1
|
Ren L, Xiao Y, Bhattacharjee R, Wu J, Tang P, Caratzoulas S, Meng C, Guo Q, Tsapatsis M. High Yield of L-Sorbose via D-Glucose Isomerization in Ethanol over a Bifunctional Titanium-Boron-Beta Zeolite. Chemistry 2024; 30:e202402341. [PMID: 39278832 DOI: 10.1002/chem.202402341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
D-Glucose-to-L-sorbose isomerization on Lewis acidic zeolite is a highly attractive avenue for sorbose production. But the L-sorbose yield is limited by the competing D-glucose-to-D-fructose isomerization and reaction equilibrium. In this work, it is suggested that ethanol directs the glucose conformation for selective D-glucose-to-L-sorbose isomerization. It also reacts with the produced L-sorbose to form ethyl-sorboside, which allows the D-glucose-to-L-sorbose isomerization to proceed beyond the thermodynamic equilibrium limit. It is shown that a bifunctional zeolite Beta containing framework titanium (Ti) and boron (B) is a selective catalyst for this tandem reaction: Lewis acidic framework Ti catalyzes the D-glucose-to-L-sorbose isomerization via an intramolecular 5,1-hydride shift process as confirmed by isotopic tracing experiments followed by 13C-NMR, while weak Brønsted acid framework B selectively promotes the sorbose ketalization with ethanol. A remarkably high yield of L-sorbose with a high fraction of sugar (>95 %: 27 % unreacted glucose, 11.4 % fructose, 57 % sorbose) was obtained after the mixture produced in ethanol was hydrolyzed.
Collapse
Affiliation(s)
- Limin Ren
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN, 55455, USA
| | - Yuxuan Xiao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Rameswar Bhattacharjee
- Catalysis Center for Energy Innovation (CCEI), University of Delaware, Newark, Delaware, 19716, USA
| | - Jingjing Wu
- National Key Laboratory of Materials for Integrated Circuits and 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China
| | - Pengyi Tang
- National Key Laboratory of Materials for Integrated Circuits and 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China
| | - Stavros Caratzoulas
- Catalysis Center for Energy Innovation (CCEI), University of Delaware, Newark, Delaware, 19716, USA
| | - Changgong Meng
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Qiang Guo
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN, 55455, USA
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Michael Tsapatsis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN, 55455, USA
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University, 3400N. Charles Street, Baltimore, MD, 21218, USA
- Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MB, 20723, USA
| |
Collapse
|
2
|
Bai R, He G, Li J, Li L, Zhang T, Wang X, Zhang W, Zou Y, Zhang J, Mei D, Corma A, Yu J. Heteroatoms-Stabilized Single Palladium Atoms on Amorphous Zeolites: Breaking the Tradeoff between Catalytic Activity and Selectivity for Alkyne Semihydrogenation. Angew Chem Int Ed Engl 2024; 63:e202410017. [PMID: 39072969 DOI: 10.1002/anie.202410017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 07/30/2024]
Abstract
As a fundamental industrial catalytic process, the semihydrogenation of alkynes presents a challenge in striking a balance between activity and selectivity due to the issue of over-hydrogenation. Herein, we develop an efficient catalytic system based on single-atom Pd catalysts supported on boron-containing amorphous zeolites (Pd/AZ-B), achieving the tradeoff breaking between the activity and selectivity for the selective hydrogenation of alkynes. Advanced characterizations and theoretical density functional theory calculations confirm that the incorporated B atoms in the Pd/AZ-B can not only alter the geometric and electronic properties of Pd atoms by controlling the electron migration from Pd but also mitigate the interaction between alkene and the catalyst supports. This boosts the exceptional catalytic efficacy in the semihydrogenation of phenylacetylene to styrene under mild conditions (298 K, 2 bar H2), achieving a recorded turnover frequency (TOF) value of 24198 h-1 and demonstrating 95 % selectivity to styrene at full conversion of phenylacetylene. By comparison, the heteroatom-free amorphous zeolite-anchored Pd nanoparticles and the commercial Lindlar catalyst have styrene selectivities of 73 % and 15 %, respectively, under identical reaction conditions. This work establishes a solid foundation for developing highly active and selective hydrogenation catalysts by controllably optimizing their electronic and steric properties.
Collapse
Affiliation(s)
- Risheng Bai
- Department State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, 46022, España
| | - Guangyuan He
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Junyan Li
- Department State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lin Li
- Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Tianjun Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Xingxing Wang
- Department State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wei Zhang
- Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Yongcun Zou
- Department State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Donghai Mei
- Department State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, 46022, España
| | - Jihong Yu
- Department State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| |
Collapse
|
3
|
An Z, Li X, Zhang Z, Wang X. Capped Polyoxometalate-Based Metal-Organic Complex with Mixed-Valence Cu I/Cu II for Synergistic Catalytic Synthesis of p-Benzoquinone. Inorg Chem 2024; 63:19956-19963. [PMID: 39388770 DOI: 10.1021/acs.inorgchem.4c03482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The design and synthesis of efficient and environmentally friendly heterogeneous catalysts for the oxidation of phenols to benzoquinones are of great significance. Considering the highly catalytic activity of mixed-valence metals and polyoxometalates (POMs), a three-dimensional polyoxometalate-based metal-organic complex with mixed-valence CuI/CuII, [Cu2ICu2II(pyca)4(OH)3(PMo12O40Cu2II)(H2O)4]·3.5H2O (1, Hpyca = 2-pyrazinecarboxylic acid) has been successfully synthesized under solvothermal conditions. Surprisingly, complex 1 not only combines the desired mixed-valent CuI/CuII and POM sites but also contains a rare double Cu-capped POM structure. Due to the ternary synergistic effect of CuI, CuII, and POM, complex 1 exhibits excellent catalytic activity in the oxidation reaction of 2,3,6-trimethylphenol to the corresponding p-benzoquinone. The conversion and selectivity can reach 98 and 99% within 5 min, respectively, and the turnover frequency (TOF) value is as high as 8167 h-1, which is superior to most catalysts.
Collapse
Affiliation(s)
- Zhixuan An
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, P. R. China
| | - Xiaohui Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, P. R. China
| | - Zhong Zhang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, P. R. China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, P. R. China
| |
Collapse
|
4
|
Warneke R, Herzberg C, Klein M, Elfmann C, Dittmann J, Feussner K, Feussner I, Stülke J. Coenzyme A biosynthesis in Bacillus subtilis: discovery of a novel precursor metabolite for salvage and its uptake system. mBio 2024; 15:e0177224. [PMID: 39194188 PMCID: PMC11487621 DOI: 10.1128/mbio.01772-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The Gram-positive model bacterium Bacillus subtilis is used for many biotechnological applications, including the large-scale production of vitamins. For vitamin B5, a precursor for coenzyme A synthesis, there is so far no established fermentation process available, and the metabolic pathways that involve this vitamin are only partially understood. In this study, we have elucidated the complete pathways for the biosynthesis of pantothenate and coenzyme A in B. subtilis. Pantothenate can not only be synthesized but also be taken up from the medium. We have identified the enzymes and the transporter involved in the pantothenate biosynthesis and uptake. High-affinity vitamin B5 uptake in B. subtilis requires an ATP-driven energy coupling factor transporter with PanU (previously YhfU) as the substrate-specific subunit. Moreover, we have identified a salvage pathway for coenzyme A acquisition that acts on complex medium even in the absence of pantothenate synthesis. This pathway requires rewiring of sulfur metabolism resulting in the increased expression of a cysteine transporter. In the salvage pathway, the bacteria import cysteinopantetheine, a novel naturally occurring metabolite, using the cystine transport system TcyJKLMN. This work lays the foundation for the development of effective processes for vitamin B5 and coenzyme A production using B. subtilis. IMPORTANCE Vitamins are essential components of the diet of animals and humans. Vitamins are thus important targets for biotechnological production. While efficient fermentation processes have been developed for several vitamins, this is not the case for vitamin B5 (pantothenate), the precursor of coenzyme A. We have elucidated the complete pathway for coenzyme A biosynthesis in the biotechnological workhorse Bacillus subtilis. Moreover, a salvage pathway for coenzyme A synthesis was found in this study. Normally, this pathway depends on pantetheine; however, we observed activity of the salvage pathway on complex medium in mutants lacking the pantothenate biosynthesis pathway even in the absence of supplemented pantetheine. This required rewiring of metabolism by expressing a cystine transporter due to acquisition of mutations affecting the regulation of cysteine metabolism. This shows how the hidden "underground metabolism" can give rise to the rapid formation of novel metabolic pathways.
