1
|
Ak ET, Okuyucu B, Hatipoğlu B, Arslan G. The effect of acetylcholinesterase inhibitor rivastigmine in pentylenetetrazole-induced kindling model of epilepsy in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03679-3. [PMID: 39643806 DOI: 10.1007/s00210-024-03679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
This study aimed to investigate the role of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitor rivastigmine (RIVA) in the pentylenetetrazole (PTZ)- induced kindling model of epilepsy. The current study consists of three steps; 1) Saline or RIVA (0.5, 1, and 2 mg/kg) was administered intraperitoneally (i.p.) 15 min before PTZ (35 mg/kg) during the kindling process and seizure behaviors were observed; 2) Single doses of RIVA (0.25, 0.5, and 1 mg/kg; i.p.) was administered to the electrode implanted kindled rats 15 min before PTZ and electrocorticogram (ECoG) recordings were obtained; 3) Low-dose of RIVA (0.5 mg/kg) was administered to the kindled rats for 14 consecutive days and after 24 h PTZ was administered and ECoG recordings were obtained. In addition, 24 h after the PTZ injection, the hippocampus was extracted and mRNA expression levels of N-methyl D-aspartate receptor subunit 2B (NR2B) and brain-derived neurotrophic factor (BDNF) were measured by qPCR analysis. Only low-dose of RIVA increased resistance against kindling. Single and long-term administration of low-dose RIVA increased the latency to the first myoclonic jerk, decreased the duration of generalized tonic-clonic seizures, and reduced the seizure stage in kindled rats. Long-term low-dose RIVA treatment decreased the mRNA expressions of NR2B and BDNF, which were increased after PTZ kindling. Low-dose of RIVA showed anticonvulsant properties, while high doses did not. RIVA exerts its anticonvulsant effect probably through NMDAR-BDNF pathways. Our results suggest that the use of RIVA may not be harmful and even reduce seizure severity in epileptic patients with convulsions.
Collapse
Affiliation(s)
- Elif Türkdönmez Ak
- Department of Physiology, Medical School, University of Ondokuz Mayis, Samsun, 55139, Türkiye
| | - Büşra Okuyucu
- Department of Physiology, Medical School, University of Ondokuz Mayis, Samsun, 55139, Türkiye
| | - Burcu Hatipoğlu
- Department of Physiology, Medical School, University of Ondokuz Mayis, Samsun, 55139, Türkiye
| | - Gökhan Arslan
- Department of Physiology, Medical School, University of Ondokuz Mayis, Samsun, 55139, Türkiye.
| |
Collapse
|
2
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Hetta HF, Saad HM, Batiha GES. A Mutual Nexus Between Epilepsy and α-Synuclein: A Puzzle Pathway. Mol Neurobiol 2024; 61:10198-10215. [PMID: 38703341 DOI: 10.1007/s12035-024-04204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Alpha-synuclein (α-Syn) is a specific neuronal protein that regulates neurotransmitter release and trafficking of synaptic vesicles. Exosome-associated α-Syn which is specific to the central nervous system (CNS) is involved in the pathogenesis of epilepsy. Therefore, this review aimed to elucidate the possible link between α-Syn and epilepsy, and how it affects the pathophysiology of epilepsy. A neurodegenerative protein such as α-Syn is implicated in the pathogenesis of epilepsy. Evidence from preclinical and clinical studies revealed that upregulation of α-Syn induces progressive neuronal dysfunctions through induction of oxidative stress, neuroinflammation, and inhibition of autophagy in a vicious cycle with subsequent development of severe epilepsy. In addition, accumulation of α-Syn in epilepsy could be secondary to the different cellular alterations including oxidative stress, neuroinflammation, reduction of brain-derived neurotrophic factor (BDNF) and progranulin (PGN), and failure of the autophagy pathway. However, the mechanism of α-Syn-induced-epileptogenesis is not well elucidated. Therefore, α-Syn could be a secondary consequence of epilepsy. Preclinical and clinical studies are warranted to confirm this causal relationship.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, M.B.Ch.B, FRCP, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu, P.O. Box 13, Kufa, Najaf, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
3
|
Zaidi SFA, Amin SB, Shahid M. Letter to the Editor: Increasing incidence of Parkinson's disease in patients with epilepsy: A Nationwide Cohort Study. J Neurol Sci 2024; 465:123206. [PMID: 39226711 DOI: 10.1016/j.jns.2024.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
We have read with a great deal of interest the article by Hwang et al. (1) and appreciate the authors'' commendable efforts. The article was intelligently written and provides a significant insight into the study carried out by the authors. We greatly acknowledge the brief concepts the authors have shared regarding Parkinson's disease and epilepsy, which are without doubt an asset to the field of neurology. The study has laid a good foundation for future related studies. The article mentions epilepsy as an uncommon comorbidity of Parkinson's disease and the transition of a non-epilepsy brain to an epilepsy brain. It is also mentioned that PD is a progressive neurodegenerative disorder of dopaminergic neurons in the substantia nigra, and the incidence of the two diseases. However, as we assess the article in depth, we have found some shortcomings that would have enhanced the sense and purpose of the study.
Collapse
Affiliation(s)
- Syeda Fatima A Zaidi
- Jinnah Sindh Medical University, Rafiqui H J Shaheed Road, Karachi 75510, Pakistan.
| | - Shafin Bin Amin
- Jinnah Postgraduate Medical Centre, Rafiqui H J Shaheed Road, Karachi 75510, Pakistan.
| | - Maham Shahid
- Jinnah Sindh Medical University, Rafiqui H J Shaheed Road, Karachi 75510, Pakistan.
| |
Collapse
|
4
|
Calonge Q, Le Gac F, Chavez M, Degremont A, Quantin C, Tubach F, du Montcel ST, Navarro V. Burden of status epilepticus: prognosis and cost driving factors, insight from a nationwide retrospective cohort study of the French health insurance database. J Neurol 2024; 271:6761-6772. [PMID: 39177750 DOI: 10.1007/s00415-024-12589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Status epilepticus (SE) imposes a significant burden in terms of in-hospital mortality and costs, but the relationship between SE causes, patient comorbidities, mortality, and cost remains insufficiently understood. We determined the in-hospital mortality and cost-driving factors of SE using a large and comprehensive database. METHODS We conducted a retrospective cohort study involving patients experiencing their first hospitalization with an ICD-10 code diagnosis of SE, spanning from January 1, 2015, to December 31, 2019, using the French health insurance database which covers 99% of population. Patient characteristics, SE causes, Intensive Care Unit (ICU) admissions, mechanical ventilation, discharge status, and health insurance costs were extracted for each hospitalization. RESULTS We identified 52,487 patients hospitalized for a first SE. In-hospital mortality occurred in 11,464 patients (21.8%), with associated factors including age (Odds Ratio [OR], 10.3, 95% Confidence Interval [CI] 7.87-13.8 for ages over 80 compared to 10-19), acute causes (OR, 15.3, 95% CI 13.9-16.8 for hypoxic cause), tumors (OR, 1.75, 95% CI 1.63-1.8), comorbidities (OR, 3.00, 95% CI 2.79-3.24 for 3 or more comorbidities compared to 0), and prolonged mechanical ventilation (OR, 2.61, 95% CI 2.42-2.82). The median reimbursed cost for each SE hospitalization was 6517€ (3364-13,354), with cost factors mirroring those of in-hospital mortality. CONCLUSION Causes and co-morbidities are major determinants of mortality and hospital costs in status epilepticus, and factors associated with higher mortality are also often associated with higher costs. Further studies are needed to identify their long-term effects.
Collapse
Affiliation(s)
- Quentin Calonge
- Sorbonne Université, Paris Brain Institute-Institut du Cerveau, ICM, INSERM, CNRS, Pitié-Salpêtrière Hospital, 47-83 Boulevard de L'Hôpital, 75013, Paris, France
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France
- AP-HP, Center of Reference for Rare Epilepsies, ERN EpiCare, Pitié-Salpêtrière Hospital, Paris, France
| | - François Le Gac
- Sorbonne Université, Paris Brain Institute-Institut du Cerveau, ICM, INSERM, CNRS, Pitié-Salpêtrière Hospital, 47-83 Boulevard de L'Hôpital, 75013, Paris, France
| | - Mario Chavez
- Sorbonne Université, Paris Brain Institute-Institut du Cerveau, ICM, INSERM, CNRS, Pitié-Salpêtrière Hospital, 47-83 Boulevard de L'Hôpital, 75013, Paris, France
| | - Adeline Degremont
- Pharmacovigilance, Pharmacoepidemiology and Drug Information Centre, Department of Clinical Pharmacology, CHU de Rennes, 35033, Rennes, France
- Univ Rennes, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Catherine Quantin
- Service de Biostatistiques et d'Information Médicale (DIM), CHU Dijon Bourgogne, INSERM, Université de Bourgogne, CIC 1432, Module Épidémiologie Clinique, 21000, Dijon, France
- Université Paris-Saclay, UVSQ, Inserm, CESP, 94807, Villejuif, France
| | - Florence Tubach
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié Salpêtrière, Département de Santé Publique, Centre de Pharmacoépidémiologie (Cephepi), 75013, Paris, France
| | - Sophie Tezenas du Montcel
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, CNRS, Inria, Inserm, AP HP, 75013, Paris, France
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute-Institut du Cerveau, ICM, INSERM, CNRS, Pitié-Salpêtrière Hospital, 47-83 Boulevard de L'Hôpital, 75013, Paris, France.
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France.
- AP-HP, Center of Reference for Rare Epilepsies, ERN EpiCare, Pitié-Salpêtrière Hospital, Paris, France.
| |
Collapse
|
5
|
Yamaguchi T, Aihara A, Mashiko S, Kurosawa E, Oizumi T, Yamagata T, Ishiki A, Ueda J, Fujikawa Y, Kanno A, Sumitomo K, Ohara T, Furukawa K. Exacerbation of delirium and epileptic seizures in an older man with idiopathic Parkinson's disease due to multiple prescriptions: a case report. Front Med (Lausanne) 2024; 11:1415988. [PMID: 39091287 PMCID: PMC11291346 DOI: 10.3389/fmed.2024.1415988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Parkinson's disease (PD) is a disorder characterized by motor symptoms, such as rigidity, akinesia, and resting tremor, as well as non-motor symptoms, including psychiatric manifestations and autonomic failure. The prevalence of PD increases with age, and the condition is more common in men than in women. Conversely, polypharmacy has emerged as a paramount medical concern, especially among older patients, correlating with medicines' adverse effects, interactions between medicines, frequent admissions to the hospital, and a high risk of morbidity and mortality. Case description We encountered an older male patient with idiopathic PD and mild renal dysfunction. Originally prescribed 14 types of medicines, including anti-PD drugs, the patient developed delirium and epileptic seizures during hospitalization. After reducing the number of medications, including amantadine, the symptoms significantly improved. This clinical course suggests that polypharmacy, in addition to PD itself, poses a significant risk of delirium and epileptic seizures, even in patients with mild renal dysfunction. Conclusion This report is indicative of the risk of polypharmacy and highlights the importance of citing drug interactions for a correct diagnosis in patients presenting with complex symptoms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Katsutoshi Furukawa
- Division of Geriatric and Community Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
6
|
Oberholzer J, Fayolle D, Vandenbulcke A, Gaudet JG. Cardiac arrest during deep brain stimulation: A case report. Clin Case Rep 2024; 12:e9147. [PMID: 39005577 PMCID: PMC11239760 DOI: 10.1002/ccr3.9147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
We present the case of a 54-year-old male with severe Parkinson's disease and chronic, non-reversible pulmonary artery hypertension who had seizures and a cardiorespiratory arrest during surgery for deep brain stimulation, a minimally invasive procedure usually associated with a low risk of complications. This case illustrates how perioperative changes in antiparkinsonian therapy in patient with multiple comorbidities may significantly affect the risk profile.
