1
|
Queffélec C, Pati PB, Pellegrin Y. Fifty Shades of Phenanthroline: Synthesis Strategies to Functionalize 1,10-Phenanthroline in All Positions. Chem Rev 2024; 124:6700-6902. [PMID: 38747613 DOI: 10.1021/acs.chemrev.3c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
1,10-Phenanthroline (phen) is one of the most popular ligands ever used in coordination chemistry due to its strong affinity for a wide range of metals with various oxidation states. Its polyaromatic structure provides robustness and rigidity, leading to intriguing features in numerous fields (luminescent coordination scaffolds, catalysis, supramolecular chemistry, sensors, theranostics, etc.). Importantly, phen offers eight distinct positions for functional groups to be attached, showcasing remarkable versatility for such a simple ligand. As a result, phen has become a landmark molecule for coordination chemists, serving as a must-use ligand and a versatile platform for designing polyfunctional arrays. The extensive use of substituted phenanthroline ligands with different metal ions has resulted in a diverse array of complexes tailored for numerous applications. For instance, these complexes have been utilized as sensitizers in dye-sensitized solar cells, as luminescent probes modified with antibodies for biomaterials, and in the creation of elegant supramolecular architectures like rotaxanes and catenanes, exemplified by Sauvage's Nobel Prize-winning work in 2016. In summary, phen has found applications in almost every facet of chemistry. An intriguing aspect of phen is the specific reactivity of each pair of carbon atoms ([2,9], [3,8], [4,7], and [5,6]), enabling the functionalization of each pair with different groups and leading to polyfunctional arrays. Furthermore, it is possible to differentiate each position in these pairs, resulting in non-symmetrical systems with tremendous versatility. In this Review, the authors aim to compile and categorize existing synthetic strategies for the stepwise polyfunctionalization of phen in various positions. This comprehensive toolbox will aid coordination chemists in designing virtually any polyfunctional ligand. The survey will encompass seminal work from the 1950s to the present day. The scope of the Review will be limited to 1,10-phenanthroline, excluding ligands with more intracyclic heteroatoms or fused aromatic cycles. Overall, the primary goal of this Review is to highlight both old and recent synthetic strategies that find applicability in the mentioned applications. By doing so, the authors hope to establish a first reference for phenanthroline synthesis, covering all possible positions on the backbone, and hope to inspire all concerned chemists to devise new strategies that have not yet been explored.
Collapse
Affiliation(s)
| | | | - Yann Pellegrin
- Nantes Université, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
2
|
Fu H, Pramanik S, Aprahamian I. Metal and Proton Relay-Controlled Hierarchical Multistep Switching Cascade. J Am Chem Soc 2023; 145:19554-19560. [PMID: 37643319 DOI: 10.1021/jacs.3c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Transition metals play an important role in many biological processes including cellular regulation and signal transduction. Emulating such processes on the molecular level, while challenging, can help us learn how to manipulate intermolecular communication, an important requirement for the development of solution-based molecular machines. In this work, we demonstrate a transition metal-based artificial multistep switching cascade that exhibits intrinsic hierarchical level control. The process starts with Zn(II), which initiates a transition metal relay by displacing a macrocycle-encapsulated Pd(II). The latter then binds to a hydrazone switch leading to coordination-coupled deprotonation (CCD). Finally, the proton generated through CCD activates the E/Z isomerization of a second noncoordinating pH-sensitive hydrazone switch. This whole multistep process can be reset to the original state by removing the Pd(II) from the system.
Collapse
Affiliation(s)
- Heyifei Fu
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Susnata Pramanik
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Ivan Aprahamian
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
3
|
Grinde NA, Kehoe ZR, Vang HG, Mancheski LJ, Bosch E, Southern SA, Bryce DL, Bowling NP. Rapid Access to Encapsulated Molecular Rotors via Coordination-Driven Macrocycle Formation. Chemistry 2023; 29:e202301745. [PMID: 37308699 DOI: 10.1002/chem.202301745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Macrocycle formation that relies upon trans metal coordination of appropriately placed pyridine ligands within an arylene ethynylene construct provides rapid and reliable access to molecular rotators encapsulated within macrocyclic stators. Showing no significant close contacts to the central rotators, X-ray crystallography of AgI -coordinated macrocycles provides plausibility for unobstructed rotation or wobbling of rotators within the central cavity. Solid-state 13 C NMR of PdII -coordinated macrocycles supports the notion of unobstructed movement of simple arenes in the crystal lattice. Solution 1 H NMR studies indicate complete and immediate macrocycle formation upon the introduction of PdII to the pyridyl-based ligand at room temperature. Moreover, the formed macrocycle is stable in solution; a lack of significant changes in the 1 H NMR spectrum upon cooling to -50 °C is consistent with the absence of dynamic behavior. The synthetic route to these macrocycles is expedient and modular, providing access to rather complex constructs in four simple steps involving Sonogashira coupling and deprotection reactions.
