1
|
Pogrányi B, Mielke T, Díaz‐Rodríguez A, Cartwright J, Unsworth WP, Grogan G. Preparative-Scale Biocatalytic Oxygenation of N-Heterocycles with a Lyophilized Peroxygenase Catalyst. Angew Chem Int Ed Engl 2023; 62:e202214759. [PMID: 36453718 PMCID: PMC10107140 DOI: 10.1002/anie.202214759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
A lyophilized preparation of an unspecific peroxygenase variant from Agrocybe aegerita (rAaeUPO-PaDa-I-H) is a highly effective catalyst for the oxygenation of a diverse range of N-heterocyclic compounds. Scalable biocatalytic oxygenations (27 preparative examples, ca. 100 mg scale) have been developed across a wide range of substrates, including alkyl pyridines, bicyclic N-heterocycles and indoles. H2 O2 is the only stoichiometric oxidant needed, without auxiliary electron transport proteins, which is key to the practicality of the method. Reaction outcomes can be altered depending on whether hydrogen peroxide was delivered by syringe pump or through in situ generation using an alcohol oxidase from Pichia pastoris (PpAOX) and methanol as a co-substrate. Good synthetic yields (up to 84 %), regioselectivity and enantioselectivity (up to 99 % ee) were observed in some cases, highlighting the promise of UPOs as practical, versatile and scalable oxygenation biocatalysts.
Collapse
Affiliation(s)
- Balázs Pogrányi
- Department of ChemistryUniversity of YorkHeslington YorkYO10 5DDUK
| | - Tamara Mielke
- Department of ChemistryUniversity of YorkHeslington YorkYO10 5DDUK
| | - Alba Díaz‐Rodríguez
- GSK Medicines Research CentreGunnels Wood RoadStevenageHertfordshire, SG1 2NYUK
| | - Jared Cartwright
- Department of BiologyUniversity of YorkHeslington YorkYO10 5DDUK
| | | | - Gideon Grogan
- Department of ChemistryUniversity of YorkHeslington YorkYO10 5DDUK
| |
Collapse
|
2
|
Arshi S, Xiao X, Belochapkine S, Magner E. Electrochemical Immobilisation of Glucose Oxidase for the Controlled Production of H 2O 2 in a Biocatalytic Flow Reactor. ChemElectroChem 2022; 9:e202200319. [PMID: 36246851 PMCID: PMC9545823 DOI: 10.1002/celc.202200319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Electrochemical methods can be used to selectively modify the surfaces of electrodes, enabling the immobilisation of enzymes on defined areas on the surfaces of electrodes. Such selective immobilisation methods can be used to pattern catalysts on surfaces in a controlled manner. Using this approach, the selective patterning of the enzyme glucose oxidase on the electrodes was used to develop a flow reactor for the controlled delivery of the oxidant H2O2. GOx was immobilised on a glassy carbon electrode using polypyrrole, silica films, and diazonium linkers. The rate of production of H2O2 and the stability of the response was dependent on the immobilisation method. GOx encapsulated in polypyrrole was selected as the optimal method of immobilisation, with a rate of production of 91±11 μM h-1 for 4 hours of continuous operation. The enzyme was subsequently immobilised on carbon rod electrodes (surface area of 5.76 cm2) using a polypyrrole/Nafion® film and incorporated into a flow reactor. The rate of production of H2O2 was 602±57 μM h-1, with 100 % retention of activity after 7 h of continuous operation, demonstrating that such a system can be used to prepare H2O2 at continuous and stable rate for use in downstream oxidation reactions.
Collapse
Affiliation(s)
- Simin Arshi
- Department of Chemical SciencesBernal InstituteUniversity of LimerickV94 T9PXLimerickIreland
| | - Xinxin Xiao
- Department of ChemistryTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Serguei Belochapkine
- Department of Chemical SciencesBernal InstituteUniversity of LimerickV94 T9PXLimerickIreland
| | - Edmond Magner
- Department of Chemical SciencesBernal InstituteUniversity of LimerickV94 T9PXLimerickIreland
| |
Collapse
|
3
|
Charlton SN, Hayes MA. Oxygenating Biocatalysts for Hydroxyl Functionalisation in Drug Discovery and Development. ChemMedChem 2022; 17:e202200115. [PMID: 35385205 PMCID: PMC9323455 DOI: 10.1002/cmdc.202200115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Indexed: 11/12/2022]
Abstract
C-H oxyfunctionalisation remains a distinct challenge for synthetic organic chemists. Oxygenases and peroxygenases (grouped here as "oxygenating biocatalysts") catalyse the oxidation of a substrate with molecular oxygen or hydrogen peroxide as oxidant. The application of oxygenating biocatalysts in organic synthesis has dramatically increased over the last decade, producing complex compounds with potential uses in the pharmaceutical industry. This review will focus on hydroxyl functionalisation using oxygenating biocatalysts as a tool for drug discovery and development. Established oxygenating biocatalysts, such as cytochrome P450s and flavin-dependent monooxygenases, have widely been adopted for this purpose, but can suffer from low activity, instability or limited substrate scope. Therefore, emerging oxygenating biocatalysts which offer an alternative will also be covered, as well as considering the ways in which these hydroxylation biotransformations can be applied in drug discovery and development, such as late-stage functionalisation (LSF) and in biocatalytic cascades.
