilepsy reported in the past 5-10 years. Various common potassium ion channel gene variants can lead to heterogeneous epilepsy phenotypes, and functional effects can result from gene deletions and compound effects. Administration of select anti-seizure medications is the primary treatment for this type of epilepsy. Most patients are refractory to anti-seizure medications, and some novel anti-seizure medications have been found to improve seizures. Use of targeted drugs to correct aberrant channel function based on the type of potassium channel gene variant can be used as an evidence-based pathway to achieve precise and individualized treatment for children with epilepsy. PLAIN LANGUAGE SUMMARY: In this article, the pathogenesis and clinical characteristics of epilepsy caused by different types of potassium channel gene variants are reviewed in the light of the latest research literature at home and abroad, with the expectation of providing a certain theoretical basis for the diagnosis and treatment of children with this type of disease.
Collapse
Affiliation(s)
- Tong Zhao
- Hebei Children's HospitalShijiazhuangHebeiChina
| | - Le Wang
- Hebei Children's HospitalShijiazhuangHebeiChina
| | - Fang Chen
- Hebei Children's HospitalShijiazhuangHebeiChina
| |
Collapse
|
8
|
Ng ACH, Chahine M, Scantlebury MH, Appendino JP. Channelopathies in epilepsy: an overview of clinical presentations, pathogenic mechanisms, and therapeutic insights. J Neurol 2024; 271:3063-3094. [PMID: 38607431 DOI: 10.1007/s00415-024-12352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Pathogenic variants in genes encoding ion channels are causal for various pediatric and adult neurological conditions. In particular, several epilepsy syndromes have been identified to be caused by specific channelopathies. These encompass a spectrum from self-limited epilepsies to developmental and epileptic encephalopathies spanning genetic and acquired causes. Several of these channelopathies have exquisite responses to specific antiseizure medications (ASMs), while others ASMs may prove ineffective or even worsen seizures. Some channelopathies demonstrate phenotypic pleiotropy and can cause other neurological conditions outside of epilepsy. This review aims to provide a comprehensive exploration of the pathophysiology of seizure generation, ion channels implicated in epilepsy, and several genetic epilepsies due to ion channel dysfunction. We outline the clinical presentation, pathogenesis, and the current state of basic science and clinical research for these channelopathies. In addition, we briefly look at potential precision therapy approaches emerging for these disorders.
Collapse
Affiliation(s)
- Andy Cheuk-Him Ng
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Division of Neurology, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta and Stollery Children's Hospital, Edmonton, AB, Canada
| | - Mohamed Chahine
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- CERVO, Brain Research Centre, Quebec City, Canada
| | - Morris H Scantlebury
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Canada
| | - Juan P Appendino
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada.
| |
Collapse
|
9
|
Delgado-Ramírez M, López-Serrano AL, Rodríguez-Menchaca AA. Inhibition of Kv2.1 potassium channels by the antidepressant drug sertraline. Eur J Pharmacol 2024; 970:176487. [PMID: 38458411 DOI: 10.1016/j.ejphar.2024.176487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Sertraline is a commonly used antidepressant of the selective serotonin reuptake inhibitors (SSRIs) class. In this study, we have used the patch-clamp technique to assess the effects of sertraline on Kv2.1 channels heterologously expressed in HEK-293 cells and on the voltage-gated potassium currents (IKv) of Neuro 2a cells, which are predominantly mediated by Kv2.1 channels. Our results reveal that sertraline inhibits Kv2.1 channels in a concentration-dependent manner. The sertraline-induced inhibition was not voltage-dependent and did not require the channels to be open. The kinetics of activation and deactivation were accelerated and decelerated, respectively, by sertraline. Moreover, the inhibition by this drug was use-dependent. Notably, sertraline significantly modified the inactivation mechanism of Kv2.1 channels; the steady-state inactivation was shifted to hyperpolarized potentials, the closed-state inactivation was enhanced and accelerated, and the recovery from inactivation was slowed, suggesting that this is the main mechanism by which sertraline inhibits Kv2.1 channels. Overall, this study provides novel insights into the pharmacological actions of sertraline on Kv2.1 channels, shedding light on the intricate interaction between SSRIs and ion channel function.
Collapse
Affiliation(s)
- Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico.
| | - Ana Laura López-Serrano
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico
| |
Collapse
|
10
|
Kang SK, Hawkins NA, Thompson CH, Baker EM, Echevarria-Cooper DM, Barse L, Thenstedt T, Dixon CJ, Speakes N, George AL, Kearney JA. Altered neurological and neurobehavioral phenotypes in a mouse model of the recurrent KCNB1-p.R306C voltage-sensor variant. Neurobiol Dis 2024; 194:106470. [PMID: 38485094 PMCID: PMC11024897 DOI: 10.1016/j.nbd.2024.106470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Pathogenic variants in KCNB1 are associated with a neurodevelopmental disorder spectrum that includes global developmental delays, cognitive impairment, abnormal electroencephalogram (EEG) patterns, and epilepsy with variable age of onset and severity. Additionally, there are prominent behavioral disturbances, including hyperactivity, aggression, and features of autism spectrum disorder. The most frequently identified recurrent variant is KCNB1-p.R306C, a missense variant located within the S4 voltage-sensing transmembrane domain. Individuals with the R306C variant exhibit mild to severe developmental delays, behavioral disorders, and a diverse spectrum of seizures. Previous in vitro characterization of R306C described altered sensitivity and cooperativity of the voltage sensor and impaired capacity for repetitive firing of neurons. Existing Kcnb1 mouse models include dominant negative missense variants, as well as knockout and frameshifts alleles. While all models recapitulate key features of KCNB1 encephalopathy, mice with dominant negative alleles were more severely affected. In contrast to existing loss-of-function and dominant-negative variants, KCNB1-p.R306C does not affect channel expression, but rather affects voltage-sensing. Thus, modeling R306C in mice provides a novel opportunity to explore impacts of a voltage-sensing mutation in Kcnb1. Using CRISPR/Cas9 genome editing, we generated the Kcnb1R306C mouse model and characterized the molecular and phenotypic effects. Consistent with the in vitro studies, neurons from Kcnb1R306C mice showed altered excitability. Heterozygous and homozygous R306C mice exhibited hyperactivity, altered susceptibility to chemoconvulsant-induced seizures, and frequent, long runs of slow spike wave discharges on EEG, reminiscent of the slow spike and wave activity characteristic of Lennox Gastaut syndrome. This novel model of channel dysfunction in Kcnb1 provides an additional, valuable tool to study KCNB1 encephalopathies. Furthermore, this allelic series of Kcnb1 mouse models will provide a unique platform to evaluate targeted therapies.
Collapse
Affiliation(s)
- Seok Kyu Kang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA
| | - Nicole A Hawkins
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christopher H Thompson
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Erin M Baker
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dennis M Echevarria-Cooper
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA
| | - Levi Barse
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tyler Thenstedt
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Conor J Dixon
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nathan Speakes
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alfred L George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA
| | - Jennifer A Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
11
|
Bhat S, Rousseau J, Michaud C, Lourenço CM, Stoler JM, Louie RJ, Clarkson LK, Lichty A, Koboldt DC, Reshmi SC, Sisodiya SM, Hoytema van Konijnenburg EMM, Koop K, van Hasselt PM, Démurger F, Dubourg C, Sullivan BR, Hughes SS, Thiffault I, Tremblay ES, Accogli A, Srour M, Blunck R, Campeau PM. Mono-allelic KCNB2 variants lead to a neurodevelopmental syndrome caused by altered channel inactivation. Am J Hum Genet 2024; 111:761-777. [PMID: 38503299 PMCID: PMC11023922 DOI: 10.1016/j.ajhg.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024] Open
Abstract
Ion channels mediate voltage fluxes or action potentials that are central to the functioning of excitable cells such as neurons. The KCNB family of voltage-gated potassium channels (Kv) consists of two members (KCNB1 and KCNB2) encoded by KCNB1 and KCNB2, respectively. These channels are major contributors to delayed rectifier potassium currents arising from the neuronal soma which modulate overall excitability of neurons. In this study, we identified several mono-allelic pathogenic missense variants in KCNB2, in individuals with a neurodevelopmental syndrome with epilepsy and autism in some individuals. Recurrent dysmorphisms included a broad forehead, synophrys, and digital anomalies. Additionally, we selected three variants where genetic transmission has not been assessed, from two epilepsy studies, for inclusion in our experiments. We characterized channel properties of these variants by expressing them in oocytes of Xenopus laevis and conducting cut-open oocyte voltage clamp electrophysiology. Our datasets indicate no significant change in absolute conductance and conductance-voltage relationships of most disease variants as compared to wild type (WT), when expressed either alone or co-expressed with WT-KCNB2. However, variants c.1141A>G (p.Thr381Ala) and c.641C>T (p.Thr214Met) show complete abrogation of currents when expressed alone with the former exhibiting a left shift in activation midpoint when expressed alone or with WT-KCNB2. The variants we studied, nevertheless, show collective features of increased inactivation shifted to hyperpolarized potentials. We suggest that the effects of the variants on channel inactivation result in hyper-excitability of neurons, which contributes to disease manifestations.
Collapse
Affiliation(s)
- Shreyas Bhat
- Center for Interdisciplinary Research on Brain and Learning (CIRCA), Department of Physics and Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada
| | - Justine Rousseau
- Centre de Recherche Du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Coralie Michaud
- Centre de Recherche Du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | | | - Joan M Stoler
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Angie Lichty
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Daniel C Koboldt
- Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
| | - Shalini C Reshmi
- Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | | | - Klaas Koop
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter M van Hasselt
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Christèle Dubourg
- Department of Molecular Genetics and Genomics, Rennes University Hospital, Rennes, France; Université de Rennes, CNRS, IGDR, UMR 6290 Rennes, France
| | - Bonnie R Sullivan
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Susan S Hughes
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Isabelle Thiffault
- Departments of Pediatrics and of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Elisabeth Simard Tremblay
- Department of Neurology and Neurosurgery, McGill University Health Centre, Montréal, QC, Canada; Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montréal, QC, Canada
| | - Andrea Accogli
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montréal, QC, Canada; Department of Human Genetics, Faculty of Medicine, McGill University, Montral, QC H3A 1B1, Canada
| | - Myriam Srour
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montréal, QC, Canada; Department of Human Genetics, Faculty of Medicine, McGill University, Montral, QC H3A 1B1, Canada
| | - Rikard Blunck
- Center for Interdisciplinary Research on Brain and Learning (CIRCA), Department of Physics and Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada.
| | | |
Collapse
|
12
|
Khan R, Chaturvedi P, Sahu P, Ludhiadch A, Singh P, Singh G, Munshi A. Role of Potassium Ion Channels in Epilepsy: Focus on Current Therapeutic Strategies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:67-87. [PMID: 36578258 DOI: 10.2174/1871527322666221227112621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epilepsy is one of the prevalent neurological disorders characterized by disrupted synchronization between inhibitory and excitatory neurons. Disturbed membrane potential due to abnormal regulation of neurotransmitters and ion transport across the neural cell membrane significantly contributes to the pathophysiology of epilepsy. Potassium ion channels (KCN) regulate the resting membrane potential and are involved in neuronal excitability. Genetic alterations in the potassium ion channels (KCN) have been reported to result in the enhancement of the release of neurotransmitters, the excitability of neurons, and abnormal rapid firing rate, which lead to epileptic phenotypes, making these ion channels a potential therapeutic target for epilepsy. The aim of this study is to explore the variations reported in different classes of potassium ion channels (KCN) in epilepsy patients, their functional evaluation, and therapeutic strategies to treat epilepsy targeting KCN. METHODOLOGY A review of all the relevant literature was carried out to compile this article. RESULTS A large number of variations have been reported in different genes encoding various classes of KCN. These genetic alterations in KCN have been shown to be responsible for disrupted firing properties of neurons. Antiepileptic drugs (AEDs) are the main therapeutic strategy to treat epilepsy. Some patients do not respond favorably to the AEDs treatment, resulting in pharmacoresistant epilepsy. CONCLUSION Further to address the challenges faced in treating epilepsy, recent approaches like optogenetics, chemogenetics, and genome editing, such as clustered regularly interspaced short palindromic repeats (CRISPR), are emerging as target-specific therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Khan
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Prachi Sahu
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Paramdeep Singh
- Department of Radiology, All India Institute of Medical Sciences, Bathinda, Punjab, 151001 India
| | - Gagandeep Singh
- Department of Neurology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
13
|
Rockley K, Roberts R, Jennings H, Jones K, Davis M, Levesque P, Morton M. An integrated approach for early in vitro seizure prediction utilizing hiPSC neurons and human ion channel assays. Toxicol Sci 2023; 196:126-140. [PMID: 37632788 DOI: 10.1093/toxsci/kfad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023] Open
Abstract
Seizure liability remains a significant cause of attrition throughout drug development. Advances in stem cell biology coupled with an increased understanding of the role of ion channels in seizure offer an opportunity for a new paradigm in screening. We assessed the activity of 15 pro-seizurogenic compounds (7 CNS active therapies, 4 GABA receptor antagonists, and 4 other reported seizurogenic compounds) using automated electrophysiology against a panel of 14 ion channels (Nav1.1, Nav1.2, Nav1.6, Kv7.2/7.3, Kv7.3/7.5, Kv1.1, Kv4.2, KCa4.1, Kv2.1, Kv3.1, KCa1.1, GABA α1β2γ2, nicotinic α4β2, NMDA 1/2A). These were selected based on linkage to seizure in genetic/pharmacological studies. Fourteen compounds demonstrated at least one "hit" against the seizure panel and 11 compounds inhibited 2 or more ion channels. Next, we assessed the impact of the 15 compounds on electrical signaling using human-induced pluripotent stem cell neurons in microelectrode array (MEA). The CNS active therapies (amoxapine, bupropion, chlorpromazine, clozapine, diphenhydramine, paroxetine, quetiapine) all caused characteristic changes to electrical activity in key parameters indicative of seizure such as network burst frequency and duration. The GABA antagonist picrotoxin increased all parameters, but the antibiotics amoxicillin and enoxacin only showed minimal changes. Acetaminophen, included as a negative control, caused no changes in any of the parameters assessed. Overall, pro-seizurogenic compounds showed a distinct fingerprint in the ion channel/MEA panel. These studies highlight the potential utility of an integrated in vitro approach for early seizure prediction to provide mechanistic information and to support optimal drug design in early development, saving time and resources.
Collapse
Affiliation(s)
| | - Ruth Roberts
- ApconiX, Macclesfield SK10 4TG, UK
- Department of Biosciences, University of Birmingham, Edgbaston B15 1TT, UK
| | | | | | - Myrtle Davis
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | | |
Collapse
|
14
|
Fernández-Mariño AI, Tan XF, Bae C, Huffer K, Jiang J, Swartz KJ. Inactivation of the Kv2.1 channel through electromechanical coupling. Nature 2023; 622:410-417. [PMID: 37758949 PMCID: PMC10567553 DOI: 10.1038/s41586-023-06582-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
The Kv2.1 voltage-activated potassium (Kv) channel is a prominent delayed-rectifier Kv channel in the mammalian central nervous system, where its mechanisms of activation and inactivation are critical for regulating intrinsic neuronal excitability1,2. Here we present structures of the Kv2.1 channel in a lipid environment using cryo-electron microscopy to provide a framework for exploring its functional mechanisms and how mutations causing epileptic encephalopathies3-7 alter channel activity. By studying a series of disease-causing mutations, we identified one that illuminates a hydrophobic coupling nexus near the internal end of the pore that is critical for inactivation. Both functional and structural studies reveal that inactivation in Kv2.1 results from dynamic alterations in electromechanical coupling to reposition pore-lining S6 helices and close the internal pore. Consideration of these findings along with available structures for other Kv channels, as well as voltage-activated sodium and calcium channels, suggests that related mechanisms of inactivation are conserved in voltage-activated cation channels and likely to be engaged by widely used therapeutics to achieve state-dependent regulation of channel activity.
Collapse
Affiliation(s)
- Ana I Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Xiao-Feng Tan
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Alam KA, Svalastoga P, Martinez A, Glennon JC, Haavik J. Potassium channels in behavioral brain disorders. Molecular mechanisms and therapeutic potential: A narrative review. Neurosci Biobehav Rev 2023; 152:105301. [PMID: 37414376 DOI: 10.1016/j.neubiorev.2023.105301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Potassium channels (K+-channels) selectively control the passive flow of potassium ions across biological membranes and thereby also regulate membrane excitability. Genetic variants affecting many of the human K+-channels are well known causes of Mendelian disorders within cardiology, neurology, and endocrinology. K+-channels are also primary targets of many natural toxins from poisonous organisms and drugs used within cardiology and metabolism. As genetic tools are improving and larger clinical samples are being investigated, the spectrum of clinical phenotypes implicated in K+-channels dysfunction is rapidly expanding, notably within immunology, neurosciences, and metabolism. K+-channels that previously were considered to be expressed in only a few organs and to have discrete physiological functions, have recently been found in multiple tissues and with new, unexpected functions. The pleiotropic functions and patterns of expression of K+-channels may provide additional therapeutic opportunities, along with new emerging challenges from off-target effects. Here we review the functions and therapeutic potential of K+-channels, with an emphasis on the nervous system, roles in neuropsychiatric disorders and their involvement in other organ systems and diseases.
Collapse
Affiliation(s)
| | - Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Jeffrey Colm Glennon
- Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Norway.
| |
Collapse
|
16
|
Pruunsild P, Bengtson CP, Loss I, Lohrer B, Bading H. Expression of the primate-specific LINC00473 RNA in mouse neurons promotes excitability and CREB-regulated transcription. J Biol Chem 2023; 299:104671. [PMID: 37019214 DOI: 10.1016/j.jbc.2023.104671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The LINC00473 (Lnc473) gene has previously been shown to be associated with cancer and psychiatric disorders. Its expression is elevated in several types of tumors and decreased in the brains of patients diagnosed with schizophrenia or major depression. In neurons, Lnc473 transcription is strongly responsive to synaptic activity, suggesting a role in adaptive, plasticity-related mechanisms. However, the function of Lnc473 is largely unknown. Here, using a recombinant adeno-associated viral vector, we introduced a primate-specific human Lnc473 RNA into mouse primary neurons. We show that this resulted in a transcriptomic shift comprising downregulation of epilepsy-associated genes and a rise in cAMP response element binding protein (CREB) activity, which was driven by augmented CREB-regulated transcription coactivator 1 (CRTC1) nuclear localization. Moreover, we demonstrate that ectopic Lnc473 expression increased neuronal excitability as well as network excitability. These findings suggest that primates may possess a lineage-specific activity-dependent modulator of CREB-regulated neuronal excitability.
Collapse
|
17
|
Kang SK, Hawkins NA, Echevarria-Cooper DM, Baker EM, Dixon CJ, Speakes N, Kearney JA. Altered neurological and neurobehavioral phenotypes in a mouse model of the recurrent KCNB1-p.R306C voltage-sensor variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534736. [PMID: 37034689 PMCID: PMC10081335 DOI: 10.1101/2023.03.29.534736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Pathogenic variants in KCNB1 are associated with a neurodevelopmental disorder spectrum that includes global developmental delays, cognitive impairment, abnormal electroencephalogram (EEG) patterns, and epilepsy with variable age of onset and severity. Additionally, there are prominent behavioral disturbances, including hyperactivity, aggression, and features of autism spectrum disorder. The most frequently identified recurrent variant is KCNB1-p.R306C, a missense variant located within the S4 voltage-sensing transmembrane domain. Individuals with the R306C variant exhibit mild to severe developmental delays, behavioral disorders, and a diverse spectrum of seizures. Previous in vitro characterization of R306C described loss of voltage sensitivity and cooperativity of the sensor and inhibition of repetitive firing. Existing Kcnb1 mouse models include dominant negative missense variants, as well as knockout and frameshifts alleles. While all models recapitulate key features of KCNB1 encephalopathy, mice with dominant negative alleles were more severely affected. In contrast to existing loss-of-function and dominant-negative variants, KCNB1-p.R306C does not affect channel expression, but rather affects voltage-sensing. Thus, modeling R306C in mice provides a novel opportunity to explore impacts of a voltage-sensing mutation in Kcnb1. Using CRISPR/Cas9 genome editing, we generated the Kcnb1R306C mouse model and characterized the molecular and phenotypic effects. Heterozygous and homozygous R306C mice exhibited pronounced hyperactivity, altered susceptibility to flurothyl and kainic acid induced-seizures, and frequent, long runs of spike wave discharges on EEG. This novel model of channel dysfunction in Kcnb1 provides an additional, valuable tool to study KCNB1 encephalopathies. Furthermore, this allelic series of Kcnb1 mouse models will provide a unique platform to evaluate targeted therapies.
Collapse
Affiliation(s)
- Seok Kyu Kang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA
| | - Nicole A Hawkins
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dennis M Echevarria-Cooper
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA
| | - Erin M Baker
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Conor J Dixon
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nathan Speakes
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jennifer A Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
18
|
Kaya Özçora GD, Söbü E, Gümüş U. Genetic and clinical variations of developmental epileptic encephalopathies. Neurol Res 2023; 45:226-233. [PMID: 36731496 DOI: 10.1080/01616412.2023.2170917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The concept of 'developmental and epileptic encephalopathy (DEE)' recognises that in infants presenting with severe early-onset epilepsy, neurodevelopmental comorbidity may be attributable to both the underlying cause and to adverse effects of uncontrolled epileptic activity. There is no direct genotype - phenotype correlation in DEEs. This study aimed to report the genetic and phenotypic differences in patients with DEE. METHODS Genetic evaluations of the patients were performed due to epilepsy combined with developmental delay, epileptic encephalopathy, motor deficits, autistic features, or cognitive impairment. Patients were assessed for demographic characteristics, medical history, family history, psychomotor development, seizure control interventions, electroencephalogram (EEG) and magnetic resonance imaging (MRI) findings. RESULTS This study included 20 children aged 0-16 years who were diagnosed as having DEE.The types of DEE detected in our study were DEE 2, 4, 6B, 7, 11, 26, 30, 33, 35, 42, 58, 62, and 67.Status epilepticus was recorded in only DEE7. The most common EEG abnormality was multifocal epileptic discharges (35%,) followed by burst-suppression patterns in patients with neonatal-onset seizures. Thirteen of the children were aged over 2 years, two (15%) were non-ambulatory and six (46%) were non-verbal. MRI scans were normal in 80% of the patients. Refractory epilepsy seen in 33% of cases.De-novo mutation, microcephaly and dysmorphic findings accompany resistant seizures and are associated with poor prognosis. DISCUSSION For patients with movement disorders, developmental delay, autism, and ID with or without epilepsy in any period of their life, next-generation sequencing is the only diagnostic technique available, with genetic analysis often being the only diagnostic method.
Collapse
Affiliation(s)
- Gül Demet Kaya Özçora
- Faculty of Medical Sciences Pediatric Neurology Dept, Gaziantep Hasan Kalyoncu University, Gaziantep, Turkey
| | - Elif Söbü
- Kartal Dr.Lütfi Kırdar City Hospital, Department of Pediatric Endocrinology, Istanbul, Turkey
| | - Uğur Gümüş
- Dr. Ersin Arslan Education and Research Hospital, Medical Genetics Department, Gaziantep, Turkey
| |
Collapse
|
19
|
Happ HC, Sadleir LG, Zemel M, de Valles-Ibáñez G, Hildebrand MS, McConkie-Rosell A, McDonald M, May H, Sands T, Aggarwal V, Elder C, Feyma T, Bayat A, Møller RS, Fenger CD, Klint Nielsen JE, Datta AN, Gorman KM, King MD, Linhares ND, Burton BK, Paras A, Ellard S, Rankin J, Shukla A, Majethia P, Olson RJ, Muthusamy K, Schimmenti LA, Starnes K, Sedláčková L, Štěrbová K, Vlčková M, Laššuthová P, Jahodová A, Porter BE, Couque N, Colin E, Prouteau C, Collet C, Smol T, Caumes R, Vansenne F, Bisulli F, Licchetta L, Person R, Torti E, McWalter K, Webster R, Gerard EE, Lesca G, Szepetowski P, Scheffer IE, Mefford HC, Carvill GL. Neurodevelopmental and Epilepsy Phenotypes in Individuals With Missense Variants in the Voltage-Sensing and Pore Domains of KCNH5. Neurology 2023; 100:e603-e615. [PMID: 36307226 PMCID: PMC9946193 DOI: 10.1212/wnl.0000000000201492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES KCNH5 encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the neurodevelopmental and epilepsy phenotypic spectrum associated with de novo KCNH5 variants. METHODS We screened 893 individuals with developmental and epileptic encephalopathies for KCNH5 variants using targeted or exome sequencing. Additional individuals with KCNH5 variants were identified through an international collaboration. Clinical history, EEG, and imaging data were analyzed; seizure types and epilepsy syndromes were classified. We included 3 previously published individuals including additional phenotypic details. RESULTS We report a cohort of 17 patients, including 9 with a recurrent de novo missense variant p.Arg327His, 4 with a recurrent missense variant p.Arg333His, and 4 additional novel missense variants. All variants were located in or near the functionally critical voltage-sensing or pore domains, absent in the general population, and classified as pathogenic or likely pathogenic using the American College of Medical Genetics and Genomics criteria. All individuals presented with epilepsy with a median seizure onset at 6 months. They had a wide range of seizure types, including focal and generalized seizures. Cognitive outcomes ranged from normal intellect to profound impairment. Individuals with the recurrent p.Arg333His variant had a self-limited drug-responsive focal or generalized epilepsy and normal intellect, whereas the recurrent p.Arg327His variant was associated with infantile-onset DEE. Two individuals with variants in the pore domain were more severely affected, with a neonatal-onset movement disorder, early-infantile DEE, profound disability, and childhood death. DISCUSSION We describe a cohort of 17 individuals with pathogenic or likely pathogenic missense variants in the voltage-sensing and pore domains of Kv10.2, including 14 previously unreported individuals. We present evidence for a putative emerging genotype-phenotype correlation with a spectrum of epilepsy and cognitive outcomes. Overall, we expand the role of EAG proteins in human disease and establish KCNH5 as implicated in a spectrum of neurodevelopmental disorders and epilepsy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Heather C. Mefford
- From the Ken and Ruth Davee Department of Neurology (K.C.H., E.E.G., G.L.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; University of Otago (L.G.S.), Wellington, New Zealand; University of Washington (M.Z.), Seattle; Department of Medicine (G.d.V.-I., R.W., I.E.S.), Epilepsy Research Centre, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia; Duke University Medical Center (A.M.-R., M.M.), Durham, NC; Institute for Genomic Medicine (H.M., T.S.), Columbia University Irving Medical Center, New York, NY; Departments of Pathology and Cell Biology (V.A.), and Neurology (C.E.), Columbia University Irving Medical Center, New York, NY; Gillette Children's Specialty Healthcare (T.F.), St. Paul, MN; Department of Epilepsy Genetics and Personalized Medicine (A.B., R.S.M., C.D.F.), Danish Epilepsy Center, Dianalund, Denmark; Institute of Regional Health Research (A.B., R.S.M.), University of Southern Denmark; Amplexa Genetics (C.D.F.), Odense, Denmark; Department of Clinical Medicine (J.E.K.N.), Zealand University Hospital, Roskilde, Denmark; University of British Columbia (A.N.D.), Vancouver, Canada; The Department of Neurology and Clinical Neurophysiology (K.M.G., M.D.K.), Children's Health Ireland at Temple St., Dublin 1, Ireland; School of Medicine and Medical Science (K.M.G., M.D.K.), University College Dublin, Ireland; Genuity Science (N.L.), Dublin, Ireland; Ann & Robert H. Lurie Children's Hospital of Chicago (B.K.B., A.P.), Chicago, IL; Department of Pediatrics (B.K.B., A.P., G.L.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Exeter Genomics Laboratory (S.E.), Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom; Institute of Clinical and Biomedical Science (S.E.), University of Exeter, United Kingdom; Department Clinical Genetics (J.R.), Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom; Department of Medical Genetics (A.S., P.M.), Kasturba Medical College, Manipal, Manipal Academy of Higher Education, India; Center for Individualized Medicine (R.J.O., K.M., L.A.S.), Mayo Clinic, Rochester, MN; Departments of Clinical Genomics (K.M., L.A.S.), and Neurology (K.S.), Mayo Clinic, Rochester, MN; Neurogenetic Laboratory (L.S., P.J.), Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic; Epilepsy Research Centre Prague—EpiReC Consortium (L.S., K.S., M.V., P.L., A.J.); Motol University Hospital is a full member of the ERN EpiCARE; Department of Pediatric Neurology (K.S., A.J.), Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic; Biology and Medical Genetics (M.V.), Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic; Stanford University School of Medicine (B.E.P.), Palo Alto, CA; Laboratoire de Biologie médicale multisites Seqoia-FMG2025 (N.C., C.C.), Laboratoire Génétique Moléculaire Robert-Debré, Paris, France; Service de Génétique (E.C., C.P.), CHU d'Angers, Angers, France; University Lille (T.S.), CHU Lille, ULR7364—RADEME, Institut de Genetique Medicale, France; University Lille (R.C.), CHU Lille, ULR7364—RADEME, Clinique de Genetique, France; Univeristy Medical Center Groningen (F.V.), Groningen, the Netherlands; Department of Biomedical and NeuroMotor Sciences (F.B.), University of Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (F.B., L.L.), Full Member of the ERN EpiCARE Bologna, Italy; GeneDx (R.P., E.T., K.M.), Gaithersburg, MD; T.Y. Nelson Department of Neurology and Neurosurgery (R.W.), Children's Hospital at Westmead, Westmead, New South Wales, Australia; Department of Medical Genetics (G.L.), University Hospital of Lyon, Claude Bernard Lyon 1 University, France; INSERM, Aix-Marseille University (P.S.), INMED, France; Department of Neurology (I.E.S.), Royal Children's Hospital, Department of Paediatrics, The University of Melbourne, and Murdoch Children's Research Institute, Parkville, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health (I.E.S.), Victoria, Australia; Center for Pediatric Neurological Disease Research (H.C.M.), St. Jude Children's Research Hospital, Memphis, TN; and Department of Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Gemma L. Carvill
- From the Ken and Ruth Davee Department of Neurology (K.C.H., E.E.G., G.L.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; University of Otago (L.G.S.), Wellington, New Zealand; University of Washington (M.Z.), Seattle; Department of Medicine (G.d.V.-I., R.W., I.E.S.), Epilepsy Research Centre, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia; Duke University Medical Center (A.M.-R., M.M.), Durham, NC; Institute for Genomic Medicine (H.M., T.S.), Columbia University Irving Medical Center, New York, NY; Departments of Pathology and Cell Biology (V.A.), and Neurology (C.E.), Columbia University Irving Medical Center, New York, NY; Gillette Children's Specialty Healthcare (T.F.), St. Paul, MN; Department of Epilepsy Genetics and Personalized Medicine (A.B., R.S.M., C.D.F.), Danish Epilepsy Center, Dianalund, Denmark; Institute of Regional Health Research (A.B., R.S.M.), University of Southern Denmark; Amplexa Genetics (C.D.F.), Odense, Denmark; Department of Clinical Medicine (J.E.K.N.), Zealand University Hospital, Roskilde, Denmark; University of British Columbia (A.N.D.), Vancouver, Canada; The Department of Neurology and Clinical Neurophysiology (K.M.G., M.D.K.), Children's Health Ireland at Temple St., Dublin 1, Ireland; School of Medicine and Medical Science (K.M.G., M.D.K.), University College Dublin, Ireland; Genuity Science (N.L.), Dublin, Ireland; Ann & Robert H. Lurie Children's Hospital of Chicago (B.K.B., A.P.), Chicago, IL; Department of Pediatrics (B.K.B., A.P., G.L.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Exeter Genomics Laboratory (S.E.), Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom; Institute of Clinical and Biomedical Science (S.E.), University of Exeter, United Kingdom; Department Clinical Genetics (J.R.), Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom; Department of Medical Genetics (A.S., P.M.), Kasturba Medical College, Manipal, Manipal Academy of Higher Education, India; Center for Individualized Medicine (R.J.O., K.M., L.A.S.), Mayo Clinic, Rochester, MN; Departments of Clinical Genomics (K.M., L.A.S.), and Neurology (K.S.), Mayo Clinic, Rochester, MN; Neurogenetic Laboratory (L.S., P.J.), Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic; Epilepsy Research Centre Prague—EpiReC Consortium (L.S., K.S., M.V., P.L., A.J.); Motol University Hospital is a full member of the ERN EpiCARE; Department of Pediatric Neurology (K.S., A.J.), Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic; Biology and Medical Genetics (M.V.), Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic; Stanford University School of Medicine (B.E.P.), Palo Alto, CA; Laboratoire de Biologie médicale multisites Seqoia-FMG2025 (N.C., C.C.), Laboratoire Génétique Moléculaire Robert-Debré, Paris, France; Service de Génétique (E.C., C.P.), CHU d'Angers, Angers, France; University Lille (T.S.), CHU Lille, ULR7364—RADEME, Institut de Genetique Medicale, France; University Lille (R.C.), CHU Lille, ULR7364—RADEME, Clinique de Genetique, France; Univeristy Medical Center Groningen (F.V.), Groningen, the Netherlands; Department of Biomedical and NeuroMotor Sciences (F.B.), University of Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (F.B., L.L.), Full Member of the ERN EpiCARE Bologna, Italy; GeneDx (R.P., E.T., K.M.), Gaithersburg, MD; T.Y. Nelson Department of Neurology and Neurosurgery (R.W.), Children's Hospital at Westmead, Westmead, New South Wales, Australia; Department of Medical Genetics (G.L.), University Hospital of Lyon, Claude Bernard Lyon 1 University, France; INSERM, Aix-Marseille University (P.S.), INMED, France; Department of Neurology (I.E.S.), Royal Children's Hospital, Department of Paediatrics, The University of Melbourne, and Murdoch Children's Research Institute, Parkville, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health (I.E.S.), Victoria, Australia; Center for Pediatric Neurological Disease Research (H.C.M.), St. Jude Children's Research Hospital, Memphis, TN; and Department of Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
20
|
Yan HJ, He YY, Jin L, Guo Q, Zhou JH, Luo S. Expanding the phenotypic spectrum of KCNK4: From syndromic neurodevelopmental disorder to rolandic epilepsy. Front Mol Neurosci 2023; 15:1081097. [PMID: 36683851 PMCID: PMC9851069 DOI: 10.3389/fnmol.2022.1081097] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/02/2022] [Indexed: 01/07/2023] Open
Abstract
The KCNK4 gene, predominantly distributed in neurons, plays an essential role in controlling the resting membrane potential and regulating cellular excitability. Previously, only two variants were identified to be associated with human disease, facial dysmorphism, hypertrichosis, epilepsy, intellectual/developmental delay, and gingival overgrowth (FHEIG) syndrome. In this study, we performed trio-based whole exon sequencing (WES) in a cohort of patients with epilepsy. Two de novo likely pathogenic variants were identified in two unrelated cases with heterogeneous phenotypes, including one with Rolandic epilepsy and one with the FHEIG syndrome. The two variants were predicted to be damaged by the majority of in silico algorithms. These variants showed no allele frequencies in controls and presented statistically higher frequencies in the case cohort than that in controls. The FHEIG syndrome-related variants were all located in the region with vital functions in stabilizing the conductive conformation, while the Rolandic epilepsy-related variant was distributed in the area with less impact on the conductive conformation. This study expanded the genetic and phenotypic spectrum of KCNK4. Phenotypic variations of KCNK4 are potentially associated with the molecular sub-regional effects. Carbamazepine/oxcarbazepine and valproate may be effective antiepileptic drugs for patients with KCNK4 variants.
Collapse
Affiliation(s)
- Hong-Jun Yan
- Epilepsy Center, Guangdong Brain Hospital, Guangzhou, China,Hong-Jun Yan,
| | - Yun-yan He
- Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China,Department of Neurology, Women and Children’s Hospital Affiliated to Qingdao University, Qingdao, China
| | - Liang Jin
- Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China,Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qiang Guo
- Epilepsy Center, Guangdong Brain Hospital, Guangzhou, China
| | - Jing-Hua Zhou
- Epilepsy Center, Guangdong Brain Hospital, Guangzhou, China
| | - Sheng Luo
- Epilepsy Center, Guangdong Brain Hospital, Guangzhou, China,Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China,*Correspondence: Sheng Luo,
| |
Collapse
|
21
|
Hiraide T, Akita T, Uematsu K, Miyamoto S, Nakashima M, Sasaki M, Fukuda A, Kato M, Saitsu H. A novel de novo KCNB1 variant altering channel characteristics in a patient with periventricular heterotopia, abnormal corpus callosum, and mild seizure outcome. J Hum Genet 2023; 68:25-31. [PMID: 36257979 DOI: 10.1038/s10038-022-01090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/31/2022] [Accepted: 10/01/2022] [Indexed: 01/20/2023]
Abstract
KCNB1 encodes the α-subunit of Kv2.1, the main contributor to neuronal delayed rectifier potassium currents. The subunit consists of six transmembrane α helices (S1-S6), comprising the voltage-sensing domain (S1-S4) and the pore domain (S5-P-S6). Heterozygous KCNB1 pathogenic variants are associated with developmental and epileptic encephalopathy. Here we report an individual who shows the milder phenotype compared to the previously reported cases, including delayed language development, mild intellectual disability, attention deficit hyperactivity disorder, late-onset epilepsy responsive to an antiepileptic drug, elevation of serum creatine kinase, and peripheral axonal neuropathy. On the other hand, his brain MRI showed characteristic findings including periventricular heterotopia, polymicrogyria, and abnormal corpus callosum. Exome sequencing identified a novel de novo KCNB1 variant c.574G>A, p.(Ala192Thr) located in the S1 segment of the voltage-sensing domain. Functional analysis using the whole-cell patch-clamp technique in Neuro2a cells showed that the Ala192Thr mutant reduces both activation and inactivation of the channel at membrane voltages in the range of -50 to -30 mV. Our case could expand the phenotypic spectrum of patients with KCNB1 variants, and suggested that variants located in the S1 segment might be associated with a milder outcome of seizures.
Collapse
Affiliation(s)
- Takuya Hiraide
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tenpei Akita
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan. .,Division of Health Science, Department of Basic Nursing, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Kenji Uematsu
- Department of Child Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Sachiko Miyamoto
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
22
|
Veale EL, Golluscio A, Grand K, Graham JM, Mathie A. A KCNB1 gain of function variant causes developmental delay and speech apraxia but not seizures. Front Pharmacol 2022; 13:1093313. [PMID: 36618935 PMCID: PMC9810754 DOI: 10.3389/fphar.2022.1093313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Objective: Numerous pathogenic variants in KCNB1, which encodes the voltage-gated potassium channel, KV2.1, are linked to developmental and epileptic encephalopathies and associated with loss-of-function, -regulation, and -expression of the channel. Here we describe a novel de novo variant (P17T) occurring in the KV2.1 channel that is associated with a gain-of-function (GoF), with altered steady-state inactivation and reduced sensitivity to the selective toxin, guanxitoxin-1E and is clinically associated with neurodevelopmental disorders, without seizures. Methods: The autosomal dominant variant was identified using whole exome sequencing (WES). The functional effects of the KCNB1 variant on the encoded KV2.1 channel were investigated using whole-cell patch-clamp recordings. Results: We identified a de novo missense variant in the coding region of the KCNB1 gene, c.49C>A which encodes a p.P17T mutation in the N-terminus of the voltage-gated, KV2.1 potassium channel. Electrophysiological studies measuring the impact of the variant on the functional properties of the channel, identified a gain of current, rightward shifts in the steady-state inactivation curve and reduced sensitivity to the blocker, guanxitoxin-1E. Interpretation: The clinical evaluation of this KCNB1 mutation describes a novel variant that is associated with global developmental delays, mild hypotonia and joint laxity, but without seizures. Most of the phenotypic features described are reported for other variants of the KCNB1 gene. However, the absence of early-onset epileptic disorders is a much less common occurrence. This lack of seizure activity may be because other variants reported have resulted in loss-of-function of the encoded KV2.1 potassium channel, whereas this variant causes a gain-of-function.
Collapse
Affiliation(s)
- Emma L. Veale
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, United Kingdom
| | - Alessia Golluscio
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, United Kingdom
| | - Katheryn Grand
- Department of Pediatrics, Harbor-UCLA Medical Center, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - John M. Graham
- Department of Pediatrics, Harbor-UCLA Medical Center, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States,*Correspondence: Alistair Mathie, ; John M. Graham Jr.,
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, United Kingdom,School of Engineering, Arts, Science and Technology, University of Suffolk, Ipswich, United Kingdom,*Correspondence: Alistair Mathie, ; John M. Graham Jr.,
| |
Collapse
|
23
|
Piccialli I, Sisalli MJ, de Rosa V, Boscia F, Tedeschi V, Secondo A, Pannaccione A. Increased K V2.1 Channel Clustering Underlies the Reduction of Delayed Rectifier K + Currents in Hippocampal Neurons of the Tg2576 Alzheimer's Disease Mouse. Cells 2022; 11:cells11182820. [PMID: 36139395 PMCID: PMC9497218 DOI: 10.3390/cells11182820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive deterioration of cognitive functions. Cortical and hippocampal hyperexcitability intervenes in the pathological derangement of brain activity leading to cognitive decline. As key regulators of neuronal excitability, the voltage-gated K+ channels (KV) might play a crucial role in the AD pathophysiology. Among them, the KV2.1 channel, the main α subunit mediating the delayed rectifier K+ currents (IDR) and controlling the intrinsic excitability of pyramidal neurons, has been poorly examined in AD. In the present study, we investigated the KV2.1 protein expression and activity in hippocampal neurons from the Tg2576 mouse, a widely used transgenic model of AD. To this aim we performed whole-cell patch-clamp recordings, Western blotting, and immunofluorescence analyses. Our Western blotting results reveal that KV2.1 was overexpressed in the hippocampus of 3-month-old Tg2576 mice and in primary hippocampal neurons from Tg2576 mouse embryos compared with the WT counterparts. Electrophysiological experiments unveiled that the whole IDR were reduced in the Tg2576 primary neurons compared with the WT neurons, and that this reduction was due to the loss of the KV2.1 current component. Moreover, we found that the reduction of the KV2.1-mediated currents was due to increased channel clustering, and that glutamate, a stimulus inducing KV2.1 declustering, was able to restore the IDR to levels comparable to those of the WT neurons. These findings add new information about the dysregulation of ionic homeostasis in the Tg2576 AD mouse model and identify KV2.1 as a possible player in the AD-related alterations of neuronal excitability.
Collapse
|
24
|
Zhou P, Meng H, Liang X, Lei X, Zhang J, Bian W, He N, Lin Z, Song X, Zhu W, Hu B, Li B, Yan L, Tang B, Su T, Liu H, Mao Y, Zhai Q, Yi Y. ADGRV1 Variants in Febrile Seizures/Epilepsy With Antecedent Febrile Seizures and Their Associations With Audio-Visual Abnormalities. Front Mol Neurosci 2022; 15:864074. [PMID: 35813073 PMCID: PMC9262510 DOI: 10.3389/fnmol.2022.864074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Objective ADGRV1 gene encodes adhesion G protein-coupled receptor-V1 that is involved in synaptic function. ADGRV1 mutations are associated with audio-visual disorders. Although previous experimental studies suggested that ADGRV1 variants were associated with epilepsy, clinical evidence is limited and the phenotype spectrum is to be defined. Methods Trio-based targeting sequencing was performed in a cohort of 101 cases with febrile seizure (FS) and epilepsy with antecedent FS. Protein modeling was used to assess the damaging effects of variants. The genotype-phenotype correlations of the ADGRV1 variants in epilepsy and audio-visual disorders were analyzed. Results ADGRV1 variants were identified in nine unrelated cases (8.91%), including two heterozygous frameshift variants, six heterozygous missense variants, and a pair of compound heterozygous variants. These variants presented a statistically higher frequency in this cohort than that in control populations. Most missense variants were located at CalX-β motifs and changed the hydrogen bonds. These variants were inherited from the asymptomatic parents, indicating an incomplete penetrance. We also identified SCN1A variants in 25 unrelated cases (24.75%) and SCN9A variants in 3 unrelated cases (2.97%) in this cohort. Contrary to SCN1A variant-associated epilepsy that revealed seizure was aggravated by sodium channel blockers, ADGRV1 variants were associated with mild epilepsy with favorable responses to antiepileptic drugs. The patients denied problems with audio-visual-vestibular abilities in daily life. However, audio-visual tests revealed auditory and visual impairment in the patient with compound heterozygous variants, auditory or vestibular impairment in the patients with heterozygous frameshift, or hydrogen-bond changed missense variants but no abnormalities in the patients with missense variants without hydrogen-bond changes. Previously reported ADGRV1 variants that were associated with audio-visual disorders were mostly biallelic/destructive variants, which were significantly more frequent in the severe phenotype of audio-visual disorders (Usher syndrome 2) than in other mild phenotypes. In contrast, the variants identified in epilepsy were monoallelic, missense mainly located at CalX-β, or affected isoforms VLGR1b/1c. Significance ADGRV1 is potentially associated with FS-related epilepsy as a susceptibility gene. The genotype, submolecular implication, isoforms, and damaging severity of the variants explained the phenotypical variations. ADGRV1 variant-associated FS/epilepsy presented favorable responses to antiepileptic drugs, implying a clinical significance.
Collapse
Affiliation(s)
- Peng Zhou
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Heng Meng
- Department of Neurology, The First Affiliated Hospital of Jinan University, Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Xiaoyu Liang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyun Lei
- Department of Neurology, The First Affiliated Hospital of Jinan University, Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Jingwen Zhang
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wenjun Bian
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Na He
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhijian Lin
- Department of Neurology, Affiliated Hospital of Putian University, Putian, China
| | - Xingwang Song
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiwen Zhu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bin Hu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bingmei Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Limin Yan
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bin Tang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tao Su
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | | | | | - Qiongxiang Zhai
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Qiongxiang Zhai
| | - Yonghong Yi
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Yonghong Yi
| |
Collapse
|
25
|
Marquis MJ, Sack JT. Mechanism of use-dependent Kv2 channel inhibition by RY785. J Gen Physiol 2022; 154:e202112981. [PMID: 35435946 PMCID: PMC9195051 DOI: 10.1085/jgp.202112981] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 03/01/2022] [Accepted: 03/30/2022] [Indexed: 01/21/2023] Open
Abstract
Understanding the mechanism by which ion channel modulators act is critical for interpretation of their physiological effects and can provide insight into mechanisms of ion channel gating. The small molecule RY785 is a potent and selective inhibitor of Kv2 voltage-gated K+ channels that has a use-dependent onset of inhibition. Here, we investigate the mechanism of RY785 inhibition of rat Kv2.1 (Kcnb1) channels heterologously expressed in CHO-K1 cells. We find that 1 µM RY785 block eliminates Kv2.1 current at all physiologically relevant voltages, inhibiting ≥98% of the Kv2.1 conductance. Both onset of and recovery from RY785 inhibition require voltage sensor activation. Intracellular tetraethylammonium, a classic open-channel blocker, competes with RY785 inhibition. However, channel opening itself does not appear to alter RY785 access. Gating current measurements reveal that RY785 inhibits a component of voltage sensor activation and accelerates voltage sensor deactivation. We propose that voltage sensor activation opens a path into the central cavity of Kv2.1 where RY785 binds and promotes voltage sensor deactivation, trapping itself inside. This gated-access mechanism in conjunction with slow kinetics of unblock supports simple interpretation of RY785 effects: channel activation is required for block by RY785 to equilibrate, after which trapped RY785 will simply decrease the Kv2 conductance density.
Collapse
Affiliation(s)
- Matthew James Marquis
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA
| | - Jon T. Sack
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
26
|
Su Z, Li Y, Chen S, Liu X, Zhao K, Peng Y, Zhou L. Identification of Ion Channel-Related Genes and miRNA-mRNA Networks in Mesial Temporal Lobe Epilepsy. Front Genet 2022; 13:853529. [PMID: 35422840 PMCID: PMC9001885 DOI: 10.3389/fgene.2022.853529] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 01/10/2023] Open
Abstract
Objective: It aimed to construct the miRNA-mRNA regulatory network related to ion channel genes in mesial temporal lobe epilepsy (mTLE), and further identify the vital node in the network. Methods: Firstly, we identified ion channel-related differentially expressed genes (DEGs) in mTLE using the IUPHAR/BPS Guide to Pharmacology (GTP) database, neXtProt database, GeneCards database, and the high-throughput sequencing dataset. Then the STRING online database was used to construct a protein-protein interaction (PPI) network of DEGs, and the hub module in the PPI network was identified using the cytoHubba plug-in of Cytoscape software. In addition, the Single Cell Portal database was used to distinguish genes expression in different cell types. Based on the TarBase database, EpimiRBase database and the high-throughput sequencing dataset GSE99455, miRNA-mRNA regulatory network was constructed from selected miRNAs and their corresponding target genes from the identified DEGs. Finally, the rats were selected to construct chronic li-pilocarpine epilepsy model for the next stage experimental verification, and the miR-27a-3p mimic was used to regulate the miRNA expression level in PC12 cells. The relative expression of miR-27a-3p and its targeting mRNAs were determined by RT-qPCR. Results: 80 mTLE ion channel-related DEGs had been screened. The functional enrichment analysis results of these genes were highly enriched in voltage-gated channel activation and ion transport across membranes. In addition, the hub module, consisting of the Top20 genes in the protein-protein interaction (PPI) network, was identified, which was mainly enriched in excitatory neurons in the CA3 region of the hippocampus. Besides, 14 miRNAs targeting hub module genes were screened, especially the miR-27a-3p deserving particular attention. miR-27a-3p was capable of regulating multiple mTLE ion channel-related DEGs. Moreover, in Li–pilocarpine-induced epilepsy models, the expression level of miR-27a-3p was increased and the mRNAs expression level of KCNB1, SCN1B and KCNQ2 was decreased significantly. The mRNAs expression level of KCNB1 and KCNQ2 was decreased significantly following PC12 cells transfection with miR-27a-3p mimics. Conclusion: The hub ion channel-related DEGs in mTLE and the miRNA-mRNA regulatory networks had been identified. Moreover, the network of miR-27a-3p regulating ion channel genes will be of great value in mTLE.
Collapse
Affiliation(s)
- Zhengwei Su
- Department of Neurology, The Seven Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yinchao Li
- Department of Neurology, The Seven Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shuda Chen
- Department of Neurology, The Seven Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xianyue Liu
- Department of Neurology, The Seven Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ke Zhao
- Department of Neurology, The Seven Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liemin Zhou
- Department of Neurology, The Seven Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
27
|
Sepela RJ, Stewart RG, Valencia LA, Thapa P, Wang Z, Cohen BE, Sack JT. The AMIGO1 adhesion protein activates Kv2.1 voltage sensors. Biophys J 2022; 121:1395-1416. [PMID: 35314141 PMCID: PMC9072587 DOI: 10.1016/j.bpj.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/11/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Kv2 voltage-gated potassium channels are modulated by amphoterin-induced gene and open reading frame (AMIGO) neuronal adhesion proteins. Here, we identify steps in the conductance activation pathway of Kv2.1 channels that are modulated by AMIGO1 using voltage-clamp recordings and spectroscopy of heterologously expressed Kv2.1 and AMIGO1 in mammalian cell lines. AMIGO1 speeds early voltage-sensor movements and shifts the gating charge-voltage relationship to more negative voltages. The gating charge-voltage relationship indicates that AMIGO1 exerts a larger energetic effect on voltage-sensor movement than is apparent from the midpoint of the conductance-voltage relationship. When voltage sensors are detained at rest by voltage-sensor toxins, AMIGO1 has a greater impact on the conductance-voltage relationship. Fluorescence measurements from voltage-sensor toxins bound to Kv2.1 indicate that with AMIGO1, the voltage sensors enter their earliest resting conformation, yet this conformation is less stable upon voltage stimulation. We conclude that AMIGO1 modulates the Kv2.1 conductance activation pathway by destabilizing the earliest resting state of the voltage sensors.
Collapse
Affiliation(s)
- Rebecka J Sepela
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Robert G Stewart
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Luis A Valencia
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Parashar Thapa
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Zeming Wang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Bruce E Cohen
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California; Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, California; Department of Anesthesiology and Pain Medicine, University of California, Davis, California.
| |
Collapse
|
28
|
Xiong J, Liu Z, Chen S, Kessi M, Chen B, Duan H, Deng X, Yang L, Peng J, Yin F. Correlation Analyses of Clinical Manifestations and Variant Effects in KCNB1-Related Neurodevelopmental Disorder. Front Pediatr 2022; 9:755344. [PMID: 35071126 PMCID: PMC8767024 DOI: 10.3389/fped.2021.755344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: Vitro functional analyses of KCNB1 variants have been done to disclose possible pathogenic mechanisms in KCNB1-related neurodevelopmental disorder. "Complete or partial loss of function (LoF)," "dominant-negative (DN) effect" are applied to describe KCNB1 variant's molecular phenotypes. The study here aimed to investigate clinical presentations and variant effects associations in the disorder. Methods: We reported 10 Chinese pediatric patients with KCNB1-related neurodevelopmental disorder here. Functional experiments on newly reported variants, including electrophysiology and protein expression, were performed in vitro. Phenotypic, functional, and genetic data in the cohort and published literature were collected. According to their variants' molecular phenotypes, patients were grouped into complete or partial LoF, and DN effect or non-dominant-negative (non-DN) effect to compare their clinical features. Results: Nine causative KCNB1 variants in 10 patients were identified in the cohort, including eight novel and one reported. Epilepsy (9/10), global developmental delay (10/10), and behavior issues (7/10) were common clinical features in our patients. Functional analyses of 8 novel variants indicated three partial and five complete LoF variants, five DN and three non-DN effect variants. Patient 1 in our series with truncated variants, whose functional results supported haploinsufficiency, had the best prognosis. Cases in complete LoF group had earlier seizure onset age (64.3 vs. 16.7%, p = 0.01) and worse seizure outcomes (18.8 vs. 66.7%, p = 0.03), and patients in DN effect subgroup had multiple seizure types compared to those in non-DN effect subgroup (65.5 vs. 30.8%, p = 0.039). Conclusion: Patients with KCNB1 variants in the Asian cohort have similar clinical manifestations to those of other races. Truncated KCNB1 variants exhibiting with haploinsufficiency molecular phenotype are linked to milder phenotypes. Individuals with complete LoF and DN effect KCNB1 variants have more severe seizure attacks than the other two subgroups.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shimeng Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Xiaolu Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
29
|
Bar C, Breuillard D, Kuchenbuch M, Jennesson M, Le Guyader G, Isnard H, Rolland A, Doummar D, Fluss J, Afenjar A, Berquin P, De Saint Martin A, Dupont S, Goldenberg A, Lederer D, Lesca G, Maurey H, Meyer P, Mignot C, Nica A, Odent S, Poisson A, Scalais E, Sekhara T, Vrielynck P, Barcia G, Nabbout R. Adaptive behavior and psychiatric comorbidities in KCNB1 encephalopathy. Epilepsy Behav 2022; 126:108471. [PMID: 34915430 DOI: 10.1016/j.yebeh.2021.108471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022]
Abstract
AIM KCNB1 encephalopathy encompasses a broad phenotypic spectrum associating intellectual disability, behavioral disturbances, and epilepsies of various severity. Using standardized parental questionnaires, we aimed to capture the heterogeneity of the adaptive and behavioral features in a series of patients with KCNB1 pathogenic variants. METHODS We included 25 patients with a KCNB1 encephalopathy, aged from 3.2 to 34.1 years (median = 10 years). Adaptive functioning was assessed in all patients using the French version of the Vineland Adaptive Behavior Scales, Second Edition (VABS-II) questionnaire. We screened global behavior with the Childhood Behavioral Check-List (CBCL, Achenbach) and autism spectrum disorder (ASD) with the Social Communication Questionnaire (SCQ). We used a cluster analysis to identify subgroups of adaptive profiles. RESULTS VABS-II questionnaire showed pathological adaptive behavior in all participants with a severity of adaptive deficiency ranging from mild in 8/20 to severe in 7/20. Eight out of 16 were at risk of Attention Problems at the CBCL and 13/18 were at risk of autism spectrum disorder (ASD). The adaptive behavior composite score significantly decreased with age (Spearman's Rho=-0.72, p<0.001) but not the equivalent ages, suggesting stagnation and slowing but no regression over time. The clustering analysis identified two subgroups of patients, one showing more severe adaptive behavior. The severity of the epilepsy phenotype predicted the severity of the behavioral profile with a sensitivity of 70% and a specificity of 90.9%. CONCLUSION This study confirms the deleterious consequences of early-onset epilepsy in addition to the impact of the gene dysfunction in patients with KCNB1 encephalopathy. ASD and attention disorders are frequent. Parental questionnaires should be considered as useful tools for early screening and care adaptation.
Collapse
Affiliation(s)
- Claire Bar
- APHP, Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Hôpital Necker-Enfants Malades, member of ERN EPICARE, Université de Paris, Paris, France; Laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163, Imagine Institute, Université de Paris, Paris, France
| | - Delphine Breuillard
- APHP, Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Hôpital Necker-Enfants Malades, member of ERN EPICARE, Université de Paris, Paris, France; Laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163, Imagine Institute, Université de Paris, Paris, France
| | - Mathieu Kuchenbuch
- APHP, Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Hôpital Necker-Enfants Malades, member of ERN EPICARE, Université de Paris, Paris, France; Laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163, Imagine Institute, Université de Paris, Paris, France
| | | | - Gwenaël Le Guyader
- Department of Genetics, CHU de Poitiers, BP 577, 86021 Poitiers Cedex, France; EA3808 - NEUVACOD Unité neurovasculaire et troubles cognitifs, Université de Poitiers, Pôle Biologie Santé, France
| | - Hervé Isnard
- Pediatric Neurologist, Medical Office 28 rue de la république, Lyon 69002, France
| | - Anne Rolland
- Department of Pediatrics, CHU de NANTES, Nantes, France
| | - Diane Doummar
- Department of Pediatric Neurology, AP-HP, Hôpital Armand Trousseau, Sorbonne Université, Paris, France
| | - Joel Fluss
- Pediatric Neurology Unit, Geneva Children's Hospital, 6 rue Willy-Donzé, 1211 Genève 4, Switzerland
| | - Alexandra Afenjar
- Sorbonne Universités, Centre de Référence Malformations et maladies congénitales du cervelet et déficiences intellectuelles de causes rares, département de génétique et embryologie médicale, Hôpital Trousseau, AP-HP, Paris, France
| | - Patrick Berquin
- Department of Pediatric Neurology, CHU Amiens-Picardie, Université de Picardie Jules Verne, Amiens France Pediatric Neurology Unit, France
| | - Anne De Saint Martin
- Department of Pediatric Neurology, Strasbourg University Hospital, Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Sophie Dupont
- Epileptology Unit and Rehabilitation Unit AP-HP, GH Pitie-Salpêtrière-Charles Foix, F-75013 Paris, France; Sorbonne University, UPMC Univ. Paris 06, F-75005 Paris, France
| | - Alice Goldenberg
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Rouen, Rouen, France
| | | | - Gaétan Lesca
- Department of Genetics, Hospices Civils de Lyon, 69002 Lyon, France; Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, France
| | - Hélène Maurey
- Department of Pediatric Neurology, AP-HP, Hôpital Universitaire Bicêtre, Kremlin Bicêtre, France
| | - Pierre Meyer
- Department of Pediatric Neurology, CHU Montpellier, Montpellier, France; PhyMedExp, U1046 INSERM, UMR9214 CNRS, Université de Montpellier, Montpellier, France
| | - Cyril Mignot
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; APHP, Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Department of Genetics, Centre de Reference Déficience Intellectuelle de Causes Rares
| | - Anca Nica
- Neurology Department, Center for Clinical Research (CIC 1414), Rennes University Hospital, France; Laboratory Of Signal Processing (LTSI), UMR 1099 INSERM, Rennes F-35000, France
| | - Sylvie Odent
- Service de Génétique clinique, Reference Ccentre for Rare Developmental Abnormalities CLAD-Ouest, member of ERN ITHACA, CHU Rennes, France; CNRS UMR 6290 Institut de Génétique et Développement de Rennes IGDR, Univ Rennes, Rennes, France
| | - Alice Poisson
- GénoPsy, Reference Center for Diagnosis and Management of Genetic Psychiatric Disorders, Centre Hospitalier le Vinatier and EDR-Psy Team (Centre National de la Recherche Scientifique & Lyon 1 Claude Bernard University), France
| | - Emmanuel Scalais
- Pediatric Neurology Unit, Centre Hospitalier de Luxembourg, Luxembourg
| | - Tayeb Sekhara
- Department of Pediatric Neurology, C.H.I.R.E.C, Brussels, Belgium
| | - Pascal Vrielynck
- William Lennox Neurological Hospital, Reference Center for Refractory Epilepsy UCLouvain, Ottignies, Belgium
| | - Giulia Barcia
- Laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163, Imagine Institute, Université de Paris, Paris, France; APHP, Department of Clinical Genetics, Necker-Enfants Malades Hospital, Paris, France
| | - Rima Nabbout
- APHP, Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Hôpital Necker-Enfants Malades, member of ERN EPICARE, Université de Paris, Paris, France; Laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163, Imagine Institute, Université de Paris, Paris, France.
| |
Collapse
|
30
|
Liu Z, Yang X, Guo P, Wang F, Xia W, Chen Y, Zou M, Sun C. The association between gene polymorphisms in voltage-gated potassium channels Kv2.1 and Kv4.2 and susceptibility to autism spectrum disorder. Front Psychiatry 2022; 13:994166. [PMID: 36756634 PMCID: PMC9900626 DOI: 10.3389/fpsyt.2022.994166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a heritable form of neurodevelopmental disorder that arises through synaptic dysfunction. Given the involvement of voltage-gated potassium (Kv) channels in the regulation of synaptic plasticity, we aimed to explore the relationship between the genetic variants in the KCNB1 and KCND2 genes (encoding Kv2.1 and Kv4.2, respectively) and the risk of developing ASD. METHODS A total of 243 patients with ASD and 243 healthy controls were included in the present study. Sixty single nucleotide polymorphisms (SNPs) (35 in KCNB1 and 25 in KCND2) were genotyped using the Sequenom Mass Array. RESULTS There were no significant differences in the distribution of allele frequencies and genotype frequencies in KCNB1 between cases and controls. However, the differences were significant in the allelic distribution of KCND2 rs1990429 (p Bonferroni < 0.005) and rs7793864 (p Bonferroni < 0.005) between the two groups. KCND2 rs7800545 (p FDR = 0.045) in the dominant model and rs1990429 (p FDR < 0.001) and rs7793864 (p FDR < 0.001) in the over-dominant model were associated with ASD risk. The G/A genotype of rs1990429 in the over-dominant model and the G/A-G/G genotype of rs7800545 in the dominant model were correlated with lower severity in the Autism Diagnostic Interview-Revised (ADI-R) restricted repetitive behavior (RRB) domain. CONCLUSION Our results provide evidence that KCND2 gene polymorphism is strongly associated with ASD susceptibility and the severity of RRB.
Collapse
Affiliation(s)
- Zehui Liu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Xiaolei Yang
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Peiwen Guo
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Wei Xia
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Yuxin Chen
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Mingyang Zou
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Caihong Sun
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Hoshino H, Miya F, Kato M, Kanemura H. Efficacy of ethosuximide on atonic seizures with KCNB1 mutation. Pediatr Int 2022; 64:e14871. [PMID: 35099827 DOI: 10.1111/ped.14871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/26/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroki Hoshino
- Department of Pediatrics, Toho University, Sakura, Chiba, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for integrative Medical Sciences, Yokohama, Kanagawa, Japan.,Laboratoty for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | | |
Collapse
|
32
|
Xu C, Zhang Y, Gozal D, Carney P. Channelopathy of Dravet Syndrome and Potential Neuroprotective Effects of Cannabidiol. J Cent Nerv Syst Dis 2021; 13:11795735211048045. [PMID: 34992485 PMCID: PMC8724990 DOI: 10.1177/11795735211048045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dravet syndrome (DS) is a channelopathy, neurodevelopmental, epileptic encephalopathy characterized by seizures, developmental delay, and cognitive impairment that includes susceptibility to thermally induced seizures, spontaneous seizures, ataxia, circadian rhythm and sleep disorders, autistic-like behaviors, and premature death. More than 80% of DS cases are linked to mutations in genes which encode voltage-gated sodium channel subunits, SCN1A and SCN1B, which encode the Nav1.1α subunit and Nav1.1β1 subunit, respectively. There are other gene mutations encoding potassium, calcium, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels related to DS. One-third of patients have pharmacoresistance epilepsy. DS is unresponsive to standard therapy. Cannabidiol (CBD), a non-psychoactive phytocannabinoid present in Cannabis, has been introduced for treating DS because of its anticonvulsant properties in animal models and humans, especially in pharmacoresistant patients. However, the etiological channelopathiological mechanism of DS and action mechanism of CBD on the channels are unclear. In this review, we summarize evidence of the direct and indirect action mechanism of sodium, potassium, calcium, and HCN channels in DS, especially sodium subunits. Some channels' loss-of-function or gain-of-function in inhibitory or excitatory neurons determine the balance of excitatory and inhibitory are associated with DS. A great variety of mechanisms of CBD anticonvulsant effects are focused on modulating these channels, especially sodium, calcium, and potassium channels, which will shed light on ionic channelopathy of DS and the precise molecular treatment of DS in the future.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics; Department of Neuroscience, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Paul Carney
- Departments of Child Health and Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
33
|
Royer-Bertrand B, Jequier Gygax M, Cisarova K, Rosenfeld JA, Bassetti JA, Moldovan O, O’Heir E, Burrage LC, Allen J, Emrick LT, Eastman E, Kumps C, Abbas S, Van Winckel G, Chabane N, Zackai EH, Lebon S, Keena B, Bhoj EJ, Umair M, Li D, Donald KA, Superti-Furga A. De novo variants in CACNA1E found in patients with intellectual disability, developmental regression and social cognition deficit but no seizures. Mol Autism 2021; 12:69. [PMID: 34702355 PMCID: PMC8547031 DOI: 10.1186/s13229-021-00473-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND De novo variants in the voltage-gated calcium channel subunit α1 E gene (CACNA1E) have been described as causative of epileptic encephalopathy with contractures, macrocephaly and dyskinesias. METHODS Following the observation of an index patient with developmental delay and autism spectrum disorder (ASD) without seizures who had a de novo deleterious CACNA1E variant, we screened GeneMatcher for other individuals with CACNA1E variants and neurodevelopmental phenotypes without epilepsy. The spectrum of pathogenic CACNA1E variants was compared to the mutational landscape of variants in the gnomAD control population database. RESULTS We identified seven unrelated individuals with intellectual disability, developmental regression and ASD-like behavioral profile, and notably without epilepsy, who had de novo heterozygous putatively pathogenic variants in CACNA1E. Age of onset of clinical manifestation, presence or absence of regression and degree of severity were variable, and no clear-cut genotype-phenotype association could be recognized. The analysis of disease-associated variants and their comparison to benign variants from the control population allowed for the identification of regions in the CACNA1E protein that seem to be intolerant to substitutions and thus more likely to harbor pathogenic variants. As in a few reported cases with CACNA1E variants and epilepsy, one patient showed a positive clinical behavioral response to topiramate, a specific calcium channel modulator. LIMITATIONS The significance of our study is limited by the absence of functional experiments of the effect of identified variants, the small sample size and the lack of systematic ASD assessment in all participants. Moreover, topiramate was given to one patient only and for a short period of time. CONCLUSIONS Our results indicate that CACNA1E variants may result in neurodevelopmental disorders without epilepsy and expand the mutational and phenotypic spectrum of this gene. CACNA1E deserves to be included in gene panels for non-specific developmental disorders, including ASD, and not limited to patients with seizures, to improve diagnostic recognition and explore the possible efficacy of topiramate.