Collapse
Affiliation(s)
- Julian Oberholzer
- Department of AnesthesiologyCentre Hospitalier Universitaire VaudoisLausanneSwitzerland
| | - Damien Fayolle
- Department of NeurologyHôpitaux Universitaires GenèveGenevaSwitzerland
| | - Alberto Vandenbulcke
- Department of NeurosurgeryCentre Hospitalier Universitaire VaudoisLausanneSwitzerland
| | - John G. Gaudet
- Department of AnesthesiologyCentre Hospitalier Universitaire VaudoisLausanneSwitzerland
| |
Collapse
|
7
|
Liu GY, Fu FJ, Chou YX, Ye MS, Ouyang YL, Yan MD, Pan L, Li WP, Xie W. Frontiers and hotspots in comorbid epilepsy and depression: a bibliometric analysis from 2003 to 2023. Front Neurol 2024; 15:1413582. [PMID: 38974685 PMCID: PMC11224553 DOI: 10.3389/fneur.2024.1413582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Background Epilepsy ranks among the most common neurological disorders worldwide, frequently accompanied by depression as a prominent comorbidity. This study employs bibliometric analysis to reveal the research of comorbid epilepsy and depression over the past two decades, aiming to explore trends and contribute insights to ongoing investigations. Methods We conducted a comprehensive search on the Web of Science Core Collection database and downloaded relevant publications on comorbid epilepsy and depression published from 2003 to 2023. VOSviewer and CiteSpace were mainly used to analyze the authors, institutions, countries, publishing journals, reference co-citation patterns, keyword co-occurrence, keyword clustering, and other aspects to construct a knowledge atlas. Results A total of 5,586 publications related to comorbid epilepsy and depression were retrieved, with a general upward trend despite slight fluctuations in annual publications. Publications originated from 121 countries and 636 institutions, with a predominant focus on clinical research. The United States led in productivity (1,529 articles), while Melbourne University emerged as the most productive institution (135 articles). EPILEPSY & BEHAVIOR was the journal with the highest publication output (1,189 articles) and citation count. Keyword analysis highlighted emerging trends, including "recognitive impairment" and "mental health," indicating potential future research hotspots and trends. Conclusion This study is one of the first to perform a bibliometric analysis of the 20-year scientific output of comorbid epilepsy and depression. While research has trended upwards, ambiguity in pathogenesis and the absence of standardized diagnostic guidelines remain concerning. Our analysis offers valuable guidance for researchers, informing that this might be a strong area for future collaborations.
Collapse
Affiliation(s)
- Gui-Yu Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fan-Jia Fu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ying-Xin Chou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ming-Sha Ye
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yi-Lin Ouyang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ming-De Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei Pan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wei-Peng Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Neurology, Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Wei Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Schaper FLWVJ, Morton-Dutton M, Pacheco-Barrios N, Turner JI, Drew W, Khosravani S, Joutsa J, Fox MD. Brain lesions causing parkinsonism versus seizures map to opposite brain networks. Brain Commun 2024; 6:fcae196. [PMID: 38915927 PMCID: PMC11195636 DOI: 10.1093/braincomms/fcae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/03/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024] Open
Abstract
Recent epidemiological studies propose an association between parkinsonism and seizures, but the direction of this association is unclear. Focal brain lesions causing new-onset parkinsonism versus seizures may provide a unique perspective on the causal relationship between the two symptoms and involved brain networks. We studied lesions causing parkinsonism versus lesions causing seizures and used the human connectome to identify their connected brain networks. Brain networks for parkinsonism and seizures were compared using spatial correlations on a group and individual lesion level. Lesions not associated with either symptom were used as controls. Lesion locations from 29 patients with parkinsonism were connected to a brain network with the opposite spatial topography (spatial r = -0.85) compared to 347 patients with lesions causing seizures. A similar inverse relationship was found when comparing the connections that were most specific on a group level (spatial r = -0.51) and on an individual lesion level (average spatial r = -0.042; P < 0.001). The substantia nigra was found to be most positively correlated to the parkinsonism network but most negatively correlated to the seizure network (spatial r > 0.8). Brain lesions causing parkinsonism versus seizures map to opposite brain networks, providing neuroanatomical insight into conflicting epidemiological evidence.
Collapse
Affiliation(s)
- Frederic L W V J Schaper
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mae Morton-Dutton
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Niels Pacheco-Barrios
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph I Turner
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - William Drew
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sanaz Khosravani
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Juho Joutsa
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, 20520 Turku, Finland
- Turku PET Centre, Neurocenter, Turku University Hospital, 20520 Turku, Finland
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
9
|
Schaper FLWVJ, Morton-Dutton M, Drew W, Khosravani S, Joutsa J, Fox MD. Brain lesions causing parkinsonism versus seizures map to opposite brain networks. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.02.24306764. [PMID: 38746381 PMCID: PMC11092727 DOI: 10.1101/2024.05.02.24306764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Recent epidemiological studies propose an association between parkinsonism and seizures, but the direction of this association is unclear. Focal brain lesions causing new-onset parkinsonism versus seizures may provide a unique perspective on the causal relationship between the two symptoms and involved brain networks. We studied lesions causing parkinsonism versus lesions causing seizures and utilized human connectome data to identify their connected brain networks. Brain networks for parkinsonism and seizures were compared using spatial correlations on a group and individual lesion level. Lesions not associated with either symptom were used as controls. Lesion locations from 29 patients with parkinsonism were connected to a brain network with the opposite spatial topography (spatial r =-0.85) compared to 347 patients with lesions causing seizures. A similar inverse relationship was found when comparing the connections that were most specific for lesions causing parkinsonism versus seizures on a group level (spatial r =- 0.51) and on an individual lesion level (average spatial r =-0.042; p<0.001). The substantia nigra was found to be most positively correlated to the parkinsonism network but most negatively correlated to the seizure network (spatial r >0.8). Brain lesions causing parkinsonism versus seizures map to opposite brain networks, providing neuroanatomical insight into conflicting epidemiological evidence.
Collapse
|
10
|
Pulluru Y, Koohsari S, Bayoumi A, Aladawi M, Najdawi Z, Elfil M. Seizures due to pyridoxine deficiency in Parkinson's disease. Seizure 2024; 118:132-136. [PMID: 38703598 DOI: 10.1016/j.seizure.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/09/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized not only by its hallmark motor symptoms but also by a myriad of non-motor manifestations, including cognitive decline, autonomic manifestations, and gastrointestinal disturbances. Amidst these, a lesser-known but critical aspect is the increased risk of functional deficiency of pyridoxine (vitamin B6) in patients with PD, which is linked to an increased risk of seizures. This review investigates the intersection of PD, new-onset seizures, and pyridoxine deficiency, aiming to elucidate the significance of these associations and their contributions to the neurologic burden in PD. Case reports documenting the occurrence of seizures in patients with PD, particularly in the context of high-dose dopaminergic therapy and the subsequent revelation of pyridoxine deficiency were included. These cases, which often featured extensive workups revealing unremarkable findings aside from pyridoxine deficiency, underscore the multifaceted nature of PD and its treatment-related complications. The findings in these case reports suggest that dietary insufficiencies, gastrointestinal dysfunctions, and drug-nutrient interactions may eventually precipitate pyridoxine deficiency, which in turn may lead to seizures by disrupting GABAergic neurotransmission. This sheds the light on the need for increased clinical awareness and routine monitoring of pyridoxine levels in patients with PD, especially those undergoing significant therapeutic adjustments or exhibiting comorbidities that might interfere with their dietary intake such as gastrointestinal manifestations or depression. Such proactive measures could potentially mitigate the impact of this complication in patients with PD, ultimately enhancing patient care and quality of life.
Collapse
Affiliation(s)
- Yashwanth Pulluru
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sheida Koohsari
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ahmed Bayoumi
- Department of Neurology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Mohammad Aladawi
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zaid Najdawi
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mohamed Elfil
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
11
|
Wani I, Koppula S, Balda A, Thekkekkara D, Jamadagni A, Walse P, Manjula SN, Kopalli SR. An Update on the Potential of Tangeretin in the Management of Neuroinflammation-Mediated Neurodegenerative Disorders. Life (Basel) 2024; 14:504. [PMID: 38672774 PMCID: PMC11051149 DOI: 10.3390/life14040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroinflammation is the major cause of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Currently available drugs present relatively low efficacy and are not capable of modifying the course of the disease or delaying its progression. Identifying well-tolerated and brain-penetrant agents of plant origin could fulfil the pressing need for novel treatment techniques for neuroinflammation. Attention has been drawn to a large family of flavonoids in citrus fruits, which may function as strong nutraceuticals in slowing down the development and progression of neuroinflammation. This review is aimed at elucidating and summarizing the effects of the flavonoid tangeretin (TAN) in the management of neuroinflammation-mediated neurodegenerative disorders. A literature survey was performed using various resources, including ScienceDirect, PubMed, Google Scholar, Springer, and Web of Science. The data revealed that TAN exhibited immense neuroprotective effects in addition to its anti-oxidant, anti-diabetic, and peroxisome proliferator-activated receptor-γ agonistic effects. The effects of TAN are mainly mediated through the inhibition of oxidative and inflammatory pathways via regulating multiple signaling pathways, including c-Jun N-terminal kinase, phosphoinositide 3-kinase, mitogen-activated protein kinase, nuclear factor erythroid-2-related factor 2, extracellular-signal-regulated kinase, and CRE-dependent transcription. In conclusion, the citrus flavonoid TAN has the potential to prevent neuronal death mediated by neuroinflammatory pathways and can be developed as an auxiliary therapeutic agent in the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Irshad Wani
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Sushruta Koppula
- College of Biomedical and Health Science, Konkuk University, Chungju-si 380-701, Republic of Korea;
| | - Aayushi Balda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Dithu Thekkekkara
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Ankush Jamadagni
- Fortem Biosciences Private Limited (Ayurvibes), No. 24, Attur, 4th Cross, Tirumala Nagar, A Block, Bangalore 560064, India
| | - Prathamesh Walse
- Fortem Biosciences Private Limited (Ayurvibes), No. 24, Attur, 4th Cross, Tirumala Nagar, A Block, Bangalore 560064, India
| | | | - Spandana Rajendra Kopalli
- Department of Integrated Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| |
Collapse
|
12
|
Hwang YS, Kang MG, Yeom SW, Jeong CY, Shin BS, Koh J, Kim JS, Kang HG. Increasing incidence of Parkinson's disease in patients with epilepsy: A Nationwide cohort study. J Neurol Sci 2024; 458:122891. [PMID: 38310734 DOI: 10.1016/j.jns.2024.122891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Although epilepsy is an uncommon comorbidity of Parkinson's disease (PD), the exact incidence of PD among the patients with epilepsy is not clarified yet. OBJECTIVES We aimed to estimate the incidence of PD in patients with epilepsy and explore the association between epilepsy and PD. METHODS Epilepsy patients enrolled in the National Health Insurance Service Health Screening Cohort (NHIS-HealS) (2002-2013) between 2003 and 2007 were set up as the experimental group. The major outcome was the occurrence of PD. Non-epilepsy patients were obtained through Propensity Score Matching of 'greedy nearest neighbor' algorithm in 1:1 ratio. The Cox Proportional Hazards model was used to calculate PD incidence and hazard ratio (HR). RESULTS A total of 10,510 patients were finally included in the study, which contained 5255 patients in epilepsy and non-epilepsy groups, respectively. During the follow-up period, 85 patients with Parkinson's disease among 5255 patients with epilepsy and 57 patients with Parkinson's disease among 5255 patients without epilepsy occurred. The 10,000 Person-Year (PY), representing the number of PD patients per 10,000 per year, was 21.38 in the epilepsy group and 11.18 in the non-epilepsy group. When all variables were adjusted, it was found that the epilepsy group had a 2.19 times significantly higher risk of developing Parkinson's disease than the control group (The adjusted HR: 2.19 (95% CI, 1.55-3.12)). CONCLUSION This study indicates an increased risk of PD in patients with epilepsy. However, further research is needed to prove an exact causal relationship between these two brain disorders.