Collapse
Affiliation(s)
- Noah A Grinde
- Chemistry Department, University of Wisconsin-Stevens Point, 2101 Fourth Avenue, Stevens Point, WI, 54481, USA
| | - Zachary R Kehoe
- Chemistry Department, University of Wisconsin-Stevens Point, 2101 Fourth Avenue, Stevens Point, WI, 54481, USA
| | - Herh G Vang
- Chemistry Department, University of Wisconsin-Stevens Point, 2101 Fourth Avenue, Stevens Point, WI, 54481, USA
| | - Lucas J Mancheski
- Chemistry Department, University of Wisconsin-Stevens Point, 2101 Fourth Avenue, Stevens Point, WI, 54481, USA
| | - Eric Bosch
- Chemistry and Biochemistry Department, Missouri State University, 901 South National Avenue, Springfield, MO, 65897, USA
| | - Scott A Southern
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Nathan P Bowling
- Chemistry Department, University of Wisconsin-Stevens Point, 2101 Fourth Avenue, Stevens Point, WI, 54481, USA
| |
Collapse
|
4
|
Andréasson J, Pischel U. Light-stimulated molecular and supramolecular systems for information processing and beyond. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213695] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Schmittel M, Howlader P. Toward Molecular Cybernetics - the Art of Communicating Chemical Systems. CHEM REC 2020; 21:523-543. [PMID: 33350570 DOI: 10.1002/tcr.202000126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/10/2022]
Abstract
The emerging field of molecular cybernetics has the potential to widely broaden our perception of chemistry. Chemistry will develop beyond its current focus that is mainly concerned with single transformations, pure compounds, and/or defined mixtures. On this way, chemistry will become autonomous, networked and smart through communicating molecules each of which serves a control engineering purpose, like the set of wheels in the machinery of life. The present personal account describes our latest developments in this field.
Collapse
Affiliation(s)
- Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Prodip Howlader
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| |
Collapse
|
6
|
Biswas PK, Saha S, Gaikwad S, Schmittel M. Reversible Multicomponent AND Gate Triggered by Stoichiometric Chemical Pulses Commands the Self-Assembly and Actuation of Catalytic Machinery. J Am Chem Soc 2020; 142:7889-7897. [DOI: 10.1021/jacs.0c01315] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Sudhakar Gaikwad
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
7
|
Remón P, González D, Romero MA, Basílio N, Pischel U. Chemical signal cascading in a supramolecular network. Chem Commun (Camb) 2020; 56:3737-3740. [PMID: 32124901 DOI: 10.1039/d0cc00217h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A chemically-triggered signalling cascade between cucurbituril host-guest complexes by means of multi-step competitive displacement is demonstrated. The inter-complex communication of chemical information yields the release of bio-relevant cargo, reminiscent of cellular signalling pathways.
Collapse
Affiliation(s)
- Patricia Remón
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain.
| | | | | | | | | |
Collapse
|
8
|
Saha S, Biswas PK, Paul I, Schmittel M. Selective and reversible interconversion of nanosliders commanded by remote control via metal-ion signaling. Chem Commun (Camb) 2019; 55:14733-14736. [PMID: 31750846 DOI: 10.1039/c9cc07415e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A multi-device network mainly consisting of two two-component nanosliders was formed by self-sorting of six components. Addition/removal of zinc(ii) ions reversibly reorganized the network by chemical signaling involving the translocation of copper(i) from a relay station followed by the selective disassembly/assembly of one of both multi-component devices. The thus liberated machine parts served to erect a three-component nanoslider alongside the other unchanged two-component nanoslider.
Collapse
Affiliation(s)
- Suchismita Saha
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | | | | | | |
Collapse
|
9
|
Ghosh A, Paul I, Schmittel M. Time-Dependent Pulses of Lithium Ions in Cascaded Signaling and Out-of-Equilibrium (Supra)molecular Logic. J Am Chem Soc 2019; 141:18954-18957. [DOI: 10.1021/jacs.9b10763] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Amit Ghosh
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Indrajit Paul
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
10
|
Paul I, Ghosh A, Bolte M, Schmittel M. Remote Control of the Synthesis of a [2]Rotaxane and its Shuttling via Metal-Ion Translocation. ChemistryOpen 2019; 8:1355-1360. [PMID: 31763127 PMCID: PMC6863578 DOI: 10.1002/open.201900293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Remote control in an eight-component network commanded both the synthesis and shuttling of a [2]rotaxane via metal-ion translocation, the latter being easily monitored by distinct colorimetric and fluorimetric signals. Addition of zinc(II) ions to the red colored copper-ion relay station rapidly liberated copper(I) ions and afforded the corresponding zinc complex that was visualized by a bright sky blue fluorescence at 460 nm. In a mixture of all eight components of the network, the liberated copper(I) ions were translocated to a macrocycle that catalyzed formation of a rotaxane by a double-click reaction of acetylenic and diazide compounds. The shuttling frequency in the copper-loaded [2]rotaxane was determined to k 298=30 kHz (ΔH ≠=62.3±0.6 kJ mol-1, ΔS ≠=50.1±5.1 J mol-1 K-1, ΔG ≠ 298=47.4 kJ mol-1). Removal of zinc(II) ions from the mixture reversed the system back generating the metal-free rotaxane. Further alternate addition and removal of Zn2+ reversibly controlled the shuttling mode of the rotaxane in this eight-component network where the ion translocation status was monitored by the naked eye.
