1
|
Zimmermann P, Schulze P, Beck-Sickinger AG, Khrunyk Y. Design and Biofunctionalization of Cloud Sponge-Inspired Scaffolds for Enhanced Bone Cell Performance. ACS APPLIED BIO MATERIALS 2024; 7:8281-8293. [PMID: 39548985 DOI: 10.1021/acsabm.4c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
With the increasing age of our population, which is linked to a higher incidence of musculoskeletal diseases, there is a massive clinical need for bone implants. Porous scaffolds, usually offering a lower stiffness and allowing for the ingrowth of blood vessels and nerves, serve as an attractive alternative to conventional implants. Natural porous skeletons from marine sponges represent an array of evolutionarily optimized patterns, inspiring the design of biomaterials. In this study, cloud sponge-inspired scaffolds were designed and printed from a photocurable polymer, Clear Resin. These scaffolds were biofunctionalized by mussel-derived peptide MP-RGD, a recently developed peptide that contains a cyclic, bioactive RGD cell adhesion motif and catechol moieties, which provide the anchoring of the peptide to the surface. In in vitro cell culture assays with bone cells, significantly higher biocompatibility of three scaffolds, i.e., square, octagon, and hexagon cubes, in comparison to hollow and sphere inside cubes was shown. The performance of the cells regarding signaling was further enhanced by applying an MP-RGD coating. Consequently, these data demonstrate that both the structure of the scaffold and the coating contribute to the biocompatibility of the material. Three out of five MP-RGD-coated sponge-inspired scaffolds displayed superior biochemical properties and might guide material design for improved bone implants.
Collapse
Affiliation(s)
- Philipp Zimmermann
- Engineering Faculty, Leipzig University of Applied Sciences (HTWK), Karl Liebknecht Str. 134, D-04277 Leipzig, Germany
| | - Peter Schulze
- Engineering Faculty, Leipzig University of Applied Sciences (HTWK), Karl Liebknecht Str. 134, D-04277 Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstrs. 34, D-04103 Leipzig, Germany
| | - Yuliya Khrunyk
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstrs. 34, D-04103 Leipzig, Germany
| |
Collapse
|
2
|
Shen J, Su X, Wang S, Wang Z, Zhong C, Huang Y, Duan S. RhoJ: an emerging biomarker and target in cancer research and treatment. Cancer Gene Ther 2024; 31:1454-1464. [PMID: 38858534 DOI: 10.1038/s41417-024-00792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
RhoJ is a Rho GTPase that belongs to the Cdc42 subfamily and has a molecular weight of approximately 21 kDa. It can activate the p21-activated kinase family either directly or indirectly, influencing the activity of various downstream effectors and playing a role in regulating the cytoskeleton, cell movement, and cell cycle. RhoJ's expression and activity are controlled by multiple upstream factors at different levels, including expression, subcellular localization, and activation. High RhoJ expression is generally associated with a poor prognosis for cancer patients and is mainly due to an increased number of tumor blood vessels and abnormal expression in malignant cells. RhoJ promotes tumor progression through several pathways, particularly in tumor angiogenesis and drug resistance. Clinical data also indicates that high RhoJ expression is closely linked to the pathological features of tumor malignancy. There are various cancer treatment methods that target RhoJ signaling, such as direct binding to inhibit the RhoJ effector pocket, inhibiting RhoJ expression, blocking RhoJ upstream and downstream signals, and indirectly inhibiting RhoJ's effect. RhoJ is an emerging cancer biomarker and a significant target for future cancer clinical research and drug development.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xinming Su
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shana Wang
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Chenming Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Liguori A, Zhao J, Di Gesù R, De Marco R, Gualandi C, Calonghi N, Pollicino A, Gentilucci L, Focarete ML. Peptide direct growth on poly(acrylic acid)/poly(vinyl alcohol) electrospun fibers coated with branched poly(ethylenimine): A solid-phase approach for scaffolds biofunctionalization. Colloids Surf B Biointerfaces 2024; 241:114052. [PMID: 38917667 DOI: 10.1016/j.colsurfb.2024.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Due to their resemblance to the fibrillar structure of the extracellular matrix, electrospun nanofibrous meshes are currently used as porous and mechanically stable scaffolds for cell culture. In this study, we propose an innovative methodology for growing peptide sequences directly onto the surface of electrospun nanofibers. To achieve this, electrospun fibers were produced from a poly(acrylic acid)/poly(vinyl alcohol) blend that was thermally crosslinked and subjected to a covalent coating of branched poly(ethylenimine). The exposed amino functionalities on the fiber surface were then used for the direct solid-phase synthesis of the RGD peptide sequence. In contrast to established strategies, mainly involving the grafting of pre-synthesized peptides onto the polymer chains before electrospinning or onto the nanofibers surface, this method allows for the concurrent synthesis and anchoring of peptides to the substrate, with potential applications in combinatorial chemistry. The incorporation of this integrin-binding motive significantly enhanced the nanofibers' ability to capture human cervical carcinoma (HeLa) cells, selected as a proof of concept to assess the functionalities of the developed material.
Collapse
Affiliation(s)
- Anna Liguori
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy
| | - Junwei Zhao
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy
| | - Roberto Di Gesù
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy; Ri.MED Foundation, Bandiera st. 11, Palermo 90133, Italy
| | - Rossella De Marco
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy
| | - Chiara Gualandi
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy; Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, Bologna 40136, Italy
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology, University of Bologna, via Irnerio 48, Bologna 40126, Italy
| | - Antonino Pollicino
- Department of Civil Engineering and Architecture, University of Catania, via S. Sofia 64, Catania 95125, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy; Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, Ozzano Emilia Bologna 40064, Italy.
| | - Maria Letizia Focarete
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy; Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, Ozzano Emilia Bologna 40064, Italy.
| |
Collapse
|
4
|
Shpun G, Markus A, Farah N, Zalevsky Z, Mandel Y. Adhesion of retinal cells to gold surfaces by biomimetic molecules. Front Cell Dev Biol 2024; 12:1438716. [PMID: 39263323 PMCID: PMC11387177 DOI: 10.3389/fcell.2024.1438716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
Background Neural cell-electrode coupling is crucial for effective neural and retinal prostheses. Enhancing this coupling can be achieved through surface modification and geometrical design to increase neuron-electrode proximity. In the current research, we focused on designing and studying various biomolecules as a method to elicit neural cell-electrode adhesion via cell-specific integrin mechanisms. Methods We designed extracellular matrix biomimetic molecules with different head sequences (RGD or YIGSR), structures (linear or cyclic), and spacer lengths (short or long). These molecules, anchored by a thiol (SH) group, were deposited onto gold surfaces at various concentrations. We assessed the modifications using contact angle measurements, fluorescence imaging, and X-ray Photoelectron Spectroscopy (XPS). We then analyzed the adhesion of retinal cells and HEK293 cells to the modified surfaces by measuring cell density, surface area, and focal adhesion spots, and examined changes in adhesion-related gene and integrin expression. Results Results showed that YIGSR biomolecules significantly enhanced retinal cell adhesion, regardless of spacer length. For HEK293 cