1
|
McCormack RM, Chandran AS, Lhatoo SD, Pati S, Li Z, Harris K, Lacuey N, Kalamangalam G, Thompson S, Tandon N. Laser Ablation of Periventricular Nodular Heterotopia for Medically Refractory Epilepsy. Ann Neurol 2024; 96:1174-1184. [PMID: 39297387 DOI: 10.1002/ana.27059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVE Periventricular nodular heterotopia (PVNH) is the most common neuronal heterotopia, frequently resulting in pharmaco-resistant epilepsy. Here, we characterize variables that predict good epilepsy outcomes following surgical intervention using stereo-electroencephalography (SEEG) -informed magnetic resonance-guided laser interstitial thermal therapy (MRgLITT). METHODS A retrospective review of consecutive cases from a single high-volume epilepsy referral center identified patients who underwent SEEG evaluation for PVNH to characterize the intervention and outcomes. RESULTS Thirty-nine patients underwent SEEG-guided MRgLITT of the seizure onset zone (SoZ) in PVNH and associated epileptic tissue. PVNH and polymicrogyria (PMG) were densely sampled with a mean of 16.5 (SD = 2)/209.4 (SD = 36.9) SEEG probes/recording contacts per patient. Ablation principally targeted just the PVNH and cortex that was abnormal on imaging was ablated (5 patients) only if implicated in the SoZ. Volumetric analyses revealed a high percentage of PVNH SoZ ablation (96.6%, SD = 5.3%) in unilateral and bilateral (92.9%, SD = 7.2%) cases. Mean follow-up duration was 31.4 months (SD = 20.9). Seizure freedom (ILAE 1) was excellent: unilateral PVNH without other imaging abnormalities, 80%; PVNH with mesial temporal sclerosis (MTS) or PMG, 63%; bilateral PVNH, 50%. SoZ ablation percentage significantly impacted surgical outcomes (p < 0.001). INTERPRETATION PVNH plays a central role in seizure genesis as revealed by dense recordings and selective targeting by LITT. MRgLITT represents a transformative technological advance in PVNH-associated epilepsy with seizure control outcomes consistent with those seen in focal lesional epilepsies. In localized unilateral cases and otherwise normal imaging, PVNH ablation without invasive recordings may be considered, and this approach deserves to be explored further. ANN NEUROL 2024;96:1174-1184.
Collapse
Affiliation(s)
- Ryan M McCormack
- Vivian L Smith Department of Neurological Surgery, McGovern Medical School at UT Health, Houston, TX, USA
| | - Arjun S Chandran
- Vivian L Smith Department of Neurological Surgery, McGovern Medical School at UT Health, Houston, TX, USA
| | - Samden D Lhatoo
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, UT Health, Houston, TX, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Sandipan Pati
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, UT Health, Houston, TX, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Zhouxuan Li
- Department of Biostatistics and Data Science, The University of Texas School of Public Health, Dallas, TX, USA
| | - Katherine Harris
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, UT Health, Houston, TX, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Nuria Lacuey
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, UT Health, Houston, TX, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | | | - Stephen Thompson
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, TX, USA
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Nitin Tandon
- Vivian L Smith Department of Neurological Surgery, McGovern Medical School at UT Health, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, UT Health, Houston, TX, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| |
Collapse
|
2
|
Schuler AL, Brkić D, Ferrazzi G, Arcara G, Marinazzo D, Pellegrino G. Auditory white noise exposure results in intrinsic cortical excitability changes. iScience 2023; 26:107387. [PMID: 37575186 PMCID: PMC10415920 DOI: 10.1016/j.isci.2023.107387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/23/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Cortical excitability is commonly measured by applying magnetic stimulation in combination with measuring behavioral response. This measure has, however, some shortcomings including spatial limitation to the primary motor cortex and not accounting for intrinsic excitability fluctuations. Here, we use a measure for intrinsic excitability based on phase synchronization previously validated for epilepsy. We apply this measure in 30 healthy participants' magnetoencephalography (MEG) recordings during the exposure of auditory white noise, a stimulus that has been suggested to modify cortical excitability. Using cortical parcellation of the MEG source data, we could find a specific pattern of increased and decreased excitability while participants are exposed to white noise vs. silence. Specifically, excitability during white noise exposure decreases in the frontal lobe and increases in the temporal lobe. This study thus adds to the understanding of cortical excitability changes due to specific environmental stimuli as well as the spatial extent of these effects.
Collapse
Affiliation(s)
- Anna-Lisa Schuler
- IRCCS San Camillo Hospital, Venice, Italy
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | | | | | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
3
|
Hernandez-Pavon JC, Veniero D, Bergmann TO, Belardinelli P, Bortoletto M, Casarotto S, Casula EP, Farzan F, Fecchio M, Julkunen P, Kallioniemi E, Lioumis P, Metsomaa J, Miniussi C, Mutanen TP, Rocchi L, Rogasch NC, Shafi MM, Siebner HR, Thut G, Zrenner C, Ziemann U, Ilmoniemi RJ. TMS combined with EEG: Recommendations and open issues for data collection and analysis. Brain Stimul 2023; 16:567-593. [PMID: 36828303 DOI: 10.1016/j.brs.2023.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) evokes neuronal activity in the targeted cortex and connected brain regions. The evoked brain response can be measured with electroencephalography (EEG). TMS combined with simultaneous EEG (TMS-EEG) is widely used for studying cortical reactivity and connectivity at high spatiotemporal resolution. Methodologically, the combination of TMS with EEG is challenging, and there are many open questions in the field. Different TMS-EEG equipment and approaches for data collection and analysis are used. The lack of standardization may affect reproducibility and limit the comparability of results produced in different research laboratories. In addition, there is controversy about the extent to which auditory and somatosensory inputs contribute to transcranially evoked EEG. This review provides a guide for researchers who wish to use TMS-EEG to study the reactivity of the human cortex. A worldwide panel of experts working on TMS-EEG covered all aspects that should be considered in TMS-EEG experiments, providing methodological recommendations (when possible) for effective TMS-EEG recordings and analysis. The panel identified and discussed the challenges of the technique, particularly regarding recording procedures, artifact correction, analysis, and interpretation of the transcranial evoked potentials (TEPs). Therefore, this work offers an extensive overview of TMS-EEG methodology and thus may promote standardization of experimental and computational procedures across groups.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA.
| | | | - Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Paolo Belardinelli
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy; Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Elias P Casula
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Faranak Farzan
- Simon Fraser University, School of Mechatronic Systems Engineering, Surrey, British Columbia, Canada
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Petro Julkunen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Kallioniemi
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Johanna Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Nigel C Rogasch
- University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Monash University, Melbourne, Australia
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregor Thut
- School of Psychology and Neuroscience, University of Glasgow, United Kingdom
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| |
Collapse
|
4
|
Poorganji M, Zomorrodi R, Zrenner C, Bansal A, Hawco C, Hill AT, Hadas I, Rajji TK, Chen R, Zrenner B, Voineskos D, Blumberger DM, Daskalakis ZJ. Pre-Stimulus Power but Not Phase Predicts Prefrontal Cortical Excitability in TMS-EEG. BIOSENSORS 2023; 13:220. [PMID: 36831986 PMCID: PMC9953459 DOI: 10.3390/bios13020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The cortical response to transcranial magnetic stimulation (TMS) has notable inter-trial variability. One source of this variability can be the influence of the phase and power of pre-stimulus neuronal oscillations on single-trial TMS responses. Here, we investigate the effect of brain oscillatory activity on TMS response in 49 distinct healthy participants (64 datasets) who had received single-pulse TMS over the left dorsolateral prefrontal cortex. Across all frequency bands of theta (4-7 Hz), alpha (8-13 Hz), and beta (14-30 Hz), there was no significant effect of pre-TMS phase on single-trial cortical evoked activity. After high-powered oscillations, whether followed by a TMS pulse or not, the subsequent activity was larger than after low-powered oscillations. We further defined a measure, corrected_effect, to enable us to investigate brain responses to the TMS pulse disentangled from the power of ongoing (spontaneous) oscillations. The corrected_effect was significantly different from zero (meaningful added effect of TMS) only in theta and beta bands. Our results suggest that brain state prior to stimulation might play some role in shaping the subsequent TMS-EEG response. Specifically, our findings indicate that the power of ongoing oscillatory activity, but not phase, can influence brain responses to TMS. Aligning the TMS pulse with specific power thresholds of an EEG signal might therefore reduce variability in neurophysiological measurements and also has the potential to facilitate more robust therapeutic effects of stimulation.
Collapse
Affiliation(s)
- Mohsen Poorganji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
| | - Christoph Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Aiyush Bansal
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
| | - Colin Hawco
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Aron T. Hill
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, VIC 3125, Australia
| | - Itay Hadas
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA
| | - Tarek K. Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert Chen
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Brigitte Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Daphne Voineskos
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Daniel M. Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Zafiris J. Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA
| |
Collapse
|
5
|
Kaye HL, San-Juan D, Salvador R, Biagi MC, Dubreuil-Vall L, Damar U, Pascual-Leone A, Ruffini G, Shafi MM, Rotenberg A. Personalized, Multisession, Multichannel Transcranial Direct Current Stimulation in Medication-Refractory Focal Epilepsy: An Open-Label Study. J Clin Neurophysiol 2023; 40:53-62. [PMID: 34010226 DOI: 10.1097/wnp.0000000000000838] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Animal and proof-of-principle human studies suggest that cathodal transcranial direct current stimulation may suppress seizures in drug-resistant focal epilepsy. The present study tests the safety, tolerability, and effect size of repeated daily cathodal transcranial direct current stimulation in epilepsy have not been established, limiting development of clinically meaningful interventions. METHODS We conducted a 2-center, open-label study on 20 participants with medically refractory, focal epilepsy, aged 9 to 56 years (11 women and 9 children younger than18 years). Each participant underwent 10 sessions of 20 minutes of cathodal transcranial direct current stimulation over 2 weeks. Multielectrode montages were designed using a realistic head model-driven approach to conduct an inhibitory electric field to the target cortical seizure foci and surrounding cortex to suppress excitability and reduce seizure rates. Patients recorded daily seizures using a seizure diary 8 weeks prior, 2 weeks during, and 8 to 12 weeks after the stimulation period. RESULTS The median seizure reduction was 44% relative to baseline and did not differ between adult and pediatric patients. Three patients experienced an increase in seizure frequency of >50% during the stimulation period; in one, a 36% increase in seizure frequency persisted through 12 weeks of follow-up. Otherwise, participants experienced only minor adverse events-the most common being scalp discomfort during transcranial direct current stimulation. CONCLUSIONS This pilot study supports the safety and efficacy of multifocal, personalized, multichannel, cathodal transcranial direct current stimulation for adult and pediatric patients with medication-refractory focal epilepsy, although identifies a possibility of seizure exacerbation in some. The data also provide insight into the effect size to inform the design of a randomized, sham-stimulation controlled trial.
