1
|
Kubo T, Koike T, Ouchi T, Khaliq N, Sasaki E, Kuroda K, Ueda M, Hanaoka K, Nemoto N. In vitro selection of dye-fluorescence-enhancing peptide aptamer by cDNA display. Anal Biochem 2025; 698:115722. [PMID: 39581337 DOI: 10.1016/j.ab.2024.115722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
Although Green Fluorescent Protein (GFP) is useful and most widely used, steric hindrance due to its size and the time required for chromophore formation are complications. However, it is difficult to form chromophores with peptides to reduce the molecular weight. Therefore, we focused on peptides that can become fluorescent by binding to dyes. In this study, a novel dye-fluorescence-enhancing peptide aptamer was selected by the cDNA display method, which was confirmed by the yeast surface display method. This peptide aptamer binds to the non-fluorescent dye QSY®9 and enhances its fluorescence by preventing rotation of its benzene sulfone group. The method described in this paper should enable the development of new cell imaging methods using non-fluorescent dyes and peptides.
Collapse
Affiliation(s)
- Takashi Kubo
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Tomoyuki Koike
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Tomoki Ouchi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Nayab Khaliq
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Eita Sasaki
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kouichi Kuroda
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Mitsuyoshi Ueda
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Naoto Nemoto
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| |
Collapse
|
2
|
Escobar L, Sun D, Dhiman M, Hunter CA. Sequence-selective pulldown of recognition-encoded melamine oligomers using covalent capture on a solid support. Chem Commun (Camb) 2025; 61:504-507. [PMID: 39641167 PMCID: PMC11622007 DOI: 10.1039/d4cc06018k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
The covalent capture of recognition-encoded melamine oligomers (REMO) with a target attached to a solid support was investigated. Sequence-selective pulldown of complementary oligomers was observed when the target was challenged with a randomised library of oligomers. The approach provides an affinity selection method for the discovery of functional REMO sequences.
Collapse
Affiliation(s)
- Luis Escobar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Daniel Sun
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Mohit Dhiman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
3
|
Ochiai E, Takahashi Y, Inokuchi S, Sumiya A, Hasegawa M. cDNA Display Selection of Interacting Peptide Ligands of the Guanylate Cyclase C Receptor. J Pept Sci 2025; 31:e3663. [PMID: 39658807 DOI: 10.1002/psc.3663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Guanylate cyclase C (GC-C), a receptor expressed on the apical membrane of intestinal mucosal cells, is activated by heat-stable enterotoxin (STa) produced by enterotoxigenic Escherichia coli, as well as the endogenous ligands guanylin and uroguanylin. In this study, novel peptides that interact with GC-C were generated using the cDNA display method, and their binding affinity and biological activity were evaluated. While the linear peptide library did not yield peptides with sufficient affinity for GC-C, three cyclic peptides (GCC-P1, GCC-P2, and GCC-P3), each containing two cysteine residues within a 15-residue sequence, were obtained from a cyclic peptide library containing nine-residue random sequences. GC-P2 exhibited significant binding affinity in Biacore assays, although the affinity was lower than those reported for known ligands. Notably, GCC-P2 and GCC-P3 demonstrated enhanced cGMP activity when used in combination with linaclotide. However, the agonist activity of these peptides was minimal, indicating that further modifications may be necessary to develop them for clinical applications. This study successfully extracted consensus sequences of peptide motifs that bind to GC-C from a highly diverse nine-residue random sequence library, which provides fundamental insights for the discovery and optimization of novel GC-C ligands.
Collapse
Affiliation(s)
- Eri Ochiai
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yuki Takahashi
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Shota Inokuchi
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Akie Sumiya
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Makoto Hasegawa
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| |
Collapse
|
4
|
Hoang VT, Hong H, Eom TH, Park H, Yeo SJ. A novel peptide pair-based rapid fluorescent diagnostic system for malaria Plasmodium falciparum detection. Talanta 2025; 281:126828. [PMID: 39265425 DOI: 10.1016/j.talanta.2024.126828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/11/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Advanced diagnostic materials, such as aptamers, are required due to the scarcity of efficient diagnostic antibodies and the low sensitivity of rapid diagnostic kits at detecting the malaria parasite, Plasmodium falciparum. METHODS Two peptides M2.9 [(KPTAEQTESPELQSAPEN) and M2.17 (KILFNVYSPLGCTCECWV)] were designed using simple epitope prediction tools and modified against the merozoite surface antigen 2 of P. falciparum (Pf.MSP2) by 3-dimensional modeling based on binding affinity. Based on five prediction tools for hydropathy, M2.17 was selected as an appropriate capture peptide. A peptide-based fluorescence-linked immunosorbent assay (FLISA) and a peptide pair-based fluorescent immunochromatographic test strip (FICT) were developed to detect P. falciparum 3D7 (drug-sensitive) and P. falciparum K1 (multi drugs-resistant) strains. RESULTS Bioinformatic analysis of two peptides demonstrated the potential binding affinity with the merozoite surface protein 2 of P. falciparum (Pf.MSP2) with a positive hydropathy value. The limit of detection (LOD) of FLISA was 10 parasites/μL and of a peptide pair-linked rapid FICT system was 5 and 200 parasites/μL for P. falciparum 3D7 and K1, respectively. Compared to commercial rapid detection systems (RDTs), a peptide pair-linked FICT system exhibited a 20-fold greater efficiency in detecting P. falciparum 3D7 and specifically discriminated another protozoan spp. CONCLUSION A peptide pair-linked rapid diagnostic strip could be an alternative to conventional RDTs for monitoring wild-type and drug-resistant malaria parasites.
Collapse
Affiliation(s)
- Vui Thi Hoang
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Hyelee Hong
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Tae-Hui Eom
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Medical Research Center, Institute of Endemic Diseases, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
5
|
Raina J, Kaur G, Singh I. Recent progress in nanomaterial-based aptamers as biosensors for point of care detection of Hg 2+ ions and its environmental applications. Talanta 2024; 277:126372. [PMID: 38865954 DOI: 10.1016/j.talanta.2024.126372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Among the foremost persistent heavy metal ions in the ecosystem, mercury (Hg2+) remains intimidating to the environment by producing a catastrophic effect on the environment as well as on mankind due to the exacerbation of anthropogenic activities. Therefore, it has become necessary to develop superlative techniques for its detection even at low concentrations. The conventional approaches for Hg2+ ions are quite laborious, and expensive, and require expertise in operating sophisticated instruments. To overcome these limitations, aptamer-based biosensors emerged as a promising tool for its detection. DNA-based aptamers have evolved as a significant technique by detecting them even in ppb levels. This review outlines the progress in aptamer-based biosensors from the year 2019-2023 by inducing changes in the electrochemical signal or by fluorescent/colorimetric approaches. The electrochemical sensors used nanomaterial electrodes for increasing the sensitivity whereas fluorescent and colorimetric sensors exhibit quenching or strong fluorescence in the presence of Hg2+ ions depending upon the prevailing mechanism or visible color changes. This perturbation in the signals could be attributed to the formation of the T-Hg2+ -T complex with the aptamers in the presence of ions revealing its real-time and biological applications in living or cancerous cells. Furthermore, next-generation biosensors are suggested to bring a paradigm shift to the integration of high-end smartphones, machine learning, artificial intelligence, etc.
Collapse
Affiliation(s)
- Jeevika Raina
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India, 144411
| | - Gurdeep Kaur
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India, 144411
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India, 144411.
| |
Collapse
|
6
|
Bruce-Tagoe TA, Harnish MT, Soleimani S, Ullah N, Shen T, Danquah MK. Surface plasmon resonance aptasensing and computational analysis of Staphylococcus aureus IsdA surface protein. Biotechnol Prog 2024; 40:e3475. [PMID: 38682836 DOI: 10.1002/btpr.3475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
Staphylococcus aureus (S. aureus), a common foodborne pathogen, poses significant public health challenges due to its association with various infectious diseases. A key player in its pathogenicity, which is the IsdA protein, is an essential virulence factor in S. aureus infections. In this work, we present an integrated in-silico and experimental approach using MD simulations and surface plasmon resonance (SPR)-based aptasensing measurements to investigate S. aureus biorecognition via IsdA surface protein binding. SPR, a powerful real-time and label-free technique, was utilized to characterize interaction dynamics between the aptamer and IsdA protein, and MD simulations was used to characterize the stable and dynamic binding regions. By characterizing and optimizing pivotal parameters such as aptamer concentration and buffer conditions, we determined the aptamer's binding performance. Under optimal conditions of pH 7.4 and 150 mM NaCl concentration, the kinetic parameters were determined; ka = 3.789 × 104/Ms, kd = 1.798 × 103/s, and KD = 4.745 × 10-8 M. The simulations revealed regions of interest in the IsdA-aptamer complex. Region I, which includes interactions between amino acid residues H106 and R107 and nucleotide residues 9G, 10U, 11G and 12U of the aptamer, had the strongest interaction, based on ΔG and B-factor values, and hence contributed the most to the stability of the interaction. Region II, which covers residue 37A reflects the dynamic nature of the interaction due to frequent contacts. The approach presents a rigorous characterization of aptamer-IsdA binding behavior, supporting the potential application of the IsdA-binding aptamer system for S. aureus biosensing.