Collapse
Affiliation(s)
- Yun Su Hwang
- Department of Neurology, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Min Gu Kang
- Department of Medical Informatics, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sang Woo Yeom
- Department of Medical Informatics, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Cho Yun Jeong
- Department of Medical Informatics, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Byoung-Soo Shin
- Department of Neurology, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jihoon Koh
- Department of Otorhinolaryngology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jong Seung Kim
- Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea; Department of Medical Informatics, Jeonbuk National University Medical School, Jeonju, Republic of Korea; Department of Otorhinolaryngology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.
| | - Hyun Goo Kang
- Department of Neurology, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
13
|
Wu X, Wang K, Wang J, Wei P, Zhang H, Yang Y, Huang Y, Wang Y, Shi W, Shan Y, Zhao G. The Interplay Between Epilepsy and Parkinson's Disease: Gene Expression Profiling and Functional Analysis. Mol Biotechnol 2024:10.1007/s12033-024-01103-y. [PMID: 38453824 DOI: 10.1007/s12033-024-01103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
The results of many epidemiological studies suggest a bidirectional causality may exist between epilepsy and Parkinson's disease (PD). However, the underlying molecular landscape linking these two diseases remains largely unknown. This study aimed to explore this possible bidirectional causality by identifying differentially expressed genes (DEGs) in each disease as well as their intersection based on two respective disease-related datasets. We performed enrichment analyses and explored immune cell infiltration based on an intersection of the DEGs. Identifying a protein-protein interaction (PPI) network between epilepsy and PD, and this network was visualised using Cytoscape software to screen key modules and hub genes. Finally, exploring the diagnostic values of the identified hub genes. NetworkAnalyst 3.0 and Cytoscape software were also used to construct and visualise the transcription factor-micro-RNA regulatory and co-regulatory networks, the gene-microRNA interaction network, as well as gene-disease association. Based on the enrichment results, the intersection of the DEGs mainly revealed enrichment in immunity-, phosphorylation-, metabolism-, and inflammation-related pathways. The boxplots revealed similar trends in infiltration of many immune cells in epilepsy and Parkinson's disease, with greater infiltration in patients than in controls. A complex PPI network comprising 186 nodes and 512 edges were constructed. According to node connection degree, top 15 hub genes were considered the kernel targets of epilepsy and PD. The area under curve values of hub gene expression profiles confirmed their excellent diagnostic values. This study is the first to analyse the molecular landscape underlying the epidemiological link between epilepsy and Parkinson's disease. The two diseases are closely linked through immunity-, inflammation-, and metabolism-related pathways. This information was of great help in understanding the pathogenesis, diagnosis, and treatment of the diseases. The present results may provide guidance for further in-depth analysis about molecular mechanisms of epilepsy and PD and novel potential targets.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Kailiang Wang
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Jingjing Wang
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Penghu Wei
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Huaqiang Zhang
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Yanfeng Yang
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Yinchun Huang
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Yihe Wang
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Wenli Shi
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China.
- International Neuroscience Institute (China-INI), Beijing, China.
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China.
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China.
| |
Collapse
|
14
|
Muñoz-Juan A, Benseny-Cases N, Guha S, Barba I, Caldwell KA, Caldwell GA, Agulló L, Yuste VJ, Laromaine A, Dalfó E. Caenorhabditis elegans RAC1/ced-10 mutants as a new animal model to study very early stages of Parkinson's disease. Prog Neurobiol 2024; 234:102572. [PMID: 38253120 DOI: 10.1016/j.pneurobio.2024.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/21/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Patients with Parkinson's disease (PD) display non-motor symptoms arising prior to the appearance of motor signs and before a clear diagnosis. Motor and non-motor symptoms correlate with progressive deposition of the protein alpha-synuclein (Asyn) both within and outside of the central nervous system, and its accumulation parallels neurodegeneration. The genome of Caenorhabditis elegans does not encode a homolog of Asyn, thus rendering this nematode an invaluable system with which to investigate PD-related mechanisms in the absence of interference from endogenous Asyn aggregation. CED-10 is the nematode homolog of human RAC1, a small GTPase needed to maintain the function and survival of dopaminergic neurons against human Asyn-induced toxicity in C. elegans. Here, we introduce C. elegans RAC1/ced-10 mutants as a predictive tool to investigate early PD symptoms before neurodegeneration occurs. Deep phenotyping of these animals reveals that, early in development, they displayed altered defecation cycles, GABAergic abnormalities and an increased oxidation index. Moreover, they exhibited altered lipid metabolism evidenced by the accumulation of lipid droplets. Lipidomic fingerprinting indicates that phosphatidylcholine and sphingomyelin, but not phosphatidylethanolamine or phosphatidylserine, were elevated in RAC1/ced-10 mutant nematodes. These collective characteristics reflect the non-motor dysfunction, GABAergic neurotransmission defects, upregulation of stress response mechanisms, and metabolic changes associated with early-onset PD. Thus, we put forward an easy-to-manipulate preclinical animal model to deepen our understanding of early-stage PD and accelerate the translational path for therapeutic target discovery.
Collapse
Affiliation(s)
- A Muñoz-Juan
- Group of Nanoparticles and Nanocomposites, Institut Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - N Benseny-Cases
- Biophysics Unit. Department of Biochemistry and Molecular Biology. Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - S Guha
- Nautilus Biotechnology, 835 Industrial Rd, San Carlos, CA 94070, USA
| | - I Barba
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), Can Baumann, 08500 Vic, Spain
| | - K A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA; Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - G A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA; Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - L Agulló
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), Can Baumann, 08500 Vic, Spain
| | - V J Yuste
- Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain
| | - A Laromaine
- Group of Nanoparticles and Nanocomposites, Institut Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - E Dalfó
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), Can Baumann, 08500 Vic, Spain; Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain; Institute of Neurosciences, Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
15
|
Singh R, Kaur N, Choubey V, Dhingra N, Kaur T. Endoplasmic reticulum stress and its role in various neurodegenerative diseases. Brain Res 2024; 1826:148742. [PMID: 38159591 DOI: 10.1016/j.brainres.2023.148742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/07/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The Endoplasmic reticulum (ER), a critical cellular organelle, maintains cellular homeostasis by regulating calcium levels and orchestrating essential functions such as protein synthesis, folding, and lipid production. A pivotal aspect of ER function is its role in protein quality control. When misfolded proteins accumulate within the ER due to factors like protein folding chaperone dysfunction, toxicity, oxidative stress, or inflammation, it triggers the Unfolded protein response (UPR). The UPR involves the activation of chaperones like calnexin, calreticulin, glucose-regulating protein 78 (GRP78), and Glucose-regulating protein 94 (GRP94), along with oxidoreductases like protein disulphide isomerases (PDIs). Cells employ the Endoplasmic reticulum-associated degradation (ERAD) mechanism to counteract protein misfolding. ERAD disruption causes the detachment of GRP78 from transmembrane proteins, initiating a cascade involving Inositol-requiring kinase/endoribonuclease 1 (IRE1), Activating transcription factor 6 (ATF6), and Protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathways. The accumulation and deposition of misfolded proteins within the cell are hallmarks of numerous neurodegenerative diseases. These aberrant proteins disrupt normal neuronal signalling and contribute to impaired cellular homeostasis, including oxidative stress and compromised protein degradation pathways. In essence, ER stress is defined as the cellular response to the accumulation of misfolded proteins in the endoplasmic reticulum, encompassing a series of signalling pathways and molecular events that aim to restore cellular homeostasis. This comprehensive review explores ER stress and its profound implications for the pathogenesis and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rimaljot Singh
- Department of Biophysics, Panjab University Chandigarh, India
| | - Navpreet Kaur
- Department of Biophysics, Panjab University Chandigarh, India
| | - Vinay Choubey
- Department of Pharmacology, University of Tartu, Ravila 19, 51014 Tartu, Estonia
| | - Neelima Dhingra
- University Institute of Pharmaceutical Sciences, Panjab University Chandigarh, India
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University Chandigarh, India.
| |
Collapse
|
16
|
Xu Q, Jiang S, Kang R, Wang Y, Zhang B, Tian J. Deciphering the molecular pathways underlying dopaminergic neuronal damage in Parkinson's disease associated with SARS-CoV-2 infection. Comput Biol Med 2024; 171:108200. [PMID: 38428099 DOI: 10.1016/j.compbiomed.2024.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND The COVID-19 pandemic caused by SARS-CoV-2 has led to significant global morbidity and mortality, with potential neurological consequences, such as Parkinson's disease (PD). However, the underlying mechanisms remain elusive. METHODS To address this critical question, we conducted an in-depth transcriptome analysis of dopaminergic (DA) neurons in both COVID-19 and PD patients. We identified common pathways and differentially expressed genes (DEGs), performed enrichment analysis, constructed protein‒protein interaction networks and gene regulatory networks, and employed machine learning methods to develop disease diagnosis and progression prediction models. To further substantiate our findings, we performed validation of hub genes using a single-cell sequencing dataset encompassing DA neurons from PD patients, as well as transcriptome sequencing of DA neurons from a mouse model of MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD. Furthermore, a drug-protein interaction network was also created. RESULTS We gained detailed insights into biological functions and signaling pathways, including ion transport and synaptic signaling pathways. CD38 was identified as a potential key biomarker. Disease diagnosis and progression prediction models were specifically tailored for PD. Molecular docking simulations and molecular dynamics simulations were employed to predict potential therapeutic drugs, revealing that genistein holds significant promise for exerting dual therapeutic effects on both PD and COVID-19. CONCLUSIONS Our study provides innovative strategies for advancing PD-related research and treatment in the context of the ongoing COVID-19 pandemic by elucidating the common pathogenesis between COVID-19 and PD in DA neurons.
Collapse
Affiliation(s)
- Qiuhan Xu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Sisi Jiang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Ruiqing Kang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Yiling Wang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
17
|
Kostev K, Doege C, Jacob L. Prevalence of and factors associated with the early prescription of antiseizure medications in adults newly diagnosed with epilepsy in Germany. Epilepsy Behav 2024; 152:109655. [PMID: 38271779 DOI: 10.1016/j.yebeh.2024.109655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/17/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND There is little information on prescription patterns of antiseizure medications (ASMs) during the early management of patients with epilepsy in Germany. Therefore, this study investigated the prevalence of and the factors associated with ASM prescription in patients newly diagnosed with epilepsy in this country. METHODS Adults diagnosed for the first time with epilepsy in one of 128 neurology practices in Germany between 2005 and 2021 were included (Disease Analyzer database, IQVIA). The prescription of ASMs was assessed within 30 days, six months, and 12 months of the diagnosis. Covariates were demographic factors, epilepsy sub-diagnoses, and co-diagnoses frequently associated with epilepsy. RESULTS This study included 55,962 participants (mean [SD] age 52.5 [20.0] years; 50.5 % men). The prevalence of ASM prescription ranged from 45.0 % within 30 days to 66.0 % within 12 months of the diagnosis. Men were less likely to receive ASMs within six and 12 months of epilepsy diagnosis than women. In addition, epilepsy sub-diagnoses of symptomatic, complex, or generalized nature were associated with increased odds of ASM prescription compared with epilepsy of unspecified nature. Finally, there was an inverse and significant association between multiple co-diagnoses (e.g., diabetes, mental and behavioral disorders due to use of alcohol, and traumatic brain injury) and ASM prescribing. CONCLUSIONS A substantial proportion of participants were prescribed ASMs in the year following epilepsy diagnosis, highlighting that the early prescription of ASMs was necessary for these patients. Further research is warranted to corroborate the present findings in other countries and settings.
Collapse
Affiliation(s)
| | - Corinna Doege
- Department of Pediatric Neurology, Center of Pediatrics and Adolescent Medicine, Central Hospital Bremen, 28205 Bremen, Germany
| | - Louis Jacob
- AP-HP, Université Paris Cité, Lariboisière-Fernand Widal Hospital, Department of Physical Medicine and Rehabilitation, 75010 Paris, France; Université Paris Cité, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases (EpiAgeing), 75010 Paris, France; Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, ISCIII, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, 08830 Barcelona, Spain.
