1
|
Yue S, Zhang W, Ma Q, Zhang Z, Lu J, Yang Z. Engineering anti-thrombogenic and anti-infective catheters through a stepwise metal-catechol-(amine) surface engineering strategy. Bioact Mater 2024; 42:366-378. [PMID: 39308552 PMCID: PMC11414576 DOI: 10.1016/j.bioactmat.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Thrombosis and infection are pivotal clinical complications associated with interventional blood-contacting devices, leading to significant morbidity and mortality. To address these issues, we present a stepwise metal-catechol-(amine) (MCA) surface engineering strategy that efficiently integrates therapeutic nitric oxide (NO) gas and antibacterial peptide (ABP) onto catheters, ensuring balanced anti-thrombotic and anti-infective properties. First, copper ions were controllably incorporated with norepinephrine and hexanediamine through a one-step molecular/ion co-assembly process, creating a NO-generating and amine-rich MCA surface coating. Subsequently, azide-polyethylene glycol 4-N-hydroxysuccinimidyl and dibenzylcyclooctyne modified ABP were sequentially immobilized on the surface via amide coupling and bioorthogonal click chemistry, ensuring the dense grafting of ABP while maintaining the catalytic efficacy for NO. This efficient integration of ABP and NO-generating ability on the catheter surface provides potent antibacterial properties and ability to resist adhesion and activation of platelets, thus synergistically preventing infection and thrombosis. We anticipate that this synergistic modification strategy will offer an effective solution for advancing surface engineering and enhancing the clinical performance of biomedical devices.
Collapse
Affiliation(s)
- Siyuan Yue
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Wentai Zhang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Qing Ma
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Zhen Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, 610031, China
| | - Jing Lu
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Zhilu Yang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
| |
Collapse
|
2
|
Xu L, Fang J, Pan J, Qi H, Yin Y, He Y, Gan X, Li Y, Li Y, Guo J. Zinc finger-inspired peptide-metal-phenolic nanointerface enhances bone-implant integration under bacterial infection microenvironment through immune modulation and osteogenesis promotion. Bioact Mater 2024; 41:564-576. [PMID: 39257672 PMCID: PMC11384338 DOI: 10.1016/j.bioactmat.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
Orthopedic and dental implantations under bacterial infection microenvironment face significant challenges in achieving high-quality bone-implant integration. Designing implant coatings that incorporate both immune defense and anti-inflammation is difficult in conventional single-functional coatings. We introduce a multifunctional nanointerface using a zinc finger-inspired peptide-metal-phenolic nanocoating, designed to enhance implant osseointegration under such conditions. Abaloparatide (ABL), a second-generation anabolic drug for treating osteoporosis, can be integrated into the design of a zinc-phenolic network constructed on the implant surface (ABL@ZnTA). Importantly, the phenolic-coordinated Zn2+ ions in ABL@ZnTA can act as zinc finger motif to co-stabilize the configuration of ABL through multiple molecular interactions, enabling high bioactivity, high loading capacity (1.36 times), and long-term release (>7 days) of ABL. Our results showed that ABL@ZnTA can modulate macrophage polarization from the pro-inflammatory M1 towards the anti-inflammatory M2 phenotype, promoting immune osteogenesis with increased OCN, ALP, and SOD 1 expression. Furthermore, the ABL@ZnTA significantly reduces inflammatory fibrous tissue encapsulation and enhances the long-term stability of the implants, indicated by enhanced binding strength (6 times) and functional connectivity (1.5-3 times) in the rat bone defect model infected by S. aureus. Overall, our research offers a nano-enabled synergistic strategy that balances infection defense and osteogenesis promotion in orthopedic and dental implantations.
Collapse
Affiliation(s)
- Lin Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiezhou Pan
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hexu Qi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yun Yin
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
3
|
Xie Q, Wu Y, Zhang H, Liu Q, He Y, Manners I, Guo J. Hydrogen-bonded supramolecular biohybrid frameworks for protein biomineralization constructed from natural phenolic building blocks. J Mater Chem B 2024; 12:10624-10634. [PMID: 39310922 DOI: 10.1039/d4tb01680g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Hydrogen bond-mediated supramolecular crystalline materials, such as hydrogen-bonded organic frameworks, offer a promising strategy for protein biomineralization, yet the intricate design and multi-step synthesis of specific orthogonal units in molecular building blocks pose a significant synthetic challenge. Identifying new classes of natural building blocks capable of facilitating supramolecular framework construction while enabling stable protein binding has remained an elusive goal. Here, we introduce a versatile assembly strategy enabling the organization of diverse proteins and phenolic building blocks into highly crystalline hydrogen-bonded supramolecular phenolic frameworks (ProteinX@SPF). The natural ellagic acid (EA) exhibits a centrosymmetric structure with catechol groups on each molecular side, facilitating hydrogen bonding with protein amino acid residues for primary nucleation. Subsequently, EA self-assembles into ProteinX@SPF through hydrogen bonding and π-π interactions. The multiple hydrogen-bonding interactions impart structural rigidity and directional integrity, conferring ProteinX@SPF biohybrids with remarkable resistance to harsh conditions while preserving protein bioactivity. Additionally, the supramolecular stacking induced by π-π interactions endows ProteinX@SPF with long-range ordered nanochannels, which can serve as the gating to sieve the catalytic substrate and thus enhance the biocatalytic specificity. This work sheds light on biomineralization with natural building blocks for functional biohybrids, showing enormous potential in biocatalysis, sensing, and nanomedicine.
Collapse
Affiliation(s)
- Qiuping Xie
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yue Wu
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Haojie Zhang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qinling Liu
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
4
|
Cui H, Wu X, Li S, Wang J, Wang R, Zhao Y, Ge K, Hu Y, Shen B, Yang Y. Tannic Acid Selective Modulation Defects to Enhance the Photocatalytic CO 2 Reduction Activity of Layered Double Hydroxides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407221. [PMID: 39420705 DOI: 10.1002/smll.202407221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Recently, layered double hydroxides (LDH) have shown great potential in photoreduction of CO2 owing to its flexible structural adjustability. In this study, the mild acidic property of tannic acid (TA) is exploited to etch the bimetal LDH to create abundant vacancies to gain the coordination unsaturated active centers. Based on the different chelating abilities of TA to various metal ions, the active metals are remained by selective chelation while the inert metals are removed during the etching process of bimetal LDH. Furthermore, selective chelating with metal ions not only increases the percentage of highly active metals but also compensates for the structural damage caused by the etch, which achieves a scalpel-like selective construction of vacancies. The NiAl-LDH etched and functionalized by TA for 3 h exhibits superior photo-reduction of CO2 performance without co-catalysts and photo-sensitizers, which is 14 times that of the pristine NiAl-LDH. The fact that many bimetal LDHs can be functionalized by TA and exhibit significantly improved photocatalytic efficiency is confirmed, suggesting this strategy is generalized to functionalize double- or multi-metal LDH. The method provided in this work opens the door for polyphenol-functionalized LDHs to enhance their ability for light-driven chemical transformations.
Collapse
Affiliation(s)
- He Cui
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, No.5340 Xiping Road, Tianjin, 300130, China
| | - Xiaoqian Wu
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, No.5340 Xiping Road, Tianjin, 300130, China
| | - Shunli Li
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, No.5340 Xiping Road, Tianjin, 300130, China
| | - Jiabo Wang
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, No.5340 Xiping Road, Tianjin, 300130, China
| | - Ruoxue Wang
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, No.5340 Xiping Road, Tianjin, 300130, China
| | - Yi Zhao
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, No.5340 Xiping Road, Tianjin, 300130, China
| | - Kai Ge
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, No.5340 Xiping Road, Tianjin, 300130, China
| | - YiDong Hu
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, No.5340 Xiping Road, Tianjin, 300130, China
| | - Boxiong Shen
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, No.5340 Xiping Road, Tianjin, 300130, China
- School of Energy and Environmental Engineering, Hebei University of Technology, No.5340 Xiping Road, Tianjin, 300130, China
| | - Yongfang Yang
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, No.5340 Xiping Road, Tianjin, 300130, China
| |
Collapse
|
5
|
Zheng Y, Chen X, Wang Y, Chen Z, Wu D. Phenolic-enabled nanotechnology: a new strategy for central nervous system disease therapy. J Zhejiang Univ Sci B 2024; 25:890-913. [PMID: 39420524 PMCID: PMC11494163 DOI: 10.1631/jzus.b2300839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 10/19/2024]
Abstract
Polyphenolic compounds have received tremendous attention in biomedicine because of their good biocompatibility and unique physicochemical properties. In recent years, phenolic-enabled nanotechnology (PEN) has become a hotspot of research in the medical field, and many promising studies have been reported, especially in the application of central nervous system (CNS) diseases. Polyphenolic compounds have superior anti-inflammatory and antioxidant properties, and can easily cross the blood‒brain barrier, as well as protect the nervous system from metabolic damage and promote learning and cognitive functions. However, although great advances have been made in this field, a comprehensive review regarding PEN-based nanomaterials for CNS therapy is lacking. A systematic summary of the basic mechanisms and synthetic strategies of PEN-based nanomaterials is beneficial for meeting the demand for the further development of novel treatments for CNS diseases. This review systematically introduces the fundamental physicochemical properties of PEN-based nanomaterials and their applications in the treatment of CNS diseases. We first describe the different ways in which polyphenols interact with other substances to form high-quality products with controlled sizes, shapes, compositions, and surface chemistry and functions. The application of PEN-based nanomaterials in the treatment of CNS diseases is then described, which provides a reference for subsequent research on the treatment of CNS diseases.
Collapse
Affiliation(s)
- Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. ,
- Zhejiang Rehabilitation Medical Center, the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310009, China. ,
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. ,
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
6
|
Bu SH, Cho W, Ham G, Yang B, Jung J, Cha H, Park C. Supramolecular Reconstruction of Self-Assembling Photosensitizers for Enhanced Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2024:e202416114. [PMID: 39376066 DOI: 10.1002/anie.202416114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Natural photosynthetic systems require spatiotemporal organization to optimize photosensitized reactions and maintain overall efficiency, involving the hierarchical self-assembly of photosynthetic components and their stabilization through synergistic interactions. However, replicating this level of organization is challenging due to the difficulty in efficiently communicating supramolecular nano-assemblies with nanoparticles or biological architectures, owing to their dynamic instability. Herein, we demonstrate that the supramolecular reconstruction of self-assembled amphiphilic rhodamine B nanospheres (RN) through treatment with metal-phenolic coordination complexes results in the formation of a stable hybrid structure. This reconstructed structure enhances electron transfer efficiency, leading to improved photocatalytic performance. Due to the photoluminescence quenching property of RN and its electronic synergy with tannic acid (T) and zirconium (Z), the supramolecular complexes of hybrid nanospheres (RNTxZy) with Pt nanoparticles or a biological workhorse, Shewanella oneidensis MR-1, showed marked improvement in photocatalytic hydrogen production. The supramolecular hybrid particles with a metal-phenolic coordination layer showed 5.6- and 4.0-fold increases, respectively, in the productivities of hydrogen evolution catalyzed by Pt (Pt/RNTxZy) and MR-1 (M/RNTxZy), respectively. These results highlight the potential for further advancements in the structural and photochemical control of supramolecular nanomaterials for energy harvesting and bio-hybrid systems.