Collapse
Affiliation(s)
- Tracy Ann Bruce-Tagoe
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Michael T Harnish
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Shokoufeh Soleimani
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Najeeb Ullah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Tongye Shen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Michael K Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
7
|
Marone Fassolo E, Guo S, Wang Y, Rosa S, Herzig V. Genetically encoded libraries and spider venoms as emerging sources for crop protective peptides. J Pept Sci 2024; 30:e3600. [PMID: 38623834 DOI: 10.1002/psc.3600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Agricultural crops are targeted by various pathogens (fungi, bacteria, and viruses) and pests (herbivorous arthropods). Antimicrobial and insecticidal peptides are increasingly recognized as eco-friendly tools for crop protection due to their low propensity for resistance development and the fact that they are fully biodegradable. However, historical challenges have hindered their development, including poor stability, limited availability, reproducibility issues, high production costs, and unwanted toxicity. Toxicity is a primary concern because crop-protective peptides interact with various organisms of environmental and economic significance. This review focuses on the potential of genetically encoded peptide libraries like the use of two-hybrid-based methods for antimicrobial peptides identification and insecticidal spider venom peptides as two main approaches for targeting plant pathogens and pests. We discuss some key findings and challenges regarding the practical application of each strategy. We conclude that genetically encoded peptide library- and spider venom-derived crop protective peptides offer a sustainable and environmentally responsible approach for addressing modern crop protection needs in the agricultural sector.
Collapse
Affiliation(s)
| | - Shaodong Guo
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Yachen Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Stefano Rosa
- Department of Biosciences, University of Milan, Milan, Italy
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Volker Herzig
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
8
|
Yuan Y, Li Y, Liu S, Gong P, Lin J, Zhang X. An overview of aptamer: Design strategy, prominent applications, and potential challenge in plants. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154235. [PMID: 38531181 DOI: 10.1016/j.jplph.2024.154235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
Aptamers, serving as highly efficient molecular recognition and biotechnology tools, have garnered increasing interest in the realm of plant science in recent years. Aptamers are synthetic single-stranded short nucleotides or peptides, that bind targets with high specificity and affinity, triggering precise biological responses. As an alternative to antibodies, aptamers present promising avenues for advancement in biological researches. Aptamers function in a range of fields, encompassing cell signaling, drug development, biosensor technology, as well as botany, agricultural and forestry sciences. In this review, we introduce classifications and screening methods of aptamers, as well as aptamer-based technologies, highlighting their significant contributions to recent advancements. With their powerful functionality and ability to bind targets with high specificity and affinity, aptamers offer promising opportunities for breakthroughs in plant research.
Collapse
Affiliation(s)
- Yanhui Yuan
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Yi Li
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Siying Liu
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Pichang Gong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinxing Lin
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Xi Zhang
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
9
|
Anil A, Chaskar J, Pawar AB, Tiwari A, Chaskar AC. Recent advances in DNA-based probes for photoacoustic imaging. J Biotechnol 2024; 382:8-20. [PMID: 38211667 DOI: 10.1016/j.jbiotec.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 11/29/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
Photoacoustic imaging(PAI) is a widely developing imaging modality that has seen tremendous evolvement in the last decade. PAI has gained the upper hand in the imaging field as it takes advantage of optical absorption and ultrasound detection that imparts higher resolution, rich contrast and elevated penetration depth. Unlike other imaging techniques, PAI does not use ionising radiation and is a better, cost-effective and healthier alternative to other imaging techniques. It offers greater specificity than conventional ultrasound imaging with the ability to detect haemoglobin, lipids, water and other light-absorbing chromophores. These properties of PAI have led to its extended applications in the biomedical field in the treatment of diseases such as cancer. This paper reviews how DNA probes have been used in PAI, the various techniques by which it has been modified, and their role in the process. We also focus on different nanocomposites containing DNA having PAI and photothermal therapy(PTT) properties for detection, diagnosis and therapy, its constituents and the role of DNA in it.
Collapse
Affiliation(s)
- Anusri Anil
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India
| | - Jyotsna Chaskar
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India
| | - Avinash B Pawar
- Department of Chemistry, Bharati Vidyapeeth (Deemed to be University), Yashwantrao Mohite College of Arts, Science & Commerce, Pune 411038, India
| | - Abhishekh Tiwari
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India.
| | - Atul Changdev Chaskar
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India; Department of Chemistry, Institute of Chemical Technology, Mumbai.
| |
Collapse
|
10
|
Lu JY, Guo Z, Huang WT, Bao M, He B, Li G, Lei J, Li Y. Peptide-graphene logic sensing system for dual-mode detection of exosomes, molecular information processing and protection. Talanta 2024; 267:125261. [PMID: 37801930 DOI: 10.1016/j.talanta.2023.125261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
Peptides with highly sequence-dependent recognition, assembly, and encoding abilities can perform functions similar to DNA or even better, such as biosensing, molecular information processing, coding, or storage. However, the combination of versatile peptides and 2D materials are rarely used for multipurpose integrated applications, including biosensing, information processing and security. Herein, peptide-graphene sensing system was comprehensively used for dual-signal sensing of tumor-derived exosomes (TDEs), logic computing, and information protection. The system used fluorescent-labeled CD63-binding peptide CP05 and graphene oxide (GO) to selectively detect CD63 and TDEs by fluorescence and resonance light scattering. From three levels such as matter, energy, and information analysis, the matter and energy changes in GO-CP05 peptide sensing system were transformed into valuable information, which achieve the dual-mode quantitative detection of TDEs and its marker CD63, and the actual serum analysis. This matter-energy interaction network was also informationized, and utilized for parallel and batch logic computing, two kinds of molecular crypto-steganography (based on peptide sequence and Boolean logic relationships), which facilitates development of intelligent sensing and advanced information technology. This work not only provides a new method for sensitive detection of important disease markers, but also provides ideas for integrating molecular sensing and informatization to open molecular digitization.
Collapse
Affiliation(s)
- Jiao Yang Lu
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China; Wuzhou Medical College, Wuzhou, 543100, PR China
| | - Zhen Guo
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Meihua Bao
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China
| | - Binsheng He
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China
| | - Guangyi Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China
| | - Jieni Lei
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China
| | - Yaqian Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China.
| |
Collapse
|
11
|
de Araújo NS, Moreira ADS, Abreu RDS, Junior VV, Antunes D, Mendonça JB, Sassaro TF, Jurberg AD, Ferreira-Reis R, Bastos NC, Fernandes PV, Guimarães ACR, Degrave WMS, Tilli TM, Waghabi MC. Aptamer-Based Recognition of Breast Tumor Cells: A New Era for Breast Cancer Diagnosis. Int J Mol Sci 2024; 25:840. [PMID: 38255914 PMCID: PMC10815801 DOI: 10.3390/ijms25020840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 01/24/2024] Open
Abstract
Breast cancer is one of the leading causes of death among women worldwide and can be classified into four major distinct molecular subtypes based on the expression of specific receptors. Despite significant advances, the lack of biomarkers for detailed diagnosis and prognosis remains a major challenge in the field of oncology. This study aimed to identify short single-stranded oligonucleotides known as aptamers to improve breast cancer diagnosis. The Cell-SELEX technique was used to select aptamers specific to the MDA-MB-231 tumor cell line. After selection, five aptamers demonstrated specific recognition for tumor breast cell lines and no binding to non-tumor breast cells. Validation of aptamer specificity revealed recognition of primary and metastatic tumors of all subtypes. In particular, AptaB4 and AptaB5 showed greater recognition of primary tumors and metastatic tissue, respectively. Finally, a computational biology approach was used to identify potential aptamer targets, which indicated that CSKP could interact with AptaB4. These results suggest that aptamers are promising in breast cancer diagnosis and treatment due to their specificity and selectivity.
Collapse
Affiliation(s)
- Natassia Silva de Araújo
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| | - Aline dos Santos Moreira
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| | - Rayane da Silva Abreu
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| | - Valdemir Vargas Junior
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| | - Deborah Antunes
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| | - Julia Badaró Mendonça
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| | - Tayanne Felippe Sassaro
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| | - Arnon Dias Jurberg
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (A.D.J.); (R.F.-R.)
- Laboratório de Animais Transgênicos, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Instituto de Educação Médica (IDOMED), Universidade Estácio de Sá (UNESA)—Campus Vista Carioca, Rio de Janeiro 20071-004, RJ, Brazil
| | - Rafaella Ferreira-Reis
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (A.D.J.); (R.F.-R.)
| | - Nina Carrossini Bastos
- Divisão de Patologia (DIPAT), Instituto Nacional do Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil; (N.C.B.); (P.V.F.)
| | - Priscila Valverde Fernandes
- Divisão de Patologia (DIPAT), Instituto Nacional do Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil; (N.C.B.); (P.V.F.)
| | - Ana Carolina Ramos Guimarães
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| | - Wim Maurits Sylvain Degrave
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| | - Tatiana Martins Tilli
- Laboratório de Fisiopatologia Clínica e Experimental, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil;
- Plataforma de Oncologia Translacional, Centro de Desenvolvimento Tecnológico em Saúde, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Mariana Caldas Waghabi
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| |
Collapse
|
12
|
Ono T, Okuda S, Ushiba S, Kanai Y, Matsumoto K. Challenges for Field-Effect-Transistor-Based Graphene Biosensors. MATERIALS (BASEL, SWITZERLAND) 2024; 17:333. [PMID: 38255502 PMCID: PMC10817696 DOI: 10.3390/ma17020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024]
Abstract
Owing to its outstanding physical properties, graphene has attracted attention as a promising biosensor material. Field-effect-transistor (FET)-based biosensors are particularly promising because of their high sensitivity that is achieved through the high carrier mobility of graphene. However, graphene-FET biosensors have not yet reached widespread practical applications owing to several problems. In this review, the authors focus on graphene-FET biosensors and discuss their advantages, the challenges to their development, and the solutions to the challenges. The problem of Debye screening, in which the surface charges of the detection target are shielded and undetectable, can be solved by using small-molecule receptors and their deformations and by using enzyme reaction products. To address the complexity of sample components and the detection mechanisms of graphene-FET biosensors, the authors outline measures against nonspecific adsorption and the remaining problems related to the detection mechanism itself. The authors also introduce a solution with which the molecular species that can reach the sensor surfaces are limited. Finally, the authors present multifaceted approaches to the sensor surfaces that provide much information to corroborate the results of electrical measurements. The measures and solutions introduced bring us closer to the practical realization of stable biosensors utilizing the superior characteristics of graphene.