| |
Collapse
|
18
|
Yang S, Park JH, Lu HC. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Mol Neurodegener 2023; 18:49. [PMID: 37475056 PMCID: PMC10357692 DOI: 10.1186/s13024-023-00634-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Human studies consistently identify bioenergetic maladaptations in brains upon aging and neurodegenerative disorders of aging (NDAs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Glucose is the major brain fuel and glucose hypometabolism has been observed in brain regions vulnerable to aging and NDAs. Many neurodegenerative susceptible regions are in the topological central hub of the brain connectome, linked by densely interconnected long-range axons. Axons, key components of the connectome, have high metabolic needs to support neurotransmission and other essential activities. Long-range axons are particularly vulnerable to injury, neurotoxin exposure, protein stress, lysosomal dysfunction, etc. Axonopathy is often an early sign of neurodegeneration. Recent studies ascribe axonal maintenance failures to local bioenergetic dysregulation. With this review, we aim to stimulate research in exploring metabolically oriented neuroprotection strategies to enhance or normalize bioenergetics in NDA models. Here we start by summarizing evidence from human patients and animal models to reveal the correlation between glucose hypometabolism and connectomic disintegration upon aging/NDAs. To encourage mechanistic investigations on how axonal bioenergetic dysregulation occurs during aging/NDAs, we first review the current literature on axonal bioenergetics in distinct axonal subdomains: axon initial segments, myelinated axonal segments, and axonal arbors harboring pre-synaptic boutons. In each subdomain, we focus on the organization, activity-dependent regulation of the bioenergetic system, and external glial support. Second, we review the mechanisms regulating axonal nicotinamide adenine dinucleotide (NAD+) homeostasis, an essential molecule for energy metabolism processes, including NAD+ biosynthetic, recycling, and consuming pathways. Third, we highlight the innate metabolic vulnerability of the brain connectome and discuss its perturbation during aging and NDAs. As axonal bioenergetic deficits are developing into NDAs, especially in asymptomatic phase, they are likely exaggerated further by impaired NAD+ homeostasis, the high energetic cost of neural network hyperactivity, and glial pathology. Future research in interrogating the causal relationship between metabolic vulnerability, axonopathy, amyloid/tau pathology, and cognitive decline will provide fundamental knowledge for developing therapeutic interventions.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jung Hyun Park
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
19
|
Vaidya B, Gupta P, Laha JK, Roy I, Sharma SS. Amelioration of Parkinson's disease by pharmacological inhibition and knockdown of redox sensitive TRPC5 channels: Focus on mitochondrial health. Life Sci 2023:121871. [PMID: 37352915 DOI: 10.1016/j.lfs.2023.121871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
AIMS Transient receptor potential canonical 5 (TRPC5) channels are redox-sensitive cation-permeable channels involved in temperature and mechanical sensation. Increased expression and over-activation of these channels has been implicated in several central nervous system disorders such as epilepsy, depression, traumatic brain injury, anxiety, Huntington's disease and stroke. TRPC5 channel activation causes increased calcium influx which in turn activates numerous downstream signalling pathways involved in the pathophysiology of neurological disorders. Therefore, we hypothesized that pharmacological blockade and knockdown of TRPC5 channels could attenuate the behavioural deficits and molecular changes seen in CNS disease models such as MPTP/MPP+ induced Parkinson's disease (PD). MATERIALS AND METHODS In the present study, PD was induced after bilateral intranigral infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the Sprague Dawley rats. Additionally, SH-SY5Y neurons were exposed to 1-methyl-4-phenylpyridinium (MPP+) to further determine the role of TRPC5 channels in PD. KEY FINDINGS We used clemizole hydrochloride, a potent TRPC5 channel blocker, to reverse the behavioural deficits, molecular changes and biochemical parameters in MPTP/MPP+-induced-PD. Furthermore, knockdown of TRPC5 expression using siRNA also closely phenocopies these effects. We further observed restoration of tyrosine hydroxylase levels and improved mitochondrial health following clemizole treatment and TRPC5 knockdown. These changes were accompanied by diminished calcium influx, reduced levels of reactive oxygen species and decreased apoptotic signalling in the PD models. SIGNIFICANCE These findings collectively suggest that increased expression of TRPC5 channels is a potential risk factor for PD and opens a new therapeutic window for the development of pharmacological agents targeting neurodegeneration and PD.
Collapse
Affiliation(s)
- Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali, Punjab, India
| | - Pankaj Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali, Punjab, India.
| |
Collapse
|
20
|
O'Dwyer R, Foster E, Leppik I, Kwan P. Pharmacological treatment for older adults with epilepsy and comorbid neurodegenerative disorders. Curr Opin Neurol 2023; 36:117-123. [PMID: 36762636 DOI: 10.1097/wco.0000000000001143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW An increased interest in epilepsy in older adults has emerged as the global population ages. The purpose of this article is to review the literature regarding the pharmacological treatment of epilepsy in older adults, highlighting issues specifically pertinent to those living with comorbid neurodegenerative disorders. RECENT FINDINGS Although new original research remains sparse, in the last 5 years, there has been a growing number of studies addressing the relationship between epilepsy and neurodegenerative disorders. Accurate diagnosis is incredibly challenging with electroencephalogram findings often requiring circumspect interpretation. Older individuals are often excluded from or under-represented in clinical trials, and there are sparse guidelines offered on the management of these patients, with even less available in reference to those with neurodegenerative comorbidities. SUMMARY We propose that seizures occurring earlier in the neurodegenerative process should be treated aggressively, with the goal to inhibit neuro-excitotoxicity and the associated neuronal loss. By strategically choosing newer antiseizure medications with less adverse effects and a holistic approach to treatment, a patient's time living independently can be conserved. In addition, we advocate for original, multinational collaborative research efforts.
Collapse
Affiliation(s)
- Rebecca O'Dwyer
- Rush Epilepsy Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Emma Foster
- Central Clinical School, Monash University
- Neurology Department, The Alfred, Melbourne, Victoria, Australia
| | - Ilo Leppik
- MINCEP Epilepsy Care, University of Minnesota, Minneapolis, Minnesota, USA
| | - Patrick Kwan
- Central Clinical School, Monash University
- Neurology Department, The Alfred, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Belete D, Jacobs BM, Simonet C, Bestwick JP, Waters S, Marshall CR, Dobson R, Noyce AJ. Association Between Antiepileptic Drugs and Incident Parkinson Disease. JAMA Neurol 2023; 80:183-187. [PMID: 36574240 PMCID: PMC9857018 DOI: 10.1001/jamaneurol.2022.4699] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/18/2022] [Indexed: 12/28/2022]
Abstract
Importance Recent studies have highlighted an association between epilepsy and Parkinson disease (PD). The role of antiepileptic drugs (AEDs) has not been explored. Objective To investigate the association between AEDs and incident PD. Design, Setting, and Participants This nested case-control study started collecting data from the UK Biobank (UKB) in 2006, and data were extracted on June 30, 2021. Individuals with linked primary care prescription data were included. Cases were defined as individuals with a Hospital Episode Statistics (HES)-coded diagnosis of PD. Controls were matched 6:1 for age, sex, race and ethnicity, and socioeconomic status. Prescription records were searched for AEDs prescribed prior to diagnosis of PD. The UKB is a longitudinal cohort study with more than 500 000 participants; 45% of individuals in the UKB have linked primary care prescription data. Participants living in the UK aged between 40 and 69 years were recruited to the UKB between 2006 and 2010. All participants with UKB-linked primary care prescription data (n = 222 106) were eligible for enrollment in the study. Individuals with only a self-reported PD diagnosis or missing data for the matching variables were excluded. In total, 1477 individuals were excluded; 49 were excluded due to having only self-reported PD, and 1428 were excluded due to missing data. Exposures Exposure to AEDs (carbamazepine, lamotrigine, levetiracetam, and sodium valproate) was defined using routinely collected prescription data derived from primary care. Main Outcomes and Measures Odds ratios and 95% CIs were calculated using adjusted logistic regression models for individuals prescribed AEDs before the first date of HES-coded diagnosis of PD. Results In this case-control study, there were 1433 individuals with an HES-coded PD diagnosis (cases) and 8598 controls in the analysis. Of the 1433 individuals, 873 (60.9%) were male, 1397 (97.5%) had their race and ethnicity recorded as White, and their median age was 71 years (IQR, 65-75 years). An association was found between AED prescriptions and incident PD (odds ratio, 1.80; 95% CI, 1.35-2.40). There was a trend for a greater number of prescription issues and multiple AEDs being associated with a greater risk of PD. Conclusions and Relevance This study, the first to systematically look at PD risk in individuals prescribed the most common AEDs, to our knowledge, found evidence of an association between AEDs and incident PD. With the recent literature demonstrating an association between epilepsy and PD, this study provides further insights.
Collapse
Affiliation(s)
- Daniel Belete
- Preventive Neurology Unit, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Benjamin M. Jacobs
- Preventive Neurology Unit, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Neurology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Cristina Simonet
- Preventive Neurology Unit, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jonathan P. Bestwick
- Preventive Neurology Unit, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sheena Waters
- Preventive Neurology Unit, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Charles R. Marshall
- Preventive Neurology Unit, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Neurology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Ruth Dobson
- Preventive Neurology Unit, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Neurology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Alastair J. Noyce
- Preventive Neurology Unit, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Neurology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
22
|
Turrini L, Sorelli M, de Vito G, Credi C, Tiso N, Vanzi F, Pavone FS. Multimodal Characterization of Seizures in Zebrafish Larvae. Biomedicines 2022; 10:951. [PMID: 35625689 PMCID: PMC9139036 DOI: 10.3390/biomedicines10050951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Epilepsy accounts for a significant proportion of the world's disease burden. Indeed, many research efforts are produced both to investigate the basic mechanism ruling its genesis and to find more effective therapies. In this framework, the use of zebrafish larvae, owing to their peculiar features, offers a great opportunity. Here, we employ transgenic zebrafish larvae expressing GCaMP6s in all neurons to characterize functional alterations occurring during seizures induced by pentylenetetrazole. Using a custom two-photon light-sheet microscope, we perform fast volumetric functional imaging of the entire larval brain, investigating how different brain regions contribute to seizure onset and propagation. Moreover, employing a custom behavioral tracking system, we outline the progressive alteration of larval swim kinematics, resulting from different grades of seizures. Collectively, our results show that the epileptic larval brain undergoes transitions between diverse neuronal activity regimes. Moreover, we observe that different brain regions are progressively recruited into the generation of seizures of diverse severity. We demonstrate that midbrain regions exhibit highest susceptibility to the convulsant effects and that, during periods preceding abrupt hypersynchronous paroxysmal activity, they show a consistent increase in functional connectivity. These aspects, coupled with the hub-like role that these regions exert, represent important cues in their identification as epileptogenic hubs.
Collapse
Affiliation(s)
- Lapo Turrini
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy;
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
| | - Michele Sorelli
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy;
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Caterina Credi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy;
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy;
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
23
|
Simonet C, Bestwick J, Jitlal M, Waters S, Ben-Joseph A, Marshall CR, Dobson R, Marrium S, Robson J, Jacobs BM, Belete D, Lees AJ, Giovannoni G, Cuzick J, Schrag A, Noyce AJ. Assessment of Risk Factors and Early Presentations of Parkinson Disease in Primary Care in a Diverse UK Population. JAMA Neurol 2022; 79:359-369. [PMID: 35254398 PMCID: PMC8902684 DOI: 10.1001/jamaneurol.2022.0003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Early features of Parkinson disease (PD) have been described through population-based studies that overrepresent White, affluent groups and may not be generalizable. OBJECTIVE To investigate the association between risk factors and prediagnostic presentations of PD in an ethnically diverse UK population with high socioeconomic deprivation but universal access to health care. DESIGN, SETTING, AND PARTICIPANTS A nested case-control study was conducted using electronic health care records on 1 016 277 individuals from primary care practices in East London to extract clinical information recorded between 1990 and February 6, 2018. The data were analyzed between September 3, 2020, and September 3, 2021. Individuals with a diagnosis of PD were compared with controls without PD or other major neurological conditions. MAIN OUTCOMES AND MEASURES A matched analysis (10 controls matched for each patient with PD according to age and sex) and an unmatched analysis (adjusted for age and sex) were undertaken using multivariable logistic regression to determine associations between risk factors and prediagnostic presentations to primary care with subsequent diagnosis of PD. Three time periods (<2, 2-<5, and 5-10 years before diagnosis) were analyzed separately and together. RESULTS Of 1 016 277 individuals included in the data set, 5699 were excluded and 1055 patients with PD and 1 009 523 controls were included in the analysis. Patients with PD were older than controls (mean [SD], 72.9 [11.3] vs 40.3 [15.2] years), and more were male (632 [59.9%] vs 516 862 [51.2%]). In the matched analysis (1055 individuals with PD and 10 550 controls), associations were found for tremor (odds ratio [OR], 145.96; 95% CI, 90.55-235.28) and memory symptoms (OR, 8.60; 95% CI, 5.91-12.49) less than 2 years before the PD diagnosis. The associations were also found up to 10 years before PD diagnosis for tremor and 5 years for memory symptoms. Among midlife risk factors, hypertension (OR, 1.36; 95% CI, 1.19-1.55) and type 2 diabetes (OR, 1.39; 95% CI, 1.19-1.62) were associated with subsequent diagnosis of PD. Associations with early nonmotor features, including hypotension (OR, 6.84; 95% CI, 3.38-13.85), constipation (OR, 3.29; 95% CI, 2.32-4.66), and depression (OR, 4.69; 95% CI, 2.88-7.63), were also noted. Associations were found for epilepsy (OR, 2.5; 95% CI, 1.63-3.83) and hearing loss (OR, 1.66; 95% CI, 1.06-2.58), which have not previously been well reported. These findings were replicated using data from the UK Biobank. No association with future PD diagnosis was found for ethnicity or deprivation index level. CONCLUSIONS AND RELEVANCE This study provides data suggesting that a range of comorbidities and symptoms are encountered in primary care settings before PD diagnosis in an ethnically diverse and deprived population. Novel temporal associations were observed for epilepsy and hearing loss with subsequent development of PD. The prominence of memory symptoms suggests an excess of cognitive dysfunction in early PD in this population or difficulty in correctly ascertaining symptoms in traditionally underrepresented groups.