Collapse
Affiliation(s)
- Seok Hyeong Bu
- Department of Energy Science and Engineering, Daegu Gyeongbuk institute of Science and Technology (DGIST), 333, Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Wansu Cho
- Department of Energy Science and Engineering, Daegu Gyeongbuk institute of Science and Technology (DGIST), 333, Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Gayoung Ham
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Beomjoo Yang
- School of Civil Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jongwon Jung
- School of Civil Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hyojung Cha
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Chiyoung Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk institute of Science and Technology (DGIST), 333, Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| |
Collapse
|
7
|
Lin Z, Liu H, Richardson JJ, Xu W, Chen J, Zhou J, Caruso F. Metal-phenolic network composites: from fundamentals to applications. Chem Soc Rev 2024. [PMID: 39364569 DOI: 10.1039/d3cs00273j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Composites with tailored compositions and functions have attracted widespread scientific and industrial interest. Metal-phenolic networks (MPNs), which are composed of phenolic ligands and metal ions, are amorphous adhesive coordination polymers that have been combined with various functional components to create composites with potential in chemistry, biology, and materials science. This review aims to provide a comprehensive summary of both fundamental knowledge and advancements in the field of MPN composites. The advantages of amorphous MPNs, over crystalline metal-organic frameworks, for fabricating composites are highlighted, including their mild synthesis, diverse interactions, and numerous intrinsic functionalities. The formation mechanisms and state-of-the-art synthesis strategies of MPN composites are summarized to guide their rational design. Subsequently, a detailed overview of the chemical interactions and structure-property relationships of composites based on different functional components (e.g., small molecules, polymers, biomacromolecules) is provided. Finally, perspectives are offered on the current challenges and future directions of MPN composites. This tutorial review is expected to serve as a fundamental guide for researchers in the field of metal-organic materials and to provide insights and avenues to enhance the performance of existing functional materials in applications across diverse fields.
Collapse
Affiliation(s)
- Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Hai Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Joseph J Richardson
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Wanjun Xu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
8
|
Huang Z, Lou W, Zhong T, Zhang J, Wang J, Yang H, Shao Q, Cai M. Fabrication of bamboo nanocellulose fibril-based food packaging with dual-antimicrobial property. Int J Biol Macromol 2024; 281:136249. [PMID: 39366620 DOI: 10.1016/j.ijbiomac.2024.136249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The development of cellulose-based packaging films with excellent antimicrobial properties and biocompatibility has garnered significant attention. In this work, nanocellulose fibrils (NCFs) derived from from bamboo parenchyma cells were utilized to fabricate nanocomposite film with antimicrobial properties. This system exhibited distinct release behaviors for two antimicrobial agents, with the slow release of Ag nanoparticle (AgNP) in the initial stage contributed to delaying food spoilage, while the subsequent pH change in the microenvironment facilitated the release of essential oil of sour orange blossoms (SEO) for secondary antimicrobial activity. Additionally, the composite film demonstrated improved thermal stability and UV blocking capacity. Moreover, AgNP has been proven to enhance the mechanical properties, with the tensile strength of the novel composite film increasing by 34.85 % compared to control group. The water vapor permeability and oxygen permeability of the novel composite film were reduced, which could potentially reduce weight loss and slow down the rate of after-ripening. Following the acidification treatment, the films containing EO@MPN (essential oil encapsulated with metal-polyphenol network) component performed different antimicrobial patterns, indicating their pH-responsive antimicrobial capabilities, and they are effective against both Gram-positive and Gram-negative bacteria. After a 24-h exposure to a food simulant, the release amount of Ag was measured at 67.6 μg/dm2, within the acceptable limit, and the release profile of Ag was characterized. Cytotoxicity and Live/Dead staining tests confirmed that the novel composite film film had no significant toxicity, thus making it safe for application in food preservation. Furthermore, in a 15-day preservation experiment with mangoes, the novel composite film demonstrated the best performance, underscoring its potential as a sustainable antimicrobial packaging material.
Collapse
Affiliation(s)
- Zhenyu Huang
- Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, China National Bamboo Research Center, Hangzhou 310012, China; College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078 China
| | - Wenyu Lou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Macau
| | - Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huimin Yang
- Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, China National Bamboo Research Center, Hangzhou 310012, China.
| | - Qiong Shao
- Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, China National Bamboo Research Center, Hangzhou 310012, China.
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
9
|
Cong Z, Li Y, Xie L, Chen Q, Tang M, Thongpon P, Jiao Y, Wu S. Engineered Microrobots for Targeted Delivery of Bacterial Outer Membrane Vesicles (OMV) in Thrombus Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400847. [PMID: 38801399 DOI: 10.1002/smll.202400847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/06/2024] [Indexed: 05/29/2024]
Abstract
In the realm of thrombosis treatment, bioengineered outer membrane vesicles (OMVs) offer a novel and promising approach, as they have rich content of bacterial-derived components. This study centers on OMVs derived from Escherichia coli BL21 cells, innovatively engineered to encapsulate the staphylokinase-hirudin fusion protein (SFH). SFH synergizes the properties of staphylokinase (SAK) and hirudin (HV) to enhance thrombolytic efficiency while reducing the risks associated with re-embolization and bleeding. Building on this foundation, this study introduces two cutting-edge microrobotic platforms: SFH-OMV@H for venous thromboembolism (VTE) treatment, and SFH-OMV@MΦ, designed specifically for cerebral venous sinus thrombosis (CVST) therapy. These platforms have demonstrated significant efficacy in dissolving thrombi, with SFH-OMV@H showcasing precise vascular navigation and SFH-OMV@MΦ effectively targeting cerebral thrombi. The study shows that the integration of these bioengineered OMVs and microrobotic systems marks a significant advancement in thrombosis treatment, underlining their potential to revolutionize personalized medical approaches to complex health conditions.
Collapse
Affiliation(s)
- Zhaoqing Cong
- The Third Affiliated Hospital of Shenzhen University, Shenzhen Luohu People's Hospital, Shenzhen, 518000, P. R. China
- South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, 95817, USA
| | - Yangyang Li
- The Third Affiliated Hospital of Shenzhen University, Shenzhen Luohu People's Hospital, Shenzhen, 518000, P. R. China
| | - Leiming Xie
- The Third Affiliated Hospital of Shenzhen University, Shenzhen Luohu People's Hospital, Shenzhen, 518000, P. R. China
| | - Qiwei Chen
- The Third Affiliated Hospital of Shenzhen University, Shenzhen Luohu People's Hospital, Shenzhen, 518000, P. R. China
| | - Menghuan Tang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, 95817, USA
| | - Phonpilas Thongpon
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, 95817, USA
| | - Yanxiao Jiao
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, 95817, USA
| | - Song Wu
- The Third Affiliated Hospital of Shenzhen University, Shenzhen Luohu People's Hospital, Shenzhen, 518000, P. R. China
- South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
| |
Collapse
|
10
|
Wang Z, Cortez-Jugo C, Yang Y, Chen J, Wang T, De Rose R, Cui J, Caruso F. A Metal-Phenolic Network-Enabled Nanoadjuvant to Modulate Immune Responses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401776. [PMID: 39031853 DOI: 10.1002/smll.202401776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/19/2024] [Indexed: 07/22/2024]
Abstract
The presence of hierarchical suppressive pathways in the immune system combined with poor delivery efficiencies of adjuvants and antigens to antigen-presenting cells are major challenges in developing advanced vaccines. The present study reports a nanoadjuvant constructed using aluminosilicate nanoparticles (as particle templates), incorporating cytosine-phosphate-guanosine (CpG) oligonucleotides and small-interfering RNA (siRNA) to counteract immune suppression in antigen-presenting cells. Furthermore, the application of a metal-phenolic network (MPN) coating, which can endow the nanoparticles with protective and bioadhesive properties, is assessed with regard to the stability and immune function of the resulting nanoadjuvant in vitro and in vivo. Combining the adjuvanticity of aluminum and CpG with RNA interference and MPN coating results in a nanoadjuvant that exhibits greater accumulation in lymph nodes and elicits improved maturation of dendritic cells in comparison to a formulation without siRNA or MPN, and with no observable organ toxicity. The incorporation of a model antigen, ovalbumin, within the MPN coating demonstrates the capacity of MPNs to load functional biomolecules as well as the ability of the nanoadjuvant to trigger enhanced antigen-specific responses. The present template-assisted fabrication strategy for engineering nanoadjuvants holds promise in the design of delivery systems for disease prevention, as well as therapeutics.
Collapse
Affiliation(s)
- Zhaoran Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yang Yang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Tianzheng Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Robert De Rose
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
11
|
Wang M, Yang X, Wang M, He Y, Huang T, Wang X, Yang Q, Guo J. Nanoenabled Self-Assembled Metal-Organic Algaecides Generated Photosynthetic Inhibition and Oxidative Stress for Sustainable Food Security. Chemistry 2024:e202403035. [PMID: 39354660 DOI: 10.1002/chem.202403035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/03/2024]
Abstract
Achieving food sustainability is one of the biggest challenges in the new millennium. Plant factory cultivation systems provide an alternative for food sustainability, while they often suffer from algal blooms. The overuse of conventional algaecides has caused significant environmental pollution and concerns about food security. Here, we design a nanoenabled metal-organic algaecide that is self-assembled from natural polyphenols and two functional metal ions for providing shading effects and delivering active ingredients synergistically to suppress algal blooms. Black wattle tannin (BWT) and Fe3+ ions are utilized to develop self-assembled FeBWT nanoalgaecides with significant shading effects for decreasing light transmission (up to 97 %) and effectively inhibiting algal photosynthesis. Further, the FeBWT is functionalized with Cu2+ ions (bimetallic Cu/FeBWT) to target the algal cells and release Cu2+ ions via phenolic-mediated cell surface interactions, thus enhancing the inhibition efficiency. Importantly, the biosafety of Cu/FeBWT is demonstrated through toxicity tests on zebrafish and NIH3T3 cells. In our real-world field test, the Cu/FeBWT demonstrates high algal inhibition performance (>95 %, over 30 days), and enhances the accumulation of food nutrients in model plant lettuces. Collectively, the supramolecular metal-organic nanoalgaecide provides a promise for nanoagrochemical application and promotes food sustainability and security.
Collapse
Affiliation(s)
- Mingyao Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiao Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu, Sichuan, 610213, China
| | - Mengyue Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Tao Huang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu, Sichuan, 610213, China
| | - Xiaoling Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Qichang Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu, Sichuan, 610213, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
12
|
Cen X, Deng J, Pan X, Wei R, Huang Z, Tang R, Lu S, Wang R, Zhao Z, Huang X. An "All-in-One" Strategy to Reconstruct Temporomandibular Joint Osteoarthritic Microenvironment Using γ-Fe 2O 3@TA@ALN Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403561. [PMID: 39344168 DOI: 10.1002/smll.202403561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/18/2024] [Indexed: 10/01/2024]
Abstract
Current clinical strategies for the treatment of temporomandibular joint osteoarthritis (TMJOA) primarily target cartilage biology, overlooking the synergetic effect of various cells and inorganic components in shaping the arthritic microenvironment, thereby impeding the effectiveness of existing therapeutic options for TMJOA. Here, γ-Fe2O3@TA@ALN magnetic nanoparticles (γ-Fe2O3@TA@ALN MNPs) composed of γ-Fe2O3, tannic acid (TA), and alendronate sodium (ALN) are engineered to reconstruct the osteoarthritic microenvironment and mitigate TMJOA progression. γ-Fe2O3@TA@ALN MNPs can promote chondrocytes' proliferation, facilitate chondrogenesis and anisotropic organization, enhance lubrication and reduce cartilage wear, and encourage cell movement. Magnetic-responsive γ-Fe2O3@TA@ALN MNPs also exhibit pH sensitivity, which undergoes decomposition within acidic environment to release ALN on demand. Under a 0.2 T static magnetic field, γ-Fe2O3@TA@ALN MNPs accelerate the synthesis of cartilage-specific proteins, and suppress catabolic-related genes expression and reactive oxygen species generation, affording additional protection to TMJ cartilage. In TMJOA mouse models, articular injection of γ-Fe2O3@TA@ALN MNPs effectively alleviates cartilage degeneration and subchondral bone loss in short and long terms, offering promising avenues for the development of therapeutic interventions for TMJOA.
Collapse
Affiliation(s)
- Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Junjie Deng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, 315300, P. R. China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, 325035, P. R. China
| | - Xuefeng Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rufang Wei
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, 315300, P. R. China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, 325035, P. R. China
| | - Zhimao Huang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, 315300, P. R. China
| | - Rong Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shengkai Lu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, 315300, P. R. China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
13
|
Ye H, Zheng X, Yang H, Kowal MD, Seifried TM, Singh GP, Aayush K, Gao G, Grant E, Kitts D, Yada RY, Yang T. Cost-Effective and Wireless Portable Device for Rapid and Sensitive Quantification of Micro/Nanoplastics. ACS Sens 2024; 9:4662-4670. [PMID: 39133267 DOI: 10.1021/acssensors.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The accumulation of micro/nanoplastics (MNPs) in ecosystems poses tremendous environmental risks for terrestrial and aquatic organisms. Designing rapid, field-deployable, and sensitive devices for assessing the potential risks of MNPs pollution is critical. However, current techniques for MNPs detection have limited effectiveness. Here, we design a wireless portable device that allows rapid, sensitive, and on-site detection of MNPs, followed by remote data processing via machine learning algorithms for quantitative fluorescence imaging. We utilized a supramolecular labeling strategy, employing luminescent metal-phenolic networks composed of zirconium ions, tannic acid, and rhodamine B, to efficiently label various sizes of MNPs (e.g., 50 nm-10 μm). Results showed that our device can quantify MNPs as low as 330 microplastics and 3.08 × 106 nanoplastics in less than 20 min. We demonstrated the applicability of the device to real-world samples through determination of MNPs released from plastic cups after hot water and flow induction and nanoplastics in tap water. Moreover, the device is user-friendly and operative by untrained personnel to conduct data processing on the APP remotely. The analytical platform integrating quantitative imaging, customized data processing, decision tree model, and low-cost analysis ($0.015 per assay) has great potential for high-throughput screening of MNPs in agrifood and environmental systems.
Collapse
Affiliation(s)
- Haoxin Ye
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Xinzhe Zheng
- Department of Computer Science, Faculty of Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Haoming Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Matthew D Kowal
- Department of Chemistry, Faculty of Science, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Teresa M Seifried
- Department of Chemistry, Faculty of Science, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Gurvendra Pal Singh
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Krishna Aayush
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Guang Gao
- Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia V6T1Z2, Canada
| | - Edward Grant
- Department of Chemistry, Faculty of Science, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - David Kitts
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Rickey Y Yada
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Tianxi Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
14
|
Ma R, Zhang P, Chen X, Zhang M, Han Q, Yuan Q. Dual-responsive nanoplatform for integrated cancer diagnosis and therapy: Unleashing the power of tumor microenvironment. Front Chem 2024; 12:1475131. [PMID: 39391835 PMCID: PMC11464441 DOI: 10.3389/fchem.2024.1475131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Chemodynamic therapy (CDT), designed to trigger a tumor-specific hydrogen peroxide (H2O2) reaction generating highly toxic hydroxyl radicals (·OH), has been investigated for cancer treatment. Unfortunately, the limited Fenton or Fenton-like reaction rate and the significant impact of excessive reducing glutathione (GSH) in the tumor microenvironment (TME) have severely compromised the effectiveness of CDT. To address this issue, we designed a dual-responsive nanoplatform utilizing a metal-polyphenol network (MPN) -coated multi-caged IrOx for efficient anti-tumor therapy in response to the acidic TME and intracellular excess of GSH, in which MPN composed of Fe3+ and tannic acid (TA). Initially, the acidic TME and intracellular excess of GSH lead to the degradation of the MPN shell, resulting in the release of Fe3+ and exposure of the IrOx core, facilitating the efficient dual-pathway CDT. Subsequently, the nanoplatform can mitigate the attenuation of CDT by consuming the excessive GSH within the tumor. Finally, the multi-caged structure of IrOx is advantageous for effectively implementing photothermal therapy (PTT) in coordination with CDT, further enhancing the therapeutic efficacy of tumors. Moreover, the outstanding Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) (T1/T2) multimodal imaging capabilities of IrOx@MPN enable early diagnosis and timely treatment. This work provides a typical example of the construction of a novel multifunctional platform for dual-responsive treatment of tumors.
Collapse
Affiliation(s)
| | | | | | | | - Qinghe Han
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | - Qinghai Yuan
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Do J, Kang SM. Effect of Surface Charges in Polymer Coatings on Antifouling Performance in Marine Environments with Sediment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19644-19653. [PMID: 39219107 DOI: 10.1021/acs.langmuir.4c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The antifouling efficacy of hydrophilic polymer coatings is closely related to their surface charge. Many biological foulants such as mammalian cells and marine microalgae possess a negative surface charge, discouraging the use of positively charged polymer coatings for antifouling purposes. Instead, electrically neutral yet hydrophilic polymers have been widely employed, leveraging hydration layers to create a barrier against fouling. However, challenges arise in marine environments where both living marine organisms and sediments can adhere to solid surfaces, rendering previous findings less directly applicable. This study investigates the impact of a polymer coating surface charge on marine antifouling properties. Polymer brushes with various charges are applied to solid substrates, and the adhesion behavior of marine diatoms is assessed under both marine sediment-free and marine sediment conditions. The results underscore the effectiveness of negatively charged polymer brush coatings in marine antifouling, regardless of sediment presence.
Collapse
Affiliation(s)
- Jihwan Do
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
16
|
Hussain A, Azam S, Maqsood R, Anwar R, Akash MSH, Hussain H, Wang D, Imran M, Kotwica-Mojzych K, Khan S, Hussain S, Ayub MA. Chemistry, biosynthesis, and theranostics of antioxidant flavonoids and polyphenolics of genus Rhododendron: an overview. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03428-6. [PMID: 39276249 DOI: 10.1007/s00210-024-03428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024]
Abstract
The genus Rhododendron is an ancient and most widely distributed genus of the family Ericaceae consisting of evergreen plant species that have been utilized as traditional medicine since a very long time for the treatment of various ailments including pain, asthma, inflammation, cold, and acute bronchitis. The chemistry of polyphenolics isolated from a number of species of the genus Rhododendron has been investigated. During the currently designed study, an in-depth study on the phytochemistry, natural distribution, biosynthesis, and pharmacological properties including their potential capability as free radical scavengers has been conducted. This work provides structural characteristics of phenolic compounds isolated from the species of Rhododendron with remarkable antioxidant potential. In addition, biosynthesis and theranostic study have also been encompassed with the aims to furnish a wide platform of valuable information for designing of new drug entities. The detailed information including names, structural features, origins, classification, biosynthetic pathways, theranostics, and pharmacological effects of about 171 phenolics and flavonoids isolated from the 36 plant species of the genus Rhododendron with the antioxidant potential has been covered in this manuscript. This study demonstrated that species of Rhododendron genus have excellent antioxidant activities and great potential as a source for natural health products. This comprehensive review might serve as a foundation for more investigation into the Rhododendron genus.
Collapse
Affiliation(s)
- Amjad Hussain
- Institute of Chemistry, University of Okara, Okara, 56300, Pakistan.
| | - Sajjad Azam
- Institute of Chemistry, University of Okara, Okara, 56300, Pakistan
| | - Rabia Maqsood
- Institute of Chemistry, University of Okara, Okara, 56300, Pakistan
| | - Riaz Anwar
- Institute of Chemistry, University of Okara, Okara, 56300, Pakistan
| | | | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Daijie Wang
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Katarzyna Kotwica-Mojzych
- Chair of Fundamental Sciences, Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Havelian, Abbottabad, Pakistan
| | - Shabbir Hussain
- Department of Chemistry, Karakoram International University (KIU), Gilgit, Gilgit-Baltistan, 15100, Pakistan
| | | |
Collapse
|
17
|
Hu Z, Shan J, Jin X, Sun W, Cheng L, Chen XL, Wang X. Nanoarchitectonics of in Situ Antibiotic-Releasing Acicular Nanozymes for Targeting and Inducing Cuproptosis-like Death to Eliminate Drug-Resistant Bacteria. ACS NANO 2024; 18:24327-24349. [PMID: 39169538 DOI: 10.1021/acsnano.4c06565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
A series of progress has been made in the field of antimicrobial use of nanozymes due to their superior stability and decreased susceptibility to drug resistance. However, catalytically generated reactive oxygen species (ROS) are insufficient for coping with multidrug-resistant organisms (MDROs) in complex wound environments due to their low targeting ability and insufficient catalytic activity. To address this problem, chemically stable copper-gallic acid-vancomycin (CuGA-VAN) nanoneedles were successfully constructed by a simple approach for targeting bacteria; these nanoneedles exhibit OXD-like and GSH-px-like dual enzyme activities to produce ROS and induce bacterial cuproptosis-like death, thereby eliminating MDRO infections. The results of in vitro experiments showed that the free carboxylic acid of GA could react with the free ammonia of teichoic acid in the methicillin-resistant Staphylococcus aureus (MRSA) cell wall skeleton. Thus, CuGA-VAN nanoneedles can rapidly "capture" MRSA in liquid environments, releasing ROS, VAN and Cu2+ on bacterial surfaces to break down the MRSA barrier, destroying the biofilm. In addition, CuGA-VAN effectively promoted wound repair cell proliferation and angiogenesis to facilitate wound healing while ensuring biosafety. According to transcriptome sequencing, highly internalized Cu2+ causes copper overload toxicity; downregulates genes related to the bacterial glyoxylate cycle, tricarboxylic acid cycle, and oxidative respiratory chain; and induces lipid peroxidation in the cytoplasm, leading to bacterial cuproptosis-like death. In this study, CuGA-VAN was cleverly designed to trigger a cascade reaction of targeting, drug release, ROS-catalyzed antibacterial activity and cuproptosis-like death. This provides an innovative idea for multidrug-resistant infections.
Collapse
Affiliation(s)
- Zhiyuan Hu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Xu Jin
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Weijie Sun
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, P. R. China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Xianwen Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
18
|
Zhai Z, Wang X, Qian Z, Wang A, Zhao W, Xiong J, Wang J, Wang Y, Cao H. Lactobacillus rhamnosus GG coating with nanocomposite ameliorates intestinal inflammation. Biomed Pharmacother 2024; 178:117197. [PMID: 39084077 DOI: 10.1016/j.biopha.2024.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
The steady increase in the prevalence of inflammatory bowel disease (IBD) is regarded as a worldwide health issue. Gut microorganisms could modulate host immune and metabolic status and are associated with health effects. Probiotics, Lactobacillus rhamnosus GG (LGG), are beneficial microorganisms that ameliorate disease and exert advantageous effects on intestinal homeostasis. However, the viability of probiotics will suffer from various risk factors in the digestive tract. In this view, we developed a probiotic coating with nanocomposite using tannic acid (TA) and casein phosphopeptide (CPP) through layer-by-layer technology to overcome the challenges after oral administration. LGG showed an improved survival rate in simulated gastrointestinal conditions after coated. The coating (LGG/TA-Mg2+/CPP) had potent reactive oxygen species (ROS) scavenging ability and improved the survival rate of colorectal epithelial cells after H2O2 stimulation. In DSS-induced colitis, administration of LGG/TA-Mg2+/CPP ameliorated intestinal inflammation and reduced the disruption of barrier function. Furthermore, LGG/TA-Mg2+/CPP increased the abundance and diversity of the gut microbiota. In the mouse model of DSS colitis, LGG/TA-Mg2+/CPP can better activate the EGFR/AKT signaling pathway, thereby protecting the epithelial barrier function of the colon epithelium. In conclusion, the probiotic coating with nanocomposite may become a delivery platform for probiotics applied to IBD.