Collapse
Affiliation(s)
- Sacha N. Charlton
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery SciencesBiopharmaceuticals R&DAstraZenecaGothenburgSweden
| |
Collapse
|
4
|
Mahor D, Cong Z, Weissenborn MJ, Hollmann F, Zhang W. Valorization of Small Alkanes by Biocatalytic Oxyfunctionalization. CHEMSUSCHEM 2022; 15:e202101116. [PMID: 34288540 DOI: 10.1002/cssc.202101116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The oxidation of alkanes into valuable chemical products is a vital reaction in organic synthesis. This reaction, however, is challenging, owing to the inertness of C-H bonds. Transition metal catalysts for C-H functionalization are frequently explored. Despite chemical alternatives, nature has also evolved powerful oxidative enzymes (e. g., methane monooxygenases, cytochrome P450 oxygenases, peroxygenases) that are capable of transforming C-H bonds under very mild conditions, with only the use of molecular oxygen or hydrogen peroxide as electron acceptors. Although progress in alkane oxidation has been reviewed extensively, little attention has been paid to small alkane oxidation. The latter holds great potential for the manufacture of chemicals. This Minireview provides a concise overview of the most relevant enzyme classes capable of small alkanes (C<6 ) oxyfunctionalization, describes the essentials of the catalytic mechanisms, and critically outlines the current state-of-the-art in preparative applications.
Collapse
Affiliation(s)
- Durga Mahor
- National Innovation Center for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- Indian Institute of Science Education and Research Berhampur, Odisha, 760010, India
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, Shandong, 266101, P. R. China
| | - Martin J Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Saale), Germany
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Wuyuan Zhang
- National Innovation Center for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| |
Collapse
|
5
|
Schmermund L, Reischauer S, Bierbaumer S, Winkler CK, Diaz‐Rodriguez A, Edwards LJ, Kara S, Mielke T, Cartwright J, Grogan G, Pieber B, Kroutil W. Chromoselective Photocatalysis Enables Stereocomplementary Biocatalytic Pathways*. Angew Chem Int Ed Engl 2021; 60:6965-6969. [PMID: 33529432 PMCID: PMC8048449 DOI: 10.1002/anie.202100164] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 12/26/2022]
Abstract
Controlling the selectivity of a chemical reaction with external stimuli is common in thermal processes, but rare in visible-light photocatalysis. Here we show that the redox potential of a carbon nitride photocatalyst (CN-OA-m) can be tuned by changing the irradiation wavelength to generate electron holes with different oxidation potentials. This tuning was the key to realizing photo-chemo-enzymatic cascades that give either the (S)- or the (R)-enantiomer of phenylethanol. In combination with an unspecific peroxygenase from Agrocybe aegerita, green light irradiation of CN-OA-m led to the enantioselective hydroxylation of ethylbenzene to (R)-1-phenylethanol (99 % ee). In contrast, blue light irradiation triggered the photocatalytic oxidation of ethylbenzene to acetophenone, which in turn was enantioselectively reduced with an alcohol dehydrogenase from Rhodococcus ruber to form (S)-1-phenylethanol (93 % ee).
Collapse
Affiliation(s)
- Luca Schmermund
- Institute of ChemistryDepartment of Organic and Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Susanne Reischauer
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg114476PotsdamGermany
| | - Sarah Bierbaumer
- Institute of ChemistryDepartment of Organic and Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Christoph K. Winkler
- Institute of ChemistryDepartment of Organic and Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Alba Diaz‐Rodriguez
- Chemical Development, Medicinal Science and Technology, Pharma R&DGlaxoSmithKline Medicines Research CentreGunnels Wood RoadStevenageSG1 2NYUK
| | - Lee J. Edwards
- Chemical Development, Medicinal Science and Technology, Pharma R&DGlaxoSmithKline Medicines Research CentreGunnels Wood RoadStevenageSG1 2NYUK
| | - Selin Kara
- Department of Engineering, Biological and Chemical EngineeringBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| | - Tamara Mielke
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Jared Cartwright
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Gideon Grogan
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Bartholomäus Pieber
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg114476PotsdamGermany
| | - Wolfgang Kroutil
- Institute of ChemistryDepartment of Organic and Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
- Field of Excellence BioHealth-University of Graz8010GrazAustria
| |
Collapse
|
6
|
Schmermund L, Reischauer S, Bierbaumer S, Winkler CK, Diaz‐Rodriguez A, Edwards LJ, Kara S, Mielke T, Cartwright J, Grogan G, Pieber B, Kroutil W. Chromoselective Photocatalysis Enables Stereocomplementary Biocatalytic Pathways. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:7041-7045. [PMID: 38504955 PMCID: PMC10946972 DOI: 10.1002/ange.202100164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 12/28/2022]
Abstract
Controlling the selectivity of a chemical reaction with external stimuli is common in thermal processes, but rare in visible-light photocatalysis. Here we show that the redox potential of a carbon nitride photocatalyst (CN-OA-m) can be tuned by changing the irradiation wavelength to generate electron holes with different oxidation potentials. This tuning was the key to realizing photo-chemo-enzymatic cascades that give either the (S)- or the (R)-enantiomer of phenylethanol. In combination with an unspecific peroxygenase from Agrocybe aegerita, green light irradiation of CN-OA-m led to the enantioselective hydroxylation of ethylbenzene to (R)-1-phenylethanol (99 % ee). In contrast, blue light irradiation triggered the photocatalytic oxidation of ethylbenzene to acetophenone, which in turn was enantioselectively reduced with an alcohol dehydrogenase from Rhodococcus ruber to form (S)-1-phenylethanol (93 % ee).