Collapse
Affiliation(s)
- Indrajit Paul
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversität SiegenAdolf-Reichwein-Str. 2D-57068SiegenGermany
| | - Amit Ghosh
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversität SiegenAdolf-Reichwein-Str. 2D-57068SiegenGermany
| | - Michael Bolte
- Institut für Anorganische und Analytische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 7D-60438Frankfurt (Main)Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversität SiegenAdolf-Reichwein-Str. 2D-57068SiegenGermany
| |
Collapse
|
11
|
Goswami A, Saha S, Biswas PK, Schmittel M. (Nano)mechanical Motion Triggered by Metal Coordination: from Functional Devices to Networked Multicomponent Catalytic Machinery. Chem Rev 2019; 120:125-199. [DOI: 10.1021/acs.chemrev.9b00159] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Abir Goswami
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| |
Collapse
|
12
|
Gaikwad S, Özer MS, Pramanik S, Schmittel M. Three-state switching in a double-pole change-over nanoswitch controlled by redox-dependent self-sorting. Org Biomol Chem 2019; 17:7956-7963. [PMID: 31408072 DOI: 10.1039/c9ob01456j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The four-arm nanomechanical switch 1 with four different terminals exhibits two switching arms (contacts A and D) and two distinct stations for binding (contacts B and C). In switching State I, the azaterpyridine arm is intramolecularly coordinated to a zinc(ii) porphyrin station (connection A ↔ B) while contact D (a ferrocenylbipyridine unit) and contact C (phenanthroline) remain disconnected. After addition of copper(i) ions (State II) both connections A ↔ B and C ↔ D are established. Upon one-electron oxidation, double-pole change-over switching cleaves both connections A ↔ B & C ↔ D and establishes the new connection A ↔ C (State III). Fully reversible three-state switching (State I → State II → State III → State II → State I) was achieved by adding appropriate chemical and redox stimuli.
Collapse
Affiliation(s)
- Sudhakar Gaikwad
- Center of Micro-and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen Adolf-Reichwein-Strasse-2, 57068 Siegen, Germany.
| | | | | | | |
Collapse
|
13
|
Caprice K, Pupier M, Bauzá A, Frontera A, Cougnon FBL. Synchronized On/Off Switching of Four Binding Sites for Water in a Molecular Solomon Link. Angew Chem Int Ed Engl 2019; 58:8053-8057. [DOI: 10.1002/anie.201902278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Kenji Caprice
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Marion Pupier
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Antonio Bauzá
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Antonio Frontera
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Fabien B. L. Cougnon
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| |
Collapse
|
14
|
Caprice K, Pupier M, Bauzá A, Frontera A, Cougnon FBL. Synchronized On/Off Switching of Four Binding Sites for Water in a Molecular Solomon Link. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kenji Caprice
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Marion Pupier
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Antonio Bauzá
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Antonio Frontera
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Fabien B. L. Cougnon
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| |
Collapse
|
15
|
Paul I, Mittal N, De S, Bolte M, Schmittel M. Catch–Release System for Dosing and Recycling Silver(I) Catalyst with Status of Catalytic Activity Reported by Fluorescence. J Am Chem Soc 2019; 141:5139-5143. [DOI: 10.1021/jacs.9b01182] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Indrajit Paul
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein Straße 2, D-57068 Siegen, Germany
| | - Nikita Mittal
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein Straße 2, D-57068 Siegen, Germany
| | - Soumen De
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein Straße 2, D-57068 Siegen, Germany
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt (Main), Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein Straße 2, D-57068 Siegen, Germany
| |
Collapse
|
16
|
Heteroleptic copper phenanthroline complexes in motion: From stand-alone devices to multi-component machinery. Coord Chem Rev 2018; 376:478-505. [PMID: 32287354 PMCID: PMC7126816 DOI: 10.1016/j.ccr.2018.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/07/2018] [Accepted: 08/13/2018] [Indexed: 12/27/2022]
Abstract
Two and a half decades of copper phenanthroline-based switches, devices and machines have illustrated the rich dynamic nature of these metal complexes. With an emphasis on the metal-ligand dissociation as the rate-determining step the present review summarizes not only spectacular examples of machinery, but also highlights rate data collected during a variety of investigations. Copper-ligand exchange reactions are mostly triggered by redox processes, addition of metal ions or addition of ligands. While the rate data spread over >8 orders of magnitude, individual effects of solvent, steric bulk, flexibility, σ-basicity and the trajectory (intra- vs. intermolecular dissociation) have large impact. Unfortunately, in many cases the exact mechanism in the rate-determining step (nucleophile-induced vs. monomolecular metal-ligand dissociation) has not been determined, suggesting to invest further efforts in the physical (in)organic chemistry of such coordination-driven systems.