Collapse
Affiliation(s)
- Beryl Royer-Bertrand
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Marine Jequier Gygax
- Division of Autistic Spectrum Disorders, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Katarina Cisarova
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Jennifer A. Bassetti
- Division of Medical Genetics, Department of Pediatrics, Weill Cornell Medicine, New York, NY USA
| | - Oana Moldovan
- Serviço de Genética Médica, Departamento de Pediatria, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Emily O’Heir
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Jake Allen
- The Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Lisa T. Emrick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
- Department of Neurology, Baylor College of Medicine, Houston, TX USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Emma Eastman
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Camille Kumps
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Safdar Abbas
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Geraldine Van Winckel
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Undiagnosed Diseases Network
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Division of Autistic Spectrum Disorders, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
- Division of Medical Genetics, Department of Pediatrics, Weill Cornell Medicine, New York, NY USA
- Serviço de Genética Médica, Departamento de Pediatria, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA
- The Broad Institute of MIT and Harvard, Cambridge, MA USA
- Department of Neurology, Baylor College of Medicine, Houston, TX USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
- Unit of Paediatric Neurology and Pediatric Neurorehabiliation, Woman-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA USA
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, Cape Town, South Africa
- Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nadia Chabane
- Division of Autistic Spectrum Disorders, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Elaine H. Zackai
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
| | - Sebastien Lebon
- Unit of Paediatric Neurology and Pediatric Neurorehabiliation, Woman-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Beth Keena
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Elizabeth J. Bhoj
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Dong Li
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Kirsten A. Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, Cape Town, South Africa
- Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
Yang YS, Choi JH, Rah JC. Hypoxia with inflammation and reperfusion alters membrane resistance by dynamically regulating voltage-gated potassium channels in hippocampal CA1 neurons. Mol Brain 2021; 14:147. [PMID: 34556177 PMCID: PMC8461870 DOI: 10.1186/s13041-021-00857-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 02/01/2023] Open
Abstract
Hypoxia typically accompanies acute inflammatory responses in patients and animal models. However, a limited number of studies have examined the effect of hypoxia in combination with inflammation (Hypo-Inf) on neural function. We previously reported that neuronal excitability in hippocampal CA1 neurons decreased during hypoxia and greatly rebounded upon reoxygenation. We attributed this altered excitability mainly to the dynamic regulation of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels and input resistance. However, the molecular mechanisms underlying input resistance changes by Hypo-Inf and reperfusion remained unclear. In the present study, we found that a change in the density of the delayed rectifier potassium current (IDR) can explain the input resistance variability. Furthermore, voltage-dependent inactivation of A-type potassium (IA) channels shifted in the depolarizing direction during Hypo-Inf and reverted to normal upon reperfusion without a significant alteration in the maximum current density. Our results indicate that changes in the input resistance, and consequently excitability, caused by Hypo-Inf and reperfusion are at least partially regulated by the availability and voltage dependence of KV channels. Moreover, these results suggest that selective KV channel modulators can be used as potential neuroprotective drugs to minimize hypoxia- and reperfusion-induced neuronal damage.
Collapse
Affiliation(s)
- Yoon-Sil Yang
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
| | - Joon Ho Choi
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, 333 Techno Jungang-daero, Dalseong-gun, Daegu, 42988 South Korea
| |
Collapse
|
35
|
Avazzadeh S, Quinlan LR, Reilly J, McDonagh K, Jalali A, Wang Y, McInerney V, Krawczyk J, Ding Y, Fitzgerald J, O'Sullivan M, Forman EB, Lynch SA, Ennis S, Feerick N, Reilly R, Li W, Shen X, Yang G, Lu Y, Peeters H, Dockery P, O'Brien T, Shen S, Gallagher L. NRXN1α +/- is associated with increased excitability in ASD iPSC-derived neurons. BMC Neurosci 2021; 22:56. [PMID: 34525970 PMCID: PMC8442436 DOI: 10.1186/s12868-021-00661-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background NRXN1 deletions are identified as one of major rare risk factors for autism spectrum disorder (ASD) and other neurodevelopmental disorders. ASD has 30% co-morbidity with epilepsy, and the latter is associated with excessive neuronal firing. NRXN1 encodes hundreds of presynaptic neuro-adhesion proteins categorized as NRXN1α/β/γ. Previous studies on cultured cells show that the short NRXN1β primarily exerts excitation effect, whereas the long NRXN1α which is more commonly deleted in patients involves in both excitation and inhibition. However, patient-derived models are essential for understanding functional consequences of NRXN1α deletions in human neurons. We recently derived induced pluripotent stem cells (iPSCs) from five controls and three ASD patients carrying NRXN1α+/- and showed increased calcium transients in patient neurons. Methods In this study we investigated the electrophysiological properties of iPSC-derived cortical neurons in control and ASD patients carrying NRXN1α+/- using patch clamping. Whole genome RNA sequencing was carried out to further understand the potential underlying molecular mechanism. Results NRXN1α+/- cortical neurons were shown to display larger sodium currents, higher AP amplitude and accelerated depolarization time. RNASeq analyses revealed transcriptomic changes with significant upregulation glutamatergic synapse and ion channels/transporter activity including voltage-gated potassium channels (GRIN1, GRIN3B, SLC17A6, CACNG3, CACNA1A, SHANK1), which are likely to couple with the increased excitability in NRXN1α+/- cortical neurons. Conclusions Together with recent evidence of increased calcium transients, our results showed that human NRXN1α+/- isoform deletions altered neuronal excitability and non-synaptic function, and NRXN1α+/- patient iPSCs may be used as an ASD model for therapeutic development with calcium transients and excitability as readouts. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-021-00661-0.
Collapse
Affiliation(s)
- Sahar Avazzadeh
- School of Medicine, Regenerative Medicine Institute, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Ireland
| | - Leo R Quinlan
- Physiology and Cellular Physiology Research Laboratory, School of Medicine, CÚRAM SFI Centre for Research in Medical Devices, National University of Ireland (NUI), Galway, Ireland
| | - Jamie Reilly
- School of Medicine, Regenerative Medicine Institute, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Ireland
| | - Katya McDonagh
- School of Medicine, Regenerative Medicine Institute, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Ireland
| | | | - Yanqin Wang
- School of Medicine, Regenerative Medicine Institute, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Ireland.,Department of Physiology, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Veronica McInerney
- HRB Clinical Research Facility, National University of Ireland (NUI), Galway, Ireland
| | - Janusz Krawczyk
- Department of Haematology, Galway University Hospital, Galway, Ireland
| | - Yicheng Ding
- School of Medicine, Regenerative Medicine Institute, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Ireland
| | | | - Matthew O'Sullivan
- Trinity Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Eva B Forman
- Children's University Hospital, Temple Street, Dublin, Ireland
| | - Sally A Lynch
- Children's University Hospital, Temple Street, Dublin, Ireland.,Department of Clinical Genetics, OLCHC, Dublin 12, Ireland
| | - Sean Ennis
- School of Medicine and Medical Science, UCD Academic Centre On Rare Diseases, University College Dublin, Dublin, Ireland
| | - Niamh Feerick
- Centre for Bioengineering, Trinity College Institute of Neuroscience, School of Medicine, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Richard Reilly
- Centre for Bioengineering, Trinity College Institute of Neuroscience, School of Medicine, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Shen
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Guangming Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yin Lu
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Hilde Peeters
- Centre for Human Genetics, University Hospital Leuven, KU Leuven, 3000, Leuven, Belgium
| | - Peter Dockery
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, National University of Ireland (NUI), Galway, Ireland
| | - Timothy O'Brien
- School of Medicine, Regenerative Medicine Institute, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Ireland
| | - Sanbing Shen
- School of Medicine, Regenerative Medicine Institute, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Ireland. .,FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, D02, Ireland.
| | - Louise Gallagher
- Trinity Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
36
|
Newkirk GS, Guan D, Dembrow N, Armstrong WE, Foehring RC, Spain WJ. Kv2.1 Potassium Channels Regulate Repetitive Burst Firing in Extratelencephalic Neocortical Pyramidal Neurons. Cereb Cortex 2021; 32:1055-1076. [PMID: 34435615 DOI: 10.1093/cercor/bhab266] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/14/2022] Open
Abstract
Coincidence detection and cortical rhythmicity are both greatly influenced by neurons' propensity to fire bursts of action potentials. In the neocortex, repetitive burst firing can also initiate abnormal neocortical rhythmicity (including epilepsy). Bursts are generated by inward currents that underlie a fast afterdepolarization (fADP) but less is known about outward currents that regulate bursting. We tested whether Kv2 channels regulate the fADP and burst firing in labeled layer 5 PNs from motor cortex of the Thy1-h mouse. Kv2 block with guangxitoxin-1E (GTx) converted single spike responses evoked by dendritic stimulation into multispike bursts riding on an enhanced fADP. Immunohistochemistry revealed that Thy1-h PNs expressed Kv2.1 (not Kv2.2) channels perisomatically (not in the dendrites). In somatic macropatches, GTx-sensitive current was the largest component of outward current with biophysical properties well-suited for regulating bursting. GTx drove ~40% of Thy1 PNs stimulated with noisy somatic current steps to repetitive burst firing and shifted the maximal frequency-dependent gain. A network model showed that reduction of Kv2-like conductance in a small subset of neurons resulted in repetitive bursting and entrainment of the circuit to seizure-like rhythmic activity. Kv2 channels play a dominant role in regulating onset bursts and preventing repetitive bursting in Thy1 PNs.
Collapse
Affiliation(s)
- Greg S Newkirk
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Dongxu Guan
- Department of Anatomy and Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nikolai Dembrow
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.,Epilepsy Center of Excellence, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - William E Armstrong
- Department of Anatomy and Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Robert C Foehring
- Department of Anatomy and Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - William J Spain
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.,Epilepsy Center of Excellence, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| |
Collapse
|
37
|
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021; 15:685703. [PMID: 34276310 PMCID: PMC8282214 DOI: 10.3389/fncel.2021.685703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS. Here, we review the ion channel genes encoding K+, Ca2+, Na+, and Cl- channels; ryanodine receptors; TRP channels; and others that are significantly and uniquely dysregulated in active, chronic active, inactive, remyelinating WM lesions, and normal-appearing WM of secondary progressive MS brain, based on recently published bulk and single-nuclei RNA-sequencing datasets. We discuss the current state of knowledge about the corresponding ion channels and their implication in the MS brain or in experimental models of MS. This comprehensive review suggests that the intense upregulation of voltage-gated Na+ channel genes in WM lesions with ongoing tissue damage may reflect the imbalance of Na+ homeostasis that is observed in progressive MS brain, while the upregulation of a large number of voltage-gated K+ channel genes may be linked to a protective response to limit neuronal excitability. In addition, the altered chloride homeostasis, revealed by the significant downregulation of voltage-gated Cl- channels in MS lesions, may contribute to an altered inhibitory neurotransmission and increased excitability.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Louise Elkjaer
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
38
|
Nikitin ES, Vinogradova LV. Potassium channels as prominent targets and tools for the treatment of epilepsy. Expert Opin Ther Targets 2021; 25:223-235. [PMID: 33754930 DOI: 10.1080/14728222.2021.1908263] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION K+ channels are of great interest to epilepsy research as mutations in their genes are found in humans with inherited epilepsy. At the level of cellular physiology, K+ channels control neuronal intrinsic excitability and are the main contributors to membrane repolarization of active neurons. Recently, a genetically modified voltage-dependent K+ channel has been patented as a remedy for epileptic seizures. AREAS COVERED We review the role of potassium channels in excitability, clinical and experimental evidence for the association of potassium channelopathies with epilepsy, the targeting of K+ channels by drugs, and perspectives of gene therapy in epilepsy with the expression of extra K+ channels in the brain. EXPERT OPINION Control over K+ conductance is of great potential benefit for the treatment of epilepsy. Nowadays, gene therapy affecting K+ channels is one of the most promising approaches to treat pharmacoresistant focal epilepsy.
Collapse
Affiliation(s)
- E S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - L V Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
39
|
Guo Y, Wang J, Wang Z, Lou Y, Chen W, Sheng M, Wang Y, Zhang B, Gao L, Feng J. Establishment of an induced pluripotent stem cell line (ZJSHi001-A) from a patient with epileptic encephalopathy carrying KCNB1 Glu330Asp mutation. Stem Cell Res 2021; 52:102224. [PMID: 33607466 DOI: 10.1016/j.scr.2021.102224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/19/2021] [Accepted: 01/31/2021] [Indexed: 11/29/2022] Open
Abstract
Early infantile epileptic encephalopathy 26 (EE26) is a form of epileptic encephalopathy, a heterogeneous group of severe childhood-onset epilepsies characterized by refractory seizures, neurodevelopmental impairment, and poor prognosis. A recent study has shown that the KCNB1 gene mutation is associated with EE26; yet, the exact mechanism remains unclear. In this study, we produced an induced pluripotent stem cell line (iPSC) with a heterozygous variant of the KCNB1 gene (c.990G > T, p.Glu330Asp). Induced iPSCs were generated from peripheral blood mononuclear cells (PBMCs) obtained from a female child aged 6 with KCNB1 gene c. 990G > T and p.Glu330Asp heterozygous mutation.