Collapse
Affiliation(s)
- Harper Lee Kaye
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- F. M. Kirby Neurobiology Center; Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- Behavioral Neuroscience Program, Division of Medical Sciences, Boston University School of Medicine, Boston, Massachusetts, U.S.A
| | - Daniel San-Juan
- Clinical Neurophysiology Department, National Institute of Neurology and Neurosurgery of Mexico, Mexico City, Mexico
| | | | | | | | - Ugur Damar
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- F. M. Kirby Neurobiology Center; Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew Senior Life, Department of Neurology, Harvard Medical School, Boston, Massachusetts, U.S.A
- Guttmann Brain Health Institute, Institut Gutmann, Universitat Autonoma, Barcelona, Spain
| | - Giulio Ruffini
- Neuroelectrics Barcelona, Barcelona, Spain
- Neuroelectrics Corporation, Cambridge, U.S.A.; and
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Alexander Rotenberg
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- F. M. Kirby Neurobiology Center; Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, U.S.A
| |
Collapse
|
6
|
Jannati A, Oberman LM, Rotenberg A, Pascual-Leone A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 2023; 48:191-208. [PMID: 36198876 PMCID: PMC9700722 DOI: 10.1038/s41386-022-01453-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique for focal brain stimulation based on electromagnetic induction where a fluctuating magnetic field induces a small intracranial electric current in the brain. For more than 35 years, TMS has shown promise in the diagnosis and treatment of neurological and psychiatric disorders in adults. In this review, we provide a brief introduction to the TMS technique with a focus on repetitive TMS (rTMS) protocols, particularly theta-burst stimulation (TBS), and relevant rTMS-derived metrics of brain plasticity. We then discuss the TMS-EEG technique, the use of neuronavigation in TMS, the neural substrate of TBS measures of plasticity, the inter- and intraindividual variability of those measures, effects of age and genetic factors on TBS aftereffects, and then summarize alterations of TMS-TBS measures of plasticity in major neurological and psychiatric disorders including autism spectrum disorder, schizophrenia, depression, traumatic brain injury, Alzheimer's disease, and diabetes. Finally, we discuss the translational studies of TMS-TBS measures of plasticity and their therapeutic implications.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Lindsay M Oberman
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.
- Guttmann Brain Health Institute, Institut Guttmann, Barcelona, Spain.
| |
Collapse
|
7
|
Carrette S, Boon P, Klooster D, Van Dycke A, Carrette E, Miatton M, Raedt R, Delbeke J, Meurs A, Vonck K. Continuous theta burst stimulation for drug-resistant epilepsy. Front Neurosci 2022; 16:885905. [PMID: 36061598 PMCID: PMC9433314 DOI: 10.3389/fnins.2022.885905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionRepetitive transcranial magnetic stimulation (rTMS) may have anti-epileptic effects, especially in patients with neocortical lesions. Initial clinical trials demonstrated that the duration of the seizure reducing effect is relatively short-lived. In the context of a chronic condition like epilepsy, theta burst stimulation (TBS) may represent a potential solution in optimizing treatment practicality and durability as it was demonstrated to be associated with longer-lasting after-effects. TBS has been studied extensively in diverse neuropsychiatric conditions, but a therapeutic TBS protocol has not previously been applied in epilepsy patients.Materials and methodsWe performed a prospective open-label pilot study of 4-day accelerated continuous TBS (cTBS) treatment in patients with neocortical drug-resistant epilepsy (DRE). A treatment session consisted of 5 cTBS trains, each comprising 600 pulses presented in 50 Hz triplet bursts every 200 ms, delivered at 10-min intertrain-intervals, targeted over the epileptic focus (EF) using a neuronavigation-guided figure-of-8 coil. Safety and feasibility, and seizure frequency were assessed as primary and secondary endpoints, respectively, over a 4-week baseline period, a 1-week treatment period and a 7-week follow-up period, using adverse event logging, electro-encephalography, cognitive, and psychological questionnaires and a seizure diary kept by the patients and/or caregivers.ResultsSeven subjects (4M:3F; median age 48, interquartile ranges 25) underwent the treatment protocol. Adverse events were reported in all subjects but were mild and transient. No clinical or electrographic seizures were evoked during or immediately following stimulation. No deterioration was found in cognition nor in psycho-emotional well-being following treatment. Treatment burden was acceptable, but seems to depend on clinical effect, duration of ongoing effect and stimulation site. Median weekly seizure frequency and ratio of seizure-free weeks did not change significantly in this small patient cohort.ConclusionWe report the results of the first ever trial of cTBS as a treatment for neocortical DRE. A 4-day accelerated cTBS protocol over the EF appears safe and feasible. Although the design and sample size of this open-label pilot study is unfit to reliably identify a therapeutic effect, results encourage further exploration of cTBS as an anti-epileptic treatment and potential optimization compared to conventional rTMS in a dedicated randomized controlled trial. (clinicaltrials.gov: NCT02635633).
Collapse
Affiliation(s)
- Sofie Carrette
- Department of Neurology, Institute for Neuroscience, Ghent University Hospital, Ghent, Belgium
- *Correspondence: Sofie Carrette,
| | - Paul Boon
- Department of Neurology, Institute for Neuroscience, Ghent University Hospital, Ghent, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Debby Klooster
- Department of Neurology, Institute for Neuroscience, Ghent University Hospital, Ghent, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | | | - Evelien Carrette
- Department of Neurology, Institute for Neuroscience, Ghent University Hospital, Ghent, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Marijke Miatton
- Department of Neurology, Institute for Neuroscience, Ghent University Hospital, Ghent, Belgium
| | - Robrecht Raedt
- Department of Neurology, Institute for Neuroscience, Ghent University Hospital, Ghent, Belgium
| | - Jean Delbeke
- Department of Neurology, Institute for Neuroscience, Ghent University Hospital, Ghent, Belgium
| | - Alfred Meurs
- Department of Neurology, Institute for Neuroscience, Ghent University Hospital, Ghent, Belgium
| | - Kristl Vonck
- Department of Neurology, Institute for Neuroscience, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
8
|
Li X, Zhang H, Lai H, Wang J, Wang W, Yang X. High-Frequency Oscillations and Epileptogenic Network. Curr Neuropharmacol 2022; 20:1687-1703. [PMID: 34503414 PMCID: PMC9881061 DOI: 10.2174/1570159x19666210908165641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is a network disease caused by aberrant neocortical large-scale connectivity spanning regions on the scale of several centimeters. High-frequency oscillations, characterized by the 80-600 Hz signals in electroencephalography, have been proven to be a promising biomarker of epilepsy that can be used in assessing the severity and susceptibility of epilepsy as well as the location of the epileptogenic zone. However, the presence of a high-frequency oscillation network remains a topic of debate as high-frequency oscillations have been previously thought to be incapable of propagation, and the relationship between high-frequency oscillations and the epileptogenic network has rarely been discussed. Some recent studies reported that high-frequency oscillations may behave like networks that are closely relevant to the epileptogenic network. Pathological highfrequency oscillations are network-driven phenomena and elucidate epileptogenic network development; high-frequency oscillations show different characteristics coincident with the epileptogenic network dynamics, and cross-frequency coupling between high-frequency oscillations and other signals may mediate the generation and propagation of abnormal discharges across the network.
Collapse
Affiliation(s)
- Xiaonan Li
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | | | | | - Jiaoyang Wang
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Wei Wang
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaofeng Yang
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China,Address correspondence to this author at the Bioland Laboratory, Guangzhou, China; Tel: 86+ 18515855127; E-mail:
| |
Collapse
|
9
|
Perellón-Alfonso R, Redondo-Camós M, Abellaneda-Pérez K, Cattaneo G, Delgado-Gallén S, España-Irla G, Solana Sánchez J, Tormos JM, Pascual-Leone A, Bartrés-Faz D. Prefrontal reactivity to TMS perturbation as a toy model of mental health outcomes during the COVID-19 pandemic. Heliyon 2022; 8:e10208. [PMID: 35991299 PMCID: PMC9383955 DOI: 10.1016/j.heliyon.2022.e10208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
Psychosocial hardships associated with the COVID-19 pandemic led many individuals to suffer adverse mental health consequences, however, others show no negative effects. We hypothesized that the electroencephalographic (EEG) response to transcranial magnetic stimulation (TMS) could serve as a toy-model of an individual's capacity to resist psychological stress, in this case linked to the COVID-19 pandemic. We analyzed data from 74 participants who underwent mental health monitoring and concurrent electroencephalography with transcranial magnetic stimulation of the left dorsolateral prefrontal cortex (L-DLPFC) and left inferior parietal lobule (L-IPL). Within the following 19 months, mental health was reassessed at three timepoints during lock-down confinement and different phases of de-escalation in Spain. Compared with participants who remained stable, those who experienced increased mental distress showed, months earlier, significantly larger late EEG responses locally after L-DLPFC stimulation (but not globally nor after L-IPL stimulation). This response, together with years of formal education, was significantly predictive of mental health status during the pandemic. These findings reveal that the effect of TMS perturbation offers a predictive toy model of psychosocial stress response, as exemplified by the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ruben Perellón-Alfonso
- Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - María Redondo-Camós
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Kilian Abellaneda-Pérez
- Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Selma Delgado-Gallén
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Goretti España-Irla
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Javier Solana Sánchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - José M. Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew Senior Life, Boston, MA, USA
- Department of Neurology, Harvard Medical School; Boston, MA, USA
| | - David Bartrés-Faz
- Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
| |
Collapse
|
10
|
Ross JM, Sarkar M, Keller CJ. Experimental suppression of transcranial magnetic stimulation-electroencephalography sensory potentials. Hum Brain Mapp 2022; 43:5141-5153. [PMID: 35770956 PMCID: PMC9812254 DOI: 10.1002/hbm.25990] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 01/15/2023] Open
Abstract
The sensory experience of transcranial magnetic stimulation (TMS) evokes cortical responses measured in electroencephalography (EEG) that confound interpretation of TMS-evoked potentials (TEPs). Methods for sensory masking have been proposed to minimize sensory contributions to the TEP, but the most effective combination for suprathreshold TMS to dorsolateral prefrontal cortex (dlPFC) is unknown. We applied sensory suppression techniques and quantified electrophysiology and perception from suprathreshold dlPFC TMS to identify the best combination to minimize the sensory TEP. In 21 healthy adults, we applied single pulse TMS at 120% resting motor threshold (rMT) to the left dlPFC and compared EEG vertex N100-P200 and perception. Conditions included three protocols: No masking (no auditory masking, no foam, and jittered interstimulus interval [ISI]), Standard masking (auditory noise, foam, and jittered ISI), and our ATTENUATE protocol (auditory noise, foam, over-the-ear protection, and unjittered ISI). ATTENUATE reduced vertex N100-P200 by 56%, "click" loudness perception by 50%, and scalp sensation by 36%. We show that sensory prediction, induced with predictable ISI, has a suppressive effect on vertex N100-P200, and that combining standard suppression protocols with sensory prediction provides the best N100-P200 suppression. ATTENUATE was more effective than Standard masking, which only reduced vertex N100-P200 by 22%, loudness by 27%, and scalp sensation by 24%. We introduce a sensory suppression protocol superior to Standard masking and demonstrate that using an unjittered ISI can contribute to minimizing sensory confounds. ATTENUATE provides superior sensory suppression to increase TEP signal-to-noise and contributes to a growing understanding of TMS-EEG sensory neuroscience.
Collapse
Affiliation(s)
- Jessica M. Ross
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental IllnessResearch, Education, and Clinical Center (MIRECC)Palo AltoCaliforniaUSA,Department of Psychiatry and Behavioral SciencesStanford University Medical CenterStanfordCaliforniaUSA
| | - Manjima Sarkar
- Department of Psychiatry and Behavioral SciencesStanford University Medical CenterStanfordCaliforniaUSA
| | - Corey J. Keller
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental IllnessResearch, Education, and Clinical Center (MIRECC)Palo AltoCaliforniaUSA,Department of Psychiatry and Behavioral SciencesStanford University Medical CenterStanfordCaliforniaUSA
| |
Collapse
|
11
|
Pabst A, Proksch S, Médé B, Comstock DC, Ross JM, Balasubramaniam R. A systematic review and meta-analysis of the efficacy of intermittent theta burst stimulation (iTBS) on cognitive enhancement. Neurosci Biobehav Rev 2022; 135:104587. [PMID: 35202646 DOI: 10.1016/j.neubiorev.2022.104587] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 12/21/2022]
Abstract
Intermittent theta-burst stimulation (iTBS) has been used to focally regulate excitability of neural cortex over the past decade - however there is little consensus on the generalizability of effects reported in individual studies. Many studies use small sample sizes (N < 30), and there is a considerable amount of methodological heterogeneity in application of the stimulation itself. This systematic meta-analysis aims to consolidate the extant literature and determine if up-regulatory theta-burst stimulation reliably enhances cognition through measurable behavior. Results show that iTBS - when compared to suitable control conditions - may enhance cognition when outlier studies are removed, but also that there is a significant amount of heterogeneity across studies. Significant contributors to between-study heterogeneity include location of stimulation and method of navigation to the stimulation site. Surprisingly, the type of cognitive domain investigated was not a significant contributor of heterogeneity. The findings of this meta-analysis demonstrate that standardization of iTBS is urgent and necessary to determine if neuroenhancement of particular cognitive faculties are reliable and robust, and measurable through observable behavior.