Collapse
Affiliation(s)
- Takao Ono
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Satoshi Okuda
- High Frequency & Optical Device Works, Mitsubishi Electric Corporation, 4-1 Mizuhara, Itami, Sendai 664-8641, Japan
| | - Shota Ushiba
- Murata Manufacturing Co., Ltd., 1-10-1 Higashikotari, Kyoto 617-8555, Japan
| | - Yasushi Kanai
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | |
Collapse
|
13
|
Li Q, Dou L, Zhang Y, Luo L, Yang H, Wen K, Yu X, Shen J, Wang Z. A comprehensive review on the detection of Staphylococcus aureus enterotoxins in food samples. Compr Rev Food Sci Food Saf 2024; 23:e13264. [PMID: 38284582 DOI: 10.1111/1541-4337.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 01/30/2024]
Abstract
Staphylococcal enterotoxins (SEs), the major virulence factors of Staphylococcus aureus, cause a wide range of food poisoning and seriously threaten human health by infiltrating the food supply chain at different phases of manufacture, processes, distribution, and market. The significant prevalence of Staphylococcus aureus calls for efficient, fast, and sensitive methods for the early detection of SEs. Here, we provide a comprehensive review of the hazards of SEs in contaminated food, the characteristic and worldwide regulations of SEs, and various detection methods for SEs with extensive comparison and discussion of benefits and drawbacks, mainly including biological detection, genetic detection, and mass spectrometry detection and biosensors. We highlight the biosensors for the screening purpose of SEs, which are classified according to different recognition elements such as antibodies, aptamers, molecularly imprinted polymers, T-cell receptors, and transducers such as optical, electrochemical, and piezoelectric biosensors. We analyzed challenges of biosensors for the monitoring of SEs and conclude the trends for the development of novel biosensors should pay attention to improve samples pretreatment efficiency, employ innovative nanomaterials, and develop portable instruments. This review provides new information and insightful commentary, important to the development and innovation of further detection methods for SEs in food samples.
Collapse
Affiliation(s)
- Qing Li
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Leina Dou
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Yingjie Zhang
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Huijuan Yang
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Xuezhi Yu
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| |
Collapse
|
14
|
Farka Z, Brandmeier JC, Mickert MJ, Pastucha M, Lacina K, Skládal P, Soukka T, Gorris HH. Nanoparticle-Based Bioaffinity Assays: From the Research Laboratory to the Market. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307653. [PMID: 38039956 DOI: 10.1002/adma.202307653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Advances in the development of new biorecognition elements, nanoparticle-based labels as well as instrumentation have inspired the design of new bioaffinity assays. This review critically discusses the potential of nanoparticles to replace current enzymatic or molecular labels in immunoassays and other bioaffinity assays. Successful implementations of nanoparticles in commercial assays and the need for rapid tests incorporating nanoparticles in different roles such as capture support, signal generation elements, and signal amplification systems are highlighted. The limited number of nanoparticles applied in current commercial assays can be explained by challenges associated with the analysis of real samples (e.g., blood, urine, or nasal swabs) that are difficult to resolve, particularly if the same performance can be achieved more easily by conventional labels. Lateral flow assays that are based on the visual detection of the red-colored line formed by colloidal gold are a notable exception, exemplified by SARS-CoV-2 rapid antigen tests that have moved from initial laboratory testing to widespread market adaption in less than two years.
Collapse
Affiliation(s)
- Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | | | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- TestLine Clinical Diagnostics, Křižíkova 188, Brno, 612 00, Czech Republic
| | - Karel Lacina
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
15
|
Campbell E, Luxton T, Kohl D, Goodchild SA, Walti C, Jeuken LJC. Chimeric Protein Switch Biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:1-35. [PMID: 38273207 DOI: 10.1007/10_2023_241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Rapid detection of protein and small-molecule analytes is a valuable technique across multiple disciplines, but most in vitro testing of biological or environmental samples requires long, laborious processes and trained personnel in laboratory settings, leading to long wait times for results and high expenses. Fusion of recognition with reporter elements has been introduced to detection methods such as enzyme-linked immunoassays (ELISA), with enzyme-conjugated secondary antibodies removing one of the many incubation and wash steps. Chimeric protein switch biosensors go further and provide a platform for homogenous mix-and-read assays where long wash and incubation steps are eradicated from the process. Chimeric protein switch biosensors consist of an enzyme switch (the reporter) coupled to a recognition element, where binding of the analyte results in switching the activity of the reporter enzyme on or off. Several chimeric protein switch biosensors have successfully been developed for analytes ranging from small molecule drugs to large protein biomarkers. There are two main formats of chimeric protein switch biosensor developed, one-component and multi-component, and these formats exhibit unique advantages and disadvantages. Genetically fusing a recognition protein to the enzyme switch has many advantages in the production and performance of the biosensor. A range of immune and synthetic binding proteins have been developed as alternatives to antibodies, including antibody mimetics or antibody fragments. These are mainly small, easily manipulated proteins and can be genetically fused to a reporter for recombinant expression or manipulated to allow chemical fusion. Here, aspects of chimeric protein switch biosensors will be reviewed with a comparison of different classes of recognition elements and switching mechanisms.
Collapse
Affiliation(s)
- Emma Campbell
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Timothy Luxton
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Declan Kohl
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | | | - Christoph Walti
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Lars J C Jeuken
- School of Biomedical Sciences, University of Leeds, Leeds, UK.
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
16
|
Lafi Z, Gharaibeh L, Nsairat H, Asha N, Alshaer W. Aptasensors: employing molecular probes for precise medical diagnostics and drug monitoring. Bioanalysis 2023; 15:1439-1460. [PMID: 37847048 DOI: 10.4155/bio-2023-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Accurate detection and monitoring of therapeutic drug levels are vital for effective patient care and treatment management. Aptamers, composed of single-stranded DNA or RNA molecules, are integral components of biosensors designed for both qualitative and quantitative detection of biological samples. Aptasensors play crucial roles in target identification, validation, detection of drug-target interactions and screening potential of drug candidates. This review focuses on the pivotal role of aptasensors in early disease detection, particularly in identifying biomarkers associated with various diseases such as cancer, infectious diseases and cardiovascular disorders. Aptasensors have demonstrated exceptional potential in enhancing disease diagnostics and monitoring therapeutic drug levels. Aptamer-based biosensors represent a transformative technology in the field of healthcare, enabling precise diagnostics, drug monitoring and disease detection.
Collapse
Affiliation(s)
- Zainab Lafi
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Lobna Gharaibeh
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Hamdi Nsairat
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Nisreen Asha
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
17
|
Yamin D, Uskoković V, Wakil AM, Goni MD, Shamsuddin SH, Mustafa FH, Alfouzan WA, Alissa M, Alshengeti A, Almaghrabi RH, Fares MAA, Garout M, Al Kaabi NA, Alshehri AA, Ali HM, Rabaan AA, Aldubisi FA, Yean CY, Yusof NY. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics (Basel) 2023; 13:3246. [PMID: 37892067 PMCID: PMC10606640 DOI: 10.3390/diagnostics13203246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a global public health concern, posing a significant threat to the effectiveness of antibiotics in treating bacterial infections. The accurate and timely detection of antibiotic-resistant bacteria is crucial for implementing appropriate treatment strategies and preventing the spread of resistant strains. This manuscript provides an overview of the current and emerging technologies used for the detection of antibiotic-resistant bacteria. We discuss traditional culture-based methods, molecular techniques, and innovative approaches, highlighting their advantages, limitations, and potential future applications. By understanding the strengths and limitations of these technologies, researchers and healthcare professionals can make informed decisions in combating antibiotic resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Dina Yamin
- Al-Karak Public Hospital, Karak 61210, Jordan;
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
| | - Vuk Uskoković
- TardigradeNano LLC., Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Abubakar Muhammad Wakil
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri 600104, Borno, Nigeria
| | - Mohammed Dauda Goni
- Public Health and Zoonoses Research Group, Faculty of Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia;
| | - Shazana Hilda Shamsuddin
- Department of Pathology, School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fatin Hamimi Mustafa
- Department of Electronic & Computer Engineering, Faculty of Electrical Engineering, University Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia;
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia;
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Rana H. Almaghrabi
- Pediatric Department, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Hamza M. Ali
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia;
| | - Ali A. Rabaan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | | | - Chan Yean Yean
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
18
|
Vasić K, Knez Ž, Leitgeb M. Transglutaminase in Foods and Biotechnology. Int J Mol Sci 2023; 24:12402. [PMID: 37569776 PMCID: PMC10419021 DOI: 10.3390/ijms241512402] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Stabilization and reusability of enzyme transglutaminase (TGM) are important goals for the enzymatic process since immobilizing TGM plays an important role in different technologies and industries. TGM can be used in many applications. In the food industry, it plays a role as a protein-modifying enzyme, while, in biotechnology and pharmaceutical applications, it is used in mediated bioconjugation due to its extraordinary crosslinking ability. TGMs (EC 2.3.2.13) are enzymes that catalyze the formation of a covalent bond between a free amino group of protein-bound or peptide-bound lysine, which acts as an acyl acceptor, and the γ-carboxamide group of protein-bound or peptide-bound glutamine, which acts as an acyl donor. This results in the modification of proteins through either intramolecular or intermolecular crosslinking, which improves the use of the respective proteins significantly.