Collapse
Affiliation(s)
- Robert Warneke
- Department of General Microbiology, Institute for Microbiology & Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Christina Herzberg
- Department of General Microbiology, Institute for Microbiology & Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Moritz Klein
- Department of Plant Biochemistry, Albrecht-von-Haller Institute and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Christoph Elfmann
- Department of General Microbiology, Institute for Microbiology & Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Josi Dittmann
- Department of General Microbiology, Institute for Microbiology & Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller Institute and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller Institute and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute for Microbiology & Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Tang Z, Xie S, Cui Y, Zhan W, Deng Y, Peng H, Cao H, Tian Y, Jin M, Sun P, Zhang Y, Tang F, Zhou Q. Vitamin C as a functional enhancer in the non-specific immune defense, antioxidant capacity and resistance to low-temperature stress of juvenile mud crab, Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109834. [PMID: 39151840 DOI: 10.1016/j.fsi.2024.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
This experiment was conducted to explore the effects of dietary vitamin C supplementation on non-specific immune defense, antioxidant capacity and resistance to low-temperature stress of juvenile mud crab (Scylla paramamosain). Mud crabs with an initial weight of 14.67 ± 0.13 g were randomly divided into 6 treatments and fed diets with 0.86 (control), 44.79, 98.45, 133.94, 186.36 and 364.28 mg/kg vitamin C, respectively. The experiment consisted of 6 treatments, each treatment was designed with 4 replicates and each replicate was stocked with 8 crabs. After 42 days of feeding experiment, 2 crabs were randomly selected from each replicate, and a total of 8 crabs in each treatment were carried out 72 h low-temperature challenge experiment. The results showed that crabs fed diets with 186.36 and 364.28 mg/kg vitamin C significantly improved the activities of alkaline phosphatase (AKP) and acid phosphatase (ACP) in hemolymph and hepatopancreas (P < 0.05). Crabs fed diet with 133.94 mg/kg vitamin C significantly decreased the concentration of nitric oxide (NO) and the activity of nitric oxide synthase (NOS) in hemolymph (P < 0.05). Diet with 133.94 mg/kg vitamin C was improved the activity of polyphenol oxidase (PPO) and the concentration of albumin (ALB) in hemolymph. Crabs fed diet with 133.94 mg/kg vitamin C showed lower concentration of malondialdehyde (MDA) in hemolymph and hepatopancreas than those fed the other diets. Meanwhile, crabs fed diet with 98.45 mg/kg vitamin C showed higher activity of total superoxide dismutase (T-SOD) in hemolymph, and crabs fed diet with 133.94 mg/kg vitamin C showed higher activity of T-SOD in hepatopancreas. Crabs fed diet with 186.36 mg/kg vitamin C significantly decreased the concentration of reduced glutathione (GSH) and the activity of glutathione peroxidase (GSH-PX) in hepatopancreas (P < 0.05). In normal temperature, crabs fed diets with 133.94 mg/kg vitamin C significantly up-regulated the expression levels of gpx (glutathione peroxidase) and trx (thioredoxin) in hepatopancreas compared with the control treatment (P < 0.05). The highest expression levels of relish, il16 (interleukin 16), caspase 2 (caspase 2), p38 mapk (p38 mitogen-activated protein kinases) and bax (bcl-2 associated x protein) in hepatopancreas were found at crabs fed control diet (P < 0.05). Moreover, crabs fed diet with 133.94 mg/kg vitamin C showed higher expression levels of alf-3 (anti-lipopolysaccharide factor 3) and bcl-2 (B-cell lymphoma 2) in hepatopancreas than those fed the other diets (P < 0.05). Under low-temperature stress, crabs fed diet with 133.94 mg/kg vitamin C significantly improved the expression levels of hsp90 (heat shock protein 90), cat (catalase), gpx, prx (thioredoxin peroxidase) and trx in hepatopancreas (P < 0.05). In addition, dietary with 133.94 vitamin C significantly up-regulated the expression levels of alf-3 and bcl-2 (P < 0.05). Based on two slope broken-line regression analysis of activity of PPO against the dietary vitamin C level, the optimal dietary vitamin C requirement was estimated to be 144.81 mg/kg for juvenile mud crab. In conclusion, dietary 133.94-144.81 mg/kg vitamin C significantly improved the non-specific immune defense, antioxidant capacity and resistance to low-temperature stress of juvenile mud crab.
Collapse
Affiliation(s)
- Zheng Tang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Shichao Xie
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yuhui Cui
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wenhao Zhan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yao Deng
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Hongyu Peng
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Haiqing Cao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yinqiu Tian
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Yingzhao Zhang
- Zhejiang Fengyu Marine Organism Products Co., LTD, Zhoushan, China
| | - Feng Tang
- Zhejiang Fengyu Marine Organism Products Co., LTD, Zhoushan, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
6
|
Baschieri A, Jin Z, Amorati R, Vasa K, Baroncelli A, Menichetti S, Viglianisi C. Kinetic study of the reaction of thiophene-tocopherols with peroxyl radicals enlightenings the role of O˙⋯S noncovalent interactions in H-atom transfer. Org Biomol Chem 2024; 22:5965-5976. [PMID: 38984438 DOI: 10.1039/d4ob00944d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Three new α-tocopherol thiophene derivatives were efficiently synthesized, characterized and used for the first time as chain-breaking antioxidants for the inhibition of the autoxidation of reference oxidizable substrates. The rate constant of the reaction with alkylperoxyl (ROO˙) radicals and the stoichiometry of radical trapping (n) for the thiophene-tocopherol compounds were determined by measuring the oxygen consumption during the autoxidation of styrene or isopropylbenzene, using a differential pressure transducer. The measurement of the reaction with ROO˙ radicals in an apolar solvent at 30 °C showed inhibition rate constants (kinh) in the order of 104 M-1 s-1. To rationalise the kinetic results, the effect of the thiophene ring on the H-atom donation by O-H groups of the functionalized tocopherols was investigated by theoretical calculations. The importance of noncovalent interactions (including an unusual O˙⋯S bond) for the stability of the conformers has been shown, and the O-H bond dissociation enthalpy (BDE(OH)) of these derivatives was determined. Finally, the photophysical properties of these new compounds were investigated to understand if the addition of thiophene groups changes the absorption or emission spectra of the tocopherol skeleton for their possible application as luminescent molecular probes.
Collapse
Affiliation(s)
- Andrea Baschieri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy.
| | - Zongxin Jin
- Department of Chemistry "G. Ciamician", University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Kristian Vasa
- Department of Chemistry "Ugo Schiff" - DICUS, University of Florence, Via Della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy.
| | - Allegra Baroncelli
- Department of Chemistry "Ugo Schiff" - DICUS, University of Florence, Via Della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy.
| | - Stefano Menichetti
- Department of Chemistry "Ugo Schiff" - DICUS, University of Florence, Via Della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy.
| | - Caterina Viglianisi
- Department of Chemistry "Ugo Schiff" - DICUS, University of Florence, Via Della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
7
|
An H, Wei Y, Zhu Q, Fu J, Xu T. Polyoxovanadate-Based Metal-Organic Frameworks with Dual Active Sites for the Synthesis of p-Benzoquinones. Inorg Chem 2024; 63:11113-11124. [PMID: 38837698 DOI: 10.1021/acs.inorgchem.4c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
p-Benzoquinones are important organic intermediates in the synthesis of biopharmaceuticals and fine chemicals. In this study, two crystalline 3D polyoxovanadate-based metal-organic frameworks, H[Cu(tpi)2]{Cu2V7O21}·H2O (1, tpi = C18N5H13) and [Co(Htpi)2]{V4O12} (2, Htpi = C18N5H14), were synthesized, which as heterogeneous catalysts showed excellent catalytic activities for the synthesis of p-benzoquinones. Both compounds were characterized by IR, UV-vis diffuse reflectance spectroscopy, TG, XPS, X-ray diffraction, etc. In 1, {Cu2V7} clusters are connected together by copper cations and 1D Cu-organic coordination chains to yield a 3D polyoxometalate-based metal-organic framework (POMOF); in 2, adjacent 2D bimetallic oxide layers, constructed from 1D polyoxovanadate chains and cobalt ions, are further connected by 1D Co-organic coordination chains to form a 3D POMOF. Noteworthily, in the synthesis of trimethyl-p-benzoquinone, the key intermediate of vitamin E, using 2,3,6-trimethylphenol as the model substrate, the turnover frequency values for compounds 1 and 2 can, respectively, reach 607 and 380 h-1 in 8 min. Furthermore, both compounds demonstrated excellent recyclability and structural stability, characterized by PXRD and IR. The catalytic mechanism reveals that both the homolytic radical mechanism and heterolytic oxygen atom transfer mechanism are involved.
Collapse
Affiliation(s)
- Haiyan An
- School of Chemistry, Dalian University of Technology, Dalian 116023, Liaoning, China
| | - Yuting Wei
- School of Chemistry, Dalian University of Technology, Dalian 116023, Liaoning, China
| | - Qingshan Zhu
- School of Chemistry, Dalian University of Technology, Dalian 116023, Liaoning, China
| | - Jie Fu
- School of Chemistry, Dalian University of Technology, Dalian 116023, Liaoning, China
| | - Tieqi Xu
- School of Chemistry, Dalian University of Technology, Dalian 116023, Liaoning, China
| |
Collapse
|
8
|
Beekwilder J, Schempp FM, Styles MQ, Zelder O. Microbial synthesis of terpenoids for human nutrition - an emerging field with high business potential. Curr Opin Biotechnol 2024; 87:103099. [PMID: 38447324 DOI: 10.1016/j.copbio.2024.103099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
Because of their complicated biosynthesis and hydrophobic nature, fermentative production of terpenoids did not play a significant role on a commercial scale until a few years ago. Driven by technological progress in metabolic engineering and process biotechnology, terpene-based food ingredients such as flavors, sweeteners, and vitamins produced by fermentation have now become viable and commercially competitive options. In recent years, several companies have developed microbial platforms for commercial terpene production. Impressive progress has been made in the fermentative production of sesquiterpenes used in flavorings. The development of sweeteners, such as steviol glycosides and mogrosides, and the production of vitamins A and E based on fermentation are also being explored. The production of monoterpenes remains challenging due to their antimicrobial effects.