Collapse
Affiliation(s)
- Alexandria Pabst
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA; Accenture Labs, 415 Mission Street, San Francisco, CA 94105, USA.
| | - Shannon Proksch
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| | - Butovens Médé
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| | - Daniel C Comstock
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA; Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, USA.
| | - Jessica Marie Ross
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA; Veterans Affairs Palo Alto Healthcare System, Stanford University, 3801 Miranda Ave, Palo Alto, CA 94304, USA.
| | - Ramesh Balasubramaniam
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| |
Collapse
|
12
|
Kim HJ, Koo YS, Yum MS, Ko TS, Lee SA. Cleft size and type are associate with development of epilepsy and poor seizure control in patients with schizencephaly. Seizure 2022; 98:95-100. [DOI: 10.1016/j.seizure.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022] Open
|
13
|
Ross JM, Ozdemir RA, Lian SJ, Fried PJ, Schmitt EM, Inouye SK, Pascual-Leone A, Shafi MM. A structured ICA-based process for removing auditory evoked potentials. Sci Rep 2022; 12:1391. [PMID: 35082350 PMCID: PMC8791940 DOI: 10.1038/s41598-022-05397-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS)-evoked potentials (TEPs), recorded using electroencephalography (EEG), reflect a combination of TMS-induced cortical activity and multi-sensory responses to TMS. The auditory evoked potential (AEP) is a high-amplitude sensory potential-evoked by the "click" sound produced by every TMS pulse-that can dominate the TEP and obscure observation of other neural components. The AEP is peripherally evoked and therefore should not be stimulation site specific. We address the problem of disentangling the peripherally evoked AEP of the TEP from components evoked by cortical stimulation and ask whether removal of AEP enables more accurate isolation of TEP. We hypothesized that isolation of the AEP using Independent Components Analysis (ICA) would reveal features that are stimulation site specific and unique individual features. In order to improve the effectiveness of ICA for removal of AEP from the TEP, and thus more clearly separate the transcranial-evoked and non-specific TMS-modulated potentials, we merged sham and active TMS datasets representing multiple stimulation conditions, removed the resulting AEP component, and evaluated performance across different sham protocols and clinical populations using reduction in Global and Local Mean Field Power (GMFP/LMFP) and cosine similarity analysis. We show that removing AEPs significantly reduced GMFP and LMFP in the post-stimulation TEP (14 to 400 ms), driven by time windows consistent with the N100 and P200 temporal characteristics of AEPs. Cosine similarity analysis supports that removing AEPs reduces TEP similarity between subjects and reduces TEP similarity between stimulation conditions. Similarity is reduced most in a mid-latency window consistent with the N100 time-course, but nevertheless remains high in this time window. Residual TEP in this window has a time-course and topography unique from AEPs, which follow-up exploratory analyses suggest could be a modulation in the alpha band that is not stimulation site specific but is unique to individual subject. We show, using two datasets and two implementations of sham, evidence in cortical topography, TEP time-course, GMFP/LMFP and cosine similarity analyses that this procedure is effective and conservative in removing the AEP from TEP, and may thus better isolate TMS-evoked activity. We show TEP remaining in early, mid and late latencies. The early response is site and subject specific. Later response may be consistent with TMS-modulated alpha activity that is not site specific but is unique to the individual. TEP remaining after removal of AEP is unique and can provide insight into TMS-evoked potentials and other modulated oscillatory dynamics.
Collapse
Affiliation(s)
- Jessica M Ross
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Recep A Ozdemir
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Shu Jing Lian
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA
| | - Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Eva M Schmitt
- Hinda and Arthur Marcus Institute for Aging Research, and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
| | - Sharon K Inouye
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Hinda and Arthur Marcus Institute for Aging Research, and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Hinda and Arthur Marcus Institute for Aging Research, and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
- Guttmann Brain Health Institute, Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Boulogne S, Pizzo F, Chatard B, Roehri N, Catenoix H, Ostrowsky‐Coste K, Giusiano B, Guenot M, Carron R, Bartolomei F, Rheims S. Functional connectivity and epileptogenicity of nodular heterotopias: A single‐pulse stimulation study. Epilepsia 2022; 63:961-973. [DOI: 10.1111/epi.17168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Sébastien Boulogne
- Department of Functional Neurology and Epileptology Hospices Civils de Lyon and University of Lyon Lyon France
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
- Lyon 1 University Villeurbanne France
| | - Francesca Pizzo
- Inserm, INS Institut de Neurosciences des Systèmes Aix Marseille University Marseille France
- Epileptology and Cerebral Rythmology Department Assistance Publique – Hôpitaux de Marseille Marseille France
| | - Benoit Chatard
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
| | - Nicolas Roehri
- Inserm, INS Institut de Neurosciences des Systèmes Aix Marseille University Marseille France
| | - Hélène Catenoix
- Department of Functional Neurology and Epileptology Hospices Civils de Lyon and University of Lyon Lyon France
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
| | - Karine Ostrowsky‐Coste
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
- Epileptology, Sleep Disorders and Functional Pediatric Neurology Hospices Civils de Lyon and University of Lyon Lyon France
| | - Bernard Giusiano
- Inserm, INS Institut de Neurosciences des Systèmes Aix Marseille University Marseille France
- Epileptology and Cerebral Rythmology Department Assistance Publique – Hôpitaux de Marseille Marseille France
| | - Marc Guenot
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
- Department of Functional Neurosurgery Hospices Civils de Lyon and University of Lyon Lyon France
| | - Romain Carron
- Department of Functional Neurosurgery Assistance Publique –Hôpitaux de Marseille Marseille France
| | - Fabrice Bartolomei
- Inserm, INS Institut de Neurosciences des Systèmes Aix Marseille University Marseille France
- Epileptology and Cerebral Rythmology Department Assistance Publique – Hôpitaux de Marseille Marseille France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology Hospices Civils de Lyon and University of Lyon Lyon France
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
- Lyon 1 University Villeurbanne France
| |
Collapse
|
15
|
Bridging the gap: TMS-EEG from Lab to Clinic. J Neurosci Methods 2022; 369:109482. [PMID: 35041855 DOI: 10.1016/j.jneumeth.2022.109482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 01/06/2023]
Abstract
The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has reached technological maturity and has been an object of significant scientific interest for over two decades. Ιn parallel, accumulating evidence highlights the potential of TMS-EEG as a useful tool in the field of clinical neurosciences. Nevertheless, its clinical utility has not yet been established, partly because technical and methodological limitations have created a gap between an evolving scientific tool and standard clinical practice. Here we review some of the identified gaps that still prevent TMS-EEG moving from science laboratories to clinical practice. The principal and partly overlapping gaps include: 1) complex and laborious application, 2) difficulty in obtaining high-quality signals, 3) suboptimal accuracy and reliability, and 4) insufficient understanding of the neurobiological substrate of the responses. All these four aspects need to be satisfactorily addressed for the method to become clinically applicable and enter the diagnostic and therapeutic arena. In the current review, we identify steps that might be taken to address these issues and discuss promising recent studies providing tools to aid bridging the gaps.
Collapse
|
16
|
Perellón-Alfonso R, Redondo-Camós M, Abellaneda-Pérez K, Cattaneo G, Delgado-Gallén S, España-Irla G, Sánchez JS, Tormos JM, Pascual-Leone A, Bartrés-Faz D. TMS-Evoked Prefrontal Perturbation as a Toy Model of Brain Resilience to Stress During the COVID-19 Pandemic. RESEARCH SQUARE 2021:rs.3.rs-1139350. [PMID: 34931185 PMCID: PMC8687479 DOI: 10.21203/rs.3.rs-1139350/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Psychosocial hardships associated with the COVID-19 pandemic led many individuals to suffer adverse mental health consequences, however, others show no negative effects. We hypothesized that the electroencephalographic (EEG) response to transcranial magnetic stimulation (TMS) could serve as a toy-model of an individual's capacity to resist psychological stress, in this case linked to the COVID-19 pandemic. We analyzed data from 74 participants who underwent mental health monitoring and concurrent electroencephalography with transcranial magnetic stimulation of the left dorsolateral prefrontal cortex (L-DLPFC) and left inferior parietal lobule (L-IPL). Within the following 19 months, mental health was reassessed at three time points during lock-down confinement and different phases of de-escalation in Spain. Compared with participants who remained stable, those who experienced increased mental distress showed, months earlier, significantly larger late EEG responses locally after L-DLPFC stimulation (but not globally nor after L-IPL stimulation). This response, together with years of formal education, was significantly predictive of mental health status during the pandemic. These findings reveal that the effect of TMS perturbation offers a predictive toy model of psychosocial stress resilience, as exemplified by the COVID-19 pandemic, and point to the L-DLPFC as a promising target for resilience promotion.
Collapse
|
17
|
Löscher W, Klein P. New approaches for developing multi-targeted drug combinations for disease modification of complex brain disorders. Does epilepsy prevention become a realistic goal? Pharmacol Ther 2021; 229:107934. [PMID: 34216705 DOI: 10.1016/j.pharmthera.2021.107934] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Over decades, the prevailing standard in drug discovery was the concept of designing highly selective compounds that act on individual drug targets. However, more recently, multi-target and combinatorial drug therapies have become an important treatment modality in complex diseases, including neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The development of such network-based approaches is facilitated by the significant advance in our understanding of the pathophysiological processes in these and other complex brain diseases and the adoption of modern computational approaches in drug discovery and repurposing. However, although drug combination therapy has become an effective means for the symptomatic treatment of many complex diseases, the holy grail of identifying clinically effective disease-modifying treatments for neurodegenerative and other brain diseases remains elusive. Thus, despite extensive research, there remains an urgent need for novel treatments that will modify the progression of the disease or prevent its development in patients at risk. Here we discuss recent approaches with a focus on multi-targeted drug combinations for prevention or modification of epilepsy. Over the last ~10 years, several novel promising multi-targeted therapeutic approaches have been identified in animal models. We envision that synergistic combinations of repurposed drugs as presented in this review will be demonstrated to prevent epilepsy in patients at risk within the next 5-10 years.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| |
Collapse
|
18
|
Vaqué-Alcázar L, Abellaneda-Pérez K, Solé-Padullés C, Bargalló N, Valls-Pedret C, Ros E, Sala-Llonch R, Bartrés-Faz D. Functional brain changes associated with cognitive trajectories determine specific tDCS-induced effects among older adults. J Neurosci Res 2021; 99:2188-2200. [PMID: 34047384 DOI: 10.1002/jnr.24849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
The combination of transcranial direct current stimulation (tDCS) with functional magnetic resonance imaging (fMRI) can provide original data to investigate age-related brain changes. We examined neural activity modulations induced by two multifocal tDCS procedures based on two distinct montages fitting two N-back task-based fMRI patterns ("compensatory" and "maintenance") related to high working memory (WM) in a previous publication (Fernández-Cabello et al. Neurobiol Aging (2016);48:23-33). We included 24 participants classified as stable or decliners according to their 4-year WM trajectories following a retrospective longitudinal approach. Then, we studied longitudinal fMRI differences between groups (stable and decliners) and across multifocal tDCS montages ("compensatory" and "maintenance") applied using a single-blind sham-controlled cross-over design. Decliners evidenced over-activation of non-related WM areas after 4 years of follow-up. Focusing on tDCS effects, among the decliner group, the "compensatory"-tDCS montage reduced the activity over the posterior regions where these subjects showed longitudinal hyperactivation. These results reinforce the notion that tDCS effects are characterized by an activity reduction and might be more noticeable in compromised systems. Importantly, the data provide novel evidence that cognitive trajectories predict tDCS effects in older adults.