Collapse
Affiliation(s)
- Katja Vasić
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
19
|
Zhang Z, Ding X, Lu G, Du B, Liu M. A highly sensitive and selective photoelectrochemical aptasensor for atrazine based on Au NPs/3DOM TiO 2 photonic crystal electrode. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131132. [PMID: 36967686 DOI: 10.1016/j.jhazmat.2023.131132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
A photoelectrochemical (PEC) sensing platform with high sensitivity and selectivity has been fabricated based on Au nanoparticles (Au NPs) modified three dimensionally ordered macroporous (3DOM) TiO2 nanostructure frame for trace detection of an endocrine disrupting pesticide, atrazine (ATZ). The resultant photoanode (Au NPs/3DOM TiO2) shows enhanced PEC performance under visible light due to multi signal amplification of the unique structure of 3DOM TiO2 and surface plasmon resonance (SPR) of Au NPs. ATZ aptamers are used as recognition elements and immobilized on Au NPs/3DOM TiO2 by Au-S bond in large packing density and dominant spatial orientation. The specific recognition and high binding affinity between aptamer and ATZ provides the PEC aptasensor with excellent sensitivity. The detection limit is 0.167 ng/L. Besides, this PEC aptasensor exhibits outstanding anti-interference ability in 100-fold concentration of other endocrine disrupting compounds and has been applied successfully to analyze ATZ in real water samples. A simple but efficient PEC aptasensing platform has therefore been successfully developed with high sensitivity, selectivity and repeatability for pollutant monitoring and potential risk evaluation in the environment with great application prospect.
Collapse
Affiliation(s)
- Ziwei Zhang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xue Ding
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China; The Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guangqiu Lu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Bingyu Du
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Meichuan Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
20
|
Parisi L, Ghezzi B, Toffoli A, Macaluso GM, Lumetti S. Aptamer-enriched scaffolds for tissue regeneration: a systematic review of the literature. Front Bioeng Biotechnol 2023; 11:1199651. [PMID: 37265990 PMCID: PMC10229892 DOI: 10.3389/fbioe.2023.1199651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction: Aptamers are a brand-new class of receptors that can be exploited to improve the bioactivity of tissue engineering grafts. The aim of this work was to revise the current literature on in vitro and in vivo studies in order to i) identify current strategies adopted to improve scaffold bioactivity by aptamers; ii) assess effects of aptamer functionalization on cell behavior and iii) on tissue regeneration. Methods: Using a systematic search approach original research articles published up to 30 April 2022, were considered and screened. Results: In total, 131 records were identified and 18 were included in the final analysis. Included studies showed that aptamers can improve the bioactivity of biomaterials by specific adsorption of adhesive molecules or growth factors from the surrounding environment, or by capturing specific cell types. All the studies showed that aptamers ameliorate scaffold colonization by cells without modifying the physicochemical characteristics of the bare scaffold. Additionally, aptamers seem to promote the early stages of tissue healing and to promote anatomical and functional regeneration. Discussion: Although a metanalysis could not be performed due to the limited number of studies, we believe these findings provide solid evidence supporting the use of aptamers as a suitable modification to improve the bioactivity of tissue engineering constructs.
Collapse
Affiliation(s)
- Ludovica Parisi
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, University of Parma, Parma, Italy
- Istituto dei Materiali per l’Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Andrea Toffoli
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, University of Parma, Parma, Italy
| | - Guido M. Macaluso
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, University of Parma, Parma, Italy
- Istituto dei Materiali per l’Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Simone Lumetti
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, University of Parma, Parma, Italy
- Istituto dei Materiali per l’Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| |
Collapse
|
21
|
Sivagnanam S, Mahato P, Das P. An overview on the development of different optical sensing platforms for adenosine triphosphate (ATP) recognition. Org Biomol Chem 2023; 21:3942-3983. [PMID: 37128980 DOI: 10.1039/d3ob00209h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Adenosine triphosphate (ATP), one of the biological anions, plays a crucial role in several biological processes including energy transduction, cellular respiration, enzyme catalysis and signaling. ATP is a bioactive phosphate molecule, recognized as an important extracellular signaling agent. Apart from serving as a universal energy currency for various cellular events, ATP is also considered a factor responsible for numerous physiological activities. It regulates cellular metabolism by breaking phosphoanhydride bonds. Several diseases have been reported widely based on the levels and behavior of ATP. The variation of ATP concentration usually causes a foreseeable impact on mitochondrial physiological function. Mitochondrial dysfunction is responsible for the occurrence of many severe diseases such as angiocardiopathy, malignant tumors and Parkinson's disease. Therefore, there is high demand for developing a sensitive, fast-responsive, nontoxic and versatile detection platform for the detection of ATP. To this end, considerable efforts have been employed by several research groups throughout the world to develop specific and sensitive detection platforms to recognize ATP. Although a repertoire of optical chemosensors (both colorimetric and fluorescent) for ATP has been developed, many of them are not arrayed appropriately. Therefore, in this present review, we focused on the design and sensing strategy of some chemosensors including metal-free, metal-based, sequential sensors, aptamer-based sensors, nanoparticle-based sensors etc. for ATP recognition via diverse binding mechanisms.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu-603203, India.
| | - Prasenjit Mahato
- Department of Chemistry, Raghunathpur College, Sidho-Kanho-Birsha University, Purulia, West Bengal-723133, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu-603203, India.
| |
Collapse
|
22
|
Liu H, Ma S, Ning G, Zhang R, Liang H, Liu F, Xiao L, Guo L, Zhang Y, Li CP, Zhao H. A “peptide-target-aptamer” electrochemical biosensor for norovirus detection using a black phosphorous nanosheet@Ti3C2-Mxene nanohybrid and magnetic covalent organic framework. Talanta 2023; 258:124433. [PMID: 36996585 DOI: 10.1016/j.talanta.2023.124433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
Norovirus (NoV) is a major foodborne pathogen responsible for acute gastroenteritis epidemics, and establishing a robust detection method for the timely identification and monitoring of NoV contamination is of great significance. In this study, a peptide-target-aptamer sandwich electrochemical biosensor for NoV was fabricated using Au@BP@Ti3C2-MXene and magnetic Au@ZnFe2O4@COF nanocomposites. The response currents of the electrochemical biosensor were proportional to the NoV concentrations ranging from 0.01-105 copies/mL with a detection limit (LOD) of 0.003 copies/mL (S/N = 3). To our best knowledge, this LOD was the lowest among published assays to date, due to the specific recognition of the affinity peptide and aptamer for NoV and the outstanding catalytic activity of nanomaterials. Furthermore, the biosensor showed excellent selectivity, anti-interference performance, and satisfactory stability. The NoV concentrations in simulative food matrixes were successfully detected using the constructed biosensor. Meanwhile, NoV in stool samples was also successfully quantified without complex pretreatment. The designed biosensor had the potential to detect NoV (even at a low level) in foods, clinical samples, and environmental samples, providing a new method for NoV detection in food safety and diagnosing foodborne pathogens.
Collapse
|
23
|
Torrini F, Scarano S, Palladino P, Minunni M. Advances and perspectives in the analytical technology for small peptide hormones analysis: A glimpse to gonadorelin. J Pharm Biomed Anal 2023; 228:115312. [PMID: 36858006 DOI: 10.1016/j.jpba.2023.115312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
In the last twenty years, we have witnessed an important evolution of bioanalytical approaches moving from conventional lab bench instrumentation to simpler, easy-to-use techniques to deliver analytical responses on-site, with reduced analysis times and costs. In this frame, affinity reagents production has also jointly advanced from natural receptors to biomimetic, abiotic receptors, animal-free produced. Among biomimetic ones, aptamers, and molecular imprinted polymers (MIPs) play a leading role. Herein, our motivation is to provide insights into the evolution of conventional and innovative analytical approaches based on chromatography, immunochemistry, and affinity sensing referred to as peptide hormones. Indeed, the analysis of peptide hormones represents a current challenge for biomedical, pharmaceutical, and anti-doping analysis. Specifically, as a paradigmatic example, we report the case of gonadorelin, a neuropeptide that in recent years has drawn a lot of attention as a therapeutic drug misused in doping practices during sports competitions.
Collapse
Affiliation(s)
- Francesca Torrini
- Department of Chemistry 'Ugo Schiff', University of Florence, 50019 Sesto Fiorentino, FI, Italy.
| | - Simona Scarano
- Department of Chemistry 'Ugo Schiff', University of Florence, 50019 Sesto Fiorentino, FI, Italy
| | - Pasquale Palladino
- Department of Chemistry 'Ugo Schiff', University of Florence, 50019 Sesto Fiorentino, FI, Italy
| | - Maria Minunni
- Department of Chemistry 'Ugo Schiff', University of Florence, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
24
|
Escobar V, Scaramozzino N, Vidic J, Buhot A, Mathey R, Chaix C, Hou Y. Recent Advances on Peptide-Based Biosensors and Electronic Noses for Foodborne Pathogen Detection. BIOSENSORS 2023; 13:bios13020258. [PMID: 36832024 PMCID: PMC9954637 DOI: 10.3390/bios13020258] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 05/26/2023]
Abstract
Foodborne pathogens present a serious issue around the world due to the remarkably high number of illnesses they cause every year. In an effort to narrow the gap between monitoring needs and currently implemented classical detection methodologies, the last decades have seen an increased development of highly accurate and reliable biosensors. Peptides as recognition biomolecules have been explored to develop biosensors that combine simple sample preparation and enhanced detection of bacterial pathogens in food. This review first focuses on the selection strategies for the design and screening of sensitive peptide bioreceptors, such as the isolation of natural antimicrobial peptides (AMPs) from living organisms, the screening of peptides by phage display and the use of in silico tools. Subsequently, an overview on the state-of-the-art techniques in the development of peptide-based biosensors for foodborne pathogen detection based on various transduction systems was given. Additionally, limitations in classical detection strategies have led to the development of innovative approaches for food monitoring, such as electronic noses, as promising alternatives. The use of peptide receptors in electronic noses is a growing field and the recent advances of such systems for foodborne pathogen detection are presented. All these biosensors and electronic noses are promising alternatives for the pathogen detection with high sensitivity, low cost and rapid response, and some of them are potential portable devices for on-site analyses.