Collapse
Affiliation(s)
- Luca Schmermund
- Institute of ChemistryDepartment of Organic and Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Susanne Reischauer
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg114476PotsdamGermany
| | - Sarah Bierbaumer
- Institute of ChemistryDepartment of Organic and Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Christoph K. Winkler
- Institute of ChemistryDepartment of Organic and Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Alba Diaz‐Rodriguez
- Chemical Development, Medicinal Science and Technology, Pharma R&DGlaxoSmithKline Medicines Research CentreGunnels Wood RoadStevenageSG1 2NYUK
| | - Lee J. Edwards
- Chemical Development, Medicinal Science and Technology, Pharma R&DGlaxoSmithKline Medicines Research CentreGunnels Wood RoadStevenageSG1 2NYUK
| | - Selin Kara
- Department of Engineering, Biological and Chemical EngineeringBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| | - Tamara Mielke
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Jared Cartwright
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Gideon Grogan
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Bartholomäus Pieber
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg114476PotsdamGermany
| | - Wolfgang Kroutil
- Institute of ChemistryDepartment of Organic and Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
- Field of Excellence BioHealth-University of Graz8010GrazAustria
| |
Collapse
|
7
|
Özgen FF, Runda ME, Schmidt S. Photo-biocatalytic Cascades: Combining Chemical and Enzymatic Transformations Fueled by Light. Chembiochem 2021; 22:790-806. [PMID: 32961020 PMCID: PMC7983893 DOI: 10.1002/cbic.202000587] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Indexed: 12/13/2022]
Abstract
In the field of green chemistry, light - an attractive natural agent - has received particular attention for driving biocatalytic reactions. Moreover, the implementation of light to drive (chemo)enzymatic cascade reactions opens up a golden window of opportunities. However, there are limitations to many current examples, mostly associated with incompatibility between the enzyme and the photocatalyst. Additionally, the formation of reactive radicals upon illumination and the loss of catalytic activities in the presence of required additives are common observations. As outlined in this review, the main question is how to overcome current challenges to the exploitation of light to drive (chemo)enzymatic transformations. First, we highlight general concepts in photo-biocatalysis, then give various examples of photo-chemoenzymatic (PCE) cascades, further summarize current synthetic examples of PCE cascades and discuss strategies to address the limitations.
Collapse
Affiliation(s)
- Fatma Feyza Özgen
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| | - Michael E. Runda
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| | - Sandy Schmidt
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| |
Collapse
|
8
|
Sarak S, Sung S, Jeon H, Patil MD, Khobragade TP, Pagar AD, Dawson PE, Yun H. An Integrated Cofactor/Co-Product Recycling Cascade for the Biosynthesis of Nylon Monomers from Cycloalkylamines. Angew Chem Int Ed Engl 2021; 60:3481-3486. [PMID: 33140477 DOI: 10.1002/anie.202012658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 11/10/2022]
Abstract
We report a highly atom-efficient integrated cofactor/co-product recycling cascade employing cycloalkylamines as multifaceted starting materials for the synthesis of nylon building blocks. Reactions using E. coli whole cells as well as purified enzymes produced excellent conversions ranging from >80 and 95 % into desired ω-amino acids, respectively with varying substrate concentrations. The applicability of this tandem biocatalytic cascade was demonstrated to produce the corresponding lactams by employing engineered biocatalysts. For instance, ϵ-caprolactam, a valuable polymer building block was synthesized with 75 % conversion from 10 mM cyclohexylamine by employing whole-cell biocatalysts. This cascade could be an alternative for bio-based production of ω-amino acids and corresponding lactam compounds.
Collapse
Affiliation(s)
- Sharad Sarak
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| | - Sihyong Sung
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| | - Taresh P Khobragade
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| | - Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| |
Collapse
|
9
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew Chem Int Ed Engl 2021; 60:88-119. [PMID: 32558088 PMCID: PMC7818486 DOI: 10.1002/anie.202006648] [Citation(s) in RCA: 589] [Impact Index Per Article: 147.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Biocatalysis has found numerous applications in various fields as an alternative to chemical catalysis. The use of enzymes in organic synthesis, especially to make chiral compounds for pharmaceuticals as well for the flavors and fragrance industry, are the most prominent examples. In addition, biocatalysts are used on a large scale to make specialty and even bulk chemicals. This review intends to give illustrative examples in this field with a special focus on scalable chemical production using enzymes. It also discusses the opportunities and limitations of enzymatic syntheses using distinct examples and provides an outlook on emerging enzyme classes.