Collapse
|
17
|
Dynamic Functional Molecular Systems: From Supramolecular Structures to Multi‐Component Machinery and to Molecular Cybernetics. Isr J Chem 2018. [DOI: 10.1002/ijch.201800124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Abstract
In this paper we elaborate on recently developed molecular switch architectures and how these new systems can help with the realization of new functions and advancement of artificial molecular machines. Progress in chemically and photoinduced switches and motors is summarized and contextualized such that the reader may gain an appreciation for the novel tools that have come about in the past decade. Many of these systems offer distinct advantages over commonly employed switches, including improved fidelity, addressability, and robustness. Thus, this paper serves as a jumping-off point for researchers seeking new switching motifs for specific applications, or ones that address the limitations of presently available systems.
Collapse
Affiliation(s)
- Jared D Harris
- Department of Chemistry, Dartmouth College, Hanover, NH 03755
| | - Mark J Moran
- Department of Chemistry, Dartmouth College, Hanover, NH 03755
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
19
|
Ghosh A, Paul I, Adlung M, Wickleder C, Schmittel M. Oscillating Emission of [2]Rotaxane Driven by Chemical Fuel. Org Lett 2018; 20:1046-1049. [PMID: 29384684 DOI: 10.1021/acs.orglett.7b03996] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A molecular shuttle consisting of a dibenzo-24-crown-8 macrocycle and an axle with two degenerate peripheral triazolium stations, a central dibenzyl ammonium station, and two anthracenes stoppers was exposed to 2-cyano-2-phenylpropanoic acid as a chemical fuel. Protonation/deprotonation of the amine reversibly switches the rotaxane from a static and little emissive to a dynamic fluorescent shuttling device, the latter exhibiting rapid motion (15 kHz at 25 °C). Four fuel cycles were run.
Collapse
Affiliation(s)
- Amit Ghosh
- Center of Micro- and Nanochemistry and Engineering , Organische Chemie I, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Indrajit Paul
- Center of Micro- and Nanochemistry and Engineering , Organische Chemie I, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Matthias Adlung
- Center of Micro- and Nanochemistry and Engineering , Anorganische Chemie II, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Claudia Wickleder
- Center of Micro- and Nanochemistry and Engineering , Anorganische Chemie II, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering , Organische Chemie I, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| |
Collapse
|
20
|
Schmittel M. Networking switches for smart functions using copper signaling and dynamic heteroleptic complexation. Dalton Trans 2018; 47:6654-6659. [DOI: 10.1039/c8dt01010b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This personal frontier account describes our recent progress in networking nanoswitches to generate emergent functions, such as catalytic machinery, and identifies the key impediments in mastering the paradigm shift from pure compounds to smart mixtures.
Collapse
Affiliation(s)
- Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| |
Collapse
|
21
|
Gaikwad S, Pramanik S, De S, Schmittel M. A high-speed network of nanoswitches for on/off control of catalysis. Dalton Trans 2018; 47:1786-1790. [DOI: 10.1039/c7dt04695b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Copper(i) ion translocation is the key for fast and reliable communication between networked devices in the catalytic machinery.
Collapse
Affiliation(s)
- Sudhakar Gaikwad
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Susnata Pramanik
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Soumen De
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| |
Collapse
|
22
|
Goswami A, Pramanik S, Schmittel M. Catalytically active nanorotor reversibly self-assembled by chemical signaling within an eight-component network. Chem Commun (Camb) 2018; 54:3955-3958. [DOI: 10.1039/c8cc01496e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As an example of advanced molecular cybernetics eight components work together through chemical signaling reversibly setting up multifunctional nanomachinery.
Collapse
Affiliation(s)
- Abir Goswami
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Susnata Pramanik
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| |
Collapse
|
23
|
From Self-Sorting of Dynamic Metal–Ligand Motifs to (Supra)Molecular Machinery in Action. ADVANCES IN INORGANIC CHEMISTRY 2018. [DOI: 10.1016/bs.adioch.2017.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Tuccitto N, Li-Destri G, Messina GML, Marletta G. Fluorescent Quantum Dots Make Feasible Long-Range Transmission of Molecular Bits. J Phys Chem Lett 2017; 8:3861-3866. [PMID: 28767249 DOI: 10.1021/acs.jpclett.7b01713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The modeling and realization of an effective communication platform for long-range information transfer is reported. Messages are encrypted in molecular bits by concentration pulses of fluorescent carbon quantum dots having self-quenching emission that dynamically depends on the concentration pulses. Messages are transferred along longer paths when received and decoded by means of dynamical emission response with respect to the ones encoded by absorbance scaling linearly with messenger concentration. These results represent a significant breakthrough in view of the futuristic development of a nonspecific molecular communication platform to encode and transfer information in multiple fluid environments, ranging from physiological to industrial ones.