Collapse
Affiliation(s)
- Vanessa Escobar
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France
- Grenoble Alpes University, CNRS, LIPhy, 38000 Grenoble, France
| | | | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Arnaud Buhot
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France
| | - Raphaël Mathey
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France
| | - Carole Chaix
- Institute of Analytical Sciences, University of Lyon, CNRS, Claude Bernard Lyon 1 University, UMR 5280, 69100 Villeurbanne, France
| | - Yanxia Hou
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
25
|
Futane A, Narayanamurthy V, Jadhav P, Srinivasan A. Aptamer-based rapid diagnosis for point-of-care application. MICROFLUIDICS AND NANOFLUIDICS 2023; 27:15. [PMID: 36688097 PMCID: PMC9847464 DOI: 10.1007/s10404-022-02622-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/31/2022] [Indexed: 05/31/2023]
Abstract
Aptasensors have attracted considerable interest and widespread application in point-of-care testing worldwide. One of the biggest challenges of a point-of-care (POC) is the reduction of treatment time compared to central facilities that diagnose and monitor the applications. Over the past decades, biosensors have been introduced that offer more reliable, cost-effective, and accurate detection methods. Aptamer-based biosensors have unprecedented advantages over biosensors that use natural receptors such as antibodies and enzymes. In the current epidemic, point-of-care testing (POCT) is advantageous because it is easy to use, more accessible, faster to detect, and has high accuracy and sensitivity, reducing the burden of testing on healthcare systems. POCT is beneficial for daily epidemic control as well as early detection and treatment. This review provides detailed information on the various design strategies and virus detection methods using aptamer-based sensors. In addition, we discussed the importance of different aptamers and their detection principles. Aptasensors with higher sensitivity, specificity, and flexibility are critically discussed to establish simple, cost-effective, and rapid detection methods. POC-based aptasensors' diagnostic applications are classified and summarised based on infectious and infectious diseases. Finally, the design factors to be considered are outlined to meet the future of rapid POC-based sensors.
Collapse
Affiliation(s)
- Abhishek Futane
- Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
| | - Vigneswaran Narayanamurthy
- Advance Sensors and Embedded Systems (ASECs), Centre for Telecommunication Research and Innovation, Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Pramod Jadhav
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP) Lebuhraya Tun Razak, Gambang, 26300 Kuantan, Pahang Malaysia
- InnoFuTech, No 42/12, 7Th Street, Vallalar Nagar, Chennai, Tamil Nadu 600072 India
| | - Arthi Srinivasan
- Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, 26300 Kunatan, Pahang Malaysia
| |
Collapse
|
26
|
Sfragano PS, Pillozzi S, Condorelli G, Palchetti I. Practical tips and new trends in electrochemical biosensing of cancer-related extracellular vesicles. Anal Bioanal Chem 2023; 415:1087-1106. [PMID: 36683059 PMCID: PMC9867925 DOI: 10.1007/s00216-023-04530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 01/24/2023]
Abstract
To tackle cancer and provide prompt diagnoses and prognoses, the constantly evolving biosensing field is continuously on the lookout for novel markers that can be non-invasively analysed. Extracellular vesicles (EVs) may represent a promising biomarker that also works as a source of biomarkers. The augmented cellular activity of cancerous cells leads to the production of higher numbers of EVs, which can give direct information on the disease due to the presence of general and cancer-specific surface-tethered molecules. Moreover, the intravesicular space is enriched with other molecules that can considerably help in the early detection of neoplasia. Even though EV-targeted research has indubitably received broad attention lately, there still is a wide lack of practical and effective quantitative procedures due to difficulties in pre-analytical and analytical phases. This review aims at providing an exhaustive outline of the recent progress in EV detection using electrochemical and photoelectrochemical biosensors, with a focus on handling approaches and trends in the selection of bioreceptors and molecular targets related to EVs that might guide researchers that are approaching such an unstandardised field.
Collapse
Affiliation(s)
- Patrick Severin Sfragano
- grid.8404.80000 0004 1757 2304Department of Chemistry Ugo Schiff, University of Florence, Via Della Lastruccia 3, 50019 Sesto, Fiorentino, Italy
| | - Serena Pillozzi
- grid.24704.350000 0004 1759 9494Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Gerolama Condorelli
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy ,grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Ilaria Palchetti
- grid.8404.80000 0004 1757 2304Department of Chemistry Ugo Schiff, University of Florence, Via Della Lastruccia 3, 50019 Sesto, Fiorentino, Italy
| |
Collapse
|
27
|
Zhang Y, Chen X, Qiao Y, Yang S, Wang Z, Ji M, Yin K, Zhao J, Liu K, Yuan B. DNA Aptamer Selected against Esophageal Squamous Cell Carcinoma for Tissue Imaging and Targeted Therapy with Integrin β1 as a Molecular Target. Anal Chem 2022; 94:17212-17222. [PMID: 36459499 DOI: 10.1021/acs.analchem.2c03863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Esophageal cancer, especially esophageal squamous cell carcinoma (ESCC), poses a serious threat to human health. It is urgently needed to develop recognition tools and discover molecular targets for early diagnosis and targeted therapy of esophageal cancer. Here, we developed several DNA aptamers that can bind to ESCC KYSE410 cells with a nanomolar range of dissociation constants by using cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX). The selected A2 aptamer is found to strongly bind with multiple cancer cells, including several ESCC cell lines. Tissue imaging displayed that the A2 aptamer can specifically recognize clinical ESCC tissues but not the adjacent tissues. Moreover, we identified integrin β1 as the binding target of A2 through pull-down and RNA interference assays. Meanwhile, molecular docking and mutation assays suggested that A2 probably binds to integrin β1 through the nucleotides of DA16-DG21, and competitive binding and structural alignment assays indicated that A2 shares the overlapped binding sites with laminin and arginine-glycine-aspartate ligands. Furthermore, we engineered A2-induced targeted therapy for ESCC. By constructing A2-tethered DNA nanoassemblies carrying multiple doxorubicin (Dox) molecules as antitumor agents, inhibition of tumor cell growth in vitro and in vivo was achieved. This work provides a useful targeting tool and a potential molecular target for cancer diagnosis and targeted therapy and is helpful for understanding the integrin mechanism and developing integrin inhibitors.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan 450000, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan 450000, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shuang Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhaoting Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mengmeng Ji
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kai Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan 450000, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan 450000, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450001, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450003, China.,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan 450000, China
| | - Baoyin Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan 450000, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
28
|
He J, Zhou L, Huang G, Shen J, Chen W, Wang C, Kim A, Zhang Z, Cheng W, Dai S, Ding F, Chen P. Enhanced Label-Free Nanoplasmonic Cytokine Detection in SARS-CoV-2 Induced Inflammation Using Rationally Designed Peptide Aptamer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48464-48475. [PMID: 36281943 PMCID: PMC9627400 DOI: 10.1021/acsami.2c14748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 06/12/2023]
Abstract
Rapid and precise serum cytokine quantification provides immense clinical significance in monitoring the immune status of patients in rapidly evolving infectious/inflammatory disorders, examplified by the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. However, real-time information on predictive cytokine biomarkers to guide targetable immune pathways in pathogenic inflammation is critically lacking, because of the insufficient detection range and detection limit in current label-free cytokine immunoassays. In this work, we report a highly sensitive localized surface plasmon resonance imaging (LSPRi) immunoassay for label-free Interleukin 6 (IL-6) detection utilizing rationally designed peptide aptamers as the capture interface. Benefiting from its characteristically smaller dimension and direct functionalization on the sensing surface via Au-S bonding, the peptide-aptamer-based LSPRi immunoassay achieved enhanced label-free serum IL-6 detection with a record-breaking limit of detection down to 4.6 pg/mL, and a wide dynamic range of ∼6 orders of magnitude (values from 4.6 to 1 × 106 pg/mL were observed). The immunoassay was validated in vitro for label-free analysis of SARS-CoV-2 induced inflammation, and further applied in rapid quantification of serum IL-6 profiles in COVID-19 patients. Our peptide aptamer LSPRi immunoassay demonstrates great potency in label-free cytokine detection with unprecedented sensing capability to provide accurate and timely interpretation of the inflammatory status and disease progression, and determination of prognosis.
Collapse
Affiliation(s)
- Jiacheng He
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Lang Zhou
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Gangtong Huang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina29634, United States
| | - Jialiang Shen
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Wu Chen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama36849, United States
| | - Chuanyu Wang
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Albert Kim
- Center for Medicine, Health, and Society, Vanderbilt University, Nashville, Tennessee37235, United States
| | - Zhuoyu Zhang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York11201, United States
- Department of Biomedical Engineering, New York University, Brooklyn, New York11201, United States
| | - Weiqiang Cheng
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York11201, United States
- Department of Biomedical Engineering, New York University, Brooklyn, New York11201, United States
| | - Siyuan Dai
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina29634, United States
| | - Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| |
Collapse
|
29
|
Zhang J, Hou S, Zhang J, Liang N, Zhao L. A facile aptamer-based sensing strategy for dopamine detection through the fluorescence energy transfer between dye and single-wall carbon nanohorns. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121415. [PMID: 35636140 DOI: 10.1016/j.saa.2022.121415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Dopamine (DBA) as an important biomarker, plays a crucial role in disease diagnosis. In this study, we have developed a fast and simple aptamer-based fluorescence strategy which used single-wall carbon nanohorns (SWCNHs) as a quencher for dopamine detection. SWCNHs were negatively charged after pretreated, which improved its dispersion in solution. 5-carboxy-fluorescein (FAM) was used to label dopamine aptamer. In the absence of dopamine, FAM-modified aptamer could be absorbed onto the SWCNHs surface due to π-π interaction, resulting in the fluorescence intensity decreased. Dopamine could specifically bind with FAM-DNA to form G-quadruplex, which could not be absorbed onto the surface of SWCNHs. Hence, the fluorescence of FAM-DNA recovered, and the fluorescent intensity as a function of different concentrations of dopamine was measured. We obtained a detection limit of 5 μM for this detection system with a linear detection range of 0.02-2.20 mM. Furthermore, the feasibility of the innovative detection system has been verified by detecting dopamine in spiked serum samples.