Collapse
Affiliation(s)
| | - Florence M Schempp
- BASF SE, Industrial Biotechnology I, RGD/BD - A30, 67056 Ludwigshafen, Germany
| | | | - Oskar Zelder
- BASF SE, Industrial Biotechnology I, RGD/BD - A30, 67056 Ludwigshafen, Germany.
| |
Collapse
|
9
|
Zhang J, Kong WY, Guo W, Tantillo DJ, Tang Y. Combined Computational and Experimental Study Reveals Complex Mechanistic Landscape of Brønsted Acid-Catalyzed Silane-Dependent P═O Reduction. J Am Chem Soc 2024; 146:13983-13999. [PMID: 38736283 DOI: 10.1021/jacs.4c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The reaction mechanism of Brønsted acid-catalyzed silane-dependent P═O reduction has been elucidated through combined computational and experimental methods. Due to its remarkable chemo- and stereoselective nature, the Brønsted acid/silane reduction system has been widely employed in organophosphine-catalyzed transformations involving P(V)/P(III) redox cycle. However, the full mechanistic profile of this type of P═O reduction has yet to be clearly established to date. Supported by both DFT and experimental studies, our research reveals that the reaction likely proceeds through mechanisms other than the widely accepted "dual activation mode by silyl ester" or "acid-mediated direct P═O activation" mechanism. We propose that although the reduction mechanisms may vary with the substitution patterns of silane species, Brønsted acid generally activates the silane rather than the P═O group in transition structures. The proposed activation mode differs significantly from that associated with traditional Brønsted acid-catalyzed C═O reduction. The uniqueness of P═O reduction originates from the dominant Si/O═P orbital interactions in transition structures rather than the P/H-Si interactions. The comprehensive mechanistic landscape provided by us will serve as a guidance for the rational design and development of more efficient P═O reduction systems as well as novel organophosphine-catalyzed reactions involving P(V)/P(III) redox cycle.
Collapse
Affiliation(s)
- Jingyang Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Wentao Guo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Shen X, Wang J, Deng B, Zhao Z, Chen S, Kong W, Zhou C, Bae-Jump V. Review of the Potential Role of Ascorbate in the Prevention and Treatment of Gynecological Cancers. Antioxidants (Basel) 2024; 13:617. [PMID: 38790722 PMCID: PMC11118910 DOI: 10.3390/antiox13050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Ascorbate (vitamin C) is an essential vitamin for the human body and participates in various physiological processes as an important coenzyme and antioxidant. Furthermore, the role of ascorbate in the prevention and treatment of cancer including gynecological cancer has gained much more interest recently. The bioavailability and certain biological functions of ascorbate are distinct in males versus females due to differences in lean body mass, sex hormones, and lifestyle factors. Despite epidemiological evidence that ascorbate-rich foods and ascorbate plasma concentrations are inversely related to cancer risk, ascorbate has not demonstrated a significant protective effect in patients with gynecological cancers. Adequate ascorbate intake may have the potential to reduce the risk of human papillomavirus (HPV) infection and high-risk HPV persistence status. High-dose ascorbate exerts antitumor activity and synergizes with chemotherapeutic agents in preclinical cancer models of gynecological cancer. In this review, we provide evidence for the biological activity of ascorbate in females and discuss the potential role of ascorbate in the prevention and treatment of ovarian, endometrial, and cervical cancers.
Collapse
Affiliation(s)
- Xiaochang Shen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
| | - Boer Deng
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ziyi Zhao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuning Chen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Wang J, Xu X, Wei W, Song W, Wen J, Hu G, Li X, Gao C, Chen X, Liu L, Wu J. Rational Design of Salmonella typhi Acid Phosphatase for Efficient Production of Pyridoxal 5'-Phosphate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38602702 DOI: 10.1021/acs.jafc.4c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Pyridoxal 5'-phosphate (PLP) is highly valuable in food and medicine. However, achieving the efficient biosynthesis of PLP remains challenging. Here, a salvage pathway using acid phosphatase from Salmonella typhi (StAPase) and pyridoxine oxidase from Escherichia coli (EcPNPO) as pathway enzymes was established for the first time to synthesize PLP from pyridoxine (PN) and pyrophosphate (PPi). StAPase was identified as a rate-limiting enzyme. Two protein modification strategies were developed based on the PN phosphorylation mechanism: (1) improving the binding of PN into StAPase and (2) enhancing the hydrophobicity of StAPase's substrate binding pocket. The kcat/Km of optimal mutant M7 was 4.9 times higher than that of the wild type. The detailed mechanism of performance improvement was analyzed. Under the catalysis of M7 and EcPNPO, a PLP high-yielding strain of 14.5 ± 0.55 g/L was engineered with a productivity of 1.0 ± 0.02 g/(L h) (the highest to date). The study suggests a promising method for industrial-scale PLP production.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xin Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Tan Q, Li L, Li Y, Jiang Z, Ma Y, Qu Y, Li J. Tandem Electrocatalytic Alkyne Semihydrogenation over Bicomponent Catalysts through Hydrogen Spillover. Angew Chem Int Ed Engl 2024; 63:e202400483. [PMID: 38321496 DOI: 10.1002/anie.202400483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
Electrocatalytic alkyne semihydrogenation under mild conditions is a more attractive approach for alkene production than industrial routes but suffers from either low production efficiency or high energy consumption. Here, we describe a tandem catalytic concept that overcomes these challenges. Component (i), which can trap hydrogen effectively, is partnered with component (ii), which can readily release hydrogen for hydrogenation, to enable efficient generation of active hydrogen on component (i) at low overpotentials and timely (i)-to-(ii) hydrogen spillover and facile desorptive hydrogenation on component (ii). We examine this concept over bicomponent palladium-copper catalysts for the production of representative 2-methyl-3-butene-2-ol (MBE) from 2-methyl-3-butyne-2-ol (MBY) and achieve a record high MBE production rate of 1.44 mmol h-1 cm-2 and a Faraday efficiency of ~88.8 % at a low energy consumption of 1.26 kWh kgMBE -1. With these catalysts, we further achieve 60 h continuous production of MBE with record high profit space.
Collapse
Affiliation(s)
- Qiang Tan
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, 710072, Xi'an, China
| | - Linsen Li
- School of Chemical Engineering, Xi'an Jiaotong University, Xianning West Road No. 28, 710048, Xi'an, China
| | - Yuefei Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, 710072, Xi'an, China
| | - Zhao Jiang
- School of Chemical Engineering, Xi'an Jiaotong University, Xianning West Road No. 28, 710048, Xi'an, China
| | - Yuanyuan Ma
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, 710072, Xi'an, China
| | - Yongquan Qu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, 710072, Xi'an, China
| | - Jiayuan Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, 710072, Xi'an, China
| |
Collapse
|
13
|
Wang Y, Liu J, Sun W, Zhou Y, Wang X, Hu Q, Wen Z, Yao J, Li H. Oxygenation of Phenols with Water as the Oxygen Source and Oxoammonium Salt as the Oxidant. J Org Chem 2024; 89:2440-2447. [PMID: 38306296 DOI: 10.1021/acs.joc.3c02448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Aromatic C-H oxygenation is important in both industrial production and organic synthesis. Here we report a metal-free approach for phenol oxygenation with water as the oxygen source using oxoammonium salts as the renewable oxidant. Employing this protocol, various alkyl-substituted phenols were converted into benzoquinones in yields of 59-98%. On the basis of 18O-labeling and kinetic studies, the hydroxy-oxoammonium adduct was proposed to attack the aromatic ring similarly to electrophilic aromatic substitution. We suppose that the findings described here not only provide an efficient and highly selective protocol for aromatic C-H oxygenation but also may encourage further developments of possible transition-metal-free catalytic methods.
Collapse
Affiliation(s)
- Yongtao Wang
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
- Center of Chemistry for Frontier Technologies, ZJU-NHU United R&D Center, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Jiaxin Liu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Wenjing Sun
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Yujia Zhou
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Xinyu Wang
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Qixuan Hu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Zeyu Wen
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Jia Yao
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
- Center of Chemistry for Frontier Technologies, ZJU-NHU United R&D Center, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Haoran Li
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
- Center of Chemistry for Frontier Technologies, ZJU-NHU United R&D Center, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| |
Collapse
|
14
|
Sk M, Haldar S, Bera S, Banerjee D. Recent advances in the selective semi-hydrogenation of alkyne to ( E)-olefins. Chem Commun (Camb) 2024; 60:1517-1533. [PMID: 38251772 DOI: 10.1039/d3cc05395d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Considering the potential importance and upsurge in demand, the selective semi-hydrogenation of alkynes to (E)-olefins has attracted significant interest. This article highlights the recent advances in newer technologies and important methodologies directed to (E)-olefins from alkynes developed from 2015 to 2023. Notable features summarised include the catalyst or ligand design and control of product selectivity based on precious and nonprecious metal catalysts for semi-hydrogenation to (E)-olefins. Mechanistic studies for various catalytic transformations, including synthetic application to bioactive compounds, are summarised.
Collapse
Affiliation(s)
- Motahar Sk
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Shuvojit Haldar
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
15
|
Sultana OF, Hia RA, Reddy PH. A Combinational Therapy for Preventing and Delaying the Onset of Alzheimer's Disease: A Focus on Probiotic and Vitamin Co-Supplementation. Antioxidants (Basel) 2024; 13:202. [PMID: 38397800 PMCID: PMC10886126 DOI: 10.3390/antiox13020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder with a complex etiology, and effective interventions to prevent or delay its onset remain a global health challenge. In recent years, there has been growing interest in the potential role of probiotic and vitamin supplementation as complementary strategies for Alzheimer's disease prevention. This review paper explores the current scientific literature on the use of probiotics and vitamins, particularly vitamin A, D, E, K, and B-complex vitamins, in the context of Alzheimer's disease prevention and management. We delve into the mechanisms through which probiotics may modulate gut-brain interactions and neuroinflammation while vitamins play crucial roles in neuronal health and cognitive function. The paper also examines the collective impact of this combinational therapy on reducing the risk factors associated with Alzheimer's disease, such as oxidative stress, inflammation, and gut dysbiosis. By providing a comprehensive overview of the existing evidence and potential mechanisms, this review aims to shed light on the promise of probiotic and vitamin co-supplementation as a multifaceted approach to combat Alzheimer's disease, offering insights into possible avenues for future research and clinical application.