Collapse
Affiliation(s)
- Yufan Guo
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Jianda Wang
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - ZhiLiang Wang
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Yuting Lou
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | | | - Min Sheng
- Kaiumph Medical Diagnostics Co, Ltd, China
| | - Ye Wang
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Bijun Zhang
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Liuyan Gao
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Jianhua Feng
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
| |
Collapse
|
40
|
Deardorff AS, Romer SH, Fyffe RE. Location, location, location: the organization and roles of potassium channels in mammalian motoneurons. J Physiol 2021; 599:1391-1420. [DOI: 10.1113/jp278675] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/08/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Adam S. Deardorff
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
- Department of Neurology and Internal Medicine, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
| | - Shannon H. Romer
- Odyssey Systems Environmental Health Effects Laboratory, Navy Medical Research Unit‐Dayton Wright‐Patterson Air Force Base OH 45433 USA
| | - Robert E.W. Fyffe
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
| |
Collapse
|
41
|
Jedrychowska J, Gasanov EV, Korzh V. Kcnb1 plays a role in development of the inner ear. Dev Biol 2020; 471:65-75. [PMID: 33316259 DOI: 10.1016/j.ydbio.2020.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
The function of the inner ear depends on the maintenance of high concentrations of K+ ions. The slow-inactivating delayed rectifier Kv2.1/KCNB1 channel works in the inner ear in mammals. The kcnb1 gene is expressed in the otic vesicle of developing zebrafish, suggesting its role in development of the inner ear. In the present study, we found that a Kcnb1 loss-of-function mutation affected development of the inner ear at multiple levels, including otic vesicle expansion, otolith formation, and the proliferation and differentiation of mechanosensory cells. This resulted in defects of kinocilia and stereocilia and abnormal function of the inner ear detected by behavioral assays. The quantitative transcriptional analysis of 75 genes demonstrated that the kcnb1 mutation affected the transcription of genes that are involved in K+ metabolism, cell proliferation, cilia development, and intracellular protein trafficking. These results demonstrate a role for Kv2.1/Kcnb1 channels in development of the inner ear in zebrafish.
Collapse
Affiliation(s)
- Justyna Jedrychowska
- International Institute of Molecular and Cell Biology in Warsaw, Poland; Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | - Eugene V Gasanov
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Poland.
| |
Collapse
|
42
|
Katerelos A, Zagkos N, Alexopoulou D, Mouskou S, Korona A, Manolakos E. Pharmacoresistant epilepsy associated with mutations in the KCNB1 and RELN genes. A case report. JOURNAL OF EPILEPTOLOGY 2020. [DOI: 10.21307/jepil-2020-006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
43
|
Rapid exome sequencing in PICU patients with new-onset metabolic or neurological disorders. Pediatr Res 2020; 88:761-768. [PMID: 32221475 PMCID: PMC7529675 DOI: 10.1038/s41390-020-0858-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/12/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Genomic assessment previously took months to result and was unable to impact clinical care in the pediatric intensive care unit (PICU). The advent of rapid exome sequencing potentially changes this. We investigated the impact of rapid exome sequencing in a pilot study on pediatric patients admitted to a single PICU with new-onset metabolic/neurologic disease. METHODS Rapid exome sequencing (7 days to verbal result) was performed on (n = 10) PICU patients age < 6 years admitted with new-onset metabolic/neurologic disease. The primary outcome of interest was inpatient LOS, which served as a proxy for inpatient cost. RESULTS A significant reduction in median LOS was identified when comparing PICU patients who underwent rapid exome sequencing to historical controls. From those patients who underwent rapid sequencing, five had likely pathogenic variants. In three cases with diagnostic genetic results, there was a modification to clinical care attributable to information provided by exome sequencing. CONCLUSIONS This pilot study demonstrates that rapid exome sequencing is feasible to do in the PICU, that genetic results can be returned quickly enough to impact critical care decision-making and management. In a select population of PICU patients, this technology may contribute to a decrease in hospital length of stay. IMPACT Ten prospectively enrolled PICU patients with defined clinical criteria and their parents underwent rapid exome sequencing. Fifty percent received a genetic diagnosis, and medical management was affected for 60% of those patients. Median hospital LOS was significantly decreased in this selective subset of PICU patients. Genetic disorders and congenital anomalies are a leading cause of pediatric mortality. Genomic assessment previously took weeks to months for results and was therefore unable to acutely impact clinical care in the pediatric intensive care unit (PICU). The recent advent of rapid exome sequencing changes this in selected patients. Rapid exome sequencing is feasible to do in a PICU. Genetic results can be returned quickly enough to impact critical care decision-making. When done in a carefully selected subset of pediatric patients, rapid exome sequencing can potentially decrease hospital LOS.
Collapse
|
44
|
Hawkins NA, Misra SN, Jurado M, Kang SK, Vierra NC, Nguyen K, Wren L, George AL, Trimmer JS, Kearney JA. Epilepsy and neurobehavioral abnormalities in mice with a dominant-negative KCNB1 pathogenic variant. Neurobiol Dis 2020; 147:105141. [PMID: 33132203 PMCID: PMC7725922 DOI: 10.1016/j.nbd.2020.105141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 11/23/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEE) are a group of severe epilepsies that usually present with intractable seizures, developmental delay, and often have elevated risk for premature mortality. Numerous genes have been identified as a monogenic cause of DEE, including KCNB1. The voltage-gated potassium channel Kv2.1, encoded by KCNB1, is primarily responsible for delayed rectifier potassium currents that are important regulators of excitability in electrically excitable cells, including neurons. In addition to its canonical role as a voltage-gated potassium conductance, Kv2.1 also serves a highly conserved structural function organizing endoplasmic reticulum-plasma membrane junctions clustered in the soma and proximal dendrites of neurons. The de novo pathogenic variant KCNB1-p.G379R was identified in an infant with epileptic spasms, and atonic, focal and tonic-clonic seizures that were refractory to treatment with standard antiepileptic drugs. Previous work demonstrated deficits in potassium conductance, but did not assess non-conducting functions. To determine if the G379R variant affected Kv2.1 clustering at endoplasmic reticulum-plasma membrane junctions, Kv2.1-G379R was expressed in HEK293T cells. Kv2.1-G379R expression did not induce formation of endoplasmic reticulum-plasma membrane junctions, and co-expression of Kv2.1-G379R with Kv2.1-wild-type lowered induction of these structures relative to Kv2.1-WT alone, consistent with a dominant negative effect. To model this variant in vivo, we introduced Kcnb1G379R into mice using CRISPR/Cas9 genome editing. We characterized neuronal expression, neurological and neurobehavioral phenotypes of Kcnb1G379R/+ (Kcnb1R/+) and Kcnb1G379R/G379R (Kcnb1R/R) mice. Immunohistochemistry studies on brains from Kcnb1+/+, Kcnb1R/+ and Kcnb1R/R mice revealed genotype-dependent differences in the expression levels of Kv2.1 protein, as well as associated Kv2.2 and AMIGO-1 proteins. Kcnb1R/+ and Kcnb1R/R mice displayed profound hyperactivity, repetitive behaviors, impulsivity and reduced anxiety. Spontaneous seizures were observed in Kcnb1R/R mice, as well as seizures induced by exposure to novel environments and/ or handling. Both Kcnb1R/+ and Kcnb1R/R mutants were more susceptible to proconvulsant-induced seizures. In addition, both Kcnb1R/+ and Kcnb1R/R mice exhibited abnormal interictal EEG activity, including isolated spike and slow waves. Overall, the Kcnb1G379R mice recapitulate many features observed in individuals with DEE due to pathogenic variants in KCNB1. This new mouse model of KCNB1-associated DEE will be valuable for improving the understanding of the underlying pathophysiology and will provide a valuable tool for the development of therapies to treat this pharmacoresistant DEE.
Collapse
Affiliation(s)
- Nicole A Hawkins
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America
| | - Sunita N Misra
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America; Ann & Robert H. Lurie Children's Hospital of Chicago Chicago, IL 60611, United States of America
| | - Manuel Jurado
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America
| | - Seok Kyu Kang
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America
| | - Nicholas C Vierra
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, United States of America; Department of preceding Physiology and Membrane Biology, University of California, Davis, CA 95616, United States of America
| | - Kimberly Nguyen
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, United States of America
| | - Lisa Wren
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, United States of America; Department of preceding Physiology and Membrane Biology, University of California, Davis, CA 95616, United States of America
| | - Jennifer A Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America.
| |
Collapse
|
45
|
Bar C, Kuchenbuch M, Barcia G, Schneider A, Jennesson M, Le Guyader G, Lesca G, Mignot C, Montomoli M, Parrini E, Isnard H, Rolland A, Keren B, Afenjar A, Dorison N, Sadleir LG, Breuillard D, Levy R, Rio M, Dupont S, Negrin S, Danieli A, Scalais E, De Saint Martin A, El Chehadeh S, Chelly J, Poisson A, Lebre A, Nica A, Odent S, Sekhara T, Brankovic V, Goldenberg A, Vrielynck P, Lederer D, Maurey H, Terrone G, Besmond C, Hubert L, Berquin P, Billette de Villemeur T, Isidor B, Freeman JL, Mefford HC, Myers CT, Howell KB, Rodríguez‐Sacristán Cascajo A, Meyer P, Genevieve D, Guët A, Doummar D, Durigneux J, van Dooren MF, de Wit MCY, Gerard M, Marey I, Munnich A, Guerrini R, Scheffer IE, Kabashi E, Nabbout R. Developmental and epilepsy spectrum of
KCNB1
encephalopathy with long‐term outcome. Epilepsia 2020; 61:2461-2473. [DOI: 10.1111/epi.16679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Claire Bar
- Department of Pediatric Neurology Reference Center for Rare Epilepsies Assistance Publique‐Hôpitaux de Paris (AP‐HP), Necker‐Enfants Malades Hospital Paris France
- Imagine Institute, Mixed Unit of Research 1163 University of ParisSorbonne University Paris France
| | - Mathieu Kuchenbuch
- Department of Pediatric Neurology Reference Center for Rare Epilepsies Assistance Publique‐Hôpitaux de Paris (AP‐HP), Necker‐Enfants Malades Hospital Paris France
- Imagine Institute, Mixed Unit of Research 1163 University of ParisSorbonne University Paris France
| | - Giulia Barcia
- Imagine Institute, Mixed Unit of Research 1163 University of ParisSorbonne University Paris France
- Department of Clinical Genetics AP‐HP, Necker‐Enfants Malades Hospital Paris France
| | - Amy Schneider
- Department of Medicine Epilepsy Research Centre Austin Health University of Melbourne Heidelberg Victoria Australia
| | | | - Gwenaël Le Guyader
- Department of Genetics Poitiers University Hospital CenterPoitiers Cedex France
- EA3808–NEUVACOD Neurovascular and Cognitive Disorders Unit University of Poitiers Poitiers France
| | - Gaetan Lesca
- Department of Genetics Lyon Civil Hospices Lyon France
- NeuroMyoGène Institute National Center for Scientific Research Mixed Unit of Research 5310, National Institute of Health and Medical Research U1217University of LyonClaude Bernard Lyon 1 University Villeurbanne France
| | - Cyril Mignot
- National Institute of Health and Medical Research, U1127 National Center for Scientific Research Mixed Unit of Research 7225 Pierre and Marie Curie University Paris 6 Mixed Unit of Research S1127 Brain and Spine Institute Sorbonne University Paris France
- Department of Genetics Rare Causes of Intellectual Disability Reference Center AP‐HP, Pitié‐Salpêtrière HospitalSorbonne University Paris France
| | - Martino Montomoli
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories Neuroscience Department A. Meyer Children's HospitalUniversity of Florence Florence Italy
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories Neuroscience Department A. Meyer Children's HospitalUniversity of Florence Florence Italy
| | - Hervé Isnard
- Pediatric Neurologist Medical Office Lyon France
| | - Anne Rolland
- Department of Pediatrics Nantes University Hospital Center Nantes France
| | - Boris Keren
- Department of Genetics Rare Causes of Intellectual Disability Reference Center AP‐HP, Pitié‐Salpêtrière HospitalSorbonne University Paris France
| | - Alexandra Afenjar
- Department of Genetics and Medical Embryology Reference Center for Malformations and Congenital Diseases of the Cerebellum and Rare Causes of Intellectual Disabilities Sorbonne UniversityAP‐HP, Trousseau Hospital Paris France
| | - Nathalie Dorison
- Pediatric Neurosurgery Department Rothschild Foundation Hospital Paris France
- Department of Pediatric Neurology AP‐HP, Armand Trousseau HospitalSorbonne University Paris France
| | - Lynette G. Sadleir
- Department of Pediatrics and Child Health University of Otago Wellington New Zealand
| | - Delphine Breuillard
- Department of Pediatric Neurology Reference Center for Rare Epilepsies Assistance Publique‐Hôpitaux de Paris (AP‐HP), Necker‐Enfants Malades Hospital Paris France
- Imagine Institute, Mixed Unit of Research 1163 University of ParisSorbonne University Paris France
| | - Raphael Levy
- Department of Pediatric Radiology Necker‐Enfants Malades Hospital Paris France
| | - Marlène Rio
- Department of Clinical Genetics AP‐HP, Necker‐Enfants Malades Hospital Paris France
- Laboratory of Developmental Brain Disorders National Institute of Health and Medical Research Mixed Unit of Research 1163 Imagine InstituteSorbonne University Paris France
| | - Sophie Dupont
- National Institute of Health and Medical Research, U1127 National Center for Scientific Research Mixed Unit of Research 7225 Pierre and Marie Curie University Paris 6 Mixed Unit of Research S1127 Brain and Spine Institute Sorbonne University Paris France
- Epileptology Unit and Rehabilitation Unit AP‐HP, Pitie‐Salpêtrière‐Charles Foix Hospital Paris France
| | - Susanna Negrin
- Epilepsy and Clinical Neurophysiology Unit Scientific InstituteIRCCS E. Medea Treviso Italy
| | - Alberto Danieli
- Epilepsy and Clinical Neurophysiology Unit Scientific InstituteIRCCS E. Medea Treviso Italy
| | - Emmanuel Scalais
- Pediatric Neurology Unit Luxembourg Hospital Center Luxembourg City Luxembourg
| | - Anne De Saint Martin
- Department of Pediatric Neurology Strasbourg University HospitalHautepierre Hospital Strasbourg France
| | - Salima El Chehadeh
- Department of Medical Genetics Strasbourg University HospitalsHautepierre Hospital Strasbourg France