Collapse
Affiliation(s)
- Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Kilian Abellaneda-Pérez
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Solé-Padullés
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Núria Bargalló
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Neuroradiology Section, Radiology Service, Centre de Diagnòstic per la Imatge, Hospital Clínic, Barcelona, Spain
| | - Cinta Valls-Pedret
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Emilio Ros
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Roser Sala-Llonch
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Consorcio Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
| |
Collapse
|
19
|
Marceglia S, Prenassi M, Galbiati TF, Porta M, Zekaj E, Priori A, Servello D. Thalamic Local Field Potentials Are Related to Long-Term DBS Effects in Tourette Syndrome. Front Neurol 2021; 12:578324. [PMID: 33658970 PMCID: PMC7917178 DOI: 10.3389/fneur.2021.578324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Local field potential (LFP) recordings helped to clarify the pathophysiology of Tourette syndrome (TS) and to define new strategies for deep brain stimulation (DBS) treatment for refractory TS, based on the delivery of stimulation in accordance with changes in the electrical activity of the DBS target area. However, there is little evidence on the relationship between LFP pattern and DBS outcomes in TS. Objective: To investigate the relationship between LFP oscillations and DBS effects on tics and on obsessive compulsive behavior (OCB) comorbidities. Methods: We retrospectively analyzed clinical data and LFP recordings from 17 patients treated with DBS of the centromedian-parafascicular/ventralis oralis (CM-Pf/VO) complex, and followed for more several years after DBS in the treating center. In these patients, LFPs were recorded either in the acute setting (3–5 days after DBS electrode implant) or in the chronic setting (during impulse generator replacement surgery). LFP oscillations were correlated with the Yale Global Tic Severity Scale (YGTSS) and the Yale–Brown Obsessive–Compulsive Scale (Y-BOCS) collected at baseline (before DBS surgery), 1 year after DBS, and at the last follow-up available. Results: We found that, at baseline, in the acute setting, the power of the oscillations included in the 5–15-Hz band, previously identified as TS biomarker, is correlated with the pathophysiology of tics, being significantly correlated with total YGTSS before DBS (Spearman's ρ = 0.701, p = 0.011). The power in the 5–15-Hz band was also correlated with the improvement in Y-BOCS after 1 year of DBS (Spearman's ρ = −0.587, p = 0.045), thus suggesting a relationship with the DBS effects on OCB comorbidities. Conclusions: Our observations confirm that the low-frequency (5–15-Hz) band is a significant biomarker of TS, being related to the severity of tics and, also to the long-term response on OCBs. This represents a step toward both the understanding of the mechanisms underlying DBS effects in TS and the development of adaptive DBS strategies.
Collapse
Affiliation(s)
- Sara Marceglia
- Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Trieste, Italy.,Unità Operativa Neurofisiopatologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Prenassi
- Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Trieste, Italy.,Unità Operativa Neurofisiopatologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso F Galbiati
- Functional Neurosurgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico Galeazzi Hospital, Milan, Italy
| | - Mauro Porta
- Functional Neurosurgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico Galeazzi Hospital, Milan, Italy
| | - Edvin Zekaj
- Functional Neurosurgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico Galeazzi Hospital, Milan, Italy.,"Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan Medical School, Milan, Italy
| | - Alberto Priori
- "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan Medical School, Milan, Italy
| | - Domenico Servello
- Functional Neurosurgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico Galeazzi Hospital, Milan, Italy
| |
Collapse
|
20
|
Liu W, Yue Q, Tian Y, Gong Q, Zhou D, Wu X. Neural functional connectivity in patients with periventricular nodular heterotopia-mediated epilepsy. Epilepsy Res 2021; 170:106548. [PMID: 33454660 DOI: 10.1016/j.eplepsyres.2021.106548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/10/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023]
Abstract
Periventricular nodular heterotopia (PNH) is characterized by disabled neural migration and is usually associated with epilepsy. Despite awareness of PNH-related epilepsy, little is known about the brain-level underlying functional neural bases. Thus, we used functional magnetic resonance imaging (MRI) to examine the neurobiology of 42 subjects with PNH-related epilepsy and 42 sex- and age-matched healthy controls. Measurements of functional connectivity (FC) and whole-brain graph theory analysis of data in the resting state were performed to assess neurological organization and topology. PNH patients exhibited significantly higher FC in the parietal lobe, cingulum and thalamus, as well as significantly lower FC in frontoparietal, hippocampal, and precentral regions. Graph theory analysis identified no significant differences between patients and controls, while patients showed lower network global efficiency in the limbic and cerebellum network and occipital cortex. Seed-based FC analysis confirmed disruption of activities and interregional connectivity in remote epileptic networks of patients, which may point to underlying pathological mechanisms. The cerebellum and limbic system of patients showed altered topology, suggesting that these regions or hubs may contribute to whole-brain circuits in PNH and epilepsy.
Collapse
Affiliation(s)
- Wenyu Liu
- Department of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China
| | - Qiang Yue
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China.
| | - Yun Tian
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing, 400715, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China.
| | - Xintong Wu
- Department of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China.
| |
Collapse
|
21
|
El-Hagrassy M, Duarte D, Lu J, Uygur-Kucukseymen E, Münger M, Thibaut A, Lv P, Morales-Quezada L, Fregni F. EEG modulation by different transcranial direct current stimulation (tDCS) montages: a randomized double-blind sham-control mechanistic pilot trial in healthy participants. Expert Rev Med Devices 2020; 18:107-120. [PMID: 33305643 DOI: 10.1080/17434440.2021.1860018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Based on our Phantom study on transcranial direct current stimulation (tDCS), we hypothesized that EEG band power and field confinement would be greater following left dorsolateral prefrontal cortex (DLPFC - F3) tDCS using circular vs. rectangular electrodes.Methods: Double-blind-randomized trial comparing tDCS with anode over left DLPFC (groups: rectangular electrodes, circular electrodes, sham) and 2 active subgroup references (right shoulder vs. right DLPFC).Results: Twenty-four randomized participants were assessed. We indeed found higher average EEG power spectral density (PSD) across bands for circular vs. rectangular electrodes, largely confined to F3 and there was a significant increase at AF3 for low alpha (p = 0.037). Significant differences included: increased PSD in low beta (p = 0.024) and theta bands (p = 0.021) at F3, and in theta (p = 0.036) at FC5 for the right DLPFC vs. shoulder with no coherence changes. We found PSD differences between active vs. sham tDCS at Fz for alpha (p = 0.043), delta (p = 0.036), high delta (p = 0.030); and at FC1 for alpha (p = 0.031), with coherence differences for F3-Fz in beta (p = 0.044), theta (p = 0.044), delta (p = 0.037) and high delta (p = 0.009).Conclusion: This pilot study despite low statistical power given its small sample size shows that active left DLPFC tDCS modulates EEG frontocentrally and suggests that electrode shapes/reference locations affect its neurophysiological effects, such as increased low alpha power at AF3 using circular vs. rectangular electrodes. Further research with more participants is warranted.
Collapse
Affiliation(s)
- Mirret El-Hagrassy
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,UMass Memorial Medical Center, Neurology Department, University of Massachusetts Medical School, Worcester, MA, United States
| | - Dante Duarte
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Jerry Lu
- Charter School of Wilmington, Wilmington, DE, USA
| | - Elif Uygur-Kucukseymen
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
| | - Marionna Münger
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,Division of Neuropsychology, Institute of Psychology, University of Zurich, Zurich, Switzerland
| | - Aurore Thibaut
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,University and University Hospital of Liège, Liège, Belgium
| | | | - Leon Morales-Quezada
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
| | - Felipe Fregni
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Khoo HM, Gotman J, Hall JA, Dubeau F. Treatment of Epilepsy Associated with Periventricular Nodular Heterotopia. Curr Neurol Neurosci Rep 2020; 20:59. [PMID: 33123826 DOI: 10.1007/s11910-020-01082-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW Epilepsy associated with periventricular nodular heterotopia (PNH), a developmental malformation, is frequently drug-resistant and requires focal therapeutic intervention. Invasive EEG study is usually necessary to delineate the epileptogenic zone, but constructing an accurate hypothesis to define an appropriate electrode implantation scheme and the treatment is challenging. This article reviews recent studies that help understanding the epileptogenicity and potential therapeutic options in PNH. RECENT FINDINGS New noninvasive diagnostic and intracerebral EEG analytic tools demonstrated that cortical hyperexcitability and aberrant connectivity (between nodules and cortices and among nodules) are likely mechanisms causing epilepsy in most patients. The deeply seated PNH, if epileptogenic, are ideal target for stereotactic ablative techniques, which offer concomitant ablation of multiple regions with relatively satisfactory seizure outcome. Advance in diagnostic and analytic tools have enhanced our understanding of the complex epileptogenicity in PNH. Development in stereotactic ablative techniques now offers promising therapeutic options for these patients.
Collapse
Affiliation(s)
- Hui Ming Khoo
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita-shi, Osaka Prefecture, 565-0871, Japan.
| | - Jean Gotman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Jeffery A Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - François Dubeau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
23
|
Plantier V, Watrin F, Buhler E, Martineau FS, Sahu S, Manent JB, Bureau I, Represa A. Direct and Collateral Alterations of Functional Cortical Circuits in a Rat Model of Subcortical Band Heterotopia. Cereb Cortex 2020; 29:4253-4262. [PMID: 30534979 DOI: 10.1093/cercor/bhy307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 11/14/2022] Open
Abstract
Subcortical band heterotopia (SBH), also known as double-cortex syndrome, is a neuronal migration disorder characterized by an accumulation of neurons in a heterotopic band below the normotopic cortex. The majority of patients with SBH have mild to moderate intellectual disability and intractable epilepsy. However, it is still not clear how cortical networks are organized in SBH patients and how this abnormal organization contributes to improper brain function. In this study, cortical networks were investigated in the barrel cortex in an animal model of SBH induced by in utero knockdown of Dcx, main causative gene of this condition in human patients. When the SBH was localized below the Barrel Field (BF), layer (L) four projection to correctly positioned L2/3 pyramidal cells was weakened due to lower connectivity. Conversely, when the SBH was below an adjacent cortical region, the excitatory L4 to L2/3 projection was stronger due to increased L4 neuron excitability, synaptic strength and excitation/inhibition ratio of L4 to L2/3 connection. We propose that these developmental alterations contribute to the spectrum of clinical dysfunctions reported in patients with SBH.