Collapse
Affiliation(s)
- Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Raksa Andalib Hia
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA;
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
16
|
Gómez-Bra A, Gude L, Arias-Pérez MS. Synthesis, structural study and antitumor activity of novel alditol-based imidazophenanthrolines (aldo-IPs). Bioorg Med Chem 2024; 99:117563. [PMID: 38215623 DOI: 10.1016/j.bmc.2023.117563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
A series of 1H-imidazo [4,5-f][1,10] phenanthroline derivatives functionalized at 2-position with chiral, and conformationally flexible polyhydroxy alkyl chains derived from carbohydrates (alditol-based imidazophenanthrolines, aldo-IPs) is presented herein. These novel glycomimetics showed relevant and differential cytotoxic activity against several cultured tumor cell lines (PC3, HeLa and HT-29), dependent on the nature and stereochemistry of the polyhydroxy alkyl chain. The mannose-based aldo-IP demonstrated the higher cytotoxicity in the series, substantially better than cisplatin metallo-drug in all cell lines tested, and better than G-quadruplex ligand 360A in HeLa and HT29 cells. Cell cycle experiments and Annexin V-PI assays revealed that aldo-IPs induce apoptosis in HeLa cells. Initial study of DNA interactions by DNA FRET melting assays proved that the aldo-IPs produce only a slight thermal stabilization of DNA secondary structures, more pronounced in the case of quadruplex DNA. Viscosity titrations with CT dsDNA suggest that the compounds behave as DNA groove binders, whereas equilibrium dialysis assays showed that the compounds bind CT with Ka values in the range 104-105 M-1. The aldo-IP derivatives were obtained with synthetically useful yields through a feasible one-pot multistep process, by aerobic oxidative cyclization of 1,10-phenanthroline-5,6-diamine with a selection of unprotected aldoses using (NH4)2SO4 as promoter.
Collapse
Affiliation(s)
- Ana Gómez-Bra
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), 28805-Alcalá de Henares, Madrid, Spain; Grupo DISCOBAC, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Lourdes Gude
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), 28805-Alcalá de Henares, Madrid, Spain; Grupo DISCOBAC, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain.
| | - María-Selma Arias-Pérez
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), 28805-Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
17
|
Ren Z, Zhang L, Li J, Bu J, Ma W, Zhao Z, Liu Z, Zhang J. Selective photocatalytic semihydrogenation of alkynols to alkenols on Pd-C 3N 4 nanosheets under ambient conditions. J Colloid Interface Sci 2024; 653:39-45. [PMID: 37708730 DOI: 10.1016/j.jcis.2023.09.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
Selective hydrogenation of alkynols to alkenols is an essential process for producing fine and intermediate chemicals. Currently, thermocatalytic alkynol hydrogenation faces several challenges, e.g., the safety of high-pressure hydrogen (H2) gas and the need for elevated temperature, and unavoidable side reactions, e.g., overhydrogenation. Here, a novel photocatalytic strategy is proposed for selectively reducing alkynols to alkenols with water as a hydrogen source under ambient temperature and pressure. Under the irradiation of simulated solar light, carbon nitride (C3N4) nanosheets with palladium (Pd) nanoparticles as cocatalysts (Pd-C3N4 NSs) exhibit a 2-methyl-3-butyn-2-ol (MBY) conversion of 98% and 2-methyl-3-buten-2-ol (MBE) selectivity of 95%, outperforming state-of-the-art thermocatalysts and electrocatalysts. After natural-sunlight irradiation (average light intensity of 25.13 mW cm-2) for 36 h, a MBY conversion of 98% and MBE selectivity of 92% was achieved in a large-scale photocatalytic system (2500 cm2). Experimental and theoretical investigations reveal that Pd cocatalysts on C3N4 facilitate the adsorption and hydrogenation of MBY as well as the formation of active hydrogen species, which promote the selective semihydrogenation of alkynols. Moreover, the proposed strategy is applicable to various water-soluble alkynols. This work paves the way for photocatalytic strategies to replace thermocatalytic hydrogenation processes using pressurized hydrogen.
Collapse
Affiliation(s)
- Zhipeng Ren
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology and Department of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, PR China; State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Lei Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology and Department of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Jinjin Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology and Department of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Jun Bu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology and Department of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Wenxiu Ma
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology and Department of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Zhihao Zhao
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Zhenpeng Liu
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Jian Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology and Department of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, PR China; State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
18
|
Zhao K, Tang H, Zhang B, Zou S, Liu Z, Zheng Y. Microbial production of vitamin B5: current status and prospects. Crit Rev Biotechnol 2023; 43:1172-1192. [PMID: 36210178 DOI: 10.1080/07388551.2022.2104690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
Vitamin B5, also called D-pantothenic acid (D-PA), is a necessary micronutrient that plays an essential role in maintaining the physiological function of an organism. It is widely used in: food, medicine, feed, cosmetics, and other fields. Currently, the production of D-PA in industry heavily relies on chemical processes and enzymatic catalysis. With an increasing demand on the market, replacing chemical-based production of D-PA with microbial fermentation utilizing renewable resources is necessary. In this review, the physiological role and applications of D-PA were firstly introduced, after which the biosynthesis pathways and enzymes will be summarized. Subsequently, a series of cell factory development strategies for excessive D-PA production are analyzed and discussed. Finally, the prospect of microbial production of D-PA production has been prospected.
Collapse
Affiliation(s)
- Kuo Zhao
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Heng Tang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Bo Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Shuping Zou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| |
Collapse
|
19
|
Bai R, He G, Li L, Zhang T, Li J, Wang X, Wang X, Zou Y, Mei D, Corma A, Yu J. Encapsulation of Palladium Carbide Subnanometric Species in Zeolite Boosts Highly Selective Semihydrogenation of Alkynes. Angew Chem Int Ed Engl 2023; 62:e202313101. [PMID: 37792288 DOI: 10.1002/anie.202313101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
The selective hydrogenation of alkynes to alkenes is a crucial step in the synthesis of fine chemicals. However, the widely utilized palladium (Pd)-based catalysts often suffer from poor selectivity. In this work, we demonstrate a carbonization-reduction method to create palladium carbide subnanometric species within pure silicate MFI zeolite. The carbon species can modify the electronic and steric characteristics of Pd species by forming the predominant Pd-C4 structure and, meanwhile, facilitate the desorption of alkenes by forming the Si-O-C structure with zeolite framework, as validated by the state-of-the-art characterizations and theoretical calculations. The developed catalyst shows superior performance in the selective hydrogenation of alkynes over mild conditions (298 K, 2 bar H2 ), with 99 % selectivity to styrene at a complete conversion of phenylacetylene. In contrast, the zeolite-encapsulated carbon-free Pd catalyst and the commercial Lindlar catalyst show only 15 % and 14 % selectivity to styrene, respectively, under identical reaction conditions. The zeolite-confined Pd-carbide subnanoclusters promise their superior properties in semihydrogenation of alkynes.
Collapse
Affiliation(s)
- Risheng Bai
- Department State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, Valencia, España
| | - Guangyuan He
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, 300387, Tianjin, China
| | - Lin Li
- Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Tianjun Zhang
- College of Chemistry and Materials Science, Hebei University, 071002, Baoding, China
| | - Junyan Li
- Department State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
- Center for High-resolution Electron Microscopy (CħEM), School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Xingxing Wang
- Department State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Xiumei Wang
- Bruker (Beijing) Scientific Technology Co., Ltd., 100000, Beijing, China
| | - Yongcun Zou
- Department State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Donghai Mei
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, 300387, Tianjin, China
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, Valencia, España
| | - Jihong Yu
- Department State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
- International Center of Future Science, Jilin University, 130012, Changchun, China
| |
Collapse
|
20
|
Wan S, Zou Q, Zhu J, Luo H, Li Y, Abu-Reziq R, Tang J, Tang R, Pan C, Zhang C, Yu G. Building Porous Ni(Salen)-Based Catalysts from Waste Styrofoam via Autocatalytic Coupling Chemistry for Heterogeneous Oxidation with Molecular Oxygen. Macromol Rapid Commun 2023; 44:e2300340. [PMID: 37638476 DOI: 10.1002/marc.202300340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/19/2023] [Indexed: 08/29/2023]
Abstract
The development of robust and industrially viable catalysts from plastic waste is of great significance, and the facile construction of high performance heterogeneous catalyst systems for phenol-quinone conversions remains a grand challenge. Herein, a feasible strategy is demonstrated to reclaim Styrofoam into hierarchically porous nickel-salen-loaded hypercrosslinked polystyrene (PS@Ni-salen) catalysts with high activities through an unusual autocatalytic coupling route. The salen is immobilized onto PS chain by Friedel-Crafts alkylation of benzyl chloride derivatives, and the generated hydrogen chloride coordinately promotes the simultaneous crosslinking and bridge formation between aromatic rings via a Scholl coupling route, leading to hierarchically porous networks. After the metallization with Ni, the resultant networks exhibit high catalytic activity for the oxidation of 2,3,6-trimethylphenol to 2,3,5-trimethyl-1,4-benzoquinone under mild conditions (303 K, 1 bar of O2 ). This catalyst also demonstrates attractive recycling performance without an obvious loss of catalytic efficiency over five consecutive cycles. This methodology might provide a potential sustainable alternative to construct environmentally benign and cost-effective catalysts for specific organic transformation.