| | - Jamel Chelly
- Department of Medical Genetics Strasbourg University HospitalsHautepierre Hospital Strasbourg France
| | - Alice Poisson
- GénoPsy Reference Center for Diagnosis and Management of Genetic Psychiatric Disorders le Vinatier Hospital Center and EDR‐Psy Team (National Center for Scientific Research and Lyon 1 Claude Bernard University) Villeurbanne France
| | - Anne‐Sophie Lebre
- Reims University Hospital CenterMaison Blanche HospitalBiology Department Reims France
| | - Anca Nica
- Neurology Department Center for Clinical Research (CIC 1414) Rennes University Hospital Rennes France
- Laboratory of Signal ProcessingNational Institute of Health and Medical Research Mixed Unit of Research 1099 Rennes France
| | - Sylvie Odent
- Reference Center for Rare Developmental Abnormalities CLAD‐Ouest Rennes University Hospital Center Rennes France
- National Center for Scientific Research Mixed Unit of Research 6290, Institute of Genetics and Development of Rennes (IGDR)University of Rennes Rennes France
| | - Tayeb Sekhara
- Department of Pediatric Neurology C.H.I.R.E.C Brussels Belgium
| | | | - Alice Goldenberg
- Reference Center for Developmental Anomalies and Malformation Syndromes Rouen University Hospital Center Rouen France
| | - Pascal Vrielynck
- Reference Center for Refractory Epilepsy, Catholic University of Louvain William Lennox Neurological Hospital Ottignies Belgium
| | | | - Hélène Maurey
- Department of Pediatric Neurology AP‐HP, Bicêtre University Hospital Kremlin Bicêtre France
| | - Gaetano Terrone
- Department of Translational Medical Sciences Section of Pediatrics, Child Neurology Unit Federico II University Naples Italy
| | - Claude Besmond
- Translational Genetics National Institute of Health and Medical Research Mixed Unit of Research 1163Imagine InstituteUniversity of Paris Paris France
| | - Laurence Hubert
- Translational Genetics National Institute of Health and Medical Research Mixed Unit of Research 1163Imagine InstituteUniversity of Paris Paris France
| | - Patrick Berquin
- Department of Pediatric Neurology Amiens‐Picardie University Hospital CenterUniversity of Picardy Jules Verne Amiens France
| | | | - Bertrand Isidor
- Department of Clinical Genetics Nantes University Hospital Center Nantes France
| | - Jeremy L. Freeman
- Departments of Neurology and Paediatrics Royal Children's Hospital University of Melbourne Melbourne Victoria Australia
- Murdoch Children’s Research Institute Melbourne Victoria Australia
| | - Heather C. Mefford
- Department of Pediatrics Division of Genetic Medicine University of Washington Seattle Washington United States
| | - Candace T. Myers
- Department of Pediatrics Division of Genetic Medicine University of Washington Seattle Washington United States
| | - Katherine B. Howell
- Departments of Neurology and Paediatrics Royal Children's Hospital University of Melbourne Melbourne Victoria Australia
- Murdoch Children’s Research Institute Melbourne Victoria Australia
| | - Andrés Rodríguez‐Sacristán Cascajo
- Pediatric Neurology Unit Department of Pediatric Virgen Macarena Hospital Seville Spain
- Department of Pediatrics School of Medicine University of Seville Seville Spain
| | - Pierre Meyer
- Department of Pediatric Neurology Montpellier University Hospital Center Montpellier France
- PhyMedExp National Institute of Health and Medical Research, U1046National Center for Scientific Research Mixed Unit of Research 9214University of Montpellier Montpellier France
| | - David Genevieve
- Department of Medical Genetics, Rare Disease, and Personalized Medicine IRMBUniversity of MontpellierNational Institute of Health and Medical ResearchMontpellier University Hospital Center Montpellier France
| | - Agnès Guët
- Department of Pediatrics Louis‐Mourier Hospital Colombes France
| | - Diane Doummar
- Department of Pediatric Neurology AP‐HP, Armand Trousseau HospitalSorbonne University Paris France
| | - Julien Durigneux
- Departments of Neurology and Paediatrics Royal Children's Hospital University of Melbourne Melbourne Victoria Australia
| | - Marieke F. van Dooren
- Department of Clinical Genetics Erasmus University Medical Center Rotterdam the Netherlands
| | - Marie Claire Y. de Wit
- Department of Pediatric Neurology and ENCORE Expertise Center Erasmus University Medical Center Sophia Children’s Hospital Rotterdam the Netherlands
| | - Marion Gerard
- Clinical Genetics Côte de Nacre University Hospital Center Caen France
| | - Isabelle Marey
- Department of Genetics Rare Causes of Intellectual Disability Reference Center AP‐HP, Pitié‐Salpêtrière HospitalSorbonne University Paris France
| | - Arnold Munnich
- Imagine Institute, Mixed Unit of Research 1163 University of ParisSorbonne University Paris France
- Department of Clinical Genetics AP‐HP, Necker‐Enfants Malades Hospital Paris France
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories Neuroscience Department A. Meyer Children's HospitalUniversity of Florence Florence Italy
| | - Ingrid E. Scheffer
- Department of Medicine Epilepsy Research Centre Austin Health University of Melbourne Heidelberg Victoria Australia
- Departments of Neurology and Paediatrics Royal Children's Hospital University of Melbourne Melbourne Victoria Australia
- Murdoch Children’s Research Institute Melbourne Victoria Australia
- Florey Institute of Neurosciences and Mental Health Heidelberg Victoria Australia
| | - Edor Kabashi
- Imagine Institute, Mixed Unit of Research 1163 University of ParisSorbonne University Paris France
| | - Rima Nabbout
- Department of Pediatric Neurology Reference Center for Rare Epilepsies Assistance Publique‐Hôpitaux de Paris (AP‐HP), Necker‐Enfants Malades Hospital Paris France
- Imagine Institute, Mixed Unit of Research 1163 University of ParisSorbonne University Paris France
| |
Collapse
|
46
|
Wang W, Yin H, Feng N, Wang L, Wang X. Inhibitory effects of antidepressant fluoxetine on cloned Kv2.1 potassium channel expressed in HEK293 cells. Eur J Pharmacol 2020; 878:173097. [PMID: 32278853 DOI: 10.1016/j.ejphar.2020.173097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/08/2020] [Accepted: 04/01/2020] [Indexed: 11/15/2022]
Abstract
It is well demonstrated that antidepressant fluoxetine has significant inhibitory effects on voltage-gated potassium channels. So far, the concise regulation of fluoxetine on Kv2.1, the predominant delayed rectifier potassium channel subtype in the central nervous system, are rarely reported. Here patch-clamp recording was used to investigate the inhibitory effects of fluoxetine on Kv2.1 potassium channels stably expressed in HEK293 cells. The results showed fluoxetine dose-dependently suppressed Kv2.1 currents with an IC50 of 51.3 μM. At the test potential positive to +50 mV, fluoxetine 50 μM voltage-dependently suppressed Kv2.1 currents with an electrical distance δ of 0.28. Moreover, fluoxetine 50 μM did not affect the activation process of Kv2.1, but reduced the decay time constant τinact and obviously accelerated the inactivation process of Kv2.1 and left-shifted the half-maximal inactivation potential of Kv2.1 potassium channel by 9.8 mV. Fluoxetine 50 μM notably delayed the recovery process of Kv2.1 from inactivation with increased time constants. In addition, fluoxetine 50 μM use-dependently inhibited Kv2.1 currents at different frequencies. In conclusion, the inhibition of Kv2.1 by fluoxetine was concentration-dependent, voltage-dependent and use-dependent. The accelerated steady-state inactivation of Kv2.1 channels induced by fluoxetine might be ascribed to the delay of the recovery process of Kv2.1.
Collapse
Affiliation(s)
- Weiping Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huajing Yin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Feng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
47
|
Kessi M, Chen B, Peng J, Tang Y, Olatoutou E, He F, Yang L, Yin F. Intellectual Disability and Potassium Channelopathies: A Systematic Review. Front Genet 2020; 11:614. [PMID: 32655623 PMCID: PMC7324798 DOI: 10.3389/fgene.2020.00614] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/20/2020] [Indexed: 01/15/2023] Open
Abstract
Intellectual disability (ID) manifests prior to adulthood as severe limitations to intellectual function and adaptive behavior. The role of potassium channelopathies in ID is poorly understood. Therefore, we aimed to evaluate the relationship between ID and potassium channelopathies. We hypothesized that potassium channelopathies are strongly associated with ID initiation, and that both gain- and loss-of-function mutations lead to ID. This systematic review explores the burden of potassium channelopathies, possible mechanisms, advancements using animal models, therapies, and existing gaps. The literature search encompassed both PubMed and Embase up to October 2019. A total of 75 articles describing 338 cases were included in this review. Nineteen channelopathies were identified, affecting the following genes: KCNMA1, KCNN3, KCNT1, KCNT2, KCNJ10, KCNJ6, KCNJ11, KCNA2, KCNA4, KCND3, KCNH1, KCNQ2, KCNAB1, KCNQ3, KCNQ5, KCNC1, KCNB1, KCNC3, and KCTD3. Twelve of these genes presented both gain- and loss-of-function properties, three displayed gain-of-function only, three exhibited loss-of-function only, and one had unknown function. How gain- and loss-of-function mutations can both lead to ID remains largely unknown. We identified only a few animal studies that focused on the mechanisms of ID in relation to potassium channelopathies and some of the few available therapeutic options (channel openers or blockers) appear to offer limited efficacy. In conclusion, potassium channelopathies contribute to the initiation of ID in several instances and this review provides a comprehensive overview of which molecular players are involved in some of the most prominent disease phenotypes.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China.,Kilimanjaro Christian Medical University College, Moshi, Tanzania.,Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Yulin Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Eleonore Olatoutou
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
48
|
Chow CY, Absalom N, Biggs K, King GF, Ma L. Venom-derived modulators of epilepsy-related ion channels. Biochem Pharmacol 2020; 181:114043. [PMID: 32445870 DOI: 10.1016/j.bcp.2020.114043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Epilepsy is characterised by spontaneous recurrent seizures that are caused by an imbalance between neuronal excitability and inhibition. Since ion channels play fundamental roles in the generation and propagation of action potentials as well as neurotransmitter release at a subset of excitatory and inhibitory synapses, their dysfunction has been linked to a wide variety of epilepsies. Indeed, these unique proteins are the major biological targets for antiepileptic drugs. Selective targeting of a specific ion channel subtype remains challenging for small molecules, due to the high level of homology among members of the same channel family. As a consequence, there is a growing trend to target ion channels with biologics. Venoms are the best known natural source of ion channel modulators, and venom peptides are increasingly recognised as potential therapeutics due to their high selectivity and potency gained through millions of years of evolutionary selection pressure. Here we describe the major ion channel families involved in the pathogenesis of various types of epilepsy, including voltage-gated Na+, K+, Ca2+ channels, Cys-loop receptors, ionotropic glutamate receptors and P2X receptors, and currently available venom-derived peptides that target these channel proteins. Although only a small number of venom peptides have successfully progressed to the clinic, there is reason to be optimistic about their development as antiepileptic drugs, notwithstanding the challenges associated with development of any class of peptide drug.
Collapse
Affiliation(s)
- Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nathan Absalom
- Brain and Mind Centre, School of Pharmacy, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2050, Australia
| | - Kimberley Biggs
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Linlin Ma
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
49
|
Samanta D. Epileptic spasm and de novo KCNB1 mutation: if it is not one potassium channel, it is another! Acta Neurol Belg 2020; 120:417-420. [PMID: 29808309 DOI: 10.1007/s13760-018-0950-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/20/2018] [Indexed: 11/24/2022]
Affiliation(s)
- Debopam Samanta
- Child Neurology Division, Department of Pediatrics, University of Arkansas for Medical Sciences, 1 Children's Way, Little Rock, AR, 72202, USA.
| |
Collapse
|
50
|
Allen NM, Weckhuysen S, Gorman K, King MD, Lerche H. Genetic potassium channel-associated epilepsies: Clinical review of the K v family. Eur J Paediatr Neurol 2020; 24:105-116. [PMID: 31932120 DOI: 10.1016/j.ejpn.2019.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/22/2022]
Abstract
Next-generation sequencing has enhanced discovery of many disease-associated genes in previously unexplained epilepsies, mainly in developmental and epileptic encephalopathies and familial epilepsies. We now classify these disorders according to the underlying molecular pathways, which encompass a diverse array of cellular and sub-cellular compartments/signalling processes including voltage-gated ion-channel defects. With the aim to develop and increase the use of precision medicine therapies, understanding the pathogenic mechanisms and consequences of disease-causing variants has gained major relevance in clinical care. The super-family of voltage-gated potassium channels is the largest and most diverse family among the ion channels, encompassing approximately 80 genes. Key potassium channelopathies include those affecting the KV, KCa and Kir families, a significant proportion of which have been implicated in neurological disease. As for other ion channel disorders, different pathogenic variants within any individual voltage-gated potassium channel gene tend to affect channel protein function differently, causing heterogeneous clinical phenotypes. The focus of this review is to summarise recent clinical developments regarding the key voltage-gated potassium (KV) family-related epilepsies, which now encompasses approximately 12 established disease-associated genes, from the KCNA-, KCNB-, KCNC-, KCND-, KCNV-, KCNQ- and KCNH-subfamilies.
Collapse
Affiliation(s)
- Nicholas M Allen
- Department of Paediatrics, National University of Ireland, Galway, Ireland; Department of Paediatrics (Neurology), Galway University Hospital, Ireland; Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| | - Sarah Weckhuysen
- Neurogenetics Group, Center for Molecular Neurology, VIB-University of Antwerp, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Kathleen Gorman
- Department of Paediatric Neurology & Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin 1, Ireland; University College Dublin School of Medicine and Medical Science, University College, Dublin, Ireland
| | - Mary D King
- Department of Paediatric Neurology & Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin 1, Ireland; University College Dublin School of Medicine and Medical Science, University College, Dublin, Ireland
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute of Clinical Brain Research, University of Tubingen, Germany
| |
Collapse
|