Collapse
Affiliation(s)
- Vanessa Plantier
- INMED, Aix-Marseille Université, INSERM UMR1249, Marseille 13009, France
| | - Françoise Watrin
- INMED, Aix-Marseille Université, INSERM UMR1249, Marseille 13009, France
| | - Emmanuelle Buhler
- INMED, Aix-Marseille Université, INSERM UMR1249, Marseille 13009, France
| | | | - Surajit Sahu
- INMED, Aix-Marseille Université, INSERM UMR1249, Marseille 13009, France
| | | | - Ingrid Bureau
- INMED, Aix-Marseille Université, INSERM UMR1249, Marseille 13009, France
| | - Alfonso Represa
- INMED, Aix-Marseille Université, INSERM UMR1249, Marseille 13009, France
| |
Collapse
|
24
|
Lotan E, Tomer O, Tavor I, Blatt I, Goldberg-Stern H, Hoffmann C, Tsarfaty G, Tanne D, Assaf Y. Widespread cortical dyslamination in epilepsy patients with malformations of cortical development. Neuroradiology 2020; 63:225-234. [PMID: 32975591 DOI: 10.1007/s00234-020-02561-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/16/2020] [Indexed: 01/16/2023]
Abstract
PURPOSE Recent research in epilepsy patients confirms our understanding of epilepsy as a network disorder with widespread cortical compromise. Here, we aimed to investigate the neocortical laminar architecture in patients with focal cortical dysplasia (FCD) and periventricular nodular heterotopia (PNH) using clinically feasible 3 T MRI. METHODS Eighteen epilepsy patients (FCD and PNH groups; n = 9 each) and age-matched healthy controls (n = 9) underwent T1 relaxation 3 T MRI, from which component probability T1 maps were utilized to extract sub-voxel composition of 6 T1 cortical layers. Seventy-eight cortical areas of the automated anatomical labeling atlas were divided into 1000 equal-volume sub-areas for better detection of cortical abnormalities, and logistic regressions were performed to compare FCD/PNH patients with healthy controls with the T1 layers composing each sub-area as regressors. Statistical significance (p < 0.05) was determined by a likelihood-ratio test with correction for false discovery rate using Benjamini-Hochberg method. RESULTS Widespread cortical abnormalities were observed in the patient groups. Out of 1000 sub-areas, 291 and 256 bilateral hemispheric cortical sub-areas were found to predict FCD and PNH, respectively. For each of these sub-areas, we were able to identify the T1 layer, which contributed the most to the prediction. CONCLUSION Our results reveal widespread cortical abnormalities in epilepsy patients with FCD and PNH, which may have a role in epileptogenesis, and likely related to recent studies showing widespread structural (e.g., cortical thinning) and diffusion abnormalities in various human epilepsy populations. Our study provides quantitative information of cortical laminar architecture in epilepsy patients that can be further targeted for study in functional and neuropathological studies.
Collapse
Affiliation(s)
- Eyal Lotan
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
- Department of Radiology, NYU Langone Medical Center, 660 1st Ave, New York, NY, 10016, USA.
| | - Omri Tomer
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ido Tavor
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ilan Blatt
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Department of Neurology, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
| | - Hadassah Goldberg-Stern
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Department of Neurology, Schneider Children's Medical Center of Israel, 49202, Petah Tikva, Israel
| | - Chen Hoffmann
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Galia Tsarfaty
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - David Tanne
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Stroke Center, Department of Neurology and Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
| | - Yaniv Assaf
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| |
Collapse
|
25
|
de Goede AA, Cumplido-Mayoral I, van Putten MJAM. Spatiotemporal Dynamics of Single and Paired Pulse TMS-EEG Responses. Brain Topogr 2020; 33:425-437. [PMID: 32367427 PMCID: PMC7293671 DOI: 10.1007/s10548-020-00773-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
For physiological brain function a particular balance between excitation and inhibition is essential. Paired pulse transcranial magnetic stimulation (TMS) can estimate cortical excitability and the relative contribution of inhibitory and excitatory networks. Combining TMS with electroencephalography (EEG) enables additional assessment of the spatiotemporal dynamics of neuronal responses in the stimulated brain. This study aims to evaluate the spatiotemporal dynamics and stability of single and paired pulse TMS-EEG responses, and assess long intracortical inhibition (LICI) at the cortical level. Twenty-five healthy subjects were studied twice, approximately one week apart. Manual coil positioning was applied in sixteen subjects and robot-guided positioning in nine. Both motor cortices were stimulated with 50 single pulses and 50 paired pulses at each of the five interstimulus intervals (ISIs): 100, 150, 200, 250 and 300 ms. To assess stability and LICI, the intraclass correlation coefficient and cluster-based permutation analysis were used. We found great resemblance in the topographical distribution of the characteristic TMS-EEG components for single and paired pulse TMS. Stimulation of the dominant and non-dominant hemisphere resulted in a mirrored spatiotemporal dynamics. No significant effect on the TMS-EEG responses was found for either stimulated hemisphere, time or coil positioning method, indicating the stability of both single and paired pulse TMS-EEG responses. For all ISIs, LICI was characterized by significant suppression of the late N100 and P180 components in the central areas, without affecting the early P30, N45 and P60 components. These observations in healthy subjects can serve as reference values for future neuropsychiatric and pharmacological studies.
Collapse
Affiliation(s)
- Annika A de Goede
- Department of Clinical Neurophysiology, Technical Medical Centre, University of Twente, P.O. Box 217, Technohal 3385, 7500 AE, Enschede, The Netherlands.
| | - Irene Cumplido-Mayoral
- Department of Clinical Neurophysiology, Technical Medical Centre, University of Twente, P.O. Box 217, Technohal 3385, 7500 AE, Enschede, The Netherlands.,Biomedical Engineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, Technical Medical Centre, University of Twente, P.O. Box 217, Technohal 3385, 7500 AE, Enschede, The Netherlands.,Department of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, The Netherlands
| |
Collapse
|
26
|
Individualized perturbation of the human connectome reveals reproducible biomarkers of network dynamics relevant to cognition. Proc Natl Acad Sci U S A 2020; 117:8115-8125. [PMID: 32193345 DOI: 10.1073/pnas.1911240117] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Large-scale brain networks are often described using resting-state functional magnetic resonance imaging (fMRI). However, the blood oxygenation level-dependent (BOLD) signal provides an indirect measure of neuronal firing and reflects slow-evolving hemodynamic activity that fails to capture the faster timescale of normal physiological function. Here we used fMRI-guided transcranial magnetic stimulation (TMS) and simultaneous electroencephalography (EEG) to characterize individual brain dynamics within discrete brain networks at high temporal resolution. TMS was used to induce controlled perturbations to individually defined nodes of the default mode network (DMN) and the dorsal attention network (DAN). Source-level EEG propagation patterns were network-specific and highly reproducible across sessions 1 month apart. Additionally, individual differences in high-order cognitive abilities were significantly correlated with the specificity of TMS propagation patterns across DAN and DMN, but not with resting-state EEG dynamics. Findings illustrate the potential of TMS-EEG perturbation-based biomarkers to characterize network-level individual brain dynamics at high temporal resolution, and potentially provide further insight on their behavioral significance.
Collapse
|
27
|
|
28
|
Abstract
Candidates for epilepsy surgery must undergo presurgical evaluation to establish whether and how surgical treatment can stop seizures without causing neurological deficits. Various techniques, including MRI, PET, single-photon emission CT, video-EEG, magnetoencephalography and invasive EEG, aim to identify the diseased brain tissue and the involved network. Recent technical and methodological developments, encompassing both advances in existing techniques and new combinations of technologies, are enhancing the ability to define the optimal resection strategy. Multimodal interpretation and predictive computer models are expected to aid surgical planning and patient counselling, and multimodal intraoperative guidance is likely to increase surgical precision. In this Review, we discuss how the knowledge derived from these new approaches is challenging our way of thinking about surgery to stop focal seizures. In particular, we highlight the importance of looking beyond the EEG seizure onset zone and considering focal epilepsy as a brain network disease in which long-range connections need to be taken into account. We also explore how new diagnostic techniques are revealing essential information in the brain that was previously hidden from view.
Collapse
|
29
|
Subramanian L, Calcagnotto ME, Paredes MF. Cortical Malformations: Lessons in Human Brain Development. Front Cell Neurosci 2020; 13:576. [PMID: 32038172 PMCID: PMC6993122 DOI: 10.3389/fncel.2019.00576] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Creating a functional cerebral cortex requires a series of complex and well-coordinated developmental steps. These steps have evolved across species with the emergence of cortical gyrification and coincided with more complex behaviors. The presence of diverse progenitor cells, a protracted timeline for neuronal migration and maturation, and diverse neuronal types are developmental features that have emerged in the gyrated cortex. These factors could explain how the human brain has expanded in size and complexity. However, their complex nature also renders new avenues of vulnerability by providing additional cell types that could contribute to disease and longer time windows that could impact the composition and organization of the cortical circuit. We aim to discuss the unique developmental steps observed in human corticogenesis and propose how disruption of these species-unique processes could lead to malformations of cortical development.
Collapse
Affiliation(s)
- Lakshmi Subramanian
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mercedes F Paredes
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States.,Neuroscience Graduate Division, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
30
|
Liu W, Wu X, Zhou D, Gong Q. Reading deficits correlate with cortical and subcortical volume changes in a genetic migration disorder. Medicine (Baltimore) 2019; 98:e17070. [PMID: 31490406 PMCID: PMC6739000 DOI: 10.1097/md.0000000000017070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Periventricular nodular heterotopia (PNH) is the most common type of epileptogenic neuronal migration disorder, and often presents with epilepsy and reading disability. The functional role of ectopic nodules has been widely studied. However, the associated structural cortical and subcortical volumetric alterations have not been well characterized. Moreover, it is unknown whether a correlation between volumetric changes and behavioral problems exists.40 subjects with bilateral PNH and 40 matched healthy controls were enrolled in this study. The total cerebral, gray matter, white matter, and cerebrospinal fluid (CSF) volumes were compared between the two groups. Furthermore, structural and functional correlations were evaluated between volumetric changes and reading disability.There were no significant differences detected in total cerebral, gray matter or CSF volumes between the two groups, but there was a significant trend of larger gray-matter volume in PNH. Specifically, smaller white matter volumes were found in the PNH patients. Moreover, the volume of white matter was negatively related to time in the digit rapid naming task and a similar but insignificant trend was seen between the volume of gray matter and backward digit span.These findings suggest that reading disability exists in our sample of bilateral PNH. Periventricular nodules would have normally migrated to the overlying cortex. However, the total cerebral, gray matter, and CSF volumes were unaffected. Alterations in neuronal migration may have an impact in the white matter associated reading dysfluency, that is, visually normal.
Collapse
Affiliation(s)
- Wenyu Liu
- Department of Neurology, West China Hospital
| | - Xintong Wu
- Department of Neurology, West China Hospital
| | - Dong Zhou
- Department of Neurology, West China Hospital
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
31
|
Khoo HM, von Ellenrieder N, Zazubovits N, Hall JA, Dubeau F, Gotman J. Internodular functional connectivity in heterotopia-related epilepsy. Ann Clin Transl Neurol 2019; 6:1010-1023. [PMID: 31211165 PMCID: PMC6562032 DOI: 10.1002/acn3.769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 11/13/2022] Open
Abstract
Objective A vast network involving the nodules and overlying cortices is believed to be responsible for the epileptogenicity in gray matter heterotopia with multiple nodules, which often associated with difficult‐to‐treat epilepsy. We sought to determine if functional magnetic resonance imaging (fMRI) could detect internodular functional connectivity (FC), and if this connectivity reflects an actual synchronized neuronal activity and partakes in epileptogenicity. Methods We studied 16 epilepsy patients with multiple heterotopic nodules; eight underwent subsequent intracerebral EEG. We examined the internodular FC using fMRI and its correspondence with internodular synchrony of intracerebral interictal activity. We then compared the spreading speed of ictal activity between connected and unconnected nodules; and the FC among possible combinations of nodule pairs in terms of their involvement at seizure onset. Results Seventy nodules were studied: 83% have significant connection to at least one other nodule. Among the 49 pairs studied with intracerebral EEG, (1) synchronized interictal activity is more prevalent in fMRI‐connected pairs (P < 0.05), (2) ictal activity spreads faster between connected pairs (P < 0.0001), and (3) stronger FC was observed between pairs in which both nodules were involved at seizure onset (P < 0.01). Interpretation fMRI could reliably and noninvasively detect the FC between heterotopic nodules. These functional connections correspond to the synchrony of interictal epileptic activity between the nodules and to the ability of nodules to generate synchronous seizure onsets or rapid seizure spread. These findings may help in understanding the complexity of the epileptogenic network in multiple heterotopic nodules and better targeting the likely epileptogenic nodules.