Collapse
Affiliation(s)
- Shuocheng Wan
- Hunan Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Qingyang Zou
- Hunan Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jiawen Zhu
- Hunan Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Huimin Luo
- Hunan Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yuqiang Li
- Hunan Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Raed Abu-Reziq
- Institute of Chemistry, Casali Center of Applied Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Juntao Tang
- Hunan Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Ruiren Tang
- Hunan Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Chunyue Pan
- Hunan Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Chunyan Zhang
- School of Chemical and Environment Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Guipeng Yu
- Hunan Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
21
|
Yu G, Liu S, Yang K, Wu Q. Reproductive-dependent effects of B vitamin deficiency on lifespan and physiology. Front Nutr 2023; 10:1277715. [PMID: 37941770 PMCID: PMC10627837 DOI: 10.3389/fnut.2023.1277715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
B vitamins constitute essential micronutrients in animal organisms, executing crucial roles in numerous biological processes. B vitamin deficiency can result in severe health consequences, including the impairment of reproductive functions and increased susceptibility to age-related diseases. However, the understanding of how reproduction alters the requirements of each individual B vitamins for healthy aging and lifespan remains limited. Here, utilizing Drosophila as a model organism, we revealed the substantial impacts of deficiencies in specific B vitamins on lifespan and diverse physiological functions, with the effects being significantly shaped by reproductive status. Notably, the dietary absence of VB1, VB3, VB5, VB6, or VB7 significantly decreased the lifespan of wild-type females, yet demonstrated relatively little effect on ovoD1 infertile mutant females' lifespan. B vitamin deficiencies also resulted in distinct impacts on the reproduction, starvation tolerance and fat metabolism of wild-type females, though no apparent effects were observed in the infertile mutant females. Moreover, a deficiency in VB1 reshaped the impacts of macronutrient intervention on the physiology and lifespan of fertile females in a reproductive-dependent manner. Overall, our study unravels that the reproductive status of females serves as a critical modulator of the lifespan and physiological alterations elicited by B-vitamin deficiencies.
Collapse
Affiliation(s)
- Guixiang Yu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Shaowei Liu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Kun Yang
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qi Wu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
22
|
Cordoba M, Garcia L, Badano J, Betti C, Coloma-Pascual F, Quiroga M, Lederhos C. In Situ DRIFTS Analysis during Hydrogenation of 1-Pentyne and Olefin Purification with Ag Nanoparticles. Chempluschem 2023; 88:e202300344. [PMID: 37749065 DOI: 10.1002/cplu.202300344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
The catalytic performance of nanoparticles (NPs) of Ag anchored on different supports was evaluated during the selective hydrogenation of 1-pentyne and the purification of a mixture of 1-pentene/1-pentyne (70/30 vol %). The catalysts were identified: Ag/Al (Ag supported on ɣ-Al2 O3 ), Ag/Al-Mg (Ag supported on ɣ-Al2 O3 modified with Mg), Ag/Ca (Ag supported on CaCO3 ) and Ag/RX3 (Ag supported on activated carbon-type: RX3). In addition, in situ DRIFTS analysis of 1-pentyne adsorption on each support, catalyst, and 1-pentyne hydrogenation were investigated. The results showed that the synthesized catalysts were active and very selective (≥85 %) for obtaining the desired product (1-pentene). Different adsorbed species (-C≡C- and -C=C-) were observed on the supports and catalysts surface using in situ DRIFT analysis, which can be correlated to the activity and high selectivity reached. The role of the supports and electronic properties over Ag improve the H2 dissociative chemisorption during the hydrogenation reactions; promoting the selectivity and the high catalytic performance. Ag/Al and Ag/Al-Mg were the most active catalysts. This was due to the synergism between the active Ag/Ag+ species and the supports (electronic effects). The results show that Ag/Al and Ag/Al-Mg catalysts have favorable properties and are promising for the alkyne hydrogenation and olefin purification reactions.
Collapse
Affiliation(s)
- Misael Cordoba
- Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE), Colectora Ruta Nacional 168 Km 0, Santa Fe, Argentina
- Grupo de Investigación en Catálisis, Universidad del Cauca, Calle 5 No. 4-70, Popayán, Colombia
| | - Lina Garcia
- Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE), Colectora Ruta Nacional 168 Km 0, Santa Fe, Argentina
- Grupo de Investigación Ciencia e Ingeniería en Sistemas Ambientales (GCISA), Universidad del Cauca, Calle 5 No. 4-70, Popayán, Colombia
| | - Juan Badano
- Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE), Colectora Ruta Nacional 168 Km 0, Santa Fe, Argentina
| | - Carolina Betti
- Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE), Colectora Ruta Nacional 168 Km 0, Santa Fe, Argentina
| | | | - Mónica Quiroga
- Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE), Colectora Ruta Nacional 168 Km 0, Santa Fe, Argentina
| | - Cecilia Lederhos
- Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE), Colectora Ruta Nacional 168 Km 0, Santa Fe, Argentina
| |
Collapse
|
23
|
Wang W, Huang D, Yu Y, Qian H, Ma S. A Modular Approach for the Synthesis of Natural and Artificial Terpenoids. Angew Chem Int Ed Engl 2023; 62:e202307626. [PMID: 37439109 DOI: 10.1002/anie.202307626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
Many terpenoids with isoprene unit(s) demonstrating critical biological activities have been isolated and characterized. In this study, we have developed a robust chem-stamp strategy for the construction of the key isoprene unit, which consists of two steps: one-carbon extension of aldehydes to the alkenyl boronates by the boron-Wittig reaction and the rhodium-catalyzed reaction of alkenyl boronates with 2,3-allenols to yield enals. This chem-stamp could readily be applied repeatedly and separately, enabling the modular concise synthesis of many natural and pharmaceutically active terpenoids, including retinal, β-carotene, vitamin A, tretinoin, fenretinide, acitretin, ALRT1550, nigerapyrone C, peretinoin, and lycopene. Owing to the diversified availability of the starting materials, aldehydes and 2,3-allenols, creation of new non-natural terpenoids has been realized from four dimensions: the number of isoprene units, the side chain, and the two terminal groups.
Collapse
Affiliation(s)
- Weiyi Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
| | - Dongyu Huang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
| | - Yibo Yu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China
| |
Collapse
|
24
|
Liu L, Li J, Gai Y, Tian Z, Wang Y, Wang T, Liu P, Yuan Q, Ma H, Lee SY, Zhang D. Protein engineering and iterative multimodule optimization for vitamin B 6 production in Escherichia coli. Nat Commun 2023; 14:5304. [PMID: 37652926 PMCID: PMC10471632 DOI: 10.1038/s41467-023-40928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Vitamin B6 is an essential nutrient with extensive applications in the medicine, food, animal feed, and cosmetics industries. Pyridoxine (PN), the most common commercial form of vitamin B6, is currently chemically synthesized using expensive and toxic chemicals. However, the low catalytic efficiencies of natural enzymes and the tight regulation of the metabolic pathway have hindered PN production by the microbial fermentation process. Here, we report an engineered Escherichia coli strain for PN production. Parallel pathway engineering is performed to decouple PN production and cell growth. Further, protein engineering is rationally designed including the inefficient enzymes PdxA, PdxJ, and the initial enzymes Epd and Dxs. By the iterative multimodule optimization strategy, the final strain produces 1.4 g/L of PN with productivity of 29.16 mg/L/h by fed-batch fermentation. The strategies reported here will be useful for developing microbial strains for the production of vitamins and other bioproducts having inherently low metabolic fluxes.
Collapse
Affiliation(s)
- Linxia Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jinlong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanming Gai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Zhizhong Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yanyan Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tenghe Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Pi Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qianqian Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hongwu Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 four program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Ryback B, Vorholt JA. Coenzyme biosynthesis in response to precursor availability reveals incorporation of β-alanine from pantothenate in prototrophic bacteria. J Biol Chem 2023; 299:104919. [PMID: 37315792 PMCID: PMC10393543 DOI: 10.1016/j.jbc.2023.104919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023] Open
Abstract
Coenzymes are important for all classes of enzymatic reactions and essential for cellular metabolism. Most coenzymes are synthesized from dedicated precursors, also referred to as vitamins, which prototrophic bacteria can either produce themselves from simpler substrates or take up from the environment. The extent to which prototrophs use supplied vitamins and whether externally available vitamins affect the size of intracellular coenzyme pools and control endogenous vitamin synthesis is currently largely unknown. Here, we studied coenzyme pool sizes and vitamin incorporation into coenzymes during growth on different carbon sources and vitamin supplementation regimes using metabolomics approaches. We found that the model bacterium Escherichia coli incorporated pyridoxal, niacin, and pantothenate into pyridoxal 5'-phosphate, NAD, and coenzyme A (CoA), respectively. In contrast, riboflavin was not taken up and was produced exclusively endogenously. Coenzyme pools were mostly homeostatic and not affected by externally supplied precursors. Remarkably, we found that pantothenate is not incorporated into CoA as such but is first degraded to pantoate and β-alanine and then rebuilt. This pattern was conserved in various bacterial isolates, suggesting a preference for β-alanine over pantothenate utilization in CoA synthesis. Finally, we found that the endogenous synthesis of coenzyme precursors remains active when vitamins are supplied, which is consistent with described expression data of genes for enzymes involved in coenzyme biosynthesis under these conditions. Continued production of endogenous coenzymes may ensure rapid synthesis of the mature coenzyme under changing environmental conditions, protect against coenzyme limitation, and explain vitamin availability in naturally oligotrophic environments.