Collapse
Affiliation(s)
- Shuke Wu
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Radka Snajdrova
- Novartis Institutes for BioMedical ResearchGlobal Discovery Chemistry4056BaselSwitzerland
| | - Jeffrey C. Moore
- Process Research and DevelopmentMerck & Co., Inc.126 E. Lincoln AveRahwayNJ07065USA
| | - Kai Baldenius
- Baldenius Biotech ConsultingHafenstr. 3168159MannheimGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| |
Collapse
|
10
|
Sarak S, Sung S, Jeon H, Patil MD, Khobragade TP, Pagar AD, Dawson PE, Yun H. An Integrated Cofactor/Co‐Product Recycling Cascade for the Biosynthesis of Nylon Monomers from Cycloalkylamines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sharad Sarak
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| | - Sihyong Sung
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| | - Mahesh D. Patil
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| | - Taresh P. Khobragade
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| | - Amol D. Pagar
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| | - Philip E. Dawson
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Hyungdon Yun
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| |
Collapse
|
11
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biokatalyse: Enzymatische Synthese für industrielle Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006648] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuke Wu
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Radka Snajdrova
- Novartis Institutes for BioMedical Research Global Discovery Chemistry 4056 Basel Schweiz
| | - Jeffrey C. Moore
- Process Research and Development Merck & Co., Inc. 126 E. Lincoln Ave Rahway NJ 07065 USA
| | - Kai Baldenius
- Baldenius Biotech Consulting Hafenstraße 31 68159 Mannheim Deutschland
| | - Uwe T. Bornscheuer
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| |
Collapse
|
12
|
Perz F, Bormann S, Ulber R, Alcalde M, Bubenheim P, Hollmann F, Holtmann D, Liese A. Enzymatic Oxidation of Butane to 2‐Butanol in a Bubble Column. ChemCatChem 2020. [DOI: 10.1002/cctc.202000431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Frederic Perz
- Institute of Technical BiocatalysisHamburg University of Technology (TUHH) Denickestr. 15 21073 Hamburg Germany
| | - Sebastian Bormann
- Industrial BiotechnologyDECHEMA-Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Roland Ulber
- Bioprocess EngineeringUniversity of Kaiserslautern 67663 Kaiserslautern Germany
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of Catalysis CSIC 28049 Madrid Spain
| | - Paul Bubenheim
- Institute of Technical BiocatalysisHamburg University of Technology (TUHH) Denickestr. 15 21073 Hamburg Germany
| | - Frank Hollmann
- Department of BiotechnologyDelft University of Technology van der Maasweg 9 2629HZ Delft The Netherlands
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences Mittelhessen Wiesenstrasse 14 35390 Giessen Germany
| | - Andreas Liese
- Institute of Technical BiocatalysisHamburg University of Technology (TUHH) Denickestr. 15 21073 Hamburg Germany
| |
Collapse
|
13
|
Yayci A, Baraibar ÁG, Krewing M, Fueyo EF, Hollmann F, Alcalde M, Kourist R, Bandow JE. Plasma-Driven in Situ Production of Hydrogen Peroxide for Biocatalysis. CHEMSUSCHEM 2020; 13:2072-2079. [PMID: 32026604 PMCID: PMC7216967 DOI: 10.1002/cssc.201903438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Peroxidases and peroxygenases are promising classes of enzymes for biocatalysis because of their ability to carry out one-electron oxidation reactions and stereoselective oxyfunctionalizations. However, industrial application is limited, as the major drawback is the sensitivity toward the required peroxide substrates. Herein, we report a novel biocatalysis approach to circumvent this shortcoming: in situ production of H2 O2 by dielectric barrier discharge plasma. The discharge plasma can be controlled to produce hydrogen peroxide at desired rates, yielding desired concentrations. Using horseradish peroxidase, it is demonstrated that hydrogen peroxide produced by plasma treatment can drive the enzymatic oxidation of model substrates. Fungal peroxygenase is then employed to convert ethylbenzene to (R)-1-phenylethanol with an ee of >96 % using plasma-generated hydrogen peroxide. As direct treatment of the reaction solution with plasma results in reduced enzyme activity, the use of plasma-treated liquid and protection strategies are investigated to increase total turnover. Technical plasmas present a noninvasive means to drive peroxide-based biotransformations.