Collapse
Affiliation(s)
- Cristina Simonet
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Neurology, Royal London Hospital, London, United Kingdom
| | - Jonathan Bestwick
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mark Jitlal
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Food Standards Agency, London, United Kingdom
| | - Sheena Waters
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Aaron Ben-Joseph
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Charles R. Marshall
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Neurology, Royal London Hospital, London, United Kingdom
| | - Ruth Dobson
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Neurology, Royal London Hospital, London, United Kingdom
| | - Soha Marrium
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - John Robson
- Centre for Primary Care, Wolfson Institute of Population Health, The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Benjamin M. Jacobs
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Neurology, Royal London Hospital, London, United Kingdom
| | - Daniel Belete
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Andrew J. Lees
- Reta Lila Weston Institute, Institute of Neurology, UCL and National Hospital, Queen Square, London, United Kingdom
| | - Gavin Giovannoni
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Neurology, Royal London Hospital, London, United Kingdom
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Jack Cuzick
- Centre for Cancer Prevention, Queen Mary University of London, London, United Kingdom
| | - Anette Schrag
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Clinical and Movement Neuroscience, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Alastair J. Noyce
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Neurology, Royal London Hospital, London, United Kingdom
- Department of Clinical and Movement Neuroscience, University College London Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
24
|
Emanetci E, Cakir T. A co-expression network based molecular characterization of genes responsive for Braak stages in Parkinson's disease. Eur J Neurosci 2022; 55:1873-1886. [PMID: 35318767 DOI: 10.1111/ejn.15653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
The progression of Parkinson's disease (PD) is defined by six Braak stages. We used transcriptome data from PD patients with Braak stage information to understand underlying molecular mechanisms for the progress of the disease. We created networks of genes with decreased/increased co-expression from control group to Braak 5-6 stages. These networks are significantly associated with PD related mechanisms such as mitochondrial dysfunction and synaptic signaling among others. Applying Weighted Gene Correlation Network Analysis (WGCNA) algorithm to the co-expression networks led to more specific modules enriched with neurodegeneration related disease pathways, seizure, abnormality of coordination, and hypotonia. Furthermore, we showed that one of the co-expression networks is clustered into three major communities with dedicated molecular functions: (i) tubulin folding pathway, gap junction related mechanisms, neuronal system (ii) synaptic vesicle, intracellular vesicle, proteasome complex, PD genes (iii) energy metabolism, mitochondrial mechanisms, oxidative phosphorylation, TCA cycle, PD genes. The co-expression relations we identified in this study as crucial players in the disease progression cover several known PD-associated genes and genes whose products are known to physically interact with alpha-synuclein protein.
Collapse
Affiliation(s)
- Elif Emanetci
- Department of Bioengineering, Gebze Technical University, Kocaeli, TURKEY
| | - Tunahan Cakir
- Department of Bioengineering, Gebze Technical University, Kocaeli, TURKEY
| |
Collapse
|
25
|
Saleh C, Meyer A, Chaturvedi M, Beltrani S, Gschwandtner U, Fuhr P. Does Quantitative Electroencephalography Refine Preoperative Cognitive Assessment in Parkinson's Disease Patients Treated with Deep Brain Stimulation? A Follow-Up Study. Dement Geriatr Cogn Disord 2021; 50:349-356. [PMID: 34569496 DOI: 10.1159/000519053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/30/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Deep brain stimulation (DBS) in Parkinson's disease (PD) is associated with an increased risk of post-operative cognitive deterioration. Preoperative neuropsychological testing can be affected and limited by the patient's collaboration in advanced disease. The purpose of this study was to determine whether preoperative quantitative electroencephalography (qEEG) may be a useful complementary examination technique during preoperative assessment to predict cognitive changes in PD patients treated with DBS. METHODS We compared the cognitive performance of 16 PD patients who underwent bilateral subthalamic nucleus DBS to the performance of 15 PD controls (matched for age, sex, and education) at baseline and at 24 months. Cognitive scores were calculated for all patients across 5 domains. A preoperative 256-channel resting EEG was recorded from each patient. We computed the global relative power spectra. Correlation and linear regression models were used to assess associations of preoperative EEG measures with post-operative cognitive scores. RESULTS Slow waves (relative delta and theta band power) were negatively correlated with post-operative cognitive performance, while faster waves (alpha 1) were strongly positively correlated with the same scores (the overall cognitive score, attention, and executive function). Linear models revealed an association of delta power with the overall cognitive score (p = 0.00409, adjusted R2 = 0.6341). Verbal fluency (VF) showed a significant decline after DBS surgery, which was correlated with qEEG measures. CONCLUSIONS To analyse the side effects after DBS in PD patients, the most important parameter is verbal fluency capacity. In addition, correlation with EEG frequency bands might be useful to detect particularly vulnerable patients for cognitive impairment and be supportive in the selection process of patients considered for DBS.
Collapse
Affiliation(s)
- Christian Saleh
- Department of Neurophysiology and Neurology, University Hospital Basel, Basel, Switzerland
| | - Antonia Meyer
- Department of Neurophysiology and Neurology, University Hospital Basel, Basel, Switzerland
| | - Menorca Chaturvedi
- Department of Neurophysiology and Neurology, University Hospital Basel, Basel, Switzerland
| | - Selina Beltrani
- Department of Neurophysiology and Neurology, University Hospital Basel, Basel, Switzerland
| | - Ute Gschwandtner
- Department of Neurophysiology and Neurology, University Hospital Basel, Basel, Switzerland
| | - Peter Fuhr
- Department of Neurophysiology and Neurology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
26
|
Cano A, Fonseca E, Ettcheto M, Sánchez-López E, de Rojas I, Alonso-Lana S, Morató X, Souto EB, Toledo M, Boada M, Marquié M, Ruíz A. Epilepsy in Neurodegenerative Diseases: Related Drugs and Molecular Pathways. Pharmaceuticals (Basel) 2021; 14:1057. [PMID: 34681281 PMCID: PMC8538968 DOI: 10.3390/ph14101057] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is a chronic disease of the central nervous system characterized by an electrical imbalance in neurons. It is the second most prevalent neurological disease, with 50 million people affected around the world, and 30% of all epilepsies do not respond to available treatments. Currently, the main hypothesis about the molecular processes that trigger epileptic seizures and promote the neurotoxic effects that lead to cell death focuses on the exacerbation of the glutamate pathway and the massive influx of Ca2+ into neurons by different factors. However, other mechanisms have been proposed, and most of them have also been described in other neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, or multiple sclerosis. Interestingly, and mainly because of these common molecular links and the lack of effective treatments for these diseases, some antiseizure drugs have been investigated to evaluate their therapeutic potential in these pathologies. Therefore, in this review, we thoroughly investigate the common molecular pathways between epilepsy and the major neurodegenerative diseases, examine the incidence of epilepsy in these populations, and explore the use of current and innovative antiseizure drugs in the treatment of refractory epilepsy and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda Cano
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (I.d.R.); (S.A.-L.); (X.M.); (M.B.); (M.M.); (A.R.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (M.E.); (E.S.-L.)
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
| | - Elena Fonseca
- Epilepsy Unit, Neurology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (E.F.); (M.T.)
- Research Group on Status Epilepticus and Acute Seizures, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (M.E.); (E.S.-L.)
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), University of Barcelona, 08007 Barcelona, Spain
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (M.E.); (E.S.-L.)
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (I.d.R.); (S.A.-L.); (X.M.); (M.B.); (M.M.); (A.R.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (M.E.); (E.S.-L.)
| | - Silvia Alonso-Lana
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (I.d.R.); (S.A.-L.); (X.M.); (M.B.); (M.M.); (A.R.)
| | - Xavier Morató
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (I.d.R.); (S.A.-L.); (X.M.); (M.B.); (M.M.); (A.R.)
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal;
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Manuel Toledo
- Epilepsy Unit, Neurology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (E.F.); (M.T.)
- Research Group on Status Epilepticus and Acute Seizures, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (I.d.R.); (S.A.-L.); (X.M.); (M.B.); (M.M.); (A.R.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (M.E.); (E.S.-L.)
| | - Marta Marquié
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (I.d.R.); (S.A.-L.); (X.M.); (M.B.); (M.M.); (A.R.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (M.E.); (E.S.-L.)
| | - Agustín Ruíz
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (I.d.R.); (S.A.-L.); (X.M.); (M.B.); (M.M.); (A.R.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (M.E.); (E.S.-L.)
| |
Collapse
|
27
|
Foliaki ST, Schwarz B, Groveman BR, Walters RO, Ferreira NC, Orrù CD, Smith A, Wood A, Schmit OM, Freitag P, Yuan J, Zou W, Bosio CM, Carroll JA, Haigh CL. Neuronal excitatory-to-inhibitory balance is altered in cerebral organoid models of genetic neurological diseases. Mol Brain 2021; 14:156. [PMID: 34635127 PMCID: PMC8507222 DOI: 10.1186/s13041-021-00864-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022] Open
Abstract
The neuro-physiological properties of individuals with genetic pre-disposition to neurological disorders are largely unknown. Here we aimed to explore these properties using cerebral organoids (COs) derived from fibroblasts of individuals with confirmed genetic mutations including PRNPE200K, trisomy 21 (T21), and LRRK2G2019S, which are associated with Creutzfeldt Jakob disease, Down Syndrome, and Parkinson's disease. We utilized no known disease/healthy COs (HC) as normal function controls. At 3-4 and 6-10 months post-differentiation, COs with mutations showed no evidence of disease-related pathology. Electrophysiology assessment showed that all COs exhibited mature neuronal firing at 6-10 months old. At this age, we observed significant changes in the electrophysiology of the COs with disease-associated mutations (dCOs) as compared with the HC, including reduced neuronal network communication, slowing neuronal oscillations, and increased coupling of delta and theta phases to the amplitudes of gamma oscillations. Such changes were linked with the detection of hypersynchronous events like spike-and-wave discharges. These dysfunctions were associated with altered production and release of neurotransmitters, compromised activity of excitatory ionotropic receptors including receptors of kainate, AMPA, and NMDA, and changed levels and function of excitatory glutamatergic synapses and inhibitory GABAergic synapses. Neuronal properties that modulate GABAergic inhibition including the activity of Na-K-Cl cotransport 1 (NKCC1) in Cl- homeostasis and the levels of synaptic and extra-synaptic localization of GABA receptors (GABARs) were altered in the T21 COs only. The neurosteroid allopregnanolone, a positive modulator of GABARs, was downregulated in all the dCOs. Treatment with this neurosteroid significantly improved the neuronal communication in the dCOs, possibly through improving the GABAergic inhibition. Overall, without the manifestation of any disease-related pathology, the genetic mutations PRNPE200K, T21, and LRRK2G2019S significantly altered the neuronal network communication in dCOs by disrupting the excitatory-to-inhibitory balance.
Collapse
Affiliation(s)
- Simote T Foliaki
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Benjamin Schwarz
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Bradley R Groveman
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Ryan O Walters
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Natalia C Ferreira
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Christina D Orrù
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Anna Smith
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Aleksandar Wood
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Olivia M Schmit
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Phoebe Freitag
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Jue Yuan
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Wenquan Zou
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Catharine M Bosio
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - James A Carroll
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Cathryn L Haigh
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA.
| |
Collapse
|
28
|
Vöglein J, Kostova I, Arzberger T, Noachtar S, Dieterich M, Herms J, Schmitz P, Ruf V, Windl O, Roeber S, Simons M, Höglinger GU, Danek A, Giese A, Levin J. Seizure prevalence in neurodegenerative diseases-a study of autopsy proven cases. Eur J Neurol 2021; 29:12-18. [PMID: 34472165 DOI: 10.1111/ene.15089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/27/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Knowledge about the seizure prevalence in the whole symptomatic course, from disease onset to death, in neurodegenerative diseases (ND) is lacking. Therefore, the aim was to investigate seizure prevalence and associated clinical implications in neuropathologically diagnosed ND. METHODS Clinical records of cases from the Neurobiobank Munich, Germany, were analyzed. Neuropathological diagnoses of the assessed cases included Alzheimer disease (AD), corticobasal degeneration (CBD), frontotemporal lobar degeneration (FTLD), Lewy body disease (LBD), multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Seizure prevalence during the whole symptomatic disease phase was assessed and compared amongst ND. Associations between first clinical symptom and seizure prevalence and between seizures and disease duration were examined. RESULTS In all, 454 patients with neuropathologically diagnosed ND and with available and meaningful clinical records were investigated (AD, n = 144; LBD, n = 103; PSP, n = 93; FTLD, n = 53; MSA, n = 36; CBD, n = 25). Seizure prevalence was 31.3% for AD, 20.0% for CBD, 12.6% for LBD, 11.3% for FTLD, 8.3% for MSA and 7.5% for PSP. Seizure prevalence was significantly higher in AD compared to FTLD (p = 0.005), LBD (p = 0.001), MSA (p = 0.005) and PSP (p < 0.001). No other significant differences regarding seizure prevalence were found between the studied ND. Cognitive first symptoms in ND were associated with an increased seizure prevalence (21.1% vs. 11.0% in patients without cognitive first symptoms) and motor first symptoms with a decreased seizure prevalence (10.3% vs. 20.5% in patients without motor first symptoms). Seizures were associated with a longer disease duration in MSA (12.3 vs. 7.0 years in patients without seizures; p = 0.017). CONCLUSIONS Seizures are a clinically relevant comorbidity in ND, particularly in AD. Knowledge of the first clinical symptom in ND may allow for estimation of seizure risk.