Collapse
|
26
|
Xue J, Zhang YS, Huan Z, Yang JD, Cheng JP. Deoxygenation of Phosphine Oxides by P III/P V═O Redox Catalysis via Successive Isodesmic Reactions. J Am Chem Soc 2023. [PMID: 37410888 DOI: 10.1021/jacs.3c05270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Deoxygenation of phosphine oxides is of great significance to synthesis of phosphorus ligands and relevant catalysts, as well as to the sustainability of phosphorus chemistry. However, the thermodynamic inertness of P═O bonds poses a severe challenge to their reduction. Previous approaches in this regard rely primarily on a type of P═O bond activation with either Lewis/Brønsted acids or stoichiometric halogenating reagents under harsh conditions. Here, we wish to report a novel catalytic strategy for facile and efficient deoxygenation of phosphine oxides via successive isodesmic reactions, whose thermodynamic driving force for breaking the strong P═O bond was compensated by a synchronous formation of another P═O bond. The reaction was enabled by PIII/P═O redox sequences with the cyclic organophosphorus catalyst and terminal reductant PhSiH3. This catalytic reaction avoids the use of the stoichiometric activator as in other cases and features a broad substrate scope, excellent reactivities, and mild reaction conditions. Preliminary thermodynamic and mechanistic investigations disclosed a dual synergistic role of the catalyst.
Collapse
Affiliation(s)
- Jing Xue
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Shan Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhen Huan
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Dong Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
27
|
Guo J, Sun X, Yuan Y, Chen Q, Ou Z, Deng Z, Ma T, Liu T. Metabolic Engineering of Saccharomyces cerevisiae for Vitamin B5 Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7408-7417. [PMID: 37154424 DOI: 10.1021/acs.jafc.3c01082] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Vitamin B5, also called d-pantothenic acid, is an essential vitamin in the human body and is widely used in pharmaceuticals, nutritional supplements, food, and cosmetics. However, few studies have investigated the microbial production of d-pantothenic acid, especially in Saccharomyces cerevisiae. By employing a systematic optimization strategy, we screened seven key genes in d-pantothenic acid biosynthesis from diverse species, including bacteria, yeast, fungi, algae, plants, animals, etc., and constructed an efficient heterologous d-pantothenic acid pathway in S. cerevisiae. By adjusting the copy number of the pathway modules, knocking out the endogenous bypass gene, balancing NADPH utilization, and regulating the GAL inducible system, a high-yield d-pantothenic acid-producing strain, DPA171, which can regulate gene expression using glucose, was constructed. By optimizing fed-batch fermentation, DPA171 produced 4.1 g/L d-pantothenic acid, which is the highest titer in S. cerevisiae to date. This study provides guidance for the development of vitamin B5 microbial cell factories.
Collapse
Affiliation(s)
- Jiaxuan Guo
- Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xixi Sun
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yujie Yuan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qitong Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zutian Ou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zixin Deng
- Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism, Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tian Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tiangang Liu
- Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism, Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
- Hesheng Tech, Co., Ltd., Wuhan 430073, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
28
|
Wang X, Xu X, Liu J, Liu Y, Li J, Du G, Lv X, Liu L. Metabolic Engineering of Saccharomyces cerevisiae for Efficient Retinol Synthesis. J Fungi (Basel) 2023; 9:512. [PMID: 37233223 PMCID: PMC10219262 DOI: 10.3390/jof9050512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Retinol, the main active form of vitamin A, plays a role in maintaining vision, immune function, growth, and development. It also inhibits tumor growth and alleviates anemia. Here, we developed a Saccharomyces cerevisiae strain capable of high retinol production. Firstly, the de novo synthesis pathway of retinol was constructed in S. cerevisiae to realize the production of retinol. Second, through modular optimization of the metabolic network of retinol, the retinol titer was increased from 3.6 to 153.6 mg/L. Then, we used transporter engineering to regulate and promote the accumulation of the intracellular precursor retinal to improve retinol production. Subsequently, we screened and semi-rationally designed the key enzyme retinol dehydrogenase to further increase the retinol titer to 387.4 mg/L. Lastly, we performed two-phase extraction fermentation using olive oil to obtain a final shaking flask retinol titer of 1.2 g/L, the highest titer reported at the shake flask level. This study laid the foundation for the industrial production of retinol.
Collapse
Affiliation(s)
- Xuan Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jiaheng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
29
|
Cai M, Zhang Y, Cao Z, Lin W, Lu N. DNA-Programmed Tuning of the Growth and Enzyme-Like Activity of a Bimetallic Nanozyme and Its Biosensing Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18620-18629. [PMID: 37017457 DOI: 10.1021/acsami.2c21854] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Nanozymes, which combine the merits of both nanomaterials and natural enzymes, have aroused tremendous attention as new representatives of artificial enzyme mimics. However, it still remains to be a great challenge to rationally engineer the morphologies and surface properties of nanostructures that lead to the desired enzyme-like activities. Here, we report a DNA-programming seed-growth strategy to mediate the growth of platinum nanoparticles (PtNPs) on gold bipyramids (AuBPs) for the synthesis of a bimetallic nanozyme. We find that the preparation of a bimetallic nanozyme is in a sequence-dependent manner, and the encoding of a polyT sequence allows the successful formation of bimetallic nanohybrids with greatly enhanced peroxidase-like activity. We further observe that the morphologies and optical properties of T15-mediated Au/Pt nanostructures (Au/T15/Pt) change over the reaction time, and the nanozymatic activity can be tuned by controlling the experimental conditions. As a concept application, Au/T15/Pt nanozymes are used to establish a simple, sensitive, and selective colorimetric assay for the determination of ascorbic acid (AA), alkaline phosphatase (ALP), and the inhibitor sodium vanadate (Na3VO4), demonstrating excellent analytical performance. This work provides a new avenue for the rational design of bimetallic nanozymes for biosensing applications.
Collapse
Affiliation(s)
- Mengchao Cai
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yunqing Zhang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zhongxu Cao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Wensong Lin
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Na Lu
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
30
|
Moreno CJ, Hernández K, Gittings S, Bolte M, Joglar J, Bujons J, Parella T, Clapés P. Biocatalytic Synthesis of Homochiral 2-Hydroxy-4-butyrolactone Derivatives by Tandem Aldol Addition and Carbonyl Reduction. ACS Catal 2023; 13:5348-5357. [PMID: 37123603 PMCID: PMC10127515 DOI: 10.1021/acscatal.3c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Indexed: 04/08/2023]
Abstract
Chiral 2-hydroxy acids and 2-hydroxy-4-butyrolactone derivatives are structural motifs often found in fine and commodity chemicals. Here, we report a tandem biocatalytic stereodivergent route for the preparation of these compounds using three stereoselective aldolases and two stereocomplementary ketoreductases using simple and achiral starting materials. The strategy comprises (i) aldol addition reaction of 2-oxoacids to aldehydes using two aldolases from E. coli, 3-methyl-2-oxobutanoate hydroxymethyltransferase (KPHMT Ecoli ), 2-keto-3-deoxy-l-rhamnonate aldolase (YfaU Ecoli ), and trans-o-hydroxybenzylidene pyruvate hydratase-aldolase from Pseudomonas putida (HBPA Pputida ) and (ii) subsequent 2-oxogroup reduction of the aldol adduct by ketopantoate reductase from E. coli (KPR Ecoli ) and a Δ1-piperidine-2-carboxylate/Δ1-pyrroline-2-carboxylate reductase from Pseudomonas syringae pv. tomato DSM 50315 (DpkA Psyrin ) with uncovered promiscuous ketoreductase activity. A total of 29 structurally diverse compounds were prepared: both enantiomers of 2-hydroxy-4-butyrolactone (>99% ee), 21 2-hydroxy-3-substituted-4-butyrolactones with the (2R,3S), (2S,3S), (2R,3R), or (2S,3R) configuration (from 60:40 to 98:2 dr), and 6 2-hydroxy-4-substituted-4-butyrolactones with the (2S,4R) configuration (from 87:13 to 98:2 dr). Conversions of aldol adducts varied from 32 to 98%, while quantitative conversions were achieved by both ketoreductases, with global isolated yields between 20 and 45% for most of the examples. One-pot one-step cascade reactions were successfully conducted achieving isolated yields from 30 to 57%.
Collapse
Affiliation(s)
- Carlos J. Moreno
- Dept. of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Karel Hernández
- Dept. of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Samantha Gittings
- Prozomix Ltd., West End Industrial Estate, Haltwhistle, Northumberland NE49 9HA, United Kingdom
| | - Michael Bolte
- Institut für Anorganische Chemie, J.-W.-Goethe-Universität, Frankfurt/Main, Max-von-Laue-Str. 7, D-60438 Frankfurt/Main, Germany
| | - Jesús Joglar
- Dept. of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jordi Bujons
- Dept. of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear. Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Pere Clapés
- Dept. of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
31
|
Xiao J, Wang J, Zhang H, Zhang J, Han LB. Reduction of Triphenylphosphine Oxide to Triphenylphosphine by Phosphonic Acid. J Org Chem 2023; 88:3909-3915. [PMID: 36857492 DOI: 10.1021/acs.joc.2c02807] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
A novel method for the iodine-mediated reduction of phosphine oxides (sulfides) to phosphines using phosphonic acid under solvent-free conditions is described. By using a combination of H3PO3 and I2, both tertiary monophosphine oxides and bis-phosphine oxides were reduced under this system, readily producing monodentate and bidentate phosphines, respectively, in good yields. Notably, chiral (R)-(+)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl dioxide could be also tolerated without racemization. This new approach is inexpensive and features simple conditions and a wide substrate scope.