Collapse
Affiliation(s)
- Abdulkadir Yayci
- Applied MicrobiologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Álvaro Gómez Baraibar
- Microbial BiotechnologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Marco Krewing
- Applied MicrobiologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Elena Fernandez Fueyo
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of Catalysis and Petrochemistry (CSIC)Campus Cantoblanco28049MadridSpain
| | - Robert Kourist
- Microbial BiotechnologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
- current address: Institute for Molecular BiotechnologyGraz University of TechnologyPetersgasse 14GrazAustria
| | - Julia E. Bandow
- Applied MicrobiologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
| |
Collapse
|
14
|
Willot SJ, Hoang MD, Paul CE, Alcalde M, Arends IWCE, Bommarius AS, Bommarius B, Hollmann F. FOx News: Towards Methanol‐driven Biocatalytic Oxyfunctionalisation Reactions. ChemCatChem 2020. [DOI: 10.1002/cctc.202000197] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sébastien J.‐P. Willot
- Department of Biotechnology Delft University of Technology van der Maasweg 9 2629 HZ Delft (The Netherlands
| | - Manh Dat Hoang
- Institute of Biochemical Engineering Technical University of Munich Boltzmannstr. 15 85748 Garching Germany
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology van der Maasweg 9 2629 HZ Delft (The Netherlands
| | - Miguel Alcalde
- Department of Biocatalysis Institute of Catalysis, CSIC Madrid Spain
| | | | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology 950 Atlantic Drive, N.W. Atlanta GA 30332 USA
| | - Bettina Bommarius
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology 950 Atlantic Drive, N.W. Atlanta GA 30332 USA
| | - Frank Hollmann
- Department of Biotechnology Delft University of Technology van der Maasweg 9 2629 HZ Delft (The Netherlands
| |
Collapse
|
15
|
Bormann S, van Schie MMCH, De Almeida TP, Zhang W, Stöckl M, Ulber R, Hollmann F, Holtmann D. H 2 O 2 Production at Low Overpotentials for Electroenzymatic Halogenation Reactions. CHEMSUSCHEM 2019; 12:4759-4763. [PMID: 31557410 PMCID: PMC6899481 DOI: 10.1002/cssc.201902326] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Various enzymes utilize hydrogen peroxide as an oxidant. Such "peroxizymes" are potentially very attractive catalysts for a broad range of oxidation reactions. Most peroxizymes, however, are inactivated by an excess of H2 O2 . The electrochemical reduction of oxygen can be used as an in situ generation method for hydrogen peroxide to drive the peroxizymes at high operational stabilities. Using conventional electrode materials, however, also necessitates significant overpotentials, thereby reducing the energy efficiency of these systems. This study concerns a method to coat a gas-diffusion electrode with oxidized carbon nanotubes (oCNTs), thereby greatly reducing the overpotential needed to perform an electroenzymatic halogenation reaction. In comparison to the unmodified electrode, with the oCNTs-modified electrode the overpotential can be reduced by approximately 100 mV at comparable product formation rates.
Collapse
Affiliation(s)
- Sebastian Bormann
- Industrial BiotechnologyDECHEMA Research InstituteTheodor-Heuss-Allee 2560486Frankfurt am MainGermany
| | - Morten M. C. H. van Schie
- Department of Biotechnology, Biocatalysis GroupTechnical University DelftVan der Maasweg 92629HZDelftThe Netherlands
| | - Tiago Pedroso De Almeida
- Department of Biotechnology, Biocatalysis GroupTechnical University DelftVan der Maasweg 92629HZDelftThe Netherlands
| | - Wuyuan Zhang
- Department of Biotechnology, Biocatalysis GroupTechnical University DelftVan der Maasweg 92629HZDelftThe Netherlands
| | - Markus Stöckl
- ElectrochemistryDECHEMA Research InstituteTheodor-Heuss-Allee 2560486Frankfurt am MainGermany
| | - Roland Ulber
- Bioprocess EngineeringUniversity of KaiserslauternGottlieb-Daimler-Str. 4967663KaiserslauternGermany
| | - Frank Hollmann
- Department of Biotechnology, Biocatalysis GroupTechnical University DelftVan der Maasweg 92629HZDelftThe Netherlands
| | - Dirk Holtmann
- Industrial BiotechnologyDECHEMA Research InstituteTheodor-Heuss-Allee 2560486Frankfurt am MainGermany
| |
Collapse
|
16
|
Rauch MCR, Tieves F, Paul CE, Arends IWCE, Alcalde M, Hollmann F. Peroxygenase-Catalysed Epoxidation of Styrene Derivatives in Neat Reaction Media. ChemCatChem 2019; 11:4519-4523. [PMID: 31762830 PMCID: PMC6853256 DOI: 10.1002/cctc.201901142] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/18/2019] [Indexed: 11/14/2022]
Abstract
Biocatalytic oxyfunctionalisation reactions are traditionally conducted in aqueous media limiting their production yield. Here we report the application of a peroxygenase in neat reaction conditions reaching product concentrations of up to 360 mM.
Collapse
Affiliation(s)
- Marine C. R. Rauch
- Department of BiotechnologyDelft University of TechnologyDelft2629HZThe Netherlands
| | - Florian Tieves
- Department of BiotechnologyDelft University of TechnologyDelft2629HZThe Netherlands
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyDelft2629HZThe Netherlands
| | | | - Miguel Alcalde
- Department of BiocatalysisInstitute of Catalysis, CSIC28049MadridSpain
| | - Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyDelft2629HZThe Netherlands
| |
Collapse
|
17
|
Tieves F, Willot SJ, van Schie MMCH, Rauch MCR, Younes SHH, Zhang W, Dong J, Gomez de Santos P, Robbins JM, Bommarius B, Alcalde M, Bommarius AS, Hollmann F. Formate Oxidase (FOx) from Aspergillus oryzae: One Catalyst Enables Diverse H 2 O 2 -Dependent Biocatalytic Oxidation Reactions. Angew Chem Int Ed Engl 2019; 58:7873-7877. [PMID: 30945422 PMCID: PMC6563469 DOI: 10.1002/anie.201902380] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/29/2022]
Abstract
An increasing number of biocatalytic oxidation reactions rely on H2 O2 as a clean oxidant. The poor robustness of most enzymes towards H2 O2 , however, necessitates more efficient systems for in situ H2 O2 generation. In analogy to the well-known formate dehydrogenase to promote NADH-dependent reactions, we here propose employing formate oxidase (FOx) to promote H2 O2 -dependent enzymatic oxidation reactions. Even under non-optimised conditions, high turnover numbers for coupled FOx/peroxygenase catalysis were achieved.