Collapse
Affiliation(s)
- Zihan Zhai
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China; School of Health, Binzhou Polytechnic, Binzhou, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Zhanying Qian
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Aili Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China; Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, China
| | - Wenjing Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Jie Xiong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Jingyi Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Yinsong Wang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| |
Collapse
|
19
|
Feng Y, Wang G, Feng B, Li P, Wei J. Mussel-inspired interface deposition strategy for mesoporous metal-phenolic nanospheres with superior antioxidative, photothermal and antibacterial performance. J Colloid Interface Sci 2024; 668:282-292. [PMID: 38678884 DOI: 10.1016/j.jcis.2024.04.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Metal-phenolic networks (MPNs) have emerged as a versatile and multifunctional platform applied in bioimaging, disease treatment, electrocatalysis, and water purification. The synthesis of MPNs with mesoporous frameworks and ultra-small diameters (<200 nm), crucial for post-modification, cargo loading, and mass transport, remains a formidable challenge. Inspired by mussel chemistry, mesoporous metal-phenolic nanospheres (MMPNs) are facilely prepared by direct deposition of the metal-polyphenol complex on the interface of oil nano-droplets composed of block copolymers/1,3,5-trimethylbenzene followed by a spontaneous template-removal process. Due to the penetrable and stable networks, the oil nano-droplets gradually leak from the networks driven by shear stress during the stirring process. As a result, MMPNs are obtained without additional template removal procedures such as solvent extraction or high-temperature calcination. The materials have a large pore size (∼12.1 nm), uniform spherical morphology with a small particle size (∼99 nm), and a large specific surface area (49.8 m2 g-1). Due to the abundant phenolic hydroxyl groups, the MMPNs show excellent antioxidative property. The MMPNs also have excellent photothermal property, whose photothermal conversion efficiency was 40.9 %. Moreover, the phenolic hydroxyl groups can reduce Ag+ in situ to prepare Ag nanoparticles loaded MMPNs composites, which have excellent inhibition performance of drug-resistant bacteria biofilm.
Collapse
Affiliation(s)
- Youyou Feng
- Institute of Analytical Chemistry and Instrument for Life Science The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an, 710049, PR China
| | - Gen Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and TechnologyXi'an, 710055, PR China
| | - Bingxi Feng
- Institute of Analytical Chemistry and Instrument for Life Science The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an, 710049, PR China
| | - Ping Li
- Institute of Analytical Chemistry and Instrument for Life Science The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an, 710049, PR China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an, 710049, PR China.
| |
Collapse
|
20
|
Wan J, Wu L, Liu H, Zhao J, Xie T, Li X, Huang S, Yu F. Incorporation of Zinc-Strontium Phosphate into Gallic Acid-Gelatin Composite Hydrogel with Multiple Biological Functions for Bone Tissue Regeneration. ACS Biomater Sci Eng 2024; 10:5057-5067. [PMID: 38950519 DOI: 10.1021/acsbiomaterials.4c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Large bone defects resulting from fractures and diseases have become a significant medical concern, usually impeding spontaneous healing through the body's self-repair mechanism. Calcium phosphate (CaP) bioceramics are widely utilized for bone regeneration, owing to their exceptional biocompatibility and osteoconductivity. However, their bioactivities in repairing healing-impaired bone defects characterized by conditions such as ischemia and infection remain limited. Recently, an emerging bioceramics zinc-strontium phosphate (ZSP, Zn2Sr(PO4)2) has received increasing attention due to its remarkable antibacterial and angiogenic abilities, while its plausible biomedical utility on tissue regeneration is nonetheless few. In this study, gallic acid-grafted gelatin (GGA) with antioxidant properties was injected into hydrogels to scavenge reactive oxygen species and regulate bone microenvironment while simultaneously incorporating ZSP to form GGA-ZSP hydrogels. The GGA-ZSP hydrogel exhibits low swelling, and in vitro cell experiments have demonstrated its favorable biocompatibility, osteogenic induction potential, and ability to promote vascular regeneration. In an in vivo bone defect model, the GGA-ZSP hydrogel significantly enhanced the bone regeneration rates. This study demonstrated that the GGA-ZSP hydrogel has pretty environmentally friendly therapeutic effects in osteogenic differentiation and massive bone defect repair.
Collapse
Affiliation(s)
- Junming Wan
- Department of Orthopaedics, The Seventh Affiliated Hospital of Sun Yat sen University, Shenzhen 518000, P. R. China
| | - Liang Wu
- Department of Orthopaedics, South China Hospital of Shenzhen University, Shenzhen 518111, P. R. China
| | - Hanzhong Liu
- Department of Orthopaedics, The Seventh Affiliated Hospital of Sun Yat sen University, Shenzhen 518000, P. R. China
| | - Jin Zhao
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Tong Xie
- First Clinical Medical College, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Xinhe Li
- Department of Orthopaedics, South China Hospital of Shenzhen University, Shenzhen 518111, P. R. China
| | - Shenghui Huang
- Department of Orthopaedics, South China Hospital of Shenzhen University, Shenzhen 518111, P. R. China
| | - Fei Yu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| |
Collapse
|
21
|
Chen M, Liu D, Liu T, Wei T, Qiao Q, Yuan Y, Wang N. Constructing 2D Polyphenols-Based Crosslinked Networks for Ultrafast and Selective Uranium Extraction from Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401528. [PMID: 38634219 DOI: 10.1002/smll.202401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Indexed: 04/19/2024]
Abstract
The role of tannins (TA), a well-known abundant and ecologically friendly chelating ligand, in metal capture has long been studied. Different kinds of TA-containing adsorbents are synthesized for uranium capture, while most adsorbents suffer from unfavorable adsorption kinetics. Herein, the design and preparation of a TA-containing 2D crosslinked network adsorbent (TANP) is reported. The ≈1.8-nanometer-thick TANP films curl up into micrometer-scale pores, which contribute to fast mass transfer and full exposure of active sites. The coordination environment of uranyl (UO2 2+) ions is explored by integrated analysis of U L3-edge XANES and EXAFS. Density functional theory calculations indicate the energetically favorable UO2 2+ binding. Consequently, TANP with excellent adsorption kinetics presents a high uranium capture capacity (14.62 mg-U g-Ads-1) and a high adsorption rate (0.97 mg g-1 day-1) together with excellent selectivity and biofouling resistance. Life cycle assessment and cost analysis demonstrate that TANP has tremendous potential for application in industrial-scale uranium extraction from seawater.
Collapse
Affiliation(s)
- Mengwei Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Dan Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Tao Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Tao Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Qingtian Qiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
22
|
Fernández-Villa D, Aguilar MR, Rojo L. Europium-tannic acid nanocomplexes devised for bone regeneration under oxidative or inflammatory environments. J Mater Chem B 2024; 12:7153-7170. [PMID: 38952270 DOI: 10.1039/d4tb00697f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Europium ions (Eu3+) are gaining attention in the field of regenerative medicine due to increasing evidence of their osteogenic properties. However, inflammatory and oxidative environments present in many bone diseases, such as osteoporosis or rheumatoid arthritis, are known to hinder this regenerative process. Herein, we describe a straightforward synthetic procedure to prepare Eu3+-tannic acid nanocomplexes (EuTA NCs) with modulable physicochemical characteristics, as well as antioxidant, anti-inflammatory, and osteogenic properties. EuTA NCs were rationally synthesized to present different contents of Eu3+ on their structure to evaluate the effect of the cation on the biological properties of the formulations. In all the cases, EuTA NCs were stable in distilled water at physiological pH, had a highly negative surface charge (ζ ≈ -25.4 mV), and controllable size (80 < Dh < 160 nm). In vitro antioxidant tests revealed that Eu3+ complexation did not significantly alter the total radical scavenging activity (RSA) of TA but enhanced its ability to scavenge H2O2 and ferrous ions, thus improving its overall antioxidant potential. At the cellular level, EuTA NCs reduced the instantaneous toxicity of high concentrations of free TA, resulting in better antioxidant (13.3% increase of RSA vs. TA) and anti-inflammatory responses (17.6% reduction of nitric oxide production vs. TA) on cultures of H2O2- and LPS-stimulated macrophages, respectively. Furthermore, the short-term treatment of osteoblasts with EuTA NCs was found to increase their alkaline phosphatase activity and their matrix mineralization capacity. Overall, this simple and tunable platform is a potential candidate to promote bone growth in complex environments by simultaneously targeting multiple pathophysiological mechanisms of disease.
Collapse
Affiliation(s)
- Daniel Fernández-Villa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain
| |
Collapse
|
23
|
Liu Z, Li W, Sheng W, Liu S, Li R, Huang C, Xiong Y, Han L, Zhen W, Li Y, Jia X. Polyphenol-Based Bicontinuous Porous Spheres Via Amine-Mediated Polymerization-Induced Fusion Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403777. [PMID: 39039987 DOI: 10.1002/smll.202403777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Indexed: 07/24/2024]
Abstract
Bicontinuous porous materials, which possess 3D interconnected network and pore channels facilitating the mass diffusion to the interior of materials, have demonstrated their promising potentials in a large variety of research fields. However, facile construction of such complex and delicate structures is still challenging. Here, an amine-mediated polymerization-induced fusion assembly strategy is reported for synthesizing polyphenol-based bicontinuous porous spheres with various pore structures. Specifically, the fusion of pore-generating template observed by TEM promotes the development of bicontinuous porous networks that are confirmed by 3D reconstruction. Furthermore, the resultant bicontinuous porous carbon particles after pyrolysis, with a diameter of ≈600 nm, a high accessible surface area of 359 m2 g-1, and a large pore size of 40-150 nm manifest enhanced performance toward the catalytic degradation of sulfamethazine in water decontamination. The present study expands the toolbox of interfacial tension-solvent-dependent porous spheres while providing new insight into their structure-property relationships.
Collapse
Affiliation(s)
- Zhiqing Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, P. R. China
| | - Wei Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wenbo Sheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui middle road 18, Lanzhou, 730000, P. R. China
| | - Shiyu Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Rui Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Chao Huang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Youpeng Xiong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Lu Han
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Weijun Zhen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, P. R. China
| | - Yongsheng Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xin Jia
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| |
Collapse
|
24
|
Li H, Li Y, Zhang L, Wang N, Lu D, Tang D, Lv Y, Zhang J, Yan H, Gong H, Zhang M, Nie K, Hou Y, Yu Y, Xiao H, Liu C. Prodrug-inspired adenosine triphosphate-activatable celastrol-Fe(III) chelate for cancer therapy. SCIENCE ADVANCES 2024; 10:eadn0960. [PMID: 38996025 PMCID: PMC11244545 DOI: 10.1126/sciadv.adn0960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Celastrol (CEL), an active compound isolated from the root of Tripterygium wilfordii, exhibits broad anticancer activities. However, its poor stability, narrow therapeutic window and numerous adverse effects limit its applications in vivo. In this study, an adenosine triphosphate (ATP) activatable CEL-Fe(III) chelate was designed, synthesized, and then encapsulated with a reactive oxygen species (ROS)-responsive polymer to obtain CEL-Fe nanoparticles (CEL-Fe NPs). In normal tissues, CEL-Fe NPs maintain structural stability and exhibit reduced systemic toxicity, while at the tumor site, an ATP-ROS-rich tumor microenvironment, drug release is triggered by ROS, and antitumor potency is restored by competitive binding of ATP. This intelligent CEL delivery system improves the biosafety and bioavailability of CEL for cancer therapy. Such a CEL-metal chelate strategy not only mitigates the challenges associated with CEL but also opens avenues for the generation of CEL derivatives, thereby expanding the therapeutic potential of CEL in clinical settings.
Collapse
Affiliation(s)
- Hanrong Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yifan Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lingpu Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physical and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Nan Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Lu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physical and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Yitong Lv
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinbo Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Heben Yan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - He Gong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing 102206,China
| | - Kaili Nie
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physical and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Chaoyong Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
25
|
Xu J, Wang C, Zhang L, Zhao C, Zhao X, Wu J. In Situ Aggregated Nanomanganese Enhances Radiation-Induced Antitumor Immunity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34450-34466. [PMID: 38941284 DOI: 10.1021/acsami.4c03838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Radiosensitizers play a pivotal role in enhancing radiotherapy (RT). One of the challenges in RT is the limited accumulation of nanoradiosensitizers and the difficulty in activating antitumor immunity. Herein, a smart strategy was used to achieve in situ aggregation of nanomanganese adjuvants (MnAuNP-C&B) to enhance RT-induced antitumor immunity. The aggregated MnAuNP-C&B system overcomes the shortcomings of small-sized nanoparticles that easily flow back into blood vessels and diffuse into surrounding tissues, and it also prolongs the retention time of nanomanganese within cancer cells and tumors. The MnAuNP-C&B system significantly enhances the radiosensitization effect in RT. Additionally, the pH-responsive disassembly of MnAuNP-C&B triggers the release of Mn2+, further promoting RT-induced activation of the STING pathway and eliciting robust antitumor immunity. Overall, our study presents a smart strategy wherein in situ aggregation of nanomanganese effectively inhibits tumor growth through radiosensitization and the activation of antitumor immunity.