Collapse
Affiliation(s)
- Hui Ming Khoo
- Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada.,Department of Neurosurgery Osaka University Graduate School of Medicine Suita Japan
| | | | - Natalja Zazubovits
- Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Jeffery A Hall
- Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - François Dubeau
- Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Jean Gotman
- Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| |
Collapse
|
32
|
Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R, Di Lazzaro V, Farzan F, Ferrarelli F, Fitzgerald PB, Hui J, Ilmoniemi RJ, Kimiskidis VK, Kugiumtzis D, Lioumis P, Pascual-Leone A, Pellicciari MC, Rajji T, Thut G, Zomorrodi R, Ziemann U, Daskalakis ZJ. Clinical utility and prospective of TMS–EEG. Clin Neurophysiol 2019; 130:802-844. [DOI: 10.1016/j.clinph.2019.01.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
|
33
|
Bauer PR, Helling RM, Perenboom MJL, Lopes da Silva FH, Tolner EA, Ferrari MD, Sander JW, Visser GH, Kalitzin SN. Phase clustering in transcranial magnetic stimulation-evoked EEG responses in genetic generalized epilepsy and migraine. Epilepsy Behav 2019; 93:102-112. [PMID: 30875639 DOI: 10.1016/j.yebeh.2019.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Epilepsy and migraine are paroxysmal neurological conditions associated with disturbances of cortical excitability. No useful biomarkers to monitor disease activity in these conditions are available. Phase clustering was previously described in electroencephalographic (EEG) responses to photic stimulation and may be a potential epilepsy biomarker. OBJECTIVE The objective of this study was to investigate EEG phase clustering in response to transcranial magnetic stimulation (TMS), compare it with photic stimulation in controls, and explore its potential as a biomarker of genetic generalized epilepsy or migraine with aura. METHODS People with (possible) juvenile myoclonic epilepsy (JME), migraine with aura, and healthy controls underwent single-pulse TMS with concomitant EEG recording during the interictal period. We compared phase clustering after TMS with photic stimulation across the groups using permutation-based testing. RESULTS We included eight people with (possible) JME (five off medication, three on), 10 with migraine with aura, and 37 controls. The TMS and photic phase clustering spectra showed significant differences between those with epilepsy without medication and controls. Two phase clustering-based indices successfully captured these differences between groups. One participant was tested multiple times. In this case, the phase clustering-based indices were inversely correlated with the dose of antiepileptic medication. Phase clustering did not differ between people with migraine and controls. CONCLUSION We present methods to quantify phase clustering using TMS-EEG and show its potential value as a measure of brain network activity in genetic generalized epilepsy. Our results suggest that the higher propensity to phase clustering is not shared between genetic generalized epilepsy and migraine.
Collapse
Affiliation(s)
- Prisca R Bauer
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, the Netherlands; NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
| | - Robert M Helling
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, the Netherlands
| | - Matthijs J L Perenboom
- Department of Neurology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Fernando H Lopes da Silva
- Center of Neurosciences, Swammerdam Institute of Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE, the Netherlands; Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, the Netherlands; NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - Gerhard H Visser
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, the Netherlands
| | - Stiliyan N Kalitzin
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, the Netherlands; Image Sciences Institute, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, the Netherlands
| |
Collapse
|
34
|
Walsh CA. Rainer W. Guillery and the genetic analysis of brain development. Eur J Neurosci 2019; 49:900-908. [PMID: 30152010 PMCID: PMC6393213 DOI: 10.1111/ejn.14135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/05/2023]
Abstract
Ray Guillery had broad research interests that spanned cellular neuroanatomy, but was perhaps best known for his investigation of the connectivity and function of the thalamus, especially the visual pathways. His work on the genetics of abnormal vision in albino mammals served as an early paradigm for genetic approaches for studying brain connectivity of complex species in general, and remains of major relevance today. This work, especially on the Siamese cat, illustrates the complex relationship between genotype and physiology of cerebral cortical circuits, and anticipated many of the issues underlying the imperfect relationship between genes, circuits, and behavior in mammalian species including human. This review also briefly summarizes studies from our own lab inspired by Ray Guillery's legacy that continues to explore the relationship between genes, structure, and behavior in human cerebral cortex.
Collapse
Affiliation(s)
- Christopher A. Walsh
- Division of Genetics and Genomics Howard Hughes Medical Institute Boston Children’s Hospital Departments of Pediatrics and Neurology Harvard Medical School CLS15062, 3 Blackfan Circle Boston MA 02115,
| |
Collapse
|
35
|
Represa A. Why Malformations of Cortical Development Cause Epilepsy. Front Neurosci 2019; 13:250. [PMID: 30983952 PMCID: PMC6450262 DOI: 10.3389/fnins.2019.00250] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Malformations of cortical development (MCDs), a complex family of rare disorders, result from alterations of one or combined developmental steps, including progenitors proliferation, neuronal migration and differentiation. They are an important cause of childhood epilepsy and frequently associate cognitive deficits and behavioral alterations. Though the physiopathological mechanisms of epilepsy in MCD patients remain poorly elucidated, research during the past decade highlighted the contribution of some factors that will be reviewed in this paper and that include: (i) the genes that caused the malformation, that can be responsible for a significant reduction of inhibitory cells (e.g., ARX gene) or be inducing cell-autonomous epileptogenic changes in affected neurons (e.g., mutations on the mTOR pathway); (ii) the alteration of cortical networks development induced by the malformation that will also involve adjacent or distal cortical areas apparently sane so that the epileptogenic focus might be more extended that the malformation or even localized at distance from it; (iii) the normal developmental processes that would influence and determine the onset of epilepsy in MCD patients, particularly precocious in most of the cases.
Collapse
Affiliation(s)
- Alfonso Represa
- INSERM, Institut de Neurobiologie de la Méditerranée, Aix-Marseille University, Marseille, France
| |
Collapse
|
36
|
Aicua-Rapun I, André P, Novy J. Closed-loop Neuropharmacology for Epilepsy: Distant Dream or Future Reality? Curr Neuropharmacol 2019; 17:447-458. [PMID: 29521237 PMCID: PMC6520584 DOI: 10.2174/1570159x16666180308154646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/10/2017] [Accepted: 02/27/2018] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is considered the most frequent severe neurological condition but most patients treated with medication become seizure free. The management of treatment, however, is highly empirical, mainly relying on observation. A closed-loop therapy for epilepsy would be very valuable for more efficient treatment regimens. Here we discuss monitoring treatment (therapeutic drug monitoring) and the potential developments in this field, as well as providing a review of potential biomarkers that could be used to monitor the disease activity. Finally, we consider the pharmacogenetic input in epilepsy treatment.
Collapse
Affiliation(s)
- Irene Aicua-Rapun
- Address correspondence to this author at the Department of Neuroscience, Neurology service. University Hospital of Lausanne BH07, Faculty of Biology and Medicine, University of Lausanne. Rue du Bugnon 46 CH 1011, Lausanne, Switzerland; Tel/Fax: +41213144552, +41213141290;, E-mail:
| | | | | |
Collapse
|
37
|
Darmani G, Bergmann TO, Zipser C, Baur D, Müller-Dahlhaus F, Ziemann U. Effects of antiepileptic drugs on cortical excitability in humans: A TMS-EMG and TMS-EEG study. Hum Brain Mapp 2018; 40:1276-1289. [PMID: 30549127 DOI: 10.1002/hbm.24448] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/21/2018] [Accepted: 10/17/2018] [Indexed: 12/29/2022] Open
Abstract
Brain responses to transcranial magnetic stimulation (TMS) recorded by electroencephalography (EEG) are emergent noninvasive markers of neuronal excitability and effective connectivity in humans. However, the underlying physiology of these TMS-evoked EEG potentials (TEPs) is still heavily underexplored, impeding a broad application of TEPs to study pathology in neuropsychiatric disorders. Here we tested the effects of a single oral dose of three antiepileptic drugs with specific modes of action (carbamazepine, a voltage-gated sodium channel (VGSC) blocker; brivaracetam, a ligand to the presynaptic vesicle protein VSA2; tiagabine, a gamma-aminobutyric acid (GABA) reuptake inhibitor) on TEP amplitudes in 15 healthy adults in a double-blinded randomized placebo-controlled crossover design. We found that carbamazepine decreased the P25 and P180 TEP components, and brivaracetam the N100 amplitude in the nonstimulated hemisphere, while tiagabine had no effect. Findings corroborate the view that the P25 represents axonal excitability of the corticospinal system, the N100 in the nonstimulated hemisphere propagated activity suppressed by inhibition of presynaptic neurotransmitter release, and the P180 late activity particularly sensitive to VGSC blockade. Pharmaco-physiological characterization of TEPs will facilitate utilization of TMS-EEG in neuropsychiatric disorders with altered excitability and/or network connectivity.
Collapse
Affiliation(s)
- Ghazaleh Darmani
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Til O Bergmann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Carl Zipser
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - David Baur
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Florian Müller-Dahlhaus
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
38
|
Abellaneda-Pérez K, Vaqué-Alcázar L, Vidal-Piñeiro D, Jannati A, Solana E, Bargalló N, Santarnecchi E, Pascual-Leone A, Bartrés-Faz D. Age-related differences in default-mode network connectivity in response to intermittent theta-burst stimulation and its relationships with maintained cognition and brain integrity in healthy aging. Neuroimage 2018; 188:794-806. [PMID: 30472372 DOI: 10.1016/j.neuroimage.2018.11.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022] Open
Abstract
The default-mode network (DMN) is affected by advancing age, where particularly long-range connectivity has been consistently reported to be reduced as compared to young individuals. We examined whether there were any differences in the effects of intermittent theta-burst stimulation (iTBS) in DMN connectivity between younger and older adults, its associations with cognition and brain integrity, as well as with long-term cognitive status. Twenty-four younger and 27 cognitively normal older adults were randomly assigned to receive real or sham iTBS over the left inferior parietal lobule between two resting-state functional magnetic resonance imaging (rs-fMRI) acquisitions. Three years later, those older adults who had received real iTBS underwent a cognitive follow-up assessment. Among the younger adults, functional connectivity increased following iTBS in distal DMN areas from the stimulation site. In contrast, older adults exhibited increases in connectivity following iTBS in proximal DMN regions. Moreover, older adults with functional responses to iTBS resembling those of the younger participants exhibited greater brain integrity and higher cognitive performance at baseline and at the 3-year follow-up, along with less cognitive decline. Finally, we observed that 'young-like' functional responses to iTBS were also related to the educational background attained amongst older adults. The present study reveals that functional responses of the DMN to iTBS are modulated by age. Furthermore, combining iTBS and rs-fMRI in older adults may allow characterizing distinctive cognitive profiles in aging and its progression, probably reflecting network plasticity systems that may entail a neurobiological substrate of cognitive reserve.