Collapse
Affiliation(s)
- Florian Tieves
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| | | | | | | | - Sabry Hamdy Hamed Younes
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
- Chemistry DepartmentFaculty of ScienceSohag UniversitySohag82524Egypt
| | - Wuyuan Zhang
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| | - JiaJia Dong
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| | | | - John Mick Robbins
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology311 Ferst Drive, N.W.AtlantaGA30332USA
| | - Bettina Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology311 Ferst Drive, N.W.AtlantaGA30332USA
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of CatalysisCSIC28049MadridSpain
| | - Andreas Sebastian Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology311 Ferst Drive, N.W.AtlantaGA30332USA
- School of Chemistry and BiochemistryGeorgia Institute of Technology901 Atlantic Drive, N.W.AtlantaGA30332USA
| | - Frank Hollmann
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| |
Collapse
|
18
|
Tieves F, Willot SJ, van Schie MMCH, Rauch MCR, Younes SHH, Zhang W, Dong J, Gomez de Santos P, Robbins JM, Bommarius B, Alcalde M, Bommarius AS, Hollmann F. Formiat‐Oxidase (FOx) aus
Aspergillus oryzae
: ein Katalysator für verschiedene H
2
O
2
‐abhängige biokatalytische Oxidationen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Florian Tieves
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| | | | | | | | - Sabry Hamdy Hamed Younes
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
- Chemistry DepartmentFaculty of ScienceSohag University Sohag 82524 Ägypten
| | - Wuyuan Zhang
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| | - JiaJia Dong
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| | | | - John Mick Robbins
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology 311 Ferst Drive, N.W. Atlanta GA 30332 USA
| | - Bettina Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology 311 Ferst Drive, N.W. Atlanta GA 30332 USA
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of CatalysisCSIC 28049 Madrid Spanien
| | - Andreas Sebastian Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology 311 Ferst Drive, N.W. Atlanta GA 30332 USA
- School of Chemistry and BiochemistryGeorgia Institute of Technology 901 Atlantic Drive, N.W. Atlanta GA 30332 USA
| | - Frank Hollmann
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| |
Collapse
|
19
|
Seel CJ, Králík A, Hacker M, Frank A, König B, Gulder T. Atom-Economic Electron Donors for Photobiocatalytic Halogenations. ChemCatChem 2018. [DOI: 10.1002/cctc.201800886] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Catharina Julia Seel
- Department of Chemistry and Catalysis Research Center (CRC); Technical University Munich; Lichtenbergstrasse 4 85747 Garching Germany
| | - Antonín Králík
- Institute of Organic Chemistry; University of Regensburg; Universitätsstraße 31 93053 Regensburg Germany
| | - Melanie Hacker
- Institute of Organic Chemistry; University of Regensburg; Universitätsstraße 31 93053 Regensburg Germany
| | - Annika Frank
- Department of Chemistry, Center for Integrated Protein Science; Technical University Munich; Lichtenbergstrasse 4 85747 Garching Germany
| | - Burkhard König
- Institute of Organic Chemistry; University of Regensburg; Universitätsstraße 31 93053 Regensburg Germany
| | - Tanja Gulder
- Department of Chemistry and Catalysis Research Center (CRC); Technical University Munich; Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
20
|
Dong J, Fernández‐Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Biocatalytic Oxidation Reactions: A Chemist's Perspective. Angew Chem Int Ed Engl 2018; 57:9238-9261. [PMID: 29573076 PMCID: PMC6099261 DOI: 10.1002/anie.201800343] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 01/25/2023]
Abstract
Oxidation chemistry using enzymes is approaching maturity and practical applicability in organic synthesis. Oxidoreductases (enzymes catalysing redox reactions) enable chemists to perform highly selective and efficient transformations ranging from simple alcohol oxidations to stereoselective halogenations of non-activated C-H bonds. For many of these reactions, no "classical" chemical counterpart is known. Hence oxidoreductases open up shorter synthesis routes based on a more direct access to the target products. The generally very mild reaction conditions may also reduce the environmental impact of biocatalytic reactions compared to classical counterparts. In this Review, we critically summarise the most important recent developments in the field of biocatalytic oxidation chemistry and identify the most pressing bottlenecks as well as promising solutions.