Collapse
Affiliation(s)
- Jiayu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Shanshan Hou
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jiaxin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Ning Liang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
30
|
Munteanu IG, Grădinaru VR, Apetrei C. Sensitive Detection of Rosmarinic Acid Using Peptide-Modified Graphene Oxide Screen-Printed Carbon Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193292. [PMID: 36234420 PMCID: PMC9565883 DOI: 10.3390/nano12193292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 05/15/2023]
Abstract
Peptides have been used as components in biological analysis and fabrication of novel sensors due to several reasons, including well-known synthesis protocols, diverse structures, and acting as highly selective substrates for enzymes. Bio-conjugation strategies can provide a simple and efficient way to convert peptide-analyte interaction information into a measurable signal, which can be further used for the manufacture of new peptide-based biosensors. This paper describes the sensitive properties of a peptide-modified graphene oxide screen-printed carbon electrode for accurate and sensitive detection of a natural polyphenol antioxidant compound, namely rosmarinic acid. Glutaraldehyde was chosen as the cross-linking agent because it is able to bind nonspecifically to the peptide. We demonstrated that the strong interaction between the immobilized peptide on the surface of the sensor and rosmarinic acid favors the addition of rosmarinic acid on the surface of the electrode, leading to an efficient preconcentration that determines a high sensitivity of the sensor for the detection of rosmarinic acid. The experimental conditions were optimized using different pH values and different amounts of peptide to modify the sensor surface, so that its analytical performances were optimal for rosmarinic acid detection. By using cyclic voltammetry (CV) as a detection method, a very low detection limit (0.0966 μM) and a vast linearity domain, ranging from 0.1 µM to 3.20 µM, were obtained. The novelty of this work is the development of a novel peptide-based sensor with improved performance characteristics for the quantification of rosmarinic acid in cosmetic products of complex composition. The FTIR method was used to validate the voltammetric method results.
Collapse
Affiliation(s)
- Irina Georgiana Munteanu
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domneasca Street, 800008 Galaţi, Romania
| | | | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domneasca Street, 800008 Galaţi, Romania
- Correspondence: ; Tel.: +40-727-580-914
| |
Collapse
|
31
|
Gu P, Lu Y, Li S, Ma C. A Label-Free Fluorescence Aptasensor Based on G-Quadruplex/Thioflavin T Complex for the Detection of Trypsin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186093. [PMID: 36144829 PMCID: PMC9503660 DOI: 10.3390/molecules27186093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
Abstract
A novel, label-free fluorescent assay has been developed for the detection of trypsin by using thioflavin T as a fluorescent probe. A specific DNA aptamer can be combined by adding cytochrome c. Trypsin hydrolyzes the cytochrome c into small peptide fragments, exposing the G-quadruplex part of DNA aptamer, which has a high affinity for thioflavin T, which then enhances the fluorescence intensity. In the absence of trypsin, the fluorescence intensity was inhibited as the combination of cytochrome c and the DNA aptamer impeded thioflavin T’s binding. Thus, the fluorescent biosensor showed a linear relationship from 0.2 to 60 μg/mL with a detection limit of 0.2 μg/mL. Furthermore, the proposed method was also successfully employed for determining trypsin in biological samples. This method is simple, rapid, cheap, and selective and possesses great potential for the detection of trypsin in bioanalytical and biological samples and medical diagnoses.
Collapse
|
32
|
Yan H, He B, Zhao R, Ren W, Suo Z, Xu Y, Zhang Y, Bai C, Yan H, Liu R. Electrochemical aptasensor based on Ce 3NbO 7/CeO 2@Au hollow nanospheres by using Nb.BbvCI-triggered and bipedal DNA walker amplification strategy for zearalenone detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129491. [PMID: 35785741 DOI: 10.1016/j.jhazmat.2022.129491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Herein, an electrochemical aptasensor combining Nb.BbvCI-triggered bipedal DNA walking strategy was constructed for ultrasensitive assay of zearalenone (ZEN). The aptasensor used Ce3NbO7/CeO2 @Au hollow nanospheres as electrode modification material and PdNi@MnO2/MB as the signal label. Importantly, the Ce3NbO7/CeO2 synthesized by hydrothermal method were combined with Au nanoparticles and applied to the electrode surface. The as-prepared Ce3NbO7/CeO2 @Au possessed a large surface area, excellent electrical conductivity, stability and more binding sites. PdNi@MnO2 with high specific surface area and porosity combined with molecule methylene blue (MB) was introduced into electrodes as the signal label. The proposed aptasensor utilized the advantages of specific recognition of aptamers and target molecules to release bipedal DNA walker (w-DNA), and then the w-DNA was triggered by Nb.BbvCI and entered the cycle to release more signal probes. The feasibility of this strategy was recorded by the differential pulse voltammetry (DPV) method. Under the optimized conditions, the electrochemical aptasensor exhibited a wide linear dynamic range from 1 × 10-4 to 1 × 103 ng mL-1 with a low detection limit of 4.57 × 10-6 ng mL-1. Moreover, the aptasensor had high selectivity, good stability, excellent repeatability and provided an effective method for the trace detection of ZEN in real samples.
Collapse
Affiliation(s)
- Han Yan
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Renyong Zhao
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yurong Zhang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Chunqi Bai
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Haoyang Yan
- School of International Education, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Renli Liu
- Sinograin Zhengzhou Depot Ltd. Company, Zhengzhou, Henan 450066, PR China
| |
Collapse
|
33
|
Fujita K, Takuya H, Tsukakoshi K, Ohno H, Ikebukuro K. The state of water molecules induces changes in the topologies and interactions of G-quadruplex DNA aptamers in hydrated ionic liquid. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
34
|
Yao C, Ou J, Tang J, Yang D. DNA Supramolecular Assembly on Micro/Nanointerfaces for Bioanalysis. Acc Chem Res 2022; 55:2043-2054. [PMID: 35839123 DOI: 10.1021/acs.accounts.2c00170] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusFacing increasing demand for precision medicine, materials chemistry systems for bioanalysis with accurate molecular design, controllable structure, and adjustable biological activity are required. As a genetic biomacromolecule, deoxyribonucleic acid (DNA) is created via precise, efficient, and mild processes in life systems and can in turn precisely regulate life activities. From the perspective of materials chemistry, DNA possesses the characteristics of sequence programmability and can be endowed with customized functions by the rational design of sequences. In recent years, DNA has been considered to be a potential biomaterial for analysis and has been applied in the fields of bioseparation, biosensing, and detection imaging. To further improve the precision of bioanalysis, the supramolecular assembly of DNA on micro/nanointerfaces is an effective strategy to concentrate functional DNA modules, and thus the functions of DNA molecules for bioanalysis can be enriched and enhanced. Moreover, the new modes of DNA supramolecular assembly on micro/nanointerfaces enable the integration of DNA with the introduced components, breaking the restriction of limited functions of DNA materials and achieving more precise regulation and manipulation in bioanalysis. In this Account, we summarize our recent work on DNA supramolecular assembly on micro/nanointerfaces for bioanalysis from two main aspects. In the first part, we describe DNA supramolecular assembly on the interfaces of microscale living cells. The synthesis strategy of DNA is based on rolling-circle amplification (RCA), which generates ultralong DNA strands according to circular DNA templates. The templates can be designed with complementary sequences of functional modules such as aptamers, which allow DNA to specifically bind with cellular interfaces and achieve efficient cell separation. In the second part, we describe DNA supramolecular assembly on the interfaces of nanoscale particles. DNA sequences are designed with functional modules such as targeting, drug loading, and gene expression and then are assembled on interfaces of particles including upconversion nanoparticles (UCNPs), gold nanoparticles (AuNPs), and magnetic nanoparticle (MNPs). The integration of DNA with these functional particles achieves cell manipulation, targeted tumor imaging, and cellular regulation. The processes of interfacial assembly are well controlled, and the functions of the obtained bioanalytical materials can be flexibly regulated. We envision that the work on DNA supramolecular assembly on micro/nanointerfaces will be a typical paradigm for the construction of more bioanalytical materials, which we hope will facilitate the development of precision medicine.