Collapse
Affiliation(s)
- Jonathan Vöglein
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Irena Kostova
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany.,Department for Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Soheyl Noachtar
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marianne Dieterich
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peer Schmitz
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Otto Windl
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Technical University of Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Technical University of Munich, Munich, Germany.,Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
29
|
Oonk NGM, Movig KLL, van der Palen J, Nijmeijer HW, van Kesteren ME, Dorresteijn LDA. The Impact of Non-dopaminergic Medication on Quality of Life in Parkinson's Disease. Clin Drug Investig 2021; 41:809-816. [PMID: 34374959 DOI: 10.1007/s40261-021-01064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Quality of life (QoL) in Parkinson's disease (PD) depends on multiple factors. Due to PD treatment and accompanying, age-related or independent comorbidities, pill burden is often high. The relation of QoL and pharmacotherapy for comorbidities in PD has not been widely studied. This study investigated if and to what extent non-dopaminergic drugs are related to QoL in PD. Second, the impact of demographics and non-motor symptoms were evaluated. A better understanding of the impact of different non-dopaminergic drugs and polypharmacy on QoL will have added value in selecting appropriate (medication) interventions. METHODS In a cross-sectional analysis, medication prescription data of 209 PD patients were analyzed and grouped according to the Rx-Risk comorbidity index. QoL was measured using the PDQ-39 questionnaire. Non-motor symptoms were analyzed with the Non-Motor Symptoms questionnaire. Independent factors associated with a reduced QoL were identified with a multivariate linear regression analysis. RESULTS Non-dopaminergic drugs, subdivided into Rx-Risk comorbidity categories, were not associated with reduced QoL, except for the use of anti-epileptic drugs. However, using more daily non-dopaminergic drugs was also negatively associated with QoL, as well as female sex, increased PD severity, and more non-motor symptoms. Contraindicated non-dopaminergic medication was barely prescribed (0.4%). CONCLUSION Non-dopaminergic drugs are frequently prescribed, and higher numbers are associated with impaired QoL in PD. However, when divided in drug types, only anti-epileptic drugs were negatively associated with QoL. In these patients, physicians might improve QoL by further optimizing the condition it was prescribed for (e.g., pain or anxiety), or managing of side effects. TRIAL REGISTRATION Netherlands Trial Register; NL4360.
Collapse
Affiliation(s)
- Nicol G M Oonk
- Department of Neurology, Medisch Spectrum Twente, Enschede, The Netherlands.
| | - Kris L L Movig
- Department of Clinical Pharmacy, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Job van der Palen
- Department of Epidemiology, Medisch Spectrum Twente, Enschede, The Netherlands.,Department of Research Methodology, Measurement, and Data Analysis, University of Twente, Enschede, The Netherlands
| | | | | | | |
Collapse
|
30
|
Srivastava A, Kumar K, Banerjee J, Tripathi M, Dubey V, Sharma D, Yadav N, Sharma MC, Lalwani S, Doddamani R, Chandra PS, Dixit AB. Transcriptomic profiling of high- and low-spiking regions reveals novel epileptogenic mechanisms in focal cortical dysplasia type II patients. Mol Brain 2021; 14:120. [PMID: 34301297 PMCID: PMC8305866 DOI: 10.1186/s13041-021-00832-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/14/2021] [Indexed: 11/15/2022] Open
Abstract
Focal cortical dysplasia (FCD) is a malformation of the cerebral cortex with poorly-defined epileptogenic zones (EZs), and poor surgical outcome in FCD is associated with inaccurate localization of the EZ. Hence, identifying novel epileptogenic markers to aid in the localization of EZ in patients with FCD is very much needed. High-throughput gene expression studies of FCD samples have the potential to uncover molecular changes underlying the epileptogenic process and identify novel markers for delineating the EZ. For this purpose, we, for the first time performed RNA sequencing of surgically resected paired tissue samples obtained from electrocorticographically graded high (MAX) and low spiking (MIN) regions of FCD type II patients and autopsy controls. We identified significant changes in the MAX samples of the FCD type II patients when compared to non-epileptic controls, but not in the case of MIN samples. We found significant enrichment for myelination, oligodendrocyte development and differentiation, neuronal and axon ensheathment, phospholipid metabolism, cell adhesion and cytoskeleton, semaphorins, and ion channels in the MAX region. Through the integration of both MAX vs non-epileptic control and MAX vs MIN RNA sequencing (RNA Seq) data, PLP1, PLLP, UGT8, KLK6, SOX10, MOG, MAG, MOBP, ANLN, ERMN, SPP1, CLDN11, TNC, GPR37, SLC12A2, ABCA2, ABCA8, ASPA, P2RX7, CERS2, MAP4K4, TF, CTGF, Semaphorins, Opalin, FGFs, CALB2, and TNC were identified as potential key regulators of multiple pathways related to FCD type II pathology. We have identified novel epileptogenic marker elements that may contribute to epileptogenicity in patients with FCD and could be possible markers for the localization of EZ.
Collapse
Affiliation(s)
| | - Krishan Kumar
- Dr B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | | | | | - Vivek Dubey
- Department of Biophysics, AIIMS, New Delhi, India
| | - Devina Sharma
- Department of Neurosurgery, AIIMS, New Delhi, 110029, India
| | - Nitin Yadav
- Dr B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - M C Sharma
- Department of Pathology, AIIMS, New Delhi, India
| | - Sanjeev Lalwani
- Department of Forensic Medicine and Toxicology, AIIMS, New Delhi, India
| | | | - P Sarat Chandra
- Department of Neurosurgery, AIIMS, New Delhi, 110029, India.
| | - Aparna Banerjee Dixit
- Dr B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
31
|
Johnson EL, Krauss GL, Kucharska-Newton A, Lam AD, Sarkis R, Gottesman RF. Mortality in Patients With Late-Onset Epilepsy: Results From the Atherosclerosis Risk in Communities Study. Neurology 2021; 97:e1132-e1140. [PMID: 34282048 DOI: 10.1212/wnl.0000000000012483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/16/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the risk of mortality and causes of death in persons with late-onset epilepsy (LOE) compared to those without epilepsy in a community-based sample, adjusting for demographics and comorbid conditions. METHODS This is an analysis of the prospective Atherosclerosis Risk in Communities (ARIC) study, initiated in 1987-1989 among 15,792 mostly black and white men and women in 4 U.S. communities. We used Centers for Medicare Services fee-for-service claims codes to identify cases of incident epilepsy starting at or after age 67. We used Cox proportional hazards analysis to identify the hazard of mortality associated with LOE and to adjust for demographics and vascular risk factors. We used death certificate data to identify dates and causes of death. RESULTS Analyses included 9090 participants, of whom 678 developed LOE during median 11.5 years of follow-up after age 67. Participants who developed LOE were at an increased hazard of mortality compared to those who did not, with adjusted hazard ratio 2.39 (95% CI 2.12-2.71). We observed excess mortality due to stroke, dementia, neurologic conditions, and end-stage renal disease in participants with compared to without LOE. Only 4 deaths (1.1%) were directly attributed to seizure-related causes. CONCLUSIONS Persons who develop LOE are at increased risk of death compared to those without epilepsy, even after adjusting for comorbidities. The majority of this excess mortality is due to stroke and dementia.
Collapse
Affiliation(s)
- Emily L Johnson
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Gregory L Krauss
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Anna Kucharska-Newton
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Epidemiology, University of Kentucky, Lexington, KY
| | - Alice D Lam
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Rani Sarkis
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Rebecca F Gottesman
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD.,Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD
| |
Collapse
|
32
|
Löscher W, Klein P. New approaches for developing multi-targeted drug combinations for disease modification of complex brain disorders. Does epilepsy prevention become a realistic goal? Pharmacol Ther 2021; 229:107934. [PMID: 34216705 DOI: 10.1016/j.pharmthera.2021.107934] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Over decades, the prevailing standard in drug discovery was the concept of designing highly selective compounds that act on individual drug targets. However, more recently, multi-target and combinatorial drug therapies have become an important treatment modality in complex diseases, including neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The development of such network-based approaches is facilitated by the significant advance in our understanding of the pathophysiological processes in these and other complex brain diseases and the adoption of modern computational approaches in drug discovery and repurposing. However, although drug combination therapy has become an effective means for the symptomatic treatment of many complex diseases, the holy grail of identifying clinically effective disease-modifying treatments for neurodegenerative and other brain diseases remains elusive. Thus, despite extensive research, there remains an urgent need for novel treatments that will modify the progression of the disease or prevent its development in patients at risk. Here we discuss recent approaches with a focus on multi-targeted drug combinations for prevention or modification of epilepsy. Over the last ~10 years, several novel promising multi-targeted therapeutic approaches have been identified in animal models. We envision that synergistic combinations of repurposed drugs as presented in this review will be demonstrated to prevent epilepsy in patients at risk within the next 5-10 years.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| |
Collapse
|
33
|
Gamma-decanolactone: Preliminary evaluation as potential antiparkinsonian drug. Eur J Pharmacol 2021; 906:174276. [PMID: 34174267 DOI: 10.1016/j.ejphar.2021.174276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
Treatment of Parkinson's disease (PD) includes the use of monoamine oxidase-B (MAO-B) inhibitor drugs. In this work we have evaluated the possible gamma-decanolactone (GD) effect in vitro to inhibit the A and B isoforms of human monoamine oxidase (hMAO) enzyme and their citotoxicity in human hepatoma cell line (HepG2). Also, binding studies to A1, A2A A2B and A3 adenosine receptors were performed. A docking study of gamma-decanolactone has been carried out with the molecular targets of MAO-A and MAO-B isoforms. The physicochemical properties and ability to cross physiological barriers, as the blood brain barrier (BBB), was elucidated by computational studies. The in vivo assays, the rota-rod test, body temperature assessment and open field test were performed in reserpinized mice (1.5 mg/kg, i.p.; 18:00 before) to evaluate the effect of gamma-decanolactone (300 mg/kg), alone or associated with Levodopa plus Benserazide (LD + BZ, 100:25 mg/kg, i.p.). Gamma-decanolactone inhibited preferentially the MAO-B in a reversible manner, with an inhibitory concentration of 50% (IC50) 55.95 ± 9.06 μM. It was shown to be a safe drug since only at the highest concentration decreased the viability of HepG2 cells. It also does not bind to adenosine receptors investigated in this study. The molecular docking study show that the gamma-decanolactone ligand adopts a relatively compact conformation in the active site of hMAO-B, while we note an extended conformation of gamma-decanolactone ligand in the hMAO-A isoform. The physicochemical properties obtained, and the theoretical models utilized for the evaluation of ability to cross the BBB, predict a good gamma-decanolactone bioavailability and access to the central nervous system (CNS). In the in vivo studies, gamma-decanolactone partially reversed the ataxia of the reserpinized mice at 01:00 h and 01:30 h post-administration. Concomitant treatment of gamma-decanolactone with LD + BZ, at 01:30 h showed a potentiation of the reversibility of ataxia and facilitated the reversal of hypothermia caused by reserpine for all measured times (P <0.01 vs vehicle), except at 24:00 h, but not reversed the hypokinesia in the open field test. In summary, the results herein obtained and in conjunction with previous studies, suggest that gamma-decanolactone could be a drug with potential utility as antiparkinsonian drug.