Collapse
Affiliation(s)
- Jing Xiao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jie Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Huimin Zhang
- Zhejiang Yangfan New Materials Company, Ltd., Shangyu, Zhejiang 312369, China
| | - Jianqiu Zhang
- Zhejiang Yangfan New Materials Company, Ltd., Shangyu, Zhejiang 312369, China
| | - Li-Biao Han
- Zhejiang Yangfan New Materials Company, Ltd., Shangyu, Zhejiang 312369, China.,Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| |
Collapse
|
32
|
Wang M, Liang L, Liu X, Sun Q, Guo M, Bai S, Xu Y. Selective Semi-Hydrogenation of Alkynes on Palladium-Selenium Nanocrystals. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
33
|
Pellumbi K, Wickert L, Kleinhaus JT, Wolf J, Leonard A, Tetzlaff D, Goy R, Medlock JA, Junge Puring K, Cao R, Siegmund D, Apfel UP. Opening the pathway towards a scalable electrochemical semi-hydrogenation of alkynols via earth-abundant metal chalcogenides. Chem Sci 2022; 13:12461-12468. [PMID: 36382291 PMCID: PMC9629083 DOI: 10.1039/d2sc04647d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/06/2022] [Indexed: 09/16/2023] Open
Abstract
Electrosynthetic methods are crucial for a future sustainable transformation of the chemical industry. Being an integral part of many synthetic pathways, the electrification of hydrogenation reactions gained increasing interest in recent years. However, for the large-scale industrial application of electrochemical hydrogenations, low-resistance zero-gap electrolysers operating at high current densities and high substrate concentrations, ideally applying noble-metal-free catalyst systems, are required. Because of their conductivity, stability, and stoichiometric flexibility, transition metal sulfides of the pentlandite group have been thoroughly investigated as promising electrocatalysts for electrochemical applications but were not investigated for electrochemical hydrogenations of organic materials. An initial screening of a series of first row transition metal pentlandites revealed promising activity for the electrochemical hydrogenation of alkynols in water. The most active catalyst within the series was then incorporated into a zero-gap electrolyser enabling the hydrogenation of alkynols at current densities of up to 240 mA cm-2, Faraday efficiencies of up to 75%, and an alkene selectivity of up to 90%. In this scalable setup we demonstrate high stability of catalyst and electrode for at least 100 h. Altogether, we illustrate the successful integration of a sustainable catalyst into a scalable zero-gap electrolyser establishing electrosynthetic methods in an application-oriented manner.
Collapse
Affiliation(s)
- Kevinjeorjios Pellumbi
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Leon Wickert
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Julian T Kleinhaus
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Jonas Wolf
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Allison Leonard
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - David Tetzlaff
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Roman Goy
- DSM Nutritional Products AG Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| | - Jonathan A Medlock
- DSM Nutritional Products AG Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| | - Kai Junge Puring
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Daniel Siegmund
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Ulf-Peter Apfel
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| |
Collapse
|
34
|
Uttam Gawas R, Thakuri A, Acharya R, Banerjee M, Chatterjee A. Amplification of AIE-effect of tetraphenylethylene on solid support: Formation of a sensitive fluorescent nanosensor for turn-on detection of Cu2+ and successive sensing of ascorbate ions. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Che L, Guo J, He Z, Zhang H. Evidence of rate-determining step variation along reactivity in acetylene hydrogenation: a systematic kinetic study on elementary steps, kinetically relevant(s) and active species. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Combing with redox regulation via quorum-sensing system and fermentation strategies for improving D-pantothenic acid production. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Riboflavin synthesis from gaseous nitrogen and carbon dioxide by a hybrid inorganic-biological system. Proc Natl Acad Sci U S A 2022; 119:e2210538119. [PMID: 36067303 PMCID: PMC9477400 DOI: 10.1073/pnas.2210538119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbes can provide a more sustainable and energy-efficient method of food and nutrient production compared to plant and animal sources, but energy-intensive carbon (e.g., sugars) and nitrogen (e.g., ammonia) inputs are required. Gas-fixing microorganisms that can grow on H2 from renewable water splitting and gaseous CO2 and N2 offer a renewable path to overcoming these limitations but confront challenges owing to the scarcity of genetic engineering in such organisms. Here, we demonstrate that the hydrogen-oxidizing carbon- and nitrogen-fixing microorganism Xanthobacter autotrophicus grown on a CO2/N2/H2 gas mixture can overproduce the vitamin riboflavin (vitamin B2). We identify plasmids and promoters for use in this bacterium and employ a constitutive promoter to overexpress riboflavin pathway enzymes. Riboflavin production is quantified at 15 times that of the wild-type organism. We demonstrate that riboflavin overproduction is maintained when the bacterium is grown under hybrid inorganic-biological conditions, in which H2 from water splitting, along with CO2 and N2, is fed to the bacterium, establishing the viability of the approach to sustainably produce food and nutrients.
Collapse
|
38
|
Kundu S, Sarkar D. Synthetic Attempts Towards α‐Tocopherol – An Overview. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Subhradip Kundu
- Organic Synthesis and Molecular Engineering Lab, Department of Chemistry National Institute of Technology Rourkela Odisha India
| | - Debayan Sarkar
- Organic Synthesis and Molecular Engineering Lab, Department of Chemistry National Institute of Technology Rourkela Odisha India
- Department of Chemistry Indian Institute of Technology Indore Madhya Pradesh India
| |
Collapse
|
39
|
Li H, Zhou Y, Du J. Ascorbic acid as an alternative coreactant for luminol reaction and sensitive chemiluminescence determination of ascorbic acid in soft drinks. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Park H, Lee D, Kim JE, Park S, Park JH, Ha CW, Baek M, Yoon SH, Park KH, Lee P, Hahn JS. Efficient production of retinol in Yarrowia lipolytica by increasing stability using antioxidant and detergent extraction. Metab Eng 2022; 73:26-37. [PMID: 35671979 DOI: 10.1016/j.ymben.2022.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
The demand for bio-based retinol (vitamin A) is currently increasing, however its instability represents a major bottleneck in microbial production. Here, we developed an efficient method to selectively produce retinol in Yarrowia lipolytica. The β-carotene 15,15'-dioxygenase (BCO) cleaves β-carotene into retinal, which is reduced to retinol by retinol dehydrogenase (RDH). Therefore, to produce retinol, we first generated β-carotene-producing strain based on a high-lipid-producer via overexpressing genes including heterologous β-carotene biosynthetic genes, GGS1F43I mutant of endogenous geranylgeranyl pyrophosphate synthase isolated by directed evolution, and FAD1 encoding flavin adenine dinucleotide synthetase, while deleting several genes previously known to be beneficial for carotenoid production. To produce retinol, 11 copies of BCO gene from marine bacterium 66A03 (Mb.Blh) were integrated into the rDNA sites of the β-carotene overproducer. The resulting strain produced more retinol than retinal, suggesting strong endogenous promiscuous RDH activity in Y. lipolytica. The introduction of Mb.BCO led to a considerable reduction in β-carotene level, but less than 5% of the consumed β-carotene could be detected in the form of retinal or retinol, implying severe degradation of the produced retinoids. However, addition of the antioxidant butylated hydroxytoluene (BHT) led to a >20-fold increase in retinol production, suggesting oxidative damage is the main cause of intracellular retinol degradation. Overexpression of GSH2 encoding glutathione synthetase further improved retinol production. Raman imaging revealed co-localization of retinol with lipid droplets, and extraction of retinol using Tween 80 was effective in improving retinol production. By combining BHT treatment and extraction using Tween 80, the final strain CJ2104 produced 4.86 g/L retinol and 0.26 g/L retinal in fed-batch fermentation in a 5-L bioreactor, which is the highest retinol production titer ever reported. This study demonstrates that Y. lipolytica is a suitable host for the industrial production of bio-based retinol.
Collapse
Affiliation(s)
- Hyemin Park
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Dongpil Lee
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Jae-Eung Kim
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Seonmi Park
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Joo Hyun Park
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Cheol Woong Ha
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Minji Baek
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Seok-Hwan Yoon
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Kwang Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Peter Lee
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea.
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
41
|
Meng S, Ji Y, Liu L, Davari MD, Schwaneberg U. Modulating the Coupling Efficiency of P450 BM3 by Controlling Water Diffusion through Access Tunnel Engineering. CHEMSUSCHEM 2022; 15:e202102434. [PMID: 34936208 PMCID: PMC9302676 DOI: 10.1002/cssc.202102434] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/19/2021] [Indexed: 06/03/2023]
Abstract
Cytochromes P450 have gained much interest for their broad substrate scope in the catalysis of oxidation reactions for pharmaceuticals, plastics, and hormones. However, achieving high coupling efficiency by the engineering of P450s is still a big challenge. The presence of extra water around the active site is deemed to be related to uncoupling. In this study, the access tunnels of P450 BM3 from Bacillus megaterium are engineered to control water access from bulk solvent to the active site. Nine residues located in tunnels are investigated by site-saturation mutagenesis to reduce water diffusion, thereby improving the coupling efficiency. The recombined variant N319L/T411V/T436A shows improved coupling efficiency (from 31.2 % to 52.6 %). Tunnel polarity analysis and molecular dynamics simulation further indicate that reduced water molecules around the active site lead to higher coupling efficiency. Overall, this study provides valuable insight on improving coupling efficiency by controlling water diffusion through tunnel engineering.