Collapse
Affiliation(s)
- Kilian Abellaneda-Pérez
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Elisabeth Solana
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Núria Bargalló
- Hospital Clínic de Barcelona, Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain; Hospital Clínic de Barcelona, Neuroradiology Section, Radiology Service, Centre de Diagnòstic per la Imatge, Barcelona, Spain
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Siena Brain Investigation and Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Autonomous University of Barcelona, Institut Universitari de Neurorehabilitació Guttmann, Badalona, Spain
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Autonomous University of Barcelona, Institut Universitari de Neurorehabilitació Guttmann, Badalona, Spain.
| |
Collapse
|
39
|
Díaz-Alonso J, de Salas-Quiroga A, Paraíso-Luna J, García-Rincón D, Garcez PP, Parsons M, Andradas C, Sánchez C, Guillemot F, Guzmán M, Galve-Roperh I. Loss of Cannabinoid CB1 Receptors Induces Cortical Migration Malformations and Increases Seizure Susceptibility. Cereb Cortex 2018; 27:5303-5317. [PMID: 28334226 DOI: 10.1093/cercor/bhw309] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
Neuronal migration is a fundamental process of brain development, and its disruption underlies devastating neurodevelopmental disorders. The transcriptional programs governing this process are relatively well characterized. However, how environmental cues instruct neuronal migration remains poorly understood. Here, we demonstrate that the cannabinoid CB1 receptor is strictly required for appropriate pyramidal neuron migration in the developing cortex. Acute silencing of the CB1 receptor alters neuronal morphology and impairs radial migration. Consequently, CB1 siRNA-electroporated mice display cortical malformations mimicking subcortical band heterotopias and increased seizure susceptibility in adulthood. Importantly, rescuing the CB1 deficiency-induced radial migration arrest by knockdown of the GTPase protein RhoA restored the hyperexcitable neuronal network and seizure susceptibility. Our findings show that CB1 receptor/RhoA signaling regulates pyramidal neuron migration, and that deficient CB1 receptor signaling may contribute to cortical development malformations leading to refractory epilepsy independently of its canonical neuromodulatory role in the adult brain.
Collapse
Affiliation(s)
- Javier Díaz-Alonso
- Department of Biochemistry and Molecular Biology I, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Adán de Salas-Quiroga
- Department of Biochemistry and Molecular Biology I, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain
| | - Juan Paraíso-Luna
- Department of Biochemistry and Molecular Biology I, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain
| | - Daniel García-Rincón
- Department of Biochemistry and Molecular Biology I, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain
| | - Patricia P Garcez
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Clara Andradas
- Department of Biochemistry and Molecular Biology I, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040 Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Cristina Sánchez
- Department of Biochemistry and Molecular Biology I, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040 Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain
| | - François Guillemot
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Manuel Guzmán
- Department of Biochemistry and Molecular Biology I, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain
| | - Ismael Galve-Roperh
- Department of Biochemistry and Molecular Biology I, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain
| |
Collapse
|
40
|
Sprugnoli G, Vatti G, Rossi S, Cerase A, Renieri A, Mencarelli MA, Zara F, Rossi A, Santarnecchi E. Functional Connectivity and Genetic Profile of a "Double-Cortex"-Like Malformation. Front Integr Neurosci 2018; 12:22. [PMID: 29946244 PMCID: PMC6005822 DOI: 10.3389/fnint.2018.00022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/22/2018] [Indexed: 11/13/2022] Open
Abstract
Laminar heterotopia is a rare condition consisting in an extra layer of gray matter under properly migrated cortex; it configures an atypical presentation of periventricular nodular heterotopia (PNH) or a double cortex (DC) syndrome. We conducted an original functional MRI (fMRI) analysis in a drug-resistant epilepsy patient with “double-cortex”-like malformation to reveal her functional connectivity (FC) as well as a wide genetic analysis to identify possible genetic substrates. Heterotopias were segmented into region of interests (ROIs), whose voxel-wise FC was compared to that of (i) its normally migrated counterpart, (ii) its contralateral homologous, and (iii) those of 30 age-matched healthy controls. Extensive genetic analysis was conducted to screen cortical malformations-associated genes. Compared to healthy controls, both laminar heterotopias and the overlying cortex showed significant reduction of FC with the contralateral hemisphere. Two heterozygous variants of uncertain clinical significance were found, involving autosomal recessive disease-causing genes, FAT4 and COL18A1. This first FC analysis of a unique case of “double-cortex”-like malformation revealed a hemispheric connectivity segregation both in the laminar cortex as in the correctly migrated one, with a new pattern of genes’ mutations. Our study suggests the altered FC could have an electrophysiological and functional impact on large-scale brain networks, and the involvement of not yet identified genes in “double-cortex”-like malformation with a possible role of rare variants in recessive genes as pathogenic cofactors.
Collapse
Affiliation(s)
- Giulia Sprugnoli
- Department of Medicine, Surgery and Neuroscience, Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy.,Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Giampaolo Vatti
- Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience, Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy.,Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Alfonso Cerase
- Department of Medicine, Surgery and Neuroscience, Section of Neuroradiology, University of Siena, Siena, Italy
| | - Alessandra Renieri
- Department of Medicine, Surgery and Neuroscience, Section of Medical Genetics, University of Siena, Siena, Italy
| | - Maria A Mencarelli
- Department of Medicine, Surgery and Neuroscience, Section of Medical Genetics, University of Siena, Siena, Italy
| | - Federico Zara
- Laboratory of Neurogenetics and Neuroscience, Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandro Rossi
- Department of Medicine, Surgery and Neuroscience, Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy.,Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Department of Medicine, Surgery and Neuroscience, Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy.,Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy.,Department of Cognitive Neurology, Beth Israel Deaconess Medical Center, Berenson-Allen Center for Noninvasive Brain Stimulation, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
41
|
Zipser CM, Premoli I, Belardinelli P, Castellanos N, Rivolta D, Heidegger T, Müller-Dahlhaus F, Ziemann U. Cortical Excitability and Interhemispheric Connectivity in Early Relapsing-Remitting Multiple Sclerosis Studied With TMS-EEG. Front Neurosci 2018; 12:393. [PMID: 29937712 PMCID: PMC6002497 DOI: 10.3389/fnins.2018.00393] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/22/2018] [Indexed: 12/26/2022] Open
Abstract
Evoked potentials (EPs) are well established in clinical practice for diagnosis and prognosis in multiple sclerosis (MS). However, their value is limited to the assessment of their respective functional systems. Here, we used transcranial magnetic stimulation (TMS) coupled with electroencephalography (TMS-EEG) to investigate cortical excitability and spatiotemporal dynamics of TMS-evoked neural activity in MS patients. Thirteen patients with early relapsing–remitting MS (RRMS) with a median Expanded Disability Status Scale (EDSS) of 1.0 (range 0–2.5) and 16 age- and gender-matched healthy controls received single-pulse TMS of left and right primary motor cortex (L-M1 and R-M1), respectively. Resting motor threshold for L-M1 and R-M1 was increased in MS patients. Latencies and amplitudes of N45, P70, N100, P180, and N280 TMS-evoked EEG potentials (TEPs) were not different between groups, except a significantly increased amplitude of the N280 TEP in the MS group, both for L-M1 and R-M1 stimulation. Interhemispheric signal propagation (ISP), estimated from the area under the curve of TEPs in the non-stimulated vs. stimulated M1, also did not differ between groups. In summary, findings show that ISP and TEPs were preserved in early-stage RRMS, except for an exaggerated N280 amplitude. Our findings indicate that TMS-EEG is feasible in testing excitability and connectivity in cortical neural networks in MS patients, complementary to conventional EPs. However, relevance and pathophysiological correlates of the enhanced N280 will need further study.
Collapse
Affiliation(s)
- Carl M Zipser
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Isabella Premoli
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Paolo Belardinelli
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Nazareth Castellanos
- Nirakara: Instituto de Investigación y Formación en Ciencias Cognitivas, Madrid, Spain
| | - Davide Rivolta
- Department of Education Science, Psychology and Communication Science, University of Bari Aldo Moro, Bari, Italy
| | - Tonio Heidegger
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Florian Müller-Dahlhaus
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
42
|
Integrity of the corpus callosum in patients with periventricular nodular heterotopia related epilepsy by FLNA mutation. NEUROIMAGE-CLINICAL 2017; 17:109-114. [PMID: 29062687 PMCID: PMC5647519 DOI: 10.1016/j.nicl.2017.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 02/05/2023]
Abstract
Objective To investigate the quantitative diffusion properties of the corpus callosum (CC) in a large group of patients with periventricular nodular heterotopia (PNH) related epilepsy and to further investigate the effect of Filamin A (FLNA) mutation on these properties. Methods Patients with PNH (n = 34), subdivided into FLNA-mutated (n = 11) and FLNA-nonmutated patients (n = 23) and healthy controls (n = 34), underwent 3.0 T structural MRI and diffusion imaging scan (64 direction). Fractional anisotropy (FA) and mean diffusivity (MD) were measured in the three major subdivisions of the CC (genu, body and splenium). Correlations between DTI metric changes and clinical parameters were also evaluated. Furthermore, the effect of FLNA mutation on structural integrity of the corpus callosum was examined. Results Patients with PNH and epilepsy had significant reductions in FA for the genu and splenium of the CC, accompanied by increases in MD for the splenium, as compared to healthy controls. There were no correlations between clinical parameters of epilepsy and MD. The FA value in the splenium negatively correlated with epilepsy duration. Interestingly, FLNA-mutated patients showed significantly decreased FA for all three major subdivisions of the CC, and increased MD for the genu and splenium, as compared to HCs and FLNA-nonmutated patients. Conclusions These findings support the conclusion that patients with epilepsy secondary to PNH present widespread microstructural changes found in the corpus callosum that extend beyond the macroscopic MRI-visible lesions. This study also indicates that FLNA may affect white matter integrity in this disorder. PNH patients presented diffusion abnormality in splenium segment of the CC. Only the FA value for the splenium negatively correlated with epilepsy duration. In PNH, DTI changes of CC differentiate FLNA-mutated from nonmutated subjects.
Collapse
|
43
|
Pizzo F, Roehri N, Catenoix H, Medina S, McGonigal A, Giusiano B, Carron R, Scavarda D, Ostrowsky K, Lepine A, Boulogne S, Scholly J, Hirsch E, Rheims S, Bénar CG, Bartolomei F. Epileptogenic networks in nodular heterotopia: A stereoelectroencephalography study. Epilepsia 2017; 58:2112-2123. [DOI: 10.1111/epi.13919] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Francesca Pizzo
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
| | - Nicolas Roehri
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
| | - Hélène Catenoix
- Department of Functional Neurology and Epileptology; Hospices Civils de Lyon (Lyon University Hospital); Hospital for Neurology and Neurosurgery Pierre Wertheimer; Lyon France
| | - Samuel Medina
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
| | - Aileen McGonigal
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
- Clinical Neurophysiology; APHM; Timone Hospital; Marseille France
| | - Bernard Giusiano
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
| | - Romain Carron
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
- Functional and Stereotactic Neurosurgery; APHM; Timone Hospital; Marseille France
| | - Didier Scavarda
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
- Functional and Stereotactic Neurosurgery; APHM; Timone Hospital; Marseille France
| | - Karine Ostrowsky
- Department of Functional Neurology and Epileptology; Hospices Civils de Lyon (Lyon University Hospital); Hospital for Neurology and Neurosurgery Pierre Wertheimer; Lyon France
| | - Anne Lepine
- Pediatric Neurology Department; Timone Hospital; APHM; Marseille France
| | - Sébastien Boulogne
- Department of Functional Neurology and Epileptology; Hospices Civils de Lyon (Lyon University Hospital); Hospital for Neurology and Neurosurgery Pierre Wertheimer; Lyon France
| | - Julia Scholly
- Medical and Surgical Epilepsy Unit; Hautepierre Hospital; University of Strasbourg; Strasbourg France
| | - Edouard Hirsch
- Medical and Surgical Epilepsy Unit; Hautepierre Hospital; University of Strasbourg; Strasbourg France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology; Hospices Civils de Lyon (Lyon University Hospital); Hospital for Neurology and Neurosurgery Pierre Wertheimer; Lyon France
| | - Christian-George Bénar
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
| | - Fabrice Bartolomei
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
- Clinical Neurophysiology; APHM; Timone Hospital; Marseille France
| |
Collapse
|
44
|
Liu W, Yan B, An D, Niu R, Tang Y, Tong X, Gong Q, Zhou D. Perilesional and contralateral white matter evolution and integrity in patients with periventricular nodular heterotopia and epilepsy: a longitudinal diffusion tensor imaging study. Eur J Neurol 2017; 24:1471-1478. [PMID: 28872216 DOI: 10.1111/ene.13441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/31/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND PURPOSE This study aimed to assess the evolution of perinodular and contralateral white matter abnormalities in patients with periventricular nodular heterotopia (PNH) and epilepsy. METHODS Diffusion tensor imaging (DTI) (64 directions) and 3 T structural magnetic resonance imaging were performed in 29 PNH patients (mean age 27.3 years), and 16 patients underwent a second scan (average time between the two scans 1.1 years). Fractional anisotropy and mean diffusivity were measured within the perilesional and contralateral white matter. RESULTS Longitudinal analysis showed that white matter located 10 mm from the focal nodule displayed characteristics intermediate to tissue 5 mm away, and normal-appearing white matter (NAWM) also established evolution profiles of perinodular white matter in different cortical lobes. Compared to 29 age- and sex-matched healthy controls, significant decreased fractional anisotropy and elevated mean diffusivity values were observed in regions 5 and 10 mm from nodules (P < 0.01), whilst DTI metrics of the remaining NAWM did not differ significantly from controls. Additionally, normal DTI metrics were shown in the contralateral region in patients with unilateral PNH. CONCLUSIONS Periventricular nodular heterotopia is associated with microstructural abnormalities within the perilesional white matter and the extent decreases with increasing distance from the nodule. In the homologous contralateral region, white matter diffusion metrics were unchanged in unilateral PNH. These findings have clinical implications with respect to the medical and surgical interventions of PNH-related epilepsy.