Collapse
Affiliation(s)
- Jialong Xu
- Medical School of Nanjing University, Nanjing 210093, China
| | - Chao Wang
- Medical School of Nanjing University, Nanjing 210093, China
| | - Li Zhang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Chuan Zhao
- Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaozhi Zhao
- Department of Andrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210023, China
| | - Jinhui Wu
- Medical School of Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Centre, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
26
|
Shi S, Han Y, Feng J, Shi J, Liu X, Fu B, Wang J, Zhang W, Duan J. Microenvironment-triggered cascade metal-polyphenolic nanozyme for ROS/NO synergistic hyperglycemic wound healing. Redox Biol 2024; 73:103217. [PMID: 38820984 PMCID: PMC11177078 DOI: 10.1016/j.redox.2024.103217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
Wound infection of hyperglycemic patient often has extended healing period and increased probability due to the high glucose level. However, achieving precise and safe therapy of the hyperglycemic wound with specific wound microenvironment (WME) remains a major challenge. Herein, a WME-activated smart L-Arg/GOx@TA-Fe (LGTF) nanozymatic system composed of generally recognized as safe (GRAS) compound is engineered. The nanozymatic system combining metal-polyphenol nanozyme (tannic acid-Fe3+, TA-Fe) and natural enzyme (glucose oxidase, GOx) can consume the high-concentration glucose, generating reactive oxygen species (ROS) and nitric oxide (NO) in situ to synergistically disinfect hyperglycemia wound. In addition, glucose consumption and gluconic acid generation can lower glucose level to promote wound healing and reduce the pH of WME to enhance the catalytic activities of the LGTF nanozymatic system. Thereby, low-dose LGTF can perform remarkable synergistic disinfection and healing effect towards hyperglycemic wound. The superior biosafety, high catalytic antibacterial and beneficial WME regulating capacity demonstrate this benign GRAS nanozymatic system is a promising therapeutic agent for hyperglycemic wound.
Collapse
Affiliation(s)
- Shuo Shi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaru Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China; Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jianxing Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingru Shi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoling Liu
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Bangfeng Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jinyou Duan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
27
|
Huang X, Wu K, Li W. Biomimetic nanoporous oxygenation membranes with high hemocompatibility and fast gas transport property. J Colloid Interface Sci 2024; 674:370-378. [PMID: 38941931 DOI: 10.1016/j.jcis.2024.06.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Membrane technology holds great potential for separation applications and also finds critical needs in biomedical fields, such as blood oxygenation. However, the bottlenecks in gas permeation, plasma leakage, and especially hemocompatibility hamper the development of membrane oxygenation. It remains extremely challenging to design efficient membranes and elucidate underlying principles. In this study, we report biomimetic decoration of asymmetric nanoporous membranes by ultrathin FeIII-tannic acid metal-ligand networks to realize fast gas exchange with on plasma leakage and substantially enhance hemocompatibility. Because the intrinsic nanopores facilitate gas permeability and the FeIII-catechol layers enable superior hydrophilicity and electronegativity to original surfaces, the modified membranes exhibit high transport properties for gases and great resistances to protein adsorption, platelet activation, coagulation, thrombosis, and hemolysis. Molecular docking and density functional theory simulations indicate that more preferential adsorption of metal-ligand networks with water molecules than proteins is critical to anticoagulation. Moreover, benefiting from the better antiaging property gave by biomimetic decoration, the membranes after four-month aging present gas permeances similar to or even larger than those of pristine ones, despite the initial permeation decline. Importantly, for blood oxygenation, the designed membranes after aging show fast O2 and CO2 exchange processes with rates up to 28-17 and 97-47 mL m-2 min-1, respectively, accompanied with no detectable thrombus and plasma leakage. We envisage that the biomimetic decoration of nanoporous membranes provide a feasible route to achieve great biocompatibility and transport capability for various applications.
Collapse
Affiliation(s)
- Xinxi Huang
- School of Environment, Jinan University, Guangzhou 511443, PR China
| | - Kaier Wu
- School of Environment, Jinan University, Guangzhou 511443, PR China
| | - Wanbin Li
- School of Environment, Jinan University, Guangzhou 511443, PR China.
| |
Collapse
|
28
|
Moslehi N, van Eekelen M, Velikov KP, Kegel WK. Ferrous Pyrophosphate and Mixed Divalent Pyrophosphates as Delivery Systems for Essential Minerals. ACS FOOD SCIENCE & TECHNOLOGY 2024; 4:1388-1401. [PMID: 38934009 PMCID: PMC11197097 DOI: 10.1021/acsfoodscitech.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Poorly water-soluble iron-containing compounds are promising iron fortificants. However, ensuring high bioaccessibility and low reactivity of iron is challenging. We present the potential application of ferrous pyrophosphate (Fe(II)PP) and Fe(II)-containing M2(1-x)Fe2x P2O7 salts (0 < x < 1, M = Ca, Zn, or Mn) for delivery of iron and a second essential mineral (M). After preparation by a facile and environment-friendly coprecipitation method, the salts were investigated for their composition, pH-dependent dissolution, iron-mediated discoloration of a black tea solution, and oxidation of vitamin C. Our results suggest that these salts are possible dual-fortificants with tunable composition that compared to Fe(II)PP (i) show lower (<0.5 mM) and enhanced (to 5 mM) iron dissolution in moderate and gastric pH, respectively, (ii) exhibit less discoloration and dissolved iron in tea when x = 0.470 for M = Ca or Zn and x = 0.086 for M = Mn, and (iii) do not increase the oxidation extent of vitamin C over 48 h when x = 0.06, 0.086, or 0.053 for M = Ca, Zn, or Mn, respectively.
Collapse
Affiliation(s)
- Neshat Moslehi
- Van’t
Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute
for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Michiel van Eekelen
- Van’t
Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute
for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Krassimir P. Velikov
- Unilever
Innovation Centre Wageningen, Bronland 14, 6708 WH Wageningen, The Netherlands
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Willem K. Kegel
- Van’t
Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute
for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
29
|
Xie W, Dhinojwala A, Gianneschi NC, Shawkey MD. Interactions of Melanin with Electromagnetic Radiation: From Fundamentals to Applications. Chem Rev 2024; 124:7165-7213. [PMID: 38758918 DOI: 10.1021/acs.chemrev.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Melanin, especially integumentary melanin, interacts in numerous ways with electromagnetic radiation, leading to a set of critical functions, including radiation protection, UV-protection, pigmentary and structural color productions, and thermoregulation. By harnessing these functions, melanin and melanin-like materials can be widely applied to diverse applications with extraordinary performance. Here we provide a unified overview of the melanin family (all melanin and melanin-like materials) and their interactions with the complete electromagnetic radiation spectrum (X-ray, Gamma-ray, UV, visible, near-infrared), which until now has been absent from the literature and is needed to establish a solid fundamental base to facilitate their future investigation and development. We begin by discussing the chemistries and morphologies of both natural and artificial melanin, then the fundamentals of melanin-radiation interactions, and finally the exciting new developments in high-performance melanin-based functional materials that exploit these interactions. This Review provides both a comprehensive overview and a discussion of future perspectives for each subfield of melanin that will help direct the future development of melanin from both fundamental and applied perspectives.
Collapse
Affiliation(s)
- Wanjie Xie
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| |
Collapse
|
30
|
Jin X, Xiao R, Cao Z, Du X. Smart controlled-release nanopesticides based on metal-organic frameworks. Chem Commun (Camb) 2024; 60:6082-6092. [PMID: 38813806 DOI: 10.1039/d4cc01390e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The practical utilization rates of conventional pesticide formulations by target organisms are very low, which results in the pollution of ecological environments and the formation of pesticide residues in agricultural products. Water-based nanopesticide formulations could become alternative and effective formulations to eventually resolve the main issues of conventional pesticide formulations. In this feature article, we describe the design concept of smart (stimuli-responsive) controlled-release nanopesticides, which are created toward hierarchical targets (pests, pathogens, and foliage) in response to multidimensional stimuli from physiological and environmental factors (such as sunlight) of target organisms and plants, for achieving enhanced insecticidal and fungicidal efficacies. The pore sizes and functionalities of metal-organic frameworks (MOFs) can be fine-tuned through the choice of metal-containing units and organic ligands. Tailor-made MOF nanoparticles with large microporous or mesoporous sizes, as well as good biocompatibility and high thermal, mechanical, and chemical durabilities, are used to load pesticides within these pores followed by coating of plant polyphenols and natural polymers for stimuli-responsive controlled pesticide release. This feature article highlights our works on smart controlled-release MOF-based nanopesticides and also includes related works from other laboratories. The future challenges and promising prospects of smart controlled-release MOF-based nanopesticides are also discussed.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Ruixi Xiao
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Zejun Cao
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Xuezhong Du
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
31
|
Yang W, Zhang Q, Zhou J, Li L, Li Y, Zhu L, Narain R, Nan K, Chen Y. Self-Healing Guar Gum-Based Nanocomposite Hydrogel Promotes Infected Wound Healing through Photothermal Antibacterial Therapy. Biomacromolecules 2024; 25:3432-3448. [PMID: 38771294 DOI: 10.1021/acs.biomac.4c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Preventing bacterial infections is a crucial aspect of wound healing. There is an urgent need for multifunctional biomaterials without antibiotics to promote wound healing. In this study, we fabricated a guar gum (GG)-based nanocomposite hydrogel, termed GBTF, which exhibited photothermal antibacterial therapy for infected wound healing. The GBTF hydrogel formed a cross-linked network through dynamic borate/diol interactions between GG and borax, thereby exhibiting simultaneously self-healing, adaptable, and injectable properties. Additionally, tannic acid (TA)/Fe3+ nanocomplexes (NCs) were incorporated into the hydrogel to confer photothermal antibacterial properties. Under the irradiation of an 808 nm near-infrared laser, the TA/Fe3+ NCs in the hydrogel could rapidly generate heat, leading to the disruption of bacterial cell membranes and subsequent bacterial eradication. Furthermore, the hydrogels exhibited good cytocompatibility and hemocompatibility, making them a precandidate for preclinical and clinical applications. Finally, they could significantly promote bacteria-infected wound healing by reducing bacterial viability, accelerating collagen deposition, and promoting epithelial remodeling. Therefore, the multifunctional GBTF hydrogel, which was composed entirely of natural substances including guar gum, borax, and polyphenol/ferric ion NCs, showed great potential for regenerating infected skin wounds in clinical applications.
Collapse
Affiliation(s)
- Weijia Yang
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Quanyue Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jiayi Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lin Li
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang 315302, China
| | - Yan Li
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang 315302, China
| | - Li Zhu
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ravin Narain
- Department of Chemical and Materials Engineering, College of Natural and Applied Sciences, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Kaihui Nan
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang 315302, China
| | - Yangjun Chen
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang 315302, China
| |
Collapse
|
32
|
Huang S, Xu Z, Zhi W, Li Y, Hu Y, Zhao F, Zhu X, Miao M, Jia Y. pH/GSH dual-responsive nanoparticle for auto-amplified tumor therapy of breast cancer. J Nanobiotechnology 2024; 22:324. [PMID: 38858692 PMCID: PMC11163783 DOI: 10.1186/s12951-024-02588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
Breast cancer remains a malignancy that poses a serious threat to human health worldwide. Chemotherapy is one of the most widely effective cancer treatments in clinical practice, but it has some drawbacks such as poor targeting, high toxicity, numerous side effects, and susceptibility to drug resistance. For auto-amplified tumor therapy, a nanoparticle designated GDTF is prepared by wrapping gambogic acid (GA)-loaded dendritic porous silica nanoparticles (DPSNs) with a tannic acid (TA)-Fe(III) coating layer. GDTF possesses the properties of near-infrared (NIR)-enhanced and pH/glutathione (GSH) dual-responsive drug release, photothermal conversion, GSH depletion and hydroxyl radical (·OH) production. When GDTF is exposed to NIR laser irradiation, it can effectively inhibit cell proliferation and tumor growth both in vitro and in vivo with limited toxicity. This may be due to the synergistic effect of enhanced tumor accumulation, and elevated reactive oxygen species (ROS) production, GSH depletion, and TrxR activity reduction. This study highlights the enormous potential of auto-amplified tumor therapy.