Collapse
|
34
|
Rodrigo LM, Nyholt DR. Imputation and Reanalysis of ExomeChip Data Identifies Novel, Conditional and Joint Genetic Effects on Parkinson's Disease Risk. Genes (Basel) 2021; 12:genes12050689. [PMID: 34064523 PMCID: PMC8147919 DOI: 10.3390/genes12050689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Given that improved imputation software and high-coverage whole genome sequence (WGS)-based haplotype reference panels now enable inexpensive approximation of WGS genotype data, we hypothesised that WGS-based imputation and analysis of existing ExomeChip-based genome-wide association (GWA) data will identify novel intronic and intergenic single nucleotide polymorphism (SNP) effects associated with complex disease risk. In this study, we reanalysed a Parkinson’s disease (PD) dataset comprising 5540 cases and 5862 controls genotyped using the ExomeChip-based NeuroX array. After genotype imputation and extensive quality control, GWA analysis was performed using PLINK and a recently developed machine learning approach (GenEpi), to identify novel, conditional and joint genetic effects associated with PD. In addition to improved validation of previously reported loci, we identified five novel genome-wide significant loci associated with PD: three (rs137887044, rs78837976 and rs117672332) with 0.01 < MAF < 0.05, and two (rs187989831 and rs12100172) with MAF < 0.01. Conditional analysis within genome-wide significant loci revealed four loci (p < 1 × 10−5) with multiple independent risk variants, while GenEpi analysis identified SNP–SNP interactions in seven genes. In addition to identifying novel risk loci for PD, these results demonstrate that WGS-based imputation and analysis of existing exome genotype data can identify novel intronic and intergenic SNP effects associated with complex disease risk.
Collapse
|
35
|
de Toffol B. Epilessia negli anziani: epilessia e demenze. Neurologia 2021. [DOI: 10.1016/s1634-7072(21)44998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
36
|
Wang X, Loi SM, Foster E, Chen Z, Velakoulis D, Kwan P. Predictors of New-Onset Epilepsy in People With Younger-Onset Neurocognitive Disorders. Front Aging Neurosci 2021; 13:637260. [PMID: 33815091 PMCID: PMC8010684 DOI: 10.3389/fnagi.2021.637260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/23/2021] [Indexed: 01/19/2023] Open
Abstract
Objective: People with neurocognitive disorders (NCDs) have an increased risk of epilepsy. However, most studies investigating the risk of seizures in people with NCDs are limited to those with Alzheimer's disease (AD) and vascular dementia (VD), and those who developed dementia after age 65 years. A knowledge gap exists regarding factors associated with development of epilepsy in people with younger-onset NCD, and those with non-AD and non-VD dementia subtypes. In this study, we aimed to identify the factors associated with the development of epilepsy in people with younger-onset NCDs of varied etiologies, the majority of whom had symptom onset prior to age 65 years. Participants and Methods: This was a retrospective study reviewing the medical records of consecutive people admitted with cognitive impairment to a tertiary neuropsychiatry unit between 1 January 2004 and 30 April 2019. People diagnosed with primary NCDs were included in the analysis. The prevalence and characteristics of epilepsy were described. The factors associated with developing epilepsy were identified in a binary logistic regression model. Results: A total of 427 people were included. One hundred fourteen had Alzheimer's disease, 104 frontotemporal dementia, 51 vascular dementia, 69 movement disorder-associated dementia, and 89 unspecified NCD. The median age on admission was 59 years (range 33-86) and 75.2% (n = 321/427) had young-onset NCD with onset before 65 years of age. 40/427 (9.4%) people had epilepsy, and epilepsy onset clustered between 2 years before and 6 years after the onset of cognitive decline in 80% (n = 32/40). The most frequent seizure type was focal to bilateral tonic-clonic seizure (35%, n = 14/40). Most of the people (94.7%, n = 36/38) achieved seizure freedom with one or two antiseizure medications. People with unspecified NCD (compared to frontotemporal dementia and movement disorder-associated dementia, age of onset of NCDs ≤50 years, and current smoking status were independently associated with higher risk of developing epilepsy. Conclusion: Epilepsy is common in people with younger-onset NCDs, and a high index of suspicion is warranted particularly for those with unspecified subtype and smoking status. Smoking reduction or cessation should be further investigated as a potentially modifiable factor for risk reduction.
Collapse
Affiliation(s)
- Xinshi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Samantha M Loi
- Neuropsychiatry, The Royal Melbourne Hospital and Melbourne Neuropsychiatry Center, The University of Melbourne and The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Emma Foster
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Zhibin Chen
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, VIC, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Dennis Velakoulis
- Neuropsychiatry, The Royal Melbourne Hospital and Melbourne Neuropsychiatry Center, The University of Melbourne and The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Patrick Kwan
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
37
|
Vossel K, Karageorgiou E. Editorial: Silent Seizures and Memory Loss in Alzheimer's Disease. Front Neurol 2021; 12:648650. [PMID: 33763022 PMCID: PMC7982410 DOI: 10.3389/fneur.2021.648650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Keith Vossel
- Mary S. Easton Center for Alzheimer's Disease Research, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|
38
|
Blank LJ, Acton EK, Thibault D, Willis AW. Neurodegenerative disease is associated with increased incidence of epilepsy: a population based study of older adults. Age Ageing 2021; 50:205-212. [PMID: 33030514 PMCID: PMC7946790 DOI: 10.1093/ageing/afaa194] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To determine the incidence of epilepsy among Medicare beneficiaries with a new diagnosis of Alzheimer dementia (AD) or Parkinson disease (PD). METHODS Retrospective cohort study of Medicare beneficiaries with an incident diagnosis of AD or PD in the year 2009. The 5-year incidence of epilepsy was examined by sociodemographic characteristics, comorbidities and neurodegenerative disease status. Cox regression models examined the association of neurodegenerative disease with incident epilepsy, adjusting for demographic characteristics and medical comorbidities. RESULTS We identified 178,593 individuals with incident AD and 104,157 individuals with incident PD among 34,054,293 Medicare beneficiaries with complete data in 2009. Epilepsy was diagnosed in 4.45% (7,956) of AD patients and 4.81% (5,010) of PD patients between 2009 and 2014, approximately twice as frequently as in the control sample. Minority race/ethnicity was associated with increased risk of incident epilepsy. Among individuals with AD and PD, stroke was associated with increased epilepsy risk. Traumatic brain injury (TBI) was associated with increased epilepsy risk for individuals with PD. Depression was also associated with incident epilepsy (AD adjusted hazard ratio (AHR): 1.23 (1.17-1.29), PD AHR: 1.45 (1.37-1.54)). In PD only, a history of hip fracture (AHR, 1.35 (1.17-1.57)) and diabetes (AHR, 1.11 (1.05-1.18) were also associated with increased risk of epilepsy. CONCLUSION Incident epilepsy is more frequently diagnosed among neurodegenerative disease patients, particularly when preceded by a diagnosis of depression, TBI or stroke. Further studies into the differences in epilepsy risk between these two populations may help elucidate different mechanisms of epileptogenesis.
Collapse
Affiliation(s)
- Leah J Blank
- Department of Neurology, Division of Health Outcomes and Knowledge Translational Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily K Acton
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology Translational Center of Excellence for Neuroepidemiology and Neurological Outcomes Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dylan Thibault
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology Translational Center of Excellence for Neuroepidemiology and Neurological Outcomes Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison W Willis
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology Translational Center of Excellence for Neuroepidemiology and Neurological Outcomes Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Leonard Davis Institute of Health Economics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
39
|
Bacellar A, Assis TRD, Pedreira BB, CÔrtes L, Santana S, Nascimento OJMD. Predictors of long length of hospital stay among elders admitted with seizures in a tertiary centre: a prospective study. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 78:687-694. [PMID: 33263637 DOI: 10.1590/0004-282x20200062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Population ageing is a global phenomenon, and life expectancy in Brazil is growing fast. Epilepsy is the third most important chronic neurological disorder, and its incidence is higher among elderly patients than in any other segment of the population. The prevalence of epilepsy is greater among inpatients than in the general population and it is related to long length of hospital stay (LOS), which is associated with hospital mortality and higher healthcare costs. Despite these facts, reports of elderly inpatients admitted with seizures and associated outcomes are scarce. To identify predictors of long LOS among elderly inpatients admitted with seizures. METHODS We prospectively enrolled elders admitted with epileptic seizures or who experienced seizures throughout hospitalization between November 2015 and August 2019. We analysed demographic data, neurological disorders, clinical comorbidities, and seizure features to identify risk factors. RESULTS The median LOS was 11 days, with an interquartile range (IQR) of 5-21 days. The frequency of long LOS (defined as a period of hospitalization ≥12 days) was 47%. Multivariate analysis showed there was an exponential increase in long LOS if a patient showed any of the following conditions: intensive care unit (ICU) admission (OR=4.562), urinary tract infection (OR=3.402), movement disorder (OR=5.656), early seizure recurrence (OR=2.090), and sepsis (OR=4.014). CONCLUSION Long LOS was common among elderly patients admitted with seizures, and most predictors of long LOS found in this cohort might be avoidable; these findings should be confirmed with further research.
Collapse
Affiliation(s)
- Aroldo Bacellar
- Hospital São Rafael, Department of Neurology, D'Or Institute for Research and Education, Salvador BA, Brazil
| | - Telma Rocha de Assis
- Hospital São Rafael, Department of Neurology, D'Or Institute for Research and Education, Salvador BA, Brazil
| | - Bruno Bacellar Pedreira
- Hospital São Rafael, Department of Neurology, D'Or Institute for Research and Education, Salvador BA, Brazil
| | - Luan CÔrtes
- Resident of the Department of Neurology, Hospital São Rafael, Monte Tabor Foundation, Italian-Brazilian Centre for Health Promotion, Salvador BA, Brazil
| | - Silas Santana
- Resident of the Department of Neurology, Hospital São Rafael, Monte Tabor Foundation, Italian-Brazilian Centre for Health Promotion, Salvador BA, Brazil
| | | |
Collapse
|
40
|
Suchkova IO, Borisova EV, Patkin EL. Length Polymorphism and Methylation Status of UPS29 Minisatellite of the ACAP3 Gene as Molecular Biomarker of Epilepsy. Sex Differences in Seizure Types and Symptoms. Int J Mol Sci 2020; 21:E9206. [PMID: 33276684 PMCID: PMC7730309 DOI: 10.3390/ijms21239206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023] Open
Abstract
Epilepsy is a neurological disease with different clinical forms and inter-individuals heterogeneity, which may be associated with genetic and/or epigenetic polymorphisms of tandem-repeated noncoding DNA. These polymorphisms may serve as predictive biomarkers of various forms of epilepsy. ACAP3 is the protein regulating morphogenesis of neurons and neuronal migration and is an integral component of important signaling pathways. This study aimed to carry out an association analysis of the length polymorphism and DNA methylation of the UPS29 minisatellite of the ACAP3 gene in patients with epilepsy. We revealed an association of short UPS29 alleles with increased risk of development of symptomatic and cryptogenic epilepsy in women, and also with cerebrovascular pathologies, structural changes in the brain, neurological status, and the clinical pattern of seizures in both women and men. The increase of frequency of hypomethylated UPS29 alleles in men with symptomatic epilepsy, and in women with both symptomatic and cryptogenic epilepsy was observed. For patients with hypomethylated UPS29 alleles, we also observed structural changes in the brain, neurological status, and the clinical pattern of seizures. These associations had sex-specific nature similar to a genetic association. In contrast with length polymorphism epigenetic changes affected predominantly the long UPS29 allele. We suppose that genetic and epigenetic alterations UPS29 can modify ACAP3 expression and thereby affect the development and clinical course of epilepsy.
Collapse
Affiliation(s)
- Irina O. Suchkova
- Laboratory of Molecular Cytogenetics of Mammalian Development, Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, St. Petersburg 197376, Russia;
| | - Elena V. Borisova
- Department of Neurology, Clinic of Institute of Experimental Medicine, St. Petersburg 197376, Russia;
| | - Eugene L. Patkin
- Laboratory of Molecular Cytogenetics of Mammalian Development, Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, St. Petersburg 197376, Russia;
| |
Collapse
|
41
|
Johnson TP, Sejvar J, Nutman TB, Nath A. The Pathogenesis of Nodding Syndrome. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:395-417. [PMID: 31977293 DOI: 10.1146/annurev-pathmechdis-012419-032748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nodding syndrome is a rare, enigmatic form of pediatric epilepsy that has occurred in an epidemic fashion beginning in the early 2000s in geographically distinct regions of Africa. Despite extensive investigation, the etiology of nodding syndrome remains unclear, although much progress has been made in understanding the pathogenesis of the disease, as well as in treatment and prevention. Nodding syndrome is recognized as a defined disease entity, but it is likely one manifestation along a continuum of Onchocerca volvulus-associated neurological complications. This review examines the epidemiology of nodding syndrome and its association with environmental factors. It provides a critical analysis of the data that support or contradict the leading hypotheses of the etiologies underlying the pathogenesis of the syndrome. It also highlights the important progress made in treating and preventing this devastating neurological disease and prioritizes important areas for future research.