Collapse
Affiliation(s)
- W Liu
- Departments of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - B Yan
- Departments of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - D An
- Departments of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - R Niu
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - Y Tang
- Departments of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - X Tong
- Departments of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Q Gong
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - D Zhou
- Departments of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Hallett M, Di Iorio R, Rossini PM, Park JE, Chen R, Celnik P, Strafella AP, Matsumoto H, Ugawa Y. Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks. Clin Neurophysiol 2017; 128:2125-2139. [PMID: 28938143 DOI: 10.1016/j.clinph.2017.08.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/31/2017] [Accepted: 08/12/2017] [Indexed: 01/01/2023]
Abstract
The goal of this review is to show how transcranial magnetic stimulation (TMS) techniques can make a contribution to the study of brain networks. Brain networks are fundamental in understanding how the brain operates. Effects on remote areas can be directly observed or identified after a period of stimulation, and each section of this review will discuss one method. EEG analyzed following TMS is called TMS-evoked potentials (TEPs). A conditioning TMS can influence the effect of a test TMS given over the motor cortex. A disynaptic connection can be tested also by assessing the effect of a pre-conditioning stimulus on the conditioning-test pair. Basal ganglia-cortical relationships can be assessed using electrodes placed in the process of deep brain stimulation therapy. Cerebellar-cortical relationships can be determined using TMS over the cerebellum. Remote effects of TMS on the brain can be found as well using neuroimaging, including both positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). The methods complement each other since they give different views of brain networks, and it is often valuable to use more than one technique to achieve converging evidence. The final product of this type of work is to show how information is processed and transmitted in the brain.
Collapse
Affiliation(s)
- Mark Hallett
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| | - Riccardo Di Iorio
- Department of Geriatrics, Institute of Neurology, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli Foundation, Rome, Italy
| | - Paolo Maria Rossini
- Department of Geriatrics, Institute of Neurology, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli Foundation, Rome, Italy; Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Jung E Park
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA; Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Robert Chen
- Krembil Research Institute, University of Toronto, Toronto, Canada; Department of Medicine (Neurology), University of Toronto, Toronto, Canada
| | - Pablo Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, USA
| | - Antonio P Strafella
- Krembil Research Institute, University of Toronto, Toronto, Canada; Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, Canada; Research Imaging Centre, Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Ontario, Canada
| | | | - Yoshikazu Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Japan; Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Japan
| |
Collapse
|
46
|
Liu W, An D, Tong X, Niu R, Gong Q, Zhou D. Region-specific connectivity in patients with periventricular nodular heterotopia and epilepsy: A study combining diffusion tensor imaging and functional MRI. Epilepsy Res 2017; 136:137-142. [PMID: 28850831 DOI: 10.1016/j.eplepsyres.2017.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/02/2017] [Accepted: 08/16/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Periventricular nodular heterotopia (PNH) is an important cause of chronic epilepsy. The purpose of this study was to evaluate region-specific connectivity in PNH patients with epilepsy and assess correlation between connectivity strength and clinical factors including duration and prognosis. METHODS Diffusion tensor imaging (DTI) and resting state functional MRI (fMRI) were performed in 28 subjects (mean age 27.4years; range 9-56years). The structural connectivity of fiber bundles passing through the manually-selected segmented nodules and other brain regions were analyzed by tractography. Cortical lobes showing functional correlations to nodules were also determined. RESULTS For all heterotopic gray matter nodules, including at least one in each subject, the most frequent segments to which nodular heterotopia showed structural (132/151) and functional (146/151) connectivity were discrete regions of the ipsilateral overlying cortex. Agreement between diffusion tensor tractography and functional connectivity analyses was conserved in 81% of all nodules (122/151). In patients with longer duration or refractory epilepsy, the connectivity was significantly stronger, particularly to the frontal and temporal lobes (P<0.05). CONCLUSIONS Nodules in PNH were structurally and functionally connected to the cortex. The extent is stronger in patients with longstanding or intractable epilepsy. These findings suggest the region-specific interactions may help better evaluate prognosis and seek medical or surgical interventions of PNH-related epilepsy.
Collapse
Affiliation(s)
- Wenyu Liu
- Departments of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| | - Dongmei An
- Departments of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| | - Xin Tong
- Departments of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| | - Running Niu
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| | - Qiyong Gong
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| | - Dong Zhou
- Departments of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| |
Collapse
|
47
|
Abstract
Epilepsy prevention is one of the great unmet needs in epilepsy. Approximately 15% of all epilepsy is caused by an acute acquired CNS insult such as traumatic brain injury (TBI), stroke or encephalitis. There is a latent period between the insult and epilepsy onset that presents an opportunity to intervene with preventive treatment that is unique in neurology. Yet no phase 3 epilepsy prevention studies, and only 2 phase 2 studies have been initiated in the last 16years. Current prevailing opinion is that the research community is not ready for clinical preventive epilepsy studies, and that animal models should first be refined and biomarkers of epileptogenesis and of epilepsy discovered before clinical studies are embarked upon. We review data to suggest that there is basis to do epilepsy prevention studies now with the current knowledge and available drugs, and that those studies are feasible with currently available tools. We suggest that a different approach is needed from the past in order to maximize chances of success, minimize the cost, and set up platform for future preventive treatment development. That approach should include close coordination of preclinical and clinical development programs in a combined PTE prevention strategy, consideration of polytherapy, and simultaneous, combined clinical development of preventive treatment and of biomarker discovery. We argue that the currently favored approach of eschewing clinical studies until biomarkers are available will delay the discovery of epilepsy prevention treatment by at least 10 years and significantly increase the cost of such discovery.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD 20817, United States.
| | - Ivana Tyrlikova
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD 20817, United States.
| |
Collapse
|
48
|
Polster T, Schulz R, Woermann FG, Bernhard MK, Schmitt FC, Büntjen L, Voges J. Thermoablation bei nodulären Heterotopien. ZEITSCHRIFT FUR EPILEPTOLOGIE 2017. [DOI: 10.1007/s10309-017-0107-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Shafi MM, Santarnecchi E, Fong TG, Jones RN, Marcantonio ER, Pascual-Leone A, Inouye SK. Advancing the Neurophysiological Understanding of Delirium. J Am Geriatr Soc 2017; 65:1114-1118. [PMID: 28165616 DOI: 10.1111/jgs.14748] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Delirium is a common problem associated with substantial morbidity and increased mortality. However, the brain dysfunction that leads some individuals to develop delirium in response to stressors is unclear. In this article, we briefly review the neurophysiologic literature characterizing the changes in brain function that occur in delirium, and in other cognitive disorders such as Alzheimer's disease. Based on this literature, we propose a conceptual model for delirium. We propose that delirium results from a breakdown of brain function in individuals with impairments in brain connectivity and brain plasticity exposed to a stressor. The validity of this conceptual model can be tested using Transcranial Magnetic Stimulation in combination with Electroencephalography, and, if accurate, could lead to the development of biomarkers for delirium risk in individual patients. This model could also be used to guide interventions to decrease the risk of cerebral dysfunction in patients preoperatively, and facilitate recovery in patients during or after an episode of delirium.
Collapse
Affiliation(s)
- Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Tamara G Fong
- Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Aging Brain Center, Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts
| | - Richard N Jones
- Department of Psychiatry and Human Behavior, Brown University Warren Alpert Medical School, Providence, Rhode Island.,Department of Neurology, Brown University Warren Alpert Medical School, Providence, Rhode Island
| | - Edward R Marcantonio
- Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Sharon K Inouye
- Harvard Medical School, Boston, Massachusetts.,Aging Brain Center, Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
50
|
Pawley AD, Chowdhury FA, Tangwiriyasakul C, Ceronie B, Elwes RDC, Nashef L, Richardson MP. Cortical excitability correlates with seizure control and epilepsy duration in chronic epilepsy. Ann Clin Transl Neurol 2017; 4:87-97. [PMID: 28168208 PMCID: PMC5288462 DOI: 10.1002/acn3.383] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 11/30/2022] Open
Abstract
Objective Cortical excitability differs between treatment responders and nonresponders in new‐onset epilepsy. Moreover, during the first 3 years of epilepsy, cortical excitability becomes more abnormal in nonresponders but normalizes in responders. Here, we study chronic active epilepsy, to examine whether cortical excitability continues to evolve over time, in association with epilepsy duration and treatment response. Methods We studied 28 normal subjects, 28 patients with moderately controlled epilepsy (≤4 seizures per year) and 40 patients with poorly controlled epilepsy (≥20 or more seizures per year). Resting motor threshold (RMT), active motor threshold (AMT), short‐interval intracortical inhibition (SICI), intracortical facilitation (ICF) and cortical silent period (CSP) were measured, using transcranial magnetic stimulation (TMS). Disease and treatment covariates were collected (age at onset of epilepsy, epilepsy duration, number of drugs prescribed, total drug load, sodium channel drug load). Results RMT and AMT were higher in patients than in normal subjects; RMT and AMT were higher in poorly controlled than moderately controlled patients. ICF at 12 msec and 15 msec were lower in poorly controlled patients than in normal subjects. Long‐interval intracortical inhibition (LICI) at 50 msec was higher in poorly controlled compared to moderately controlled patients. These differences were not explained by antiepileptic drug (AED) treatment or duration of epilepsy. RMT and AMT increased with duration in the poorly controlled group, but did not increase with duration in the moderately controlled group. Interpretation Cortical excitability differs markedly between moderately controlled and poorly controlled patients with chronic epilepsy, not explained by disease or treatment variables. Moreover, the evolution of cortical excitability over time differs, becoming more abnormal in the poorly controlled group.
Collapse
Affiliation(s)
- Adam D Pawley
- Department of Basic and Clinical Neuroscience King's College London London United Kingdom
| | - Fahmida A Chowdhury
- Department of Basic and Clinical Neuroscience King's College London London United Kingdom
| | | | - Bryan Ceronie
- Department of Basic and Clinical Neuroscience King's College London London United Kingdom
| | - Robert D C Elwes
- Centre for Epilepsy King's College Hospital London United Kingdom
| | - Lina Nashef
- Centre for Epilepsy King's College Hospital London United Kingdom
| | - Mark P Richardson
- Department of Basic and Clinical Neuroscience King's College London London United Kingdom
| |
Collapse
|