Collapse
Affiliation(s)
- Shengnan Huang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China.
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan Province, 450001, P.R. China.
| | - Zhiling Xu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China
| | - Weiwei Zhi
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China
| | - Yijing Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan Province, 450001, P.R. China
| | - Fengqin Zhao
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan Province, 450001, P.R. China
| | - Xiali Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China.
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China.
| | - Yongyan Jia
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China.
| |
Collapse
|
33
|
Consoli GML, Maugeri L, Musso N, Gulino A, D'Urso L, Bonacci P, Buscarino G, Forte G, Petralia S. One-Pot Synthesis of Luminescent and Photothermal Carbon Boron-Nitride Quantum Dots Exhibiting Cell Damage Protective Effects. Adv Healthc Mater 2024; 13:e2303692. [PMID: 38508224 DOI: 10.1002/adhm.202303692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/26/2024] [Indexed: 03/22/2024]
Abstract
Zero-dimensional boron nitride quantum dots (BNQDs) are arousing interest for their versatile optical, chemical, and biochemical properties. Introducing carbon contents in BNQDs nanostructures is a great challenge to modulate their physicochemical properties. Among the carbon moieties, phenolic groups have attracted attention for their biochemical properties and phenol-containing nanomaterials are showing great promise for biomedical applications. Herein, the first example of direct synthesis of water dispersible BNQDs exposing phenolic and carboxylic groups is presented. The carbon-BNQDs are prepared in a single-step by solvent-assisted reaction of urea with boronic reagents and are characterized by optical absorption, luminescence, Raman, Fourier transform infrared and NMR spectroscopy, X-ray photoelectron spectroscopy, dynamic light scattering, and atomic force microscopy. The carbon-BNQDs exhibit nanodimension, stability, high photothermal conversion efficiency, pH-responsive luminescence and Z-potential. The potential of the carbon-BNQDs to provide photothermal materials in solid by embedding in agarose substrate is successfully investigated. The carbon-BNQDs exhibit biocompatibility on colorectal adenocarcinoma cells (Caco-2) and protective effects from chemical and oxidative stress on Caco-2, osteosarcoma (MG-63), and microglial (HMC-3) cells. Amplicon mRNA-seq analyses for the expression of 56 genes involve in oxidative-stress and inflammation are performed to evaluate the molecular events responsible for the cell protective effects of the carbon-BNQDs.
Collapse
Affiliation(s)
- Grazia M L Consoli
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, Catania, 95126, Italy
- CIB-Interuniversity Consortium for Biotechnologies U.O. of Catania, Via Flavia, 23/1, Trieste, 34148, Italy
| | - Ludovica Maugeri
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, Catania, 95125, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, Catania, Italy
| | - Antonino Gulino
- Department of Chemical Science, University of Catania and I.N.S.T.M. UdR of Catania, Via Santa Sofia 64, Catania, 95125, Italy
| | - Luisa D'Urso
- Department of Chemical Science, University of Catania and I.N.S.T.M. UdR of Catania, Via Santa Sofia 64, Catania, 95125, Italy
| | - Paolo Bonacci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, Catania, Italy
| | - Gianpiero Buscarino
- Department of Physic and Chemistry, University of Palermo, Via Archirafi 36, Palermo, Italy
| | - Giuseppe Forte
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, Catania, 95125, Italy
| | - Salvatore Petralia
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, Catania, 95126, Italy
- CIB-Interuniversity Consortium for Biotechnologies U.O. of Catania, Via Flavia, 23/1, Trieste, 34148, Italy
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, Catania, 95125, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, Catania, 95124, Italy
| |
Collapse
|
34
|
Devu C, Sreelakshmi S, Chandana R, Sivanand P, Santhy A, Lakshmi KCS, Rejithamol R. Recent progress in tannin and lignin blended metal oxides and metal sulfides as smart materials for electrochemical sensor applications. ANAL SCI 2024; 40:981-996. [PMID: 38517582 DOI: 10.1007/s44211-024-00544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/24/2024] [Indexed: 03/24/2024]
Abstract
Our technologically advanced civilization has made sensors an essential component. They have potential uses in the pharmaceutical sector, clinical analysis, food quality control, environmental monitoring, and other areas. One of the most active fields of analytical chemistry research is the fabrication of electrochemical sensors. An intriguing area of electroanalytical chemistry is the modification of electrodes using polymeric films. Due to their benefits, which include high adhesion to the electrode surface, chemical stability of the coating, superior selectivity, sensitivity, and homogeneity in electrochemical deposition, polymer-modified electrodes have attracted a great deal of interest in the electroanalytical sector. Conducting polymers are an important material for sensing devices because of their fascinating features, which include high mechanical flexibility, electrical conductivity, and the capacity to be electrochemically converted between electronically insulating and conducting states. Tannin or lignin nanomaterials can be an inter-linker leading to flexible and functional polymeric networks. There is a continuing demand for fast and simple analytical methods for the determination of many clinically important biomarkers, food additives, environmental pollutants etc. This review in a comprehensive way summarizes and discusses the various metal oxide and sulfide-incorporated tannin and lignin scaffolds using electrochemical sensing and biosensing.
Collapse
Affiliation(s)
- C Devu
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India
| | - S Sreelakshmi
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India
| | - R Chandana
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India
| | - P Sivanand
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India
| | - A Santhy
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India
| | - K C Seetha Lakshmi
- Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, 2638522, Japan
| | - R Rejithamol
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India.
| |
Collapse
|
35
|
Meng Y, Huang J, Ding J, Zhou H, Li Y, Zhou W. Mn-phenolic networks as synergistic carrier for STING agonists in tumor immunotherapy. Mater Today Bio 2024; 26:101018. [PMID: 38516172 PMCID: PMC10952078 DOI: 10.1016/j.mtbio.2024.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
The cGAS-STING pathway holds tremendous potential as a regulator of immune responses, offering a means to reshape the tumor microenvironment and enhance tumor immunotherapy. Despite the emergence of STING agonists, their clinical viability is hampered by stability and delivery challenges, as well as variations in STING expression within tumors. In this study, we present Mn-phenolic networks as a novel carrier for ADU-S100, a hydrophilic STING agonist, aimed at bolstering immunotherapy. These nanoparticles, termed TMA NMs, are synthesized through the coordination of tannic acid and manganese ions, with surface modification involving bovine serum albumin to enhance their colloidal stability. TMA NMs exhibit pH/GSH-responsive disintegration properties, enabling precise drug release. This effectively addresses drug stability issues and facilitates efficient intracellular drug delivery. Importantly, TMA NMs synergistically enhance the effects of ADU-S100 through the concurrent release of Mn2+, which serves as a sensitizer of the STING pathway, resulting in significant STING pathway activation. Upon systemic administration, these nanoparticles efficiently accumulate within tumors. The activation of STING pathways not only induces immunogenic cell death (ICD) in tumor cells but also orchestrates systemic remodeling of the immunosuppressive microenvironment. This includes the promotion of cytokine release, dendritic cell maturation, and T cell infiltration, leading to pronounced suppression of tumor growth. Combining with the excellent biocompatibility and biodegradability, this Mn-based nanocarrier represents a promising strategy for enhancing tumor immunotherapy through the cGAS-STING pathway.
Collapse
Affiliation(s)
- Yingcai Meng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
- Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jiaxin Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Haiyan Zhou
- Department of Pathology, School of Basic Medicine, Central South University, China
- Department of Pathology, Xiangya Hospital, Central South University, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha 410004, Hunan, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
36
|
Li J, Song J, Deng Z, Yang J, Wang X, Gao B, Zhu Y, Yang M, Long D, Luo X, Zhang M, Zhang M, Li R. Robust reactive oxygen species modulator hitchhiking yeast microcapsules for colitis alleviation by trilogically intestinal microenvironment renovation. Bioact Mater 2024; 36:203-220. [PMID: 38463553 PMCID: PMC10924178 DOI: 10.1016/j.bioactmat.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by chronic inflammatory processes of the intestinal tract of unknown origin. Current treatments lack understanding on how to effectively alleviate oxidative stress, relieve inflammation, as well as modulate gut microbiota for maintaining intestinal homeostasis synchronously. In this study, a novel drug delivery system based on a metal polyphenol network (MPN) was constructed via metal coordination between epigallocatechin gallate (EGCG) and Fe3+. Curcumin (Cur), an active polyphenolic compound, with distinguished anti-inflammatory activity was assembled and encapsulated into MPN to generate Cur-MPN. The obtained Cur-MPN could serve as a robust reactive oxygen species modulator by efficiently scavenging superoxide radical (O2•-) as well as hydroxyl radical (·OH). By hitchhiking yeast microcapsule (YM), Cur-MPN was then encapsulated into YM to obtain CM@YM. Our findings demonstrated that CM@YM was able to protect Cur-MPN to withstand the harsh gastrointestinal environment and enhance the targeting and retention abilities of the inflamed colon. When administered orally, CM@YM could alleviate DSS-induced colitis with protective and therapeutic effects by scavenging ROS, reducing pro-inflammatory cytokines, and regulating the polarization of macrophages to M1, thus restoring barrier function and maintaining intestinal homeostasis. Importantly, CM@YM also modulated the gut microbiome to a favorable state by improving bacterial diversity and transforming the compositional structure to an anti-inflammatory phenotype as well as increasing the content of short-chain fatty acids (SCFA) (such as acetic acid, propionic acid, and butyric acid). Collectively, with excellent biocompatibility, our findings indicate that synergistically regulating intestinal microenvironment will be a promising approach for UC.
Collapse
Affiliation(s)
- Jintao Li
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jian Song
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Zhichao Deng
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jian Yang
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiaoqin Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Bowen Gao
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yuanyuan Zhu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mei Yang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Dingpei Long
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400715, China
| | - Xiaoqin Luo
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Runqing Li
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
37
|
Liu Z, Wang T, Zhang L, Luo Y, Zhao J, Chen Y, Wang Y, Cao W, Zhao X, Lu B, Chen F, Zhou Z, Zheng L. Metal-Phenolic Networks-Reinforced Extracellular Matrix Scaffold for Bone Regeneration via Combining Radical-Scavenging and Photo-Responsive Regulation of Microenvironment. Adv Healthc Mater 2024; 13:e2304158. [PMID: 38319101 DOI: 10.1002/adhm.202304158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Indexed: 02/07/2024]
Abstract
The limited regulation strategies of the regeneration microenvironment significantly hinder bone defect repair effectiveness. One potential solution is using biomaterials capable of releasing bioactive ions and biomolecules. However, most existing biomaterials lack real-time control features, failing to meet high regulation requirements. Herein, a new Strontium (Sr) and epigallocatechin-3-gallate (EGCG) based metal-phenolic network with polydopamine (PMPNs) modification is prepared. This material reinforces a biomimetic scaffold made of extracellular matrix (ECM) and hydroxyapatite nanowires (nHAW). The PMPNs@ECM/nHAW scaffold demonstrates exceptional scavenging of free radicals and reactive oxygen species (ROS), promoting HUVECs cell migration and angiogenesis, inducing stem cell osteogenic differentiation, and displaying high biocompatibility. Additionally, the PMPNs exhibit excellent photothermal properties, further enhancing the scaffold's bioactivities. In vivo studies confirm that PMPNs@ECM/nHAW with near-infrared (NIR) stimulation significantly promotes angiogenesis and osteogenesis, effectively regulating the microenvironment and facilitating bone tissue repair. This research not only provides a biomimetic scaffold for bone regeneration but also introduces a novel strategy for designing advanced biomaterials. The combination of real-time photothermal intervention and long-term chemical intervention, achieved through the release of bioactive molecules/ions, represents a promising direction for future biomaterial development.