Collapse
Affiliation(s)
- Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Junhan Ou
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
35
|
Poustforoosh A, Faramarz S, Nematollahi MH, Hashemipour H, Negahdaripour M, Pardakhty A. In silico SELEX screening and statistical analysis of newly designed 5mer peptide-aptamers as Bcl-xl inhibitors using the Taguchi method. Comput Biol Med 2022; 146:105632. [PMID: 35617726 DOI: 10.1016/j.compbiomed.2022.105632] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/03/2022]
Abstract
Drug development for cancer treatment is a complex process that requires special efforts. Targeting crucial proteins is the most essential purpose of drug design in cancers. Bcl-xl is an anti-apoptotic protein that binds to pro-apoptotic proteins and interrupts their signals. Pro-apoptotic Bcl-xl effectors are short BH3 sequences that form an alpha helix and bind to anti-apoptotic proteins to inhibit their activity. Computational systematic evolution of ligands by exponential enrichment (SELEX) is an exclusive approach for developing peptide aptamers as potential effectors. Here, the amino acids with a high tendency for constructing an alpha-helical structure were selected. Due to the enormous number of pentapeptides, Taguchi method was used to study a selected number of peptides. The binding affinity of the peptides to Bcl-xl was assessed using molecular docking, and after analysis of the obtained results, a final set of optimized peptides was arranged and constructed. For a better comparison, three chemical compounds with approved anti-Bcl-xl activity were selected for comparison with the top-ranked 5mer peptides. The optimized peptides showed considerable binding affinity to Bcl-xl. The molecular dynamics (MD) simulation indicated that the designed peptide (PO5) could create considerable interactions with the BH3 domain of Bcl-xl. The MM/GBSA calculations revealed that these interactions were even stronger than those created by chemical compounds. In silico SELEX is a novel approach to design and evaluate peptide-aptamers. The experimental design improves the SELEX process considerably. Finally, PO5 could be considered a potential inhibitor of Bcl-xl and a potential candidate for cancer treatment.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Chemical Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Sanaz Faramarz
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hassan Hashemipour
- Chemical Engineering Department, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
36
|
Chen P, Jiang P, Lin Q, Zeng X, Liu T, Li M, Yuan Y, Song S, Zhang J, Huang J, Ying B, Chen J. Simultaneous Homogeneous Fluorescence Detection of AFP and GPC3 in Hepatocellular Carcinoma Clinical Samples Assisted by Enzyme-Free Catalytic Hairpin Assembly. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28697-28705. [PMID: 35699181 DOI: 10.1021/acsami.2c09135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Simultaneous sensitive and cost-effective detection of multiple tumor markers has shown great potential for cancer diagnostics. Herein, we reported a simple enzyme-free parallel catalytic hairpin assembly (CHA) amplification strategy with N-methyl mesoporphyrin IX (NMM) and quantum dots (QDs) as signal reporters for the homogeneous fluorescent simultaneous detection of alpha-fetoprotein (AFP) and glypican-3 (GPC3). Upon selective binding, the released single-stranded DNA (ssDNA) from the two-aptamer double-stranded DNA (dsDNA) probes triggers CHA amplification, further releasing the G-quadruplex sequence and Ag+ from the C-Ag+-C structures at the same time. Then, NMM and CdTe QDs selectively recognize G-quadruplex and Ag+, respectively. Under optimized conditions, limits of detections (LODs) as low as 3 fg/mL for AFP and 0.25 fg/mL for GPC3 were achieved using fluorescence readout. Using color- and distance-based visual readouts, an LOD of 1 fg/mL for GPC3 was reached. This method was applied to quantitatively analyze AFP and GPC3 in 41 clinical serum samples of hepatocellular carcinoma (HCC) patients. The quantitative test results for AFP and GPC3 were consistent with those obtained using the electrochemiluminescence immunoassay (ECL-IA) clinical kit and correlated with radiological and pathological findings. The results of clinical tests demonstrated the potential of GPC3 as a tumor biomarker, and we propose a cut-off value of 2 ng/mL GPC3 for HCC.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pengjun Jiang
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianli Lin
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianghu Zeng
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tangyuheng Liu
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mei Li
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuan Yuan
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siyang Song
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junlong Zhang
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin Huang
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
37
|
Kuramitz H. Electrochemical analysis based on bioaffinity. ANAL SCI 2022; 38:831-832. [PMID: 35618948 PMCID: PMC9135573 DOI: 10.1007/s44211-022-00112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hideki Kuramitz
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Gofuku, Toyama, 930-8555, Japan.
| |
Collapse
|
38
|
Svitková V, Konderíková K, Nemčeková K. Photoelectrochemical aptasensors for detection of viruses. MONATSHEFTE FUR CHEMIE 2022; 153:963-970. [PMID: 35345838 PMCID: PMC8943106 DOI: 10.1007/s00706-022-02913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/15/2022] [Indexed: 10/31/2022]
Abstract
Photoelectrochemistry (PEC) is a dynamic discipline studying the effect of light on photoelectrode or photosensitive material, and the conversion from solar energy into electrical power. The basic PEC process refers to the oxidation or reduction reactions between electrochemical active species in solution and photoactive materials that occurred at the electrode/electrolyte interface during illumination. In recent years, the PEC biosensing approaches have also been developed by the combination of the PEC technique with bioanalysis, where the interaction between biological recognition element and analyte influences a photocurrent signal. This involves the charge and energy transfer of PEC reaction between electron donor/acceptor and photoactive material upon light irradiation. Coupling the advantages of PEC bioanalysis and aptamers has provided new concepts for highly selective and sensitive biosensors development, applicable in human health monitoring and environmental protection. In a typical assay, a photoactive material converts the affinity binding properties of aptamers into a detectable electrical signal, presenting an innovative method for probing numerous aptamer-analyte interactions. Using different aptamer probes aiming for specific purposes, more sensing strategies with rational design and exquisite signaling mechanisms have been proposed. This review concentrated on the current topic of PEC aptasensors that are used for the detection of viruses. The prospects in this area are also discussed. Graphical abstract
Collapse
Affiliation(s)
- Veronika Svitková
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| | - Kristína Konderíková
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| | - Katarína Nemčeková
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| |
Collapse
|
39
|
Islam MA, Karim A, Ethiraj B, Raihan T, Kadier A. Antimicrobial peptides: Promising alternatives over conventional capture ligands for biosensor-based detection of pathogenic bacteria. Biotechnol Adv 2022; 55:107901. [PMID: 34974156 DOI: 10.1016/j.biotechadv.2021.107901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/19/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023]
Abstract
The detection of pathogenic bacteria using biosensing techniques could be a potential alternative to traditional culture based methods. However, the low specificity and sensitivity of conventional biosensors, critically related to the choice of bio-recognition elements, limit their practical applicability. Mammalian antibodies have been widely investigated as biorecognition ligands due to high specificity and technological advancement in antibody production. However, antibody-based biosensors are not considered as an efficient approach due to the batch-to-batch inconsistencies as well as low stability. In recent years, antimicrobial peptides (AMPs) have been increasingly investigated as ligands as they have demonstrated high stability and possessed multiple sites for capturing bacteria. The conjugation of chemo-selective groups with AMPs has allowed effective immobilization of peptides on biosensor surface. However, the specificity of AMPs is a major concern for consideration as an efficient ligand. In this article, we have reviewed the advances and concerns, particularly the selectivity of AMPs for specific detection of pathogenic bacteria. This review also focuses the state-of-the-art mechanisms, challenges and prospects for designing potential AMP conjugated biosensors. The application of AMP in different biosensing transducers such as electrochemical, optical and piezoelectric varieties has been widely discussed. We argue that this review would provide insights to design and construct AMP conjugated biosensors for the pathogenic bacteria detection.
Collapse
Affiliation(s)
- M Amirul Islam
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Université de Sherbrooke, 3000, boul. de l'Université, Sherbrooke, Québec J1K 0A5, Canada.
| | - Ahasanul Karim
- Department of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Topu Raihan
- Deapartment of Genetic Engineering and Biotechnology, Shahjalal, University of Science and Technology, Sylhet 3114, Bangladesh
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
40
|
Bu ZQ, Yao QF, Liu QY, Quan MX, Lu JY, Huang WT. Peptide-Based Sensing, Logic Computing, and Information Security on the Antimonene Platform. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8311-8321. [PMID: 35112857 DOI: 10.1021/acsami.1c23814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peptides have higher information density than DNA and equivalent molecular recognition ability and durability. However, there are currently no reports on the comprehensive use of peptides' recognition ability and structural diversity for sensing, logic computing, information coding, and protection. Herein, we, for the first time, demonstrate peptide-based sensing, logic computing, and information security on the antimonene platform. The molecular recognition capability and structural diversity (amino acid sequence) of peptides (Pb2+-binding peptide DHHTQQHD as a model) adsorbed on the antimonene universal fluorescence quenching platform were comprehensively utilized to sense targets (Pb2+) and give a response (fluorescence turn-on) and then to encode, encrypt, and hide information. Fluorescently labeled peptides used as the recognition probe and the information carrier were quenched and hidden by the large-plane two-dimensional material antimonene and specifically bound by Pb2+ as the stego key, resulting in fluorescence recovery. The above interaction and signal change can be considered as a peptide-based sensing and steganographic process to further implement quantitative detection of Pb2+, complex logic operation, information coding, encrypting, and hiding using a peptide sequence and the binary conversion of its selectivity. This research provides a basic paradigm for the construction of a molecular sensing and informatization platform and will inspire the development of biopolymer-based molecular information technology (processing, communication, control, security).
Collapse
Affiliation(s)
- Zhen Qi Bu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Qing Feng Yao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Qing Yu Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Min Xia Quan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Jiao Yang Lu
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
41
|
Chen XF, Zhao X, Yang Z. Aptasensors for the detection of infectious pathogens: design strategies and point-of-care testing. Mikrochim Acta 2022; 189:443. [PMID: 36350388 PMCID: PMC9643942 DOI: 10.1007/s00604-022-05533-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
The epidemic of infectious diseases caused by contagious pathogens is a life-threatening hazard to the entire human population worldwide. A timely and accurate diagnosis is the critical link in the fight against infectious diseases. Aptamer-based biosensors, the so-called aptasensors, employ nucleic acid aptamers as bio-receptors for the recognition of target pathogens of interest. This review focuses on the design strategies as well as state-of-the-art technologies of aptasensor-based diagnostics for infectious pathogens (mainly bacteria and viruses), covering the utilization of three major signal transducers, the employment of aptamers as recognition moieties, the construction of versatile biosensing platforms (mostly micro and nanomaterial-based), innovated reporting mechanisms, and signal enhancement approaches. Advanced point-of-care testing (POCT) for infectious disease diagnostics are also discussed highlighting some representative ready-to-use devices to address the urgent needs of currently prevalent coronavirus disease 2019 (COVID-19). Pressing issues in aptamer-based technology and some future perspectives of aptasensors are provided for the implementation of aptasensor-based diagnostics into practical application.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China.