Collapse
Affiliation(s)
- Tory P Johnson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - James Sejvar
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329-4027, USA
| | - Thomas B Nutman
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
42
|
On the merits of non-invasive myelin imaging in epilepsy, a literature review. J Neurosci Methods 2020; 338:108687. [PMID: 32173402 DOI: 10.1016/j.jneumeth.2020.108687] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 01/10/2023]
|
43
|
Abstract
Neuronal networks maintain stable activity around a given set point, an enigmatic variable in homeostatic systems. In this issue of Neuron, Styr et al. (2019) now show that set points are regulated by mitochondria and propose a potential strategy to treat refractory forms of epilepsy.
Collapse
Affiliation(s)
- Valerie Uytterhoeven
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Natalie Kaempf
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
44
|
Chaudhuri P, Prajapati KP, Anand BG, Dubey K, Kar K. Amyloid cross-seeding raises new dimensions to understanding of amyloidogenesis mechanism. Ageing Res Rev 2019; 56:100937. [PMID: 31430565 DOI: 10.1016/j.arr.2019.100937] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/21/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
Hallmarks of most of the amyloid pathologies are surprisingly found to be heterocomponent entities such as inclusions and plaques which contain diverse essential proteins and metabolites. Experimental studies have already revealed the occurrence of coaggregation and cross-seeding during amyloid formation of several proteins and peptides, yielding multicomponent assemblies of amyloid nature. Further, research reports on the co-occurrence of more than one type of amyloid-linked pathologies in the same individual suggest the possible cross-talk among the disease related amyloidogenic protein species during their amyloid growth. In this review paper, we have tried to gain more insight into the process of coaggregation and cross-seeding during amyloid aggregation of proteins, particularly focusing on their relevance to the pathogenesis of the protein misfolding diseases. Revelation of amyloid cross-seeding and coaggregation seems to open new dimensions in our mechanistic understanding of amyloidogenesis and such knowledge may possibly inspire better designing of anti-amyloid therapeutics.
Collapse
|
45
|
Analysis of the reasons and costs of hospitalization for epilepsy patients in East China. Seizure 2019; 72:40-45. [PMID: 31590137 DOI: 10.1016/j.seizure.2019.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/03/2019] [Accepted: 09/26/2019] [Indexed: 11/21/2022] Open
Abstract
PURPOSE This study aimed to assess the cause and cause-specific risks of hospitalization for epilepsy patients in East China. Further analysis was performed for inpatient hospitalization days, hospital mortality and costs. METHOD This study was performed on epilepsy patients admitted to our hospital including 21 community health centers in East China from January 2011 to April 2017. Case records including patient data, length of hospitalization, reasons for admission, hospital mortality, and the costs incurred for hospitalization of epilepsy patients were reviewed. RESULTS The three principal reasons for admission were: 1) cerebral vascular disease (CVD), 2) newly diagnosed epilepsy with unknown etiology; and 3) frequent seizures including status epilepticus. The median length of hospitalization was 13 days. The three major reasons regarding inpatient days were: 1) Parkinson's Disease (PD), 2) dementia, 3) trauma. The average hospital mortality was 14.81‰ (17/1148) with 1) lung infection (mainly pneumonia), 2) depression (deaths occurred by suicide) and 3) frequent seizures including status epilepticus being the three top reasons. The three major financial cost incurred for in-patients with epilepsy were: 1) PD, 2) arteriovenous malformation and 3) trauma. CONCLUSIONS The most common hospitalized reasons for epilepsy patients were CVD, PD and dementia, which all were common diseases in the elderly. Consequently, the hospitalization days of these patients were longer and their financial burden was heavier. Epilepsy patients with comorbid depression should be closely monitored to prevent suicide from the onset of epilepsy.
Collapse
|
46
|
Zelano J, Brigo F, Garcia‐Patek S. Increased risk of epilepsy in patients registered in the Swedish Dementia Registry. Eur J Neurol 2019; 27:129-135. [DOI: 10.1111/ene.14043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/15/2019] [Indexed: 01/03/2023]
Affiliation(s)
- J. Zelano
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy Gothenburg University GothenburgSweden
- Department of Neurology Sahlgrenska University Hospital Gothenburg Sweden
| | - F. Brigo
- Department of Neuroscience, Biomedicine and Movement Science University of Verona VeronaItaly
- Division of Neurology ‘Franz Tappeiner’ Hospital Merano Italy
| | - S. Garcia‐Patek
- Department of Neurobiology, Care Sciences and Society Division of Clinical Geriatrics Karolinska Institutet StockholmSweden
- Internal Medicine Section for Neurology Södersjukhuset Stockholm Sweden
| |
Collapse
|
47
|
Freitas ME, Ruiz-Lopez M, Dalmau J, Erro R, Privitera M, Andrade D, Fasano A. Seizures and movement disorders: phenomenology, diagnostic challenges and therapeutic approaches. J Neurol Neurosurg Psychiatry 2019; 90:920-928. [PMID: 30796133 DOI: 10.1136/jnnp-2018-320039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Seizures and movement disorders (MDs) are distinct neurological conditions presenting with abnormal movements. Despite sharing an overlap in phenomenology, these movements have different origins. In order to explore the overlaps and the narrow boundaries between these two conditions, we performed a review of the literature to explore the risk of seizures in MDs. We discussed the mimics and chameleons including MDs that look like seizure (eg, paroxysmal dyskinesia, status dystonicus) and seizures that look like MDs (eg, epilepsia partialis continua, nocturnal frontal lobe epilepsy). Additionally, we examined the therapeutic challenges as well as the anatomical and chemical pathways relevant in the interplay between epilepsy and MDs. Finally, we proposed an algorithm to guide clinicians towards the final diagnosis of conditions characterised by the co-occurrence of MDs and seizures.
Collapse
Affiliation(s)
- Maria Eliza Freitas
- Medicine, McMaster University Division of Neurology, Hamilton, Ontario, Canada
| | - Marta Ruiz-Lopez
- Service of Neurology, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Josep Dalmau
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, UCL Institute of Neurology, Baronissi, Italy
| | - Michael Privitera
- Epilepsy Center, University of Cincinnati Gardner Neuroscience Institute, Cincinnati, Ohio, USA
| | | | - Alfonso Fasano
- Neurology, Krembil Brain Institute; Movement Disorders Centre and the Edmond J Safra Program in Parkinson's Disease, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Fu CH, Iascone DM, Petrof I, Hazra A, Zhang X, Pyfer MS, Tosi U, Corbett BF, Cai J, Lee J, Park J, Iacovitti L, Scharfman HE, Enikolopov G, Chin J. Early Seizure Activity Accelerates Depletion of Hippocampal Neural Stem Cells and Impairs Spatial Discrimination in an Alzheimer's Disease Model. Cell Rep 2019; 27:3741-3751.e4. [PMID: 31242408 PMCID: PMC6697001 DOI: 10.1016/j.celrep.2019.05.101] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 04/24/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Abstract
Adult hippocampal neurogenesis has been reported to be decreased, increased, or not changed in Alzheimer's disease (AD) patients and related transgenic mouse models. These disparate findings may relate to differences in disease stage, or the presence of seizures, which are associated with AD and can stimulate neurogenesis. In this study, we investigate a transgenic mouse model of AD that exhibits seizures similarly to AD patients and find that neurogenesis is increased in early stages of disease, as spontaneous seizures became evident, but is decreased below control levels as seizures recur. Treatment with the antiseizure drug levetiracetam restores neurogenesis and improves performance in a neurogenesis-associated spatial discrimination task. Our results suggest that seizures stimulate, and later accelerate the depletion of, the hippocampal neural stem cell pool. These results have implications for AD as well as any disorder accompanied by recurrent seizures, such as epilepsy.
Collapse
Affiliation(s)
- Chia-Hsuan Fu
- Memory & Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniel Maxim Iascone
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Iraklis Petrof
- Memory & Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Anupam Hazra
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xiaohong Zhang
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mark S Pyfer
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Umberto Tosi
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Brian F Corbett
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jingli Cai
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jason Lee
- Memory & Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Park
- Memory & Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lorraine Iacovitti
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Helen E Scharfman
- Departments of Psychiatry, Neuroscience, and Physiology and the Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Grigori Enikolopov
- Center for Developmental Genetics and Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jeannie Chin
- Memory & Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
49
|
Heilbron K, Noyce AJ, Fontanillas P, Alipanahi B, Nalls MA, Cannon P. The Parkinson's phenome-traits associated with Parkinson's disease in a broadly phenotyped cohort. NPJ Parkinsons Dis 2019; 5:4. [PMID: 30937360 PMCID: PMC6437217 DOI: 10.1038/s41531-019-0077-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
In order to systematically describe the Parkinson's disease phenome, we performed a series of 832 cross-sectional case-control analyses in a large database. Responses to 832 online survey-based phenotypes including diseases, medications, and environmental exposures were analyzed in 23andMe research participants. For each phenotype, survey respondents were used to construct a cohort of Parkinson's disease cases and age-matched and sex-matched controls, and an association test was performed using logistic regression. Cohorts included a median of 3899 Parkinson's disease cases and 49,808 controls, all of European ancestry. Highly correlated phenotypes were removed and the novelty of each significant association was systematically assessed (assigned to one of four categories: known, likely, unclear, or novel). Parkinson's disease diagnosis was associated with 122 phenotypes. We replicated 27 known associations and found 23 associations with a strong a priori link to a known association. We discovered 42 associations that have not previously been reported. Migraine, obsessive-compulsive disorder, and seasonal allergies were associated with Parkinson's disease and tend to occur decades before the typical age of diagnosis for Parkinson's disease. The phenotypes that currently comprise the Parkinson's disease phenome have mostly been explored in relatively small purpose-built studies. Using a single large dataset, we have successfully reproduced many of these established associations and have extended the Parkinson's disease phenome by discovering novel associations. Our work paves the way for studies of these associated phenotypes that explore shared molecular mechanisms with Parkinson's disease, infer causal relationships, and improve our ability to identify individuals at high-risk of Parkinson's disease.
Collapse
Affiliation(s)
- Karl Heilbron
- 23andMe, Inc., 899W Evelyn Avenue, Mountain View, CA 94041 USA
| | - Alastair J. Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, Queen Square, London, UK
| | | | - Babak Alipanahi
- 23andMe, Inc., 899W Evelyn Avenue, Mountain View, CA 94041 USA
| | - Mike A. Nalls
- Data Tecnica International, Glen Echo, MD USA
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, USA
| | - Paul Cannon
- 23andMe, Inc., 899W Evelyn Avenue, Mountain View, CA 94041 USA
| |
Collapse
|
50
|
Jacob L, Bohlken J, Schmitz B, Kostev K. Incidence of epilepsy and associated factors in elderly patients in Germany. Epilepsy Behav 2019; 90:107-111. [PMID: 30529258 DOI: 10.1016/j.yebeh.2018.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 11/29/2022]
Abstract
AIMS Little is known about the recent epidemiology of epilepsy in the elderly in Germany. Therefore, the goal of this study was to analyze the incidence of epilepsy and associated factors in elderly patients followed in general practices in this country. METHODS The incidence of epilepsy was estimated using data from all patients aged ≥60 years who were followed in 1203 general practices in Germany in 2017 (IQVIA Disease Analyzer database). The association between predefined variables and epilepsy was further studied using a case-control design (n = 4690 matched pairs). Cases were patients aged ≥60 years who had received a first diagnosis of epilepsy in general practices between 2015 and 2017 (index date). Controls without epilepsy were matched (1:1) to cases by age, gender, index year, and physician. RESULTS The incidence of epilepsy was 157 per 100,000 elderly persons. This incidence increased with age (92 per 100,000 persons in patients aged 60-65 years versus 311 in those aged >90 years) and was higher in men (166) than in women (150). The three disorders that had the strongest association with epilepsy were subarachnoid, intracerebral or intracranial hemorrhage (odds ratio [OR] = 3.31), stroke, including transient ischemic attack (OR = 2.32), and mental and behavioral disorders due to use of alcohol (OR = 2.20). In addition, there was a positive association between atypical neuroleptics and epilepsy (OR = 2.40). CONCLUSIONS The incidence of epilepsy was high and increased with age in elderly patients followed in general practices in Germany. Addressing identified risk factors may help reduce the risk of developing epilepsy.
Collapse
Affiliation(s)
- Louis Jacob
- Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux 78180, France
| | - Jens Bohlken
- Praxis für Neurologie und Psychiatrie, Berlin, Germany
| | - Bettina Schmitz
- Department of Neurology, Vivantes Humboldt-Klinikum, Berlin, Germany
| | | |
Collapse
|