Collapse
Affiliation(s)
- Zhiqing Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Tianlong Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Lei Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yiping Luo
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jinhui Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yixing Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yao Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wentao Cao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xinyu Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Bingqiang Lu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Feng Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zifei Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Longpo Zheng
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Shanghai Trauma Emergency Center, Shanghai, 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis & Treatment Center, Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| |
Collapse
|
38
|
Jin X, Li X, Liu Y, Cui Y, Liang Y, Wang Q, Wang J, Yang R, Zhao J, Xia C. Self-assembly of metal-polyphenolic network on biomass for enhanced organic contaminant capturing from water with a high cost-to-benefit ratio. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134183. [PMID: 38574663 DOI: 10.1016/j.jhazmat.2024.134183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/24/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Nanomaterials present a vast potential as functional materials in environmental engineering. However, there are challenges with nanocomplex for recyclability, reliable/stable, and scale-up industrial integration. Here, a versatile, low-cost, stable and recycled easily metal-polyphenolic-based material carried by wood powder (bioCar-MPNs) adsorption platform was nano-engineered by a simple, fast self-assembly strategy, in which wood powder is an excellent substrate serving as a scaffold and stabilizer to prevent the nanocomplex from aggregating and is easier to recycle. Life cycle analysis highlights a green preparation process and environmental sustainability for bioCar-MPNs. The metal-polyphenolic nanocomplex coated on the wood surface in bioCar-MPNs presents a remarkable surface adsorption property (1829.4 mg/g) at a low cost (2.4 US dollars per 1000 g bioCar-MPNs) for organic dye. Quartz crystal microbalance analysis (QCM) demonstrates an existing strong affinity between polyphenols and organic dyes. Furthermore, Independent Gradient Model (IGM) and Hirshfeld surface analysis reveal the presence of the electrostatic interactions, π-π interactions, and hydrogen bonding. Meanwhile, adsorption efficiency of bioCar-MPNs maintains over 95% in the presence of co-existing ions (Na+, 0.5 M). Importantly, the reasonable utilization of biomass for water treatment can contribute to achieving the high-value and resource utilization of biomass materials.
Collapse
Affiliation(s)
- Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xueyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yubo Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yilong Cui
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yunyi Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qin Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Jin Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Rui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | | | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
39
|
Ye H, Esfahani EB, Chiu I, Mohseni M, Gao G, Yang T. Quantitative and rapid detection of nanoplastics labeled by luminescent metal phenolic networks using surface-enhanced Raman scattering. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134194. [PMID: 38583196 DOI: 10.1016/j.jhazmat.2024.134194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
The escalating prevalence of nanoplastics contamination in environmental ecosystems has emerged as a significant health hazard. Conventional analytical methods are suboptimal, hindered by their inefficiency in analyzing nanoplastics at low concentrations and their time-intensive processes. In this context, we have developed an innovative approach that employs luminescent metal-phenolic networks (L-MPNs) coupled with surface-enhanced Raman spectroscopy (SERS) to separate and label nanoplastics, enabling rapid, sensitive and quantitative detection. Our strategy utilizes L-MPNs composed of zirconium ions, tannic acid, and rhodamine B to uniformly label nanoplastics across a spectrum of sizes (50-500 nm) and types (e.g., polystyrene, polymethyl methacrylate, polylactic acid). Rhodamine B (RhB) functions as a Raman reporter within these L-MPNs-based SERS tags, providing the requisite sensitivity for trace measurement of nanoplastics. Moreover, the labeling with L-MPNs aids in the efficient separation of nanoplastics from liquid media. Utilizing a portable Raman instrument, our methodology offers cost-effective, swift, and field-deployable detection capabilities, with excellent sensitivity in nanoplastic analysis and a detection threshold as low as 0.1 μg/mL. Overall, this study proposes a highly promising strategy for the robust and sensitive analysis of a broad spectrum of particle analytes, underscored by the effective labeling performance of L-MPNs when coupled with SERS techniques.
Collapse
Affiliation(s)
- Haoxin Ye
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Ehsan Banayan Esfahani
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Ivy Chiu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Guang Gao
- Life Sciences Institute, The University of British Columbia, Vancouver V6T1Z2, Canada
| | - Tianxi Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada.
| |
Collapse
|
40
|
Li L, Yue T, Feng J, Zhang Y, Hou J, Wang Y. Recent progress in lactate oxidase-based drug delivery systems for enhanced cancer therapy. NANOSCALE 2024; 16:8739-8758. [PMID: 38602362 DOI: 10.1039/d3nr05952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Lactate oxidase (LOX) is a natural enzyme that efficiently consumes lactate. In the presence of oxygen, LOX can catalyse the formation of pyruvate and hydrogen peroxide (H2O2) from lactate. This process led to acidity alleviation, hypoxia, and a further increase in oxidative stress, alleviating the immunosuppressive state of the tumour microenvironment (TME). However, the high cost of LOX preparation and purification, poor stability, and systemic toxicity limited its application in tumour therapy. Therefore, the rational application of drug delivery systems can protect LOX from the organism's environment and maintain its catalytic activity. This paper reviews various LOX-based drug-carrying systems, including inorganic nanocarriers, organic nanocarriers, and inorganic-organic hybrid nanocarriers, as well as other non-nanocarriers, which have been used for tumour therapy in recent years. In addition, this area's challenges and potential for the future are highlighted.
Collapse
Affiliation(s)
- Lu Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jie Feng
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yujun Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jun Hou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
41
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
42
|
Tomasetig D, Wang C, Hondl N, Friedl A, Ejima H. Exploring Caffeic Acid and Lignosulfonate as Key Phenolic Ligands for Metal-Phenolic Network Assembly. ACS OMEGA 2024; 9:20444-20453. [PMID: 38737076 PMCID: PMC11080005 DOI: 10.1021/acsomega.4c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Films formed by metals and phenols through a coordinative interaction have been extensively studied in previous years. We report the successful formation of MPN films from the phenolic compounds caffeic acid and lignosulfonate using Fe3+ ions for complexation. The likewise examined p-coumaryl alcohol showed some MPN film formation tendency, while for coniferyl alcohol and sinapyl alcohol, no successful film buildup could be observed. These newly formed films were compared to tannic acid-Fe3+ films as a reference. Film growth and degradation were tracked by using UV-vis absorption spectroscopy. The films were degradable under different conditions such as alkaline environments or in the presence of a strong chelator. Small hollow capsules with a diameter of 3 μm and thicknesses in the nanometer range were produced. Additionally, the prepared films showed varying colors and levels of wettability. By utilizing the films' coating properties, we successfully dyed human hair in various colors.
Collapse
Affiliation(s)
- Daniela Tomasetig
- Department
of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, Vienna 1060, Austria
| | - Chenyu Wang
- Department
of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Nikolaus Hondl
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, Vienna 1060, Austria
| | - Anton Friedl
- Institute
of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, Vienna 1060, Austria
| | - Hirotaka Ejima
- Department
of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
43
|
Pal J, Sharma M, Tiwari A, Tiwari V, Kumar M, Sharma A, Hassan Almalki W, Alzarea SI, Kazmi I, Gupta G, Kumarasamy V, Subramaniyan V. Oxidative Coupling and Self-Assembly of Polyphenols for the Development of Novel Biomaterials. ACS OMEGA 2024; 9:19741-19755. [PMID: 38737049 PMCID: PMC11080037 DOI: 10.1021/acsomega.3c08528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 05/14/2024]
Abstract
In recent years, the development of biomaterials from green organic sources with nontoxicity and hyposensitivity has been explored for a wide array of biotherapeutic applications. Polyphenolic compounds have unique structural features, and self-assembly by oxidative coupling allows molecular species to rearrange into complex biomaterial that can be used for multiple applications. Self-assembled polyphenolic structures, such as hollow spheres, can be designed to respond to various chemical and physical stimuli that can release therapeutic drugs smartly. The self-assembled metallic-phenol network (MPN) has been used for modulating interfacial properties and designing biomaterials, and there are several advantages and challenges associated with such biomaterials. This review comprehensively summarizes current challenges and prospects of self-assembled polyphenolic hollow spheres and MPN coatings and self-assembly for biomedical applications.
Collapse
Affiliation(s)
- Jyoti Pal
- Department
of Chemistry and Toxicology, National Forensic
Sciences University, Sector 3 Rohini, Delhi 110085 India
| | - Manu Sharma
- Department
of Chemistry and Toxicology, National Forensic
Sciences University, Sector 3 Rohini, Delhi 110085 India
| | - Abhishek Tiwari
- Pharmacy
Academy, IFTM University, Lodhipur-Rajput, Moradabad, U.P. 244102, India
| | - Varsha Tiwari
- Pharmacy
Academy, IFTM University, Lodhipur-Rajput, Moradabad, U.P. 244102, India
| | - Manish Kumar
- Department
of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Ajay Sharma
- School of
Pharmaceutical Sciences, Delhi Pharmaceutical
Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Waleed Hassan Almalki
- Department
of Pharmacology, College of Pharmacy, Umm
Al-Qura University, Makkah 21421, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Al-Jouf, Sakaka, 72388, Saudi Arabia
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gaurav Gupta
- Centre for
Global Health Research, Saveetha Medical College, Saveetha Institute
of Medical and Technical Sciences, Saveetha
University, Chennai, Tamil Nadu 602105, India
- School of
Pharmacy, Graphic Era Hill University, Dehradun 248007, India
- School
of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017 Jaipur, India
| | - Vinoth Kumarasamy
- Department
of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology
Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| |
Collapse
|
44
|
Liu J, Shi Y, Zhao Y, Liu Y, Yang X, Li K, Zhao W, Han J, Li J, Ge S. A Multifunctional Metal-Phenolic Nanocoating on Bone Implants for Enhanced Osseointegration via Early Immunomodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307269. [PMID: 38445899 PMCID: PMC11095205 DOI: 10.1002/advs.202307269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/21/2024] [Indexed: 03/07/2024]
Abstract
Surface modification is an important approach to improve osseointegration of the endosseous implants, however it is still desirable to develop a facile yet efficient coating strategy. Herein, a metal-phenolic network (MPN) is proposed as a multifunctional nanocoating on titanium (Ti) implants for enhanced osseointegration through early immunomodulation. With tannic acid (TA) and Sr2+ self-assembled on Ti substrates, the MPN coatings provided a bioactive interface, which can facilitate the initial adhesion and recruitment of bone marrow mesenchymal stem cells (BMSCs) and polarize macrophage toward M2 phenotype. Furthermore, the TA-Sr coatings accelerated the osteogenic differentiation of BMSCs. In vivo evaluations further confirmed the enhanced osseointegration of TA-Sr modified implants via generating a favorable osteoimmune microenvironment. In general, these results suggest that TA-Sr MPN nanocoating is a promising strategy for achieving better and faster osseointegration of bone implants, which can be easily utilized in future clinical applications.