Collapse
Affiliation(s)
- Nunzio Tuccitto
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Science, University of Catania and CSGI , viale A. Doria 6, 95125 Catania, Italy
| | - Giovanni Li-Destri
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Science, University of Catania and CSGI , viale A. Doria 6, 95125 Catania, Italy
| | - Grazia M L Messina
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Science, University of Catania and CSGI , viale A. Doria 6, 95125 Catania, Italy
| | - Giovanni Marletta
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Science, University of Catania and CSGI , viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
25
|
Affiliation(s)
- Patricia Remón
- CIQSO-Center for Research in Sustainable Chemistry and Department of Chemistry; University of Huelva; Campus de El Carmen s/n 21071 Huelva Spain
| | - Uwe Pischel
- CIQSO-Center for Research in Sustainable Chemistry and Department of Chemistry; University of Huelva; Campus de El Carmen s/n 21071 Huelva Spain
| |
Collapse
|
26
|
Zhu JJ, Hu P, Zhou KK, Li B, Zhang T. Silver(i)-organic frameworks constructed from silver(i) 3,6-pyrazyldiethynide and 3,8-1,10-phenanthrolyldiethynide complexes. Dalton Trans 2017; 46:6663-6669. [PMID: 28474042 DOI: 10.1039/c7dt01061c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two diynes bearing functional groups with different binding modes, 3,6-diethynylpyrazine (H2L1) and 3,8-diethynyl-1,10-phenanthroline (H2L2), were utilized as ligands to synthesize two new organometallic units, Ag2L1·3AgNO3 (1) and Ag2L2·6AgNO3 (2), in order to investigate the effect of the bridging and chelating modes of the ligands on the structures of networks constructed from silver-ethynide compounds. Structural studies show that in 1, silver-ethynide cluster units aggregate to form chair-like organometallic slides through Ag-N coordination bonds. These slides are linked through argentophilic interaction to generate novel 2D ladder-like layers, and are further bridged by nitrate anions to afford a 3D network in the solid state. It is observed that all the Ag ions in one layer interact to afford a 2D silver network. However, in 2, the silver-ethynide cluster units only interact to generate unique sine wave-like organometallic chains through argentophilic interaction, which are further connected by nitrate anions to form a 3D network. In the solid state, both 1 and 2 are luminescent at room temperature.
Collapse
Affiliation(s)
- Jin-Jin Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R.China.
| | | | | | | | | |
Collapse
|
27
|
Mittal N, Pramanik S, Paul I, De S, Schmittel M. Networking Nanoswitches for ON/OFF Control of Catalysis. J Am Chem Soc 2017; 139:4270-4273. [DOI: 10.1021/jacs.6b12951] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nikita Mittal
- Center of Micro and Nanochemistry
and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein Straße 2, 57068 Siegen, Germany
| | - Susnata Pramanik
- Center of Micro and Nanochemistry
and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein Straße 2, 57068 Siegen, Germany
| | - Indrajit Paul
- Center of Micro and Nanochemistry
and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein Straße 2, 57068 Siegen, Germany
| | - Soumen De
- Center of Micro and Nanochemistry
and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein Straße 2, 57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry
and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein Straße 2, 57068 Siegen, Germany
| |
Collapse
|
28
|
Abstract
This feature article surveys the various ways by which a structurally simple hydrazone can be used in accessing different functional materials, mainly photo/chemically activated switches, fluorophores and sensors.
Collapse
|
29
|
Burkhart C, Haberhauer G. A Light- and Electricity-Driven Molecular Pushing Motor. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Christoph Burkhart
- Institut für Organische Chemie, Fakultät für Chemie; Universität Duisburg-Essen; Universitätsstraße 7 45117 Essen Germany
| | - Gebhard Haberhauer
- Institut für Organische Chemie, Fakultät für Chemie; Universität Duisburg-Essen; Universitätsstraße 7 45117 Essen Germany
| |
Collapse
|
30
|
Abstract
A negative feedback loop that relies on the coordination-coupled deprotonation (CCD) of a hydrazone switch has been developed. Above a particular threshold of zinc(II), CCD releases enough protons to the environment to trigger a cascade of reactions that yield an imine. This imine sequesters the excess of zinc(II) from the hydrazone switch, hence lowering the effective amount of protons, and switching the cascade reactions "OFF", thus establishing the negative feedback loop.