Collapse
Affiliation(s)
- Shuaiqi Meng
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Yu Ji
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Luo Liu
- Beijing Bioprocess Key LaboratoryBeijing University of Chemical TechnologyBeisanhuan East Road 15Beijing10029P. R. China
| | - Mehdi D. Davari
- Department of Bioorganic ChemistryLeibniz Institute of Plant BiochemistryWeinberg 306120HalleGermany
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
- DWI-Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| |
Collapse
|
42
|
Zhu K, Ma J, Chen L, Wu F, Xu X, Xu M, Ye W, Wang Y, Gao P, Xiong Y. Unraveling the Role of Interfacial Water Structure in Electrochemical Semihydrogenation of Alkynes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kaili Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jun Ma
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Liang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Fangfang Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xudong Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Mengqiu Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Wei Ye
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yao Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Peng Gao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
43
|
Yang H, Liu J, Hu P, Gao L, Huang Z, Chen F. Asymmetric total synthesis of (+)-(2 R,4' R,8' R)-α-tocopherol enabled by enzymatic desymmetrization. Org Biomol Chem 2022; 20:2909-2921. [PMID: 35322842 DOI: 10.1039/d2ob00384h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new and highly stereoselective synthesis of chiral diol (S)-14, the common synthetic intermediate to (+)-(2R,4'R,8'R)-α-tocopherol (1), was accomplished in seven steps with 13.8% overall yield. This developed route featured a lipase-catalyzed desymmetric hydrolysis of prochiral diester 39a, which was prepared through a challenging Heck coupling, to chiral quaternary carbon-containing monoester (R)-37a of the correct configuration in 81% yield and 96.7% ee, to the best of our knowledge, leading to the most efficient enzymatic desymmetric synthesis of the chiral chroman skeleton of vitamin E members reported to date. Coupled with the modified preparation of the phytol-derived side chain, the chemoenzymatic total synthesis of 1 was completed in 15 longest linear steps with 3.1% overall yield.
Collapse
Affiliation(s)
- Haidi Yang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China.
| | - Jinyao Liu
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China.
| | - Pan Hu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Liang Gao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Zedu Huang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China.
| | - Fener Chen
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China. .,Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| |
Collapse
|
44
|
Nakashima K, Minai A, Okuaki Y, Matsushima Y, Hirashima SI, Miura T. Organocatalytic one-pot asymmetric synthesis of 6-trifluoromethyl-substituted 7,8-dihydrochromen-6-ol. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Oberhauser W, Frediani M, Mohammadi Dehcheshmeh I, Evangelisti C, Poggini L, Capozzoli L, Najafi Moghadam P. Selective Alkyne Semi‐Hydrogenation by PdCu Nanoparticles Immobilized on Stereocomplexed Poly(lactic acid). ChemCatChem 2022. [DOI: 10.1002/cctc.202101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Werner Oberhauser
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Marco Frediani
- Department of Chemistry University of Florence Via della Lastruccia, 3–13 50019 Sesto Fiorentino Italy
| | - Iman Mohammadi Dehcheshmeh
- Department of Chemistry University of Florence Via della Lastruccia, 3–13 50019 Sesto Fiorentino Italy
- Department of Organic Chemistry Faculty of Chemistry Urmia University 57153-165 Urmia Iran
| | - Claudio Evangelisti
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) U.O.S. di Pisa Via Moruzzi 1 56124 Pisa Italy
| | - Lorenzo Poggini
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Laura Capozzoli
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Peyman Najafi Moghadam
- Department of Organic Chemistry Faculty of Chemistry Urmia University 57153-165 Urmia Iran
| |
Collapse
|
46
|
Role of Vitamin C in Selected Malignant Neoplasms in Women. Nutrients 2022; 14:nu14040882. [PMID: 35215535 PMCID: PMC8876016 DOI: 10.3390/nu14040882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Since the first reports describing the anti-cancer properties of vitamin C published several decades ago, its actual effectiveness in fighting cancer has been under investigation and widely discussed. Some scientific reports indicate that vitamin C in high concentrations can contribute to effective and selective destruction of cancer cells. Furthermore, preclinical and clinical studies have shown that relatively high doses of vitamin C administered intravenously in ‘pharmacological concentrations’ may not only be well-tolerated, but significantly improve patients’ quality of life. This seems to be particularly important, especially for terminal cancer patients. However, the relatively high frequency of vitamin C use by cancer patients means that the potential clinical benefits may not be obvious. For this reason, in this review article, we focus on the articles published mainly in the last two decades, describing possible beneficial effects of vitamin C in preventing and treating selected malignant neoplasms in women, including breast, cervical, endometrial, and ovarian cancer. According to the reviewed studies, vitamin C use may contribute to an improvement of the overall quality of life of patients, among others, by reducing chemotherapy-related side effects. Nevertheless, new clinical trials are needed to collect stronger evidence of the role of this nutrient in supportive cancer treatment.
Collapse
|
47
|
Li H, Wang Y, Yao J. Aerobic Oxidations via Organocatalysis: A Mechanistic Perspective. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1661-6124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThis review focuses on recent advances and mechanistic views of aerobic C(sp3)–H oxidations catalyzed by organocatalysts, where metal catalysis and photocatalysis are not included.1 Introduction2 Carbanion Route: TBD-Catalyzed C(sp3)–H Oxygenation2.1 α-Hydroxylation of Ketones2.2 Carbonylation of Benzyl C(sp3)–H3 Radical Route: NHPI-Catalyzed C(sp3)–H Oxidation3.1 N-Oxyl Radicals and Mechanisms3.2 Oxygenation of Benzyl C(sp3)–H3.3 Solvent Effects4 Hydride-Transfer Route: TEMPO-Catalyzed Oxidations4.1 Oxoammonium Cation and Mechanisms4.2 Dehydrogenation of Alcohols4.3 Oxygenation of Benzyl C(sp3)–H5 Conclusions and Outlook
Collapse
Affiliation(s)
- Haoran Li
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University
- State Key Laboratory of Chemical Engineering and College of Chemical and Biological Engineering, Zhejiang University
| | - Yongtao Wang
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University
- Center of Chemistry for Frontier Technologies, Zhejiang University
| | - Jia Yao
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University
| |
Collapse
|
48
|
Pham A, García Martínez JB, Brynych V, Stormbjorne R, Pearce JM, Denkenberger DC. Nutrition in Abrupt Sunlight Reduction Scenarios: Envisioning Feasible Balanced Diets on Resilient Foods. Nutrients 2022; 14:492. [PMID: 35276851 PMCID: PMC8839908 DOI: 10.3390/nu14030492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Abrupt sunlight reduction scenarios (ASRS) following catastrophic events, such as a nuclear war, a large volcanic eruption or an asteroid strike, could prompt global agricultural collapse. There are low-cost foods that could be made available in an ASRS: resilient foods. Nutritionally adequate combinations of these resilient foods are investigated for different stages of a scenario with an effective response, based on existing technology. While macro- and micronutrient requirements were overall met, some-potentially chronic-deficiencies were identified (e.g., vitamins D, E and K). Resilient sources of micronutrients for mitigating these and other potential deficiencies are presented. The results of this analysis suggest that no life-threatening micronutrient deficiencies or excesses would necessarily be present given preparation to deploy resilient foods and an effective response. Careful preparedness and planning-such as stock management and resilient food production ramp-up-is indispensable for an effective response that not only allows for fulfilling people's energy requirements, but also prevents severe malnutrition.
Collapse
Affiliation(s)
- Alix Pham
- Alliance to Feed the Earth in Disasters (ALLFED), Fairbanks, AK 99775, USA; (J.B.G.M.); (V.B.); (R.S.); (J.M.P.); (D.C.D.)
| | - Juan B. García Martínez
- Alliance to Feed the Earth in Disasters (ALLFED), Fairbanks, AK 99775, USA; (J.B.G.M.); (V.B.); (R.S.); (J.M.P.); (D.C.D.)
| | - Vojtech Brynych
- Alliance to Feed the Earth in Disasters (ALLFED), Fairbanks, AK 99775, USA; (J.B.G.M.); (V.B.); (R.S.); (J.M.P.); (D.C.D.)
| | - Ratheka Stormbjorne
- Alliance to Feed the Earth in Disasters (ALLFED), Fairbanks, AK 99775, USA; (J.B.G.M.); (V.B.); (R.S.); (J.M.P.); (D.C.D.)
| | - Joshua M. Pearce
- Alliance to Feed the Earth in Disasters (ALLFED), Fairbanks, AK 99775, USA; (J.B.G.M.); (V.B.); (R.S.); (J.M.P.); (D.C.D.)
- Department of Electrical & Computer Engineering, Western University, London, ON N6A 5B9, Canada
| | - David C. Denkenberger
- Alliance to Feed the Earth in Disasters (ALLFED), Fairbanks, AK 99775, USA; (J.B.G.M.); (V.B.); (R.S.); (J.M.P.); (D.C.D.)
- Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
- Alaska Center for Energy and Power, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
49
|
Hrubša M, Siatka T, Nejmanová I, Vopršalová M, Kujovská Krčmová L, Matoušová K, Javorská L, Macáková K, Mercolini L, Remião F, Máťuš M, Mladěnka P. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B 1, B 2, B 3, and B 5. Nutrients 2022; 14:484. [PMID: 35276844 PMCID: PMC8839250 DOI: 10.3390/nu14030484] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.
Collapse
Affiliation(s)
- Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Tomáš Siatka
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Iveta Nejmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUINTE, Toxicology Laboratory, Biological Sciences Department Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marek Máťuš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | | |
Collapse
|
50
|
Asano S, Adams SJ, Tsuji Y, Yoshizawa K, Tahara A, Hayashi JI, Cherkasov N. Homogeneous catalyst modifier for alkyne semi-hydrogenation: systematic screening in an automated flow reactor and computational study on mechanisms. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00147k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
21 types of modifiers are screened for palladium catalysed semi-hydrogenation of alkynes with varying catalyst type, reaction time, and target substrate using an automated flow reactor system.
Collapse
Affiliation(s)
- Shusaku Asano
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580, Japan
| | - Samuel J. Adams
- Stoli Chem, Prince Phillip Building, Wellesbourne, CV35 9 EF, UK
| | - Yuta Tsuji
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580, Japan
| | - Atsushi Tahara
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Jun-ichiro Hayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580, Japan
| | - Nikolay Cherkasov
- Stoli Chem, Prince Phillip Building, Wellesbourne, CV35 9 EF, UK
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|