Collapse
Affiliation(s)
- JiaJia Dong
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Elena Fernández‐Fueyo
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Frank Hollmann
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Milja Pesic
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Sandy Schmidt
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Yonghua Wang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Sabry Younes
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Wuyuan Zhang
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| |
Collapse
|
21
|
Dong J, Fernández-Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Biokatalytische Oxidationsreaktionen - aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800343] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- JiaJia Dong
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Elena Fernández-Fueyo
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Frank Hollmann
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Caroline E. Paul
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Milja Pesic
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Sandy Schmidt
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Yonghua Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 P. R. China
| | - Sabry Younes
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Wuyuan Zhang
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| |
Collapse
|
22
|
Lee SH, Choi DS, Kuk SK, Park CB. Photobiokatalyse: Aktivierung von Redoxenzymen durch direkten oder indirekten Transfer photoinduzierter Elektronen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710070] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Da Som Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Su Keun Kuk
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Chan Beum Park
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| |
Collapse
|
23
|
Lee SH, Choi DS, Kuk SK, Park CB. Photobiocatalysis: Activating Redox Enzymes by Direct or Indirect Transfer of Photoinduced Electrons. Angew Chem Int Ed Engl 2018; 57:7958-7985. [PMID: 29194901 DOI: 10.1002/anie.201710070] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/21/2017] [Indexed: 01/01/2023]
Abstract
Biocatalytic transformation has received increasing attention in the green synthesis of chemicals because of the diversity of enzymes, their high catalytic activities and specificities, and mild reaction conditions. The idea of solar energy utilization in chemical synthesis through the combination of photocatalysis and biocatalysis provides an opportunity to make the "green" process greener. Oxidoreductases catalyze redox transformation of substrates by exchanging electrons at the enzyme's active site, often with the aid of electron mediator(s) as a counterpart. Recent progress indicates that photoinduced electron transfer using organic (or inorganic) photosensitizers can activate a wide spectrum of redox enzymes to catalyze fuel-forming reactions (e.g., H2 evolution, CO2 reduction) and synthetically useful reductions (e.g., asymmetric reduction, oxygenation, hydroxylation, epoxidation, Baeyer-Villiger oxidation). This Review provides an overview of recent advances in light-driven activation of redox enzymes through direct or indirect transfer of photoinduced electrons.
Collapse
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Da Som Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Su Keun Kuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
24
|
Gandomkar S, Dennig A, Dordic A, Hammerer L, Pickl M, Haas T, Hall M, Faber K. Biocatalytic Oxidative Cascade for the Conversion of Fatty Acids into α-Ketoacids via Internal H 2 O 2 Recycling. Angew Chem Int Ed Engl 2018; 57:427-430. [PMID: 29125663 PMCID: PMC5768024 DOI: 10.1002/anie.201710227] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 11/18/2022]
Abstract
The functionalization of bio-based chemicals is essential to allow valorization of natural carbon sources. An atom-efficient biocatalytic oxidative cascade was developed for the conversion of saturated fatty acids to α-ketoacids. Employment of P450 monooxygenase in the peroxygenase mode for regioselective α-hydroxylation of fatty acids combined with enantioselective oxidation by α-hydroxyacid oxidase(s) resulted in internal recycling of the oxidant H2 O2 , thus minimizing degradation of ketoacid product and maximizing biocatalyst lifetime. The O2 -dependent cascade relies on catalytic amounts of H2 O2 and releases water as sole by-product. Octanoic acid was converted under mild conditions in aqueous buffer to 2-oxooctanoic acid in a simultaneous one-pot two-step cascade in up to >99 % conversion without accumulation of hydroxyacid intermediate. Scale-up allowed isolation of final product in 91 % yield and the cascade was applied to fatty acids of various chain lengths (C6:0 to C10:0).
Collapse
Affiliation(s)
- Somayyeh Gandomkar
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Alexander Dennig
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Andela Dordic
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
- Austrian Center of Industrial Biotechnology c/oDepartment of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Lucas Hammerer
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
- Austrian Center of Industrial Biotechnology c/oDepartment of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Mathias Pickl
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Thomas Haas
- CreavisEvonik Industries, Bau 1420Paul Baumann Strasse 145772MarlGermany
| | - Mélanie Hall
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Kurt Faber
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| |
Collapse
|
25
|
Bassanini I, Ferrandi EE, Vanoni M, Ottolina G, Riva S, Crotti M, Brenna E, Monti D. Peroxygenase-Catalyzed Enantioselective Sulfoxidations. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701390] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ivan Bassanini
- Istituto di Chimica del Riconoscimento Molecolare; Consiglio Nazionale delle Ricerche; Via Mario Bianco 9 20131 Milano Italy
- Dipartimento di Chimica; Università degli Studi di Milano; Via Golgi 19 20133 Milano Italy
| | - Erica Elisa Ferrandi
- Istituto di Chimica del Riconoscimento Molecolare; Consiglio Nazionale delle Ricerche; Via Mario Bianco 9 20131 Milano Italy
| | - Marta Vanoni
- Istituto di Chimica del Riconoscimento Molecolare; Consiglio Nazionale delle Ricerche; Via Mario Bianco 9 20131 Milano Italy
| | - Gianluca Ottolina
- Istituto di Chimica del Riconoscimento Molecolare; Consiglio Nazionale delle Ricerche; Via Mario Bianco 9 20131 Milano Italy
| | - Sergio Riva
- Istituto di Chimica del Riconoscimento Molecolare; Consiglio Nazionale delle Ricerche; Via Mario Bianco 9 20131 Milano Italy
| | - Michele Crotti