Collapse
Affiliation(s)
- Susnata Pramanik
- Department of Chemistry, Dartmouth College , Hanover, New Hampshire 03755, United States
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College , Hanover, New Hampshire 03755, United States
| |
Collapse
|
31
|
Gaikwad S, Goswami A, De S, Schmittel M. Ein metallregulierter vierstufiger Nanoschalter zur Steuerung einer zweistufigen sequenziellen Katalyse in einem Elf-Komponenten-System. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sudhakar Gaikwad
- Forschungszentrum für Mikro-/Nanochemie und Technologie (Cμ), Organische Chemie I; Universität Siegen; Adolf-Reichwein Straße 2 57068 Siegen Deutschland
| | - Abir Goswami
- Forschungszentrum für Mikro-/Nanochemie und Technologie (Cμ), Organische Chemie I; Universität Siegen; Adolf-Reichwein Straße 2 57068 Siegen Deutschland
| | - Soumen De
- Forschungszentrum für Mikro-/Nanochemie und Technologie (Cμ), Organische Chemie I; Universität Siegen; Adolf-Reichwein Straße 2 57068 Siegen Deutschland
| | - Michael Schmittel
- Forschungszentrum für Mikro-/Nanochemie und Technologie (Cμ), Organische Chemie I; Universität Siegen; Adolf-Reichwein Straße 2 57068 Siegen Deutschland
| |
Collapse
|
32
|
Gaikwad S, Goswami A, De S, Schmittel M. A Metalloregulated Four-State Nanoswitch Controls Two-Step Sequential Catalysis in an Eleven-Component System. Angew Chem Int Ed Engl 2016; 55:10512-7. [DOI: 10.1002/anie.201604658] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Sudhakar Gaikwad
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; Universität Siegen; Adolf-Reichwein Str. 2 57068 Siegen Germany
| | - Abir Goswami
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; Universität Siegen; Adolf-Reichwein Str. 2 57068 Siegen Germany
| | - Soumen De
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; Universität Siegen; Adolf-Reichwein Str. 2 57068 Siegen Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I; Universität Siegen; Adolf-Reichwein Str. 2 57068 Siegen Germany
| |
Collapse
|
33
|
Weber C, Liebig T, Gensler M, Zykov A, Pithan L, Rabe JP, Hecht S, Bléger D, Kowarik S. Cooperative Switching in Nanofibers of Azobenzene Oligomers. Sci Rep 2016; 6:25605. [PMID: 27161608 PMCID: PMC4861954 DOI: 10.1038/srep25605] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/20/2016] [Indexed: 12/20/2022] Open
Abstract
Next-generation molecular devices and machines demand the integration of molecular switches into hierarchical assemblies to amplify the response of the system from the molecular level to the meso- or macro-scale. Here, we demonstrate that multi-azobenzene oligomers can assemble to form robust supramolecular nanofibers in which they can be switched repeatedly between the E- and Z-configuration. While in isolated oligomers the azobenzene units undergo reversible photoisomerization independently, in the nanofibers they are coupled via intermolecular interactions and switch cooperatively as evidenced by unusual thermal and kinetic behavior. We find that the photoisomerization rate from the Z-isomer to the E-isomer depends on the fraction of Z-azobenzene in the nanofibers, and is increased by more than a factor of 4 in Z-rich fibers when compared to E-rich fibers. This demonstrates the great potential of coupling individual photochromic units for increasing their quantum efficiency in the solid state with potential relevance for actuation and sensing.
Collapse
Affiliation(s)
- Christopher Weber
- Department of Physics, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Tobias Liebig
- Department of Physics, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Manuel Gensler
- Department of Physics, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Anton Zykov
- Department of Physics, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Linus Pithan
- Department of Physics, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Jürgen P. Rabe
- Department of Physics, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Stefan Hecht
- IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - David Bléger
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Stefan Kowarik
- Department of Physics, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
34
|
Wang G, Xiao H, He J, Xiang J, Wang Y, Chen X, Che Y, Jiang H. Molecular Turnstiles Regulated by Metal Ions. J Org Chem 2016; 81:3364-71. [DOI: 10.1021/acs.joc.6b00463] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guangxia Wang
- Key
Laboratory of Theoretical and Computational Photochemistry, Key Laboratory
of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongmei Xiao
- Key
Laboratory of Theoretical and Computational Photochemistry, Key Laboratory
of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiaojiao He
- Key
Laboratory of Theoretical and Computational Photochemistry, Key Laboratory
of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Junfeng Xiang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Wang
- Key
Laboratory of Theoretical and Computational Photochemistry, Key Laboratory
of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xuebo Chen
- Key
Laboratory of Theoretical and Computational Photochemistry, Key Laboratory
of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yanke Che
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hua Jiang
- Key
Laboratory of Theoretical and Computational Photochemistry, Key Laboratory
of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
35
|