Collapse
Affiliation(s)
- Jin Liu
- Department of Biomaterial & Periodontology & ImplantologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinan250012China
| | - Yilin Shi
- Department of Biomaterial & Periodontology & ImplantologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinan250012China
| | - Yajun Zhao
- Department of Biomaterial & Periodontology & ImplantologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinan250012China
| | - Yue Liu
- Department of Biomaterial & Periodontology & ImplantologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinan250012China
| | - Xiaoru Yang
- Department of Biomaterial & Periodontology & ImplantologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinan250012China
| | - Kai Li
- Department of Biomaterial & Periodontology & ImplantologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinan250012China
| | - Weiwei Zhao
- Department of Biomaterial & Periodontology & ImplantologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinan250012China
| | - Jianmin Han
- Central Laboratory,Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of StomatologyBeijing100081China
| | - Jianhua Li
- Department of Biomaterial & Periodontology & ImplantologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinan250012China
| | - Shaohua Ge
- Department of Biomaterial & Periodontology & ImplantologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinan250012China
| |
Collapse
|
45
|
Tong Q, Yi Z, Ma L, Tan Y, Cao X, Liu D, Li X. Influences of carboxymethyl chitosan upon stabilization and gelation of O/W Pickering emulsions in the presence of inorganic salts. Carbohydr Polym 2024; 331:121902. [PMID: 38388045 DOI: 10.1016/j.carbpol.2024.121902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
The objective of this study was to investigate the effects of carboxymethyl chitosan (CMCS) on the stabilization and gelation of oil-in-water (O/W) Pickering emulsions (PEs) with polyphenol-amino acid particles in the presence of inorganic salts. The results revealed that the CMCS-induced depletion interactions contributed to improving the emulsification ability and interfacial adsorption efficiency of polyphenol-amino acid particles as well as constructing the network structures in the continuous phase. These relevant changes collectively resulted in elevating stability, viscosity and moduli of PEs. The additional effects of different inorganic salts with varying additions were further investigated, and the addition-dependent phenomena were observed. At low additions of inorganic salts, the occurrence of the chelation of inorganic salts with CMCS consolidated the constructed network structure, favorable to the gelation of PEs. With increasing additions, this chelation effect became stronger which compromised the CMCS-induced depletion, gradually leading to destabilization of PEs. In terms of ion species, the more pronounced effect on emulsion stability was achieved with calcium ions than with potassium and iron ions. This study expects to provide a new perspective on the extending application of cationic CMCS for improving the stability of O/W PEs in the food industry.
Collapse
Affiliation(s)
- Qiulan Tong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yunfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Xiaoyu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Danni Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
46
|
Xiao Q, Shang L, Peng Y, Zhang L, Wei Y, Zhao D, Zhao Y, Wan J, Wang Y, Wang D. Rational Design of Coordination Polymers Composited Hollow Multishelled Structures for Drug Delivery. SMALL METHODS 2024:e2301664. [PMID: 38678518 DOI: 10.1002/smtd.202301664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/30/2024] [Indexed: 05/01/2024]
Abstract
Multifunctional drug delivery systems (DDS) are in high demand for effectively targeting specific cells, necessitating excellent biocompatibility, precise release mechanisms, and sustained release capabilities. The hollow multishelled structure (HoMS) presents a promising solution, integrating structural and compositional design for efficient DDS development amidst complex cellular environments. Herein, starting from a Fe-based metal-organic framework (MOF), amorphous coordination polymers (CP) composited HoMS with controlled shell numbers are fabricated by balancing the rate of MOF decomposition and shell formation. Fe-CP HoMS loaded with DOX is utilized for synergistic chemotherapy and chemodynamic therapy, offering excellent responsive drug release capability (excellent pH-triggered drug release 82% within 72 h at pH 5.0 solution with doxorubicin (DOX) loading capacity of 284 mg g-1). In addition to its potent chemotherapy attributes, Fe-CP-HoMS possesses chemodynamic therapy potential by continuously catalyzing H2O2 to generate ·OH species within cancer cells, thus effectively inhibiting cancer cell proliferation. DOX@3S-Fe-CP-HoMS, at a concentration of 12.5 µg mL-1, demonstrates significant inhibitory effects on cancer cells while maintaining minimal cytotoxicity toward normal cells. It is envisioned that CP-HoMS could serve as an effective and biocompatible platform for the advancement of intelligent drug delivery systems in the realm of cancer therapy.
Collapse
Affiliation(s)
- Qian Xiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Lingling Shang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yang Peng
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ludan Zhang
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yanze Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Decai Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yasong Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiawei Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yuguang Wang
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
47
|
Chen R, Jiang Z, Cheng Y, Ye J, Li S, Xu Y, Ye Z, Shi Y, Ding J, Zhao Y, Zheng H, Wu F, Lin G, Xie C, Yao Q, Kou L. Multifunctional iron-apigenin nanocomplex conducting photothermal therapy and triggering augmented immune response for triple negative breast cancer. Int J Pharm 2024; 655:124016. [PMID: 38503397 DOI: 10.1016/j.ijpharm.2024.124016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/27/2024] [Accepted: 03/16/2024] [Indexed: 03/21/2024]
Abstract
Triple negative breast cancer (TNBC) presents a formidable challenge due to its low sensitivity to many chemotherapeutic drugs and a relatively low overall survival rate in clinical practice. Photothermal therapy has recently garnered substantial interest in cancer treatment, owing to its swift therapeutic effectiveness and minimal impact on normal cells. Metal-polyphenol nanostructures have recently garnered significant attention as photothermal transduction agents due to their facile preparation and favorable photothermal properties. In this study, we employed a coordinated approach involving Fe3+ and apigenin, a polyphenol compound, to construct the nanostructure (nFeAPG), with the assistance of β-CD and DSPE-PEG facilitating the formation of the complex nanostructure. In vitro research demonstrated that the formed nFeAPG could induce cell death by elevating intracellular oxidative stress, inhibiting antioxidative system, and promoting apoptosis and ferroptosis, and near infrared spectrum irradiation further strengthen the therapeutic outcome. In 4T1 tumor bearing mice, nFeAPG could effectively accumulate into tumor site and exhibit commendable control over tumor growth. Futher analysis demonstrated that nFeAPG ameliorated the suppressed immune microenvironment by augmenting the response of DC cells and T cells. This study underscores that nFeAPG encompasses a multifaceted capacity to combat TNBC, holding promise as a compelling therapeutic strategy for TNBC treatment.
Collapse
Affiliation(s)
- Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Zewei Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Yingfeng Cheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jinyao Ye
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou 325000, China; Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou 325000, China
| | - Shize Li
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yitianhe Xu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhanzheng Ye
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yifan Shi
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jie Ding
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yingyi Zhao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hailun Zheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Fugen Wu
- Department of Pediatric, The First People's Hospital of Wenling, Taizhou, China
| | - Guangyong Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Congying Xie
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou 325000, China; Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou 325000, China.
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China.
| |
Collapse
|
48
|
Li L, Li H, Diao Z, Zhou H, Bai Y, Yang L. Development of a tannic acid- and silicate ion-functionalized PVA-starch composite hydrogel for in situ skeletal muscle repairing. J Mater Chem B 2024; 12:3917-3926. [PMID: 38536012 DOI: 10.1039/d3tb03006g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The repair capacity of skeletal muscle is severely diminished in massive skeletal muscle injuries accompanied by inflammation, resulting in muscle function loss and scar tissue formation. In the current work, we developed a tannic acid (TA)- and silicate ion-functionalized tissue adhesive poly(vinyl alcohol) (PVA)-starch composite hydrogel, referred to as PSTS (PVA-starch-TA-SiO32-). It was formed based on the hydrogen bonding of TA to organic polymers, as well as silicate-TA ligand interaction. PSTS could be gelatinized in minutes at room temperature with crosslinked network formation, making it applicable for injection. Further investigations revealed that PSTS had skeletal muscle-comparable conductivity and modulus to act as a temporary platform for muscle repairing. Moreover, PSTS could release TA and silicate ions in situ to inhibit bacterial growth, induce vascularization, and reduce oxidation, paving the way to the possibility of creating a favorable microenvironment for skeletal muscle regeneration and tissue fibrosis control. The in vivo model confirmed that PSTS could enhance muscle fiber regeneration and myotube formation, as well as reduce infection and inflammation risk. These findings thereby implied the great potential of PSTS in the treatment of formidable skeletal muscle injuries.
Collapse
Affiliation(s)
- Longkang Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Huipeng Li
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Zhentian Diao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Huan Zhou
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Yanjie Bai
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
- Department of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Lei Yang
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| |
Collapse
|
49
|
Yang X, Li C, Liu S, Li Y, Zhang X, Wang Q, Ye J, Lu Y, Fu Y, Xu J. Gallic acid-loaded HFZIF-8 for tumor-targeted delivery and thermal-catalytic therapy. NANOSCALE 2024. [PMID: 38651386 DOI: 10.1039/d4nr01102c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
"Transition" metal-coordinated plant polyphenols are a type of promising antitumor nanodrugs owing to their high biosafety and catalytic therapy potency; however, the major obstacle restricting their clinical application is their poor tumor accumulation. Herein, Fe-doped ZIF-8 was tailored using tannic acid (TA) into a hollow mesoporous nanocarrier for gallic acid (GA) loading. After hyaluronic acid (HA) modification, the developed nanosystem of HFZIF-8/GA@HA was used for the targeted delivery of Fe ions and GA, thereby intratumorally achieving the synthesis of an Fe-GA coordinated complex. The TA-etching strategy facilitated the development of a cavitary structure and abundant coordination sites of ZIF-8, thus ensuring an ideal loading efficacy of GA (23.4 wt%). When HFZIF-8/GA@HA accumulates in the tumor microenvironment (TME), the framework is broken due to the competitive protonation ability of overexpressed protons in the TME. Interestingly, the intratumoral degradation of HFZIF-8/GA@HA provides the opportunity for the in situ "meeting" of GA and Fe ions, and through the coordination of polyhydroxyls assisted by conjugated electrons on the benzene ring, highly stable Fe-GA nanochelates are formed. Significantly, owing to the electron delocalization effect of GA, intratumorally coordinated Fe-GA could efficiently absorb second near-infrared (NIR-II, 1064 nm) laser irradiation and transfer it into thermal energy with a conversion efficiency of 36.7%. The photothermal performance could speed up the Fenton reaction rate of Fe-GA with endogenous H2O2 for generating more hydroxyl radicals, thus realizing thermally enhanced chemodynamic therapy. Overall, our research findings demonstrate that HFZIF-8/GA@HA has potential as a safe and efficient anticancer nanodrug.
Collapse
Affiliation(s)
- Xing Yang
- Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunsheng Li
- Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Shuang Liu
- Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Yunlong Li
- Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Xinyu Zhang
- Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Qiang Wang
- Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Jin Ye
- Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Yong Lu
- Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
- School of Laboratory Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jiating Xu
- Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
- College of Forestry, Beijing Forestry University, Beijing 100083, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
50
|
Choi S, Rahman RT, Kim BM, Kang J, Kim J, Shim J, Nam YS. Photochemically Inert Broad-Spectrum Sunscreen by Metal-Phenolic Network Coatings of Titanium Oxide Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16767-16777. [PMID: 38512769 DOI: 10.1021/acsami.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Titanium dioxide (TiO2) nanoparticles are extensively used as a sunscreen filter due to their long-active ultraviolet (UV)-blocking performance. However, their practical use is being challenged by high photochemical activities and limited absorption spectrum. Current solutions include the coating of TiO2 with synthetic polymers and formulating a sunscreen product with additional organic UV filters. Unfortunately, these approaches are no longer considered effective because of recent environmental and public health issues. Herein, TiO2-metal-phenolic network hybrid nanoparticles (TiO2-MPN NPs) are developed as the sole active ingredient for sunscreen products through photochemical suppression and absorption spectrum widening. The MPNs are generated by the complexation of tannic acid with multivalent metal ions, forming a robust coating shell. The TiO2-MPN hybridization extends the absorption region to the high-energy-visible (HEV) light range via a new ligand-to-metal charge transfer photoexcitation pathway, boosting both the sun protection factor and ultraviolet-A protection factor about 4-fold. The TiO2-MPN NPs suppressed the photoinduced reactive oxygen species by 99.9% for 6 h under simulated solar irradiation. Accordingly, they substantially alleviated UV- and HEV-induced cytotoxicity of fibroblasts. This work outlines a new tactic for the eco-friendly and biocompatible design of sunscreen agents by selectively inhibiting the photocatalytic activities of semiconductor nanoparticles while broadening their optical spectrum.
Collapse
Affiliation(s)
- Saehan Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Rafia Tasnim Rahman
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bo-Min Kim
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Juyeon Kang
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Jeonga Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jongwon Shim
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|