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
- Guangzhou Laboratory, Guangzhou, 510320, People's Republic of China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou, 510005, People's Republic of China.
| |
Collapse
|
42
|
Chen XF, Zhao X, Yang Z. Aptamer-Based Antibacterial and Antiviral Therapy against Infectious Diseases. J Med Chem 2021; 64:17601-17626. [PMID: 34854680 DOI: 10.1021/acs.jmedchem.1c01567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA molecules selected in vitro that can bind to a broad range of targets with high affinity and specificity. As promising alternatives to conventional anti-infective agents, aptamers have gradually revealed their potential in the combat against infectious diseases. This article provides an overview on the state-of-art of aptamer-based antibacterial and antiviral therapeutic strategies. Diverse aptamers targeting pathogen-related components or whole pathogenic cells are summarized according to the species of microorganisms. These aptamers exhibited remarkable in vitro and/or in vivo inhibitory effect for pathogenic invasion, enzymatic activities, or viral replication, even for some highly drug-resistant strains and biofilms. Aptamer-mediated drug delivery and controlled drug release strategies are also included herein. Critical technical barriers of therapeutic aptamers are briefly discussed, followed by some future perspectives for their implementation into clinical utility.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China.,Guangzhou Laboratory, Guangzhou 510320, PR China.,Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou 510005, PR China
| |
Collapse
|
43
|
Al Mamun M, Wahab YA, Hossain MM, Hashem A, Johan MR. Electrochemical biosensors with Aptamer recognition layer for the diagnosis of pathogenic bacteria: Barriers to commercialization and remediation. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Optimizing antimicrobial use: challenges, advances and opportunities. Nat Rev Microbiol 2021; 19:747-758. [PMID: 34158654 DOI: 10.1038/s41579-021-00578-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
An optimal antimicrobial dose provides enough drug to achieve a clinical response while minimizing toxicity and development of drug resistance. There can be considerable variability in pharmacokinetics, for example, owing to comorbidities or other medications, which affects antimicrobial pharmacodynamics and, thus, treatment success. Although current approaches to antimicrobial dose optimization address fixed variability, better methods to monitor and rapidly adjust antimicrobial dosing are required to understand and react to residual variability that occurs within and between individuals. We review current challenges to the wider implementation of antimicrobial dose optimization and highlight novel solutions, including biosensor-based, real-time therapeutic drug monitoring and computer-controlled, closed-loop control systems. Precision antimicrobial dosing promises to improve patient outcome and is important for antimicrobial stewardship and the prevention of antimicrobial resistance.
Collapse
|
45
|
Usha SP, Manoharan H, Deshmukh R, Álvarez-Diduk R, Calucho E, Sai VVR, Merkoçi A. Attomolar analyte sensing techniques (AttoSens): a review on a decade of progress on chemical and biosensing nanoplatforms. Chem Soc Rev 2021; 50:13012-13089. [PMID: 34673860 DOI: 10.1039/d1cs00137j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Detecting the ultra-low abundance of analytes in real-life samples, such as biological fluids, water, soil, and food, requires the design and development of high-performance biosensing modalities. The breakthrough efforts from the scientific community have led to the realization of sensing technologies that measure the analyte's ultra-trace level, with relevant sensitivity, selectivity, response time, and sampling efficiency, referred to as Attomolar Analyte Sensing Techniques (AttoSens) in this review. In an AttoSens platform, 1 aM detection corresponds to the quantification of 60 target analyte molecules in 100 μL of sample volume. Herein, we review the approaches listed for various sensor probe design, and their sensing strategies that paved the way for the detection of attomolar (aM: 10-18 M) concentration of analytes. A summary of the technological advances made by the diverse AttoSens trends from the past decade is presented.
Collapse
Affiliation(s)
- Sruthi Prasood Usha
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Hariharan Manoharan
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Rehan Deshmukh
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Barcelona, Spain.
| | - Enric Calucho
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Barcelona, Spain.
| | - V V R Sai
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Barcelona, Spain. .,ICREA, Institució Catalana de Recercai Estudis Avançats, Barcelona, Spain
| |
Collapse
|
46
|
Yan Q, Cai M, Jing Y, Li H, Xu H, Sun J, Gao J, Wang H. Quantitatively mapping the interaction of HER2 and EGFR on cell membranes with peptide probes. NANOSCALE 2021; 13:17629-17637. [PMID: 34664051 DOI: 10.1039/d1nr02684d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human epidermal growth factor receptor-2 (HER2) is a member of the epidermal growth factor receptor (HER) family that is involved in various biological processes such as cell proliferation, survival, differentiation, migration and invasion. It generally functions in the form of homo-/hetero-dimers or oligomers with other HER family members. Although its essential roles in cellular activities have been widely recognized, questions concerning the spatial distribution of HER2 on the membranes and the interactions between it and other ErbB family members remain obscure. Here, we obtained a high-quality dSTORM image of HER2 nanoscale clusters recognized by peptide probes, and found that HER2 forms clusters containing different numbers of molecules on cell membranes. Moreover, we found that HER2 and EGFR formed hetero-oligomers on non-stimulated cell membranes, whereas EGF stimulation reduced the degree of heteromerization, suggesting that HER2 and EGFR hetero-oligomers may inhibit the activation of EGFR. Collectively, our work revealed the clustered distribution of HER2 and quantified the changes of the interaction between HER2 and EGFR in the resting and active states at the single molecular level, which promotes a deeper understanding of the protein-protein interaction on cell membranes.
Collapse
Affiliation(s)
- Qiuyan Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Yingying Jing
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Hongru Li
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Jiayin Sun
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- University of Science and Technology of China, Hefei, Anhui 230027, China
- Laboratory for Marine Biology and Biotechnology, Qing Dao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Jimo, Qingdao, Shandong, 266237, China
| |
Collapse
|
47
|
Vandghanooni S, Sanaat Z, Barar J, Adibkia K, Eskandani M, Omidi Y. Recent advances in aptamer-based nanosystems and microfluidics devices for the detection of ovarian cancer biomarkers. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Lu JY, Zhang FR, Zou WZ, Huang WT, Guo Z. Peptide-based system for sensing Pb 2+ and molecular logic computing. Anal Biochem 2021; 630:114333. [PMID: 34400145 DOI: 10.1016/j.ab.2021.114333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/14/2021] [Accepted: 08/08/2021] [Indexed: 12/25/2022]
Abstract
Peptides with recognition, assembly, various activities exhibit strong power and application prospects in sensing, material science, biomedicine. However, peptide-based sensing and expanding application is still at an early stage. Herein, a peptide-based sensing and logic system was developed for highly sensitive and selective detection of Pb2+ and implementation of logic operations. Our Pb2+ assay method was ultra-rapid (less than 1 min), direct, simple with detection limit of 0.75 nM. Flexibility and scalability of peptide-based solution system facilitated the execution of sensing and logic operations from simple to complex. This research will not only inspire discovery and comprehensive applications (such as sensing and assembly) of more functional peptides, but also provide more opportunities for development and design of peptide-based systems and molecular information technologies.
Collapse
Affiliation(s)
- Jiao Yang Lu
- Academician Workstation, Changsha Medical University, Changsha, 410219, PR China
| | - Fu Rui Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Wen Zi Zou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Zhen Guo
- Academician Workstation, Changsha Medical University, Changsha, 410219, PR China.
| |
Collapse
|
49
|
Advances in Antimicrobial Resistance Monitoring Using Sensors and Biosensors: A Review. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indiscriminate use and mismanagement of antibiotics over the last eight decades have led to one of the main challenges humanity will have to face in the next twenty years in terms of public health and economy, i.e., antimicrobial resistance. One of the key approaches to tackling antimicrobial resistance is clinical, livestock, and environmental surveillance applying methods capable of effectively identifying antimicrobial non-susceptibility as well as genes that promote resistance. Current clinical laboratory practices involve conventional culture-based antibiotic susceptibility testing (AST) methods, taking over 24 h to find out which medication should be prescribed to treat the infection. Although there are techniques that provide rapid resistance detection, it is necessary to have new tools that are easy to operate, are robust, sensitive, specific, and inexpensive. Chemical sensors and biosensors are devices that could have the necessary characteristics for the rapid diagnosis of resistant microorganisms and could provide crucial information on the choice of antibiotic (or other antimicrobial medicines) to be administered. This review provides an overview on novel biosensing strategies for the phenotypic and genotypic determination of antimicrobial resistance and a perspective on the use of these tools in modern health-care and environmental surveillance.
Collapse
|
50
|
Iadevaia G, Swain JA, Núñez-Villanueva D, Bond AD, Hunter CA. Folding and duplex formation in mixed sequence recognition-encoded m-phenylene ethynylene polymers. Chem Sci 2021; 12:10218-10226. [PMID: 34377409 PMCID: PMC8336474 DOI: 10.1039/d1sc02288a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022] Open
Abstract
Oligomers equipped with complementary recognition units have the potential to encode and express chemical information in the same way as nucleic acids. The supramolecular assembly properties of m-phenylene ethynylene polymers equipped with H-bond donor (D = phenol) and H-bond acceptor (A = phosphine oxide) side chains have been investigated in chloroform solution. Polymerisation of a bifunctional monomer in the presence of a monofunctional chain stopper was used for the one pot synthesis of families of m-phenylene ethynylene polymers with sequences ADnA or DAnD (n = 1-5), which were separated by chromatography. All of the oligomers self-associate due to intermolecular H-bonding interactions, but intramolecular folding of the monomeric single strands can be studied in dilute solution. NMR and fluorescence spectroscopy show that the 3-mers ADA and DAD do not fold, but there are intramolecular H-bonding interactions for all of the longer sequences. Nevertheless, 1 : 1 mixtures of sequence complementary oligomers all form stable duplexes. Duplex stability was quantified using DMSO denaturation experiments, which show that the association constant for duplex formation increases by an order of magnitude for every base-pairing interaction added to the chain, from 103 M-1 for ADA·DAD to 105 M-1 for ADDDA·DAAAD. Intramolecular folding is the major pathway that competes with duplex formation between recognition-encoded oligomers and limits the fidelity of sequence-selective assembly. The experimental approach described here provides a practical strategy for rapid evaluation of suitability for the development of programmable synthetic polymers.
Collapse
Affiliation(s)
- Giulia Iadevaia
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jonathan A Swain
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Diego Núñez-Villanueva
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Andrew D Bond
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|