Ariga K, Li J, Fei J, Ji Q, Hill JP. Nanoarchitectonics for Dynamic Functional Materials from Atomic-/Molecular-Level Manipulation to Macroscopic Action. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1251-86. [PMID: 26436552 DOI: 10.1002/adma.201502545] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/27/2015] [Indexed: 05/21/2023]
Abstract
Objects in all dimensions are subject to translational dynamism and dynamic mutual interactions, and the ability to exert control over these events is one of the keys to the synthesis of functional materials. For the development of materials with truly dynamic functionalities, a paradigm shift from "nanotechnology" to "nanoarchitectonics" is proposed, with the aim of design and preparation of functional materials through dynamic harmonization of atomic-/molecular-level manipulation and control, chemical nanofabrication, self-organization, and field-controlled organization. Here, various examples of dynamic functional materials are presented from the atom/molecular-level to macroscopic dimensions. These systems, including atomic switches, molecular machines, molecular shuttles, motional crystals, metal-organic frameworks, layered assemblies, gels, supramolecular assemblies of biomaterials, DNA origami, hollow silica capsules, and mesoporous materials, are described according to their various dynamic functions, which include short-term plasticity, long-term potentiation, molecular manipulation, switchable catalysis, self-healing properties, supramolecular chirality, morphological control, drug storage and release, light-harvesting, mechanochemical transduction, molecular tuning molecular recognition, hand-operated nanotechnology.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Junbai Li
- Beijing National Laboratory for Molecular Science, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Science, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Qingmin Ji
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Jonathan P Hill
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| |
Collapse
|
36
|
Samanta SK, Rana A, Schmittel M. Konformativer Schlupf bestimmt die Rotationsfrequenz in Fünf-Komponenten-Nanorotoren. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Soumen K. Samanta
- Forschungszentrum für Mikro-/Nanochemie und -technologie Organische Chemie I; Universität Siegen; Adolf-Reichwein-Straße 2 57068 Siegen Deutschland
| | - Anup Rana
- Forschungszentrum für Mikro-/Nanochemie und -technologie Organische Chemie I; Universität Siegen; Adolf-Reichwein-Straße 2 57068 Siegen Deutschland
| | - Michael Schmittel
- Forschungszentrum für Mikro-/Nanochemie und -technologie Organische Chemie I; Universität Siegen; Adolf-Reichwein-Straße 2 57068 Siegen Deutschland
| |
Collapse
|
37
|
Samanta SK, Rana A, Schmittel M. Conformational Slippage Determines Rotational Frequency in Five-Component Nanorotors. Angew Chem Int Ed Engl 2016; 55:2267-72. [DOI: 10.1002/anie.201509108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Soumen K. Samanta
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I; Universität Siegen; Adolf-Reichwein-Strasse 2 57068 Siegen Germany
| | - Anup Rana
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I; Universität Siegen; Adolf-Reichwein-Strasse 2 57068 Siegen Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I; Universität Siegen; Adolf-Reichwein-Strasse 2 57068 Siegen Germany
| |
Collapse
|
38
|
Scottwell SØ, Crowley JD. Ferrocene-containing non-interlocked molecular machines. Chem Commun (Camb) 2016; 52:2451-64. [DOI: 10.1039/c5cc09569g] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ferrocene is chemically robust and readily functionalized which enables its facile incorporation into more complex molecular systems. This coupled with ferrocene's reversible redox properties and ability to function as a “molecular ball bearing” has led to the use of ferrocene as a component in wide range of non-interlocked synthetic molecular machine systems.
Collapse
|
39
|
Affiliation(s)
- Sundus Erbas-Cakmak
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David A. Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Charlie T. McTernan
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alina
L. Nussbaumer
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
40
|
Abendroth JM, Bushuyev OS, Weiss PS, Barrett CJ. Controlling Motion at the Nanoscale: Rise of the Molecular Machines. ACS NANO 2015; 9:7746-68. [PMID: 26172380 DOI: 10.1021/acsnano.5b03367] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As our understanding and control of intra- and intermolecular interactions evolve, ever more complex molecular systems are synthesized and assembled that are capable of performing work or completing sophisticated tasks at the molecular scale. Commonly referred to as molecular machines, these dynamic systems comprise an astonishingly diverse class of motifs and are designed to respond to a plethora of actuation stimuli. In this Review, we outline the conditions that distinguish simple switches and rotors from machines and draw from a variety of fields to highlight some of the most exciting recent examples of opportunities for driven molecular mechanics. Emphasis is placed on the need for controllable and hierarchical assembly of these molecular components to display measurable effects at the micro-, meso-, and macroscales. As in Nature, this strategy will lead to dramatic amplification of the work performed via the collective action of many machines organized in linear chains, on functionalized surfaces, or in three-dimensional assemblies.