- Dipartimento di Chimica, Materiali, Ingegneria Chimica; Politecnico di Milano; Via Mancinelli 7 20131 Milano Italy
| | - Elisabetta Brenna
- Dipartimento di Chimica, Materiali, Ingegneria Chimica; Politecnico di Milano; Via Mancinelli 7 20131 Milano Italy
| | - Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare; Consiglio Nazionale delle Ricerche; Via Mario Bianco 9 20131 Milano Italy
| |
Collapse
|
26
|
Gandomkar S, Dennig A, Dordic A, Hammerer L, Pickl M, Haas T, Hall M, Faber K. Eine biokatalytische oxidative Kaskade für die Umsetzung von Fettsäuren zu α-Ketosäuren mit interner H2
O2
-Regeneration. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Somayyeh Gandomkar
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Alexander Dennig
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Andela Dordic
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
- Austrian Center of Industrial Biotechnology c/o; Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Lucas Hammerer
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
- Austrian Center of Industrial Biotechnology c/o; Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Mathias Pickl
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Thomas Haas
- Creavis; Evonik Industries, Bau 1420; Paul Baumann Straße 1 45772 Marl Deutschland
| | - Mélanie Hall
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Kurt Faber
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| |
Collapse
|
27
|
Zhang W, Burek BO, Fernández-Fueyo E, Alcalde M, Bloh JZ, Hollmann F. Selektive C-H-Bindungsaktivierung durch eine Kaskade aus Photochemie und Biokatalyse. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708668] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wuyuan Zhang
- Department of Biotechnology; Delft University of Technology; Van der Maasweg 9 2629HZ Delft Niederlande
| | - Bastien O. Burek
- DECHEMA-Forschungsinstitut; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Deutschland
| | | | - Miguel Alcalde
- Department of Biocatalysis; Institute of Catalysis; CSIC; 28049 Madrid Spanien
| | - Jonathan Z. Bloh
- DECHEMA-Forschungsinstitut; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Deutschland
| | - Frank Hollmann
- Department of Biotechnology; Delft University of Technology; Van der Maasweg 9 2629HZ Delft Niederlande
| |
Collapse
|
28
|
Zhang W, Burek BO, Fernández-Fueyo E, Alcalde M, Bloh JZ, Hollmann F. Selective Activation of C-H Bonds in a Cascade Process Combining Photochemistry and Biocatalysis. Angew Chem Int Ed Engl 2017; 56:15451-15455. [PMID: 28994504 PMCID: PMC5725739 DOI: 10.1002/anie.201708668] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/08/2017] [Indexed: 11/08/2022]
Abstract
Selective oxyfunctionalizations of inert C-H bonds can be achieved under mild conditions by using peroxygenases. This approach, however, suffers from the poor robustness of these enzymes in the presence of hydrogen peroxide as the stoichiometric oxidant. Herein, we demonstrate that inorganic photocatalysts such as gold-titanium dioxide efficiently provide H2 O2 through the methanol-driven reductive activation of ambient oxygen in amounts that ensure that the enzyme remains highly active and stable. Using this approach, the stereoselective hydroxylation of ethylbenzene to (R)-1-phenylethanol was achieved with high enantioselectivity (>98 % ee) and excellent turnover numbers for the biocatalyst (>71 000).
Collapse
Affiliation(s)
- Wuyuan Zhang
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Bastien O Burek
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | | | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049, Madrid, Spain
| | - Jonathan Z Bloh
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| |
Collapse
|
29
|
Zhou Y, Wu S, Li Z. Cascade Biocatalysis for Sustainable Asymmetric Synthesis: From Biobased l-Phenylalanine to High-Value Chiral Chemicals. Angew Chem Int Ed Engl 2016; 55:11647-50. [PMID: 27512928 DOI: 10.1002/anie.201606235] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Indexed: 11/08/2022]
Abstract
Sustainable synthesis of useful and valuable chiral fine chemicals from renewable feedstocks is highly desirable but remains challenging. Reported herein is a designed and engineered set of unique non-natural biocatalytic cascades to achieve the asymmetric synthesis of chiral epoxide, diols, hydroxy acid, and amino acid in high yield and with excellent ee values from the easily available biobased l-phenylalanine. Each of the cascades was efficiently performed in one pot by using the cells of a single recombinant strain over-expressing 4-10 different enzymes. The cascade biocatalysis approach is promising for upgrading biobased bulk chemicals to high-value chiral chemicals. In addition, combining the non-natural enzyme cascades with the natural metabolic pathway of the host strain enabled the fermentative production of the chiral fine chemicals from glucose.
Collapse
Affiliation(s)
- Yi Zhou
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Shuke Wu
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhi Li
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
30
|
Zhou Y, Wu S, Li Z. Cascade Biocatalysis for Sustainable Asymmetric Synthesis: From Biobasedl-Phenylalanine to High-Value Chiral Chemicals. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606235] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yi Zhou
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456 Singapore
| | - Shuke Wu
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456 Singapore
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Zhi Li
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456 Singapore
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
31
|
Holtmann D, Hollmann F. The Oxygen Dilemma: A Severe Challenge for the Application of Monooxygenases? Chembiochem 2016; 17:1391-8. [PMID: 27194219 PMCID: PMC5096067 DOI: 10.1002/cbic.201600176] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 12/12/2022]
Abstract
Monooxygenases are promising catalysts because they in principle enable the organic chemist to perform highly selective oxyfunctionalisation reactions that are otherwise difficult to achieve. For this, monooxygenases require reducing equivalents, to allow reductive activation of molecular oxygen at the enzymes' active sites. However, these reducing equivalents are often delivered to O2 either directly or via a reduced intermediate (uncoupling), yielding hazardous reactive oxygen species and wasting valuable reducing equivalents. The oxygen dilemma arises from monooxygenases' dependency on O2 and the undesired uncoupling reaction. With this contribution we hope to generate a general awareness of the oxygen dilemma and to discuss its nature and some promising solutions.
Collapse
Affiliation(s)
- Dirk Holtmann
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628BL, Delft, The Netherlands.
| |
Collapse
|