Collapse
Affiliation(s)
- John M Abendroth
- California NanoSystems Institute and Department of Chemistry & Biochemistry, University of California , Los Angeles, Los Angeles, California 90095, United States
| | | | - Paul S Weiss
- California NanoSystems Institute and Department of Chemistry & Biochemistry, University of California , Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science & Engineering, University of California , Los Angeles, Los Angeles, California 90095, United States
| | - Christopher J Barrett
- California NanoSystems Institute and Department of Chemistry & Biochemistry, University of California , Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry, McGill University , Montreal, QC, Canada
| |
Collapse
|
41
|
McConnell AJ, Wood CS, Neelakandan PP, Nitschke JR. Stimuli-Responsive Metal–Ligand Assemblies. Chem Rev 2015; 115:7729-93. [DOI: 10.1021/cr500632f] [Citation(s) in RCA: 759] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anna J. McConnell
- Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Christopher S. Wood
- Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Prakash P. Neelakandan
- Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Jonathan R. Nitschke
- Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
42
|
Wood DM, Meng W, Ronson TK, Stefankiewicz AR, Sanders JKM, Nitschke JR. Guest-Induced Transformation of a Porphyrin-Edged FeII4L6Capsule into a CuIFeII2L4Fullerene Receptor. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411985] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Wood DM, Meng W, Ronson TK, Stefankiewicz AR, Sanders JKM, Nitschke JR. Guest-induced transformation of a porphyrin-edged Fe(II)4L6 capsule into a Cu(I)Fe(II)2L4 fullerene receptor. Angew Chem Int Ed Engl 2015; 54:3988-92. [PMID: 25655272 DOI: 10.1002/anie.201411985] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Indexed: 11/09/2022]
Abstract
The combination of a bent diamino(nickel(II) porphyrin) with 2-formylpyridine and Fe(II) yielded an Fe(II) 4 L6 cage. Upon treatment with the fullerenes C60 or C70 , this cage was found to transform into a new host-guest complex incorporating three Fe(II) centers and four porphyrin ligands, in an arrangement that is hypothesized to maximize π interactions between the porphyrin units of the host and the fullerene guest bound within its central cavity. The new complex shows coordinative unsaturation at one of the Fe(II) centers as the result of the incommensurate metal-to-ligand ratio, which enabled the preparation of a heterometallic cone-shaped Cu(I) Fe(II) 2 L4 adduct of C60 or C70 .
Collapse
Affiliation(s)
- Daniel M Wood
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
| | | | | | | | | | | |
Collapse
|
44
|
Le Poul N, Colasson B. Electrochemically and Chemically Induced Redox Processes in Molecular Machines. ChemElectroChem 2015. [DOI: 10.1002/celc.201402399] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Schmittel M, De S, Pramanik S. Redox-dependent self-sorting toggles a rotary nanoswitch. Org Biomol Chem 2015. [DOI: 10.1039/c5ob01041a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The pyridine–pyrimidine (py–pym) arm as the moving part of the two-state nanomechanical rotary switch [Cu(1)]+ is toggled reversibly between two stations using one-electron oxidation/reduction.
Collapse
Affiliation(s)
- Michael Schmittel
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Soumen De
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Susnata Pramanik
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| |
Collapse
|
46
|
Abstract
Ones and zeros can be handled by molecules through the input-control of their signaling features. The progress in this exciting field during the last five years is covered in this tutorial review.
Collapse
Affiliation(s)
- Joakim Andréasson
- Department of Chemical and Biological Engineering
- Physical Chemistry
- Chalmers University of Technology
- SE-412 96 Göteborg
- Sweden
| | - Uwe Pischel
- CIQSO – Centre for Research in Sustainable Chemistry and Department of Chemical Engineering
- Physical Chemistry, and Organic Chemistry
- University of Huelva
- E-21071 Huelva
- Spain
| |
Collapse
|
47
|
Schmittel M. From self-sorted coordination libraries to networking nanoswitches for catalysis. Chem Commun (Camb) 2015; 51:14956-68. [DOI: 10.1039/c5cc06605k] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This feature article sketches our long way from the development of dynamic heteroleptic coordination motifs to the self-sorting of multi-component libraries and finally the design of a new family of triangular nanomechanical switches, which are useful for ON–OFF control of catalysis and in bidirectional communication.
Collapse
Affiliation(s)
- Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| |
Collapse
|
48
|
Tatum LA, Foy JT, Aprahamian I. Waste Management of Chemically Activated Switches: Using a Photoacid To Eliminate Accumulation of Side Products. J Am Chem Soc 2014; 136:17438-41. [DOI: 10.1021/ja511135k] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Luke A. Tatum
- Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Justin T. Foy
- Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755, United States
| |
Collapse
|
49
|
Ninomiya Y, Kozaki M, Suzuki S, Okada K. Allosteric Regulation of the Ligand-Binding Ability of Zinc Porphyrins with Sterically Bulky Shielding Units by Metal Complexation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2014. [DOI: 10.1246/bcsj.20140197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | - Keiji Okada
- Graduate School of Science, Osaka City University
| |
Collapse
|
50
|
De S, Pramanik S, Schmittel M. Ein Nanowechselschalter zur Kontrolle zweier katalytischer Prozesse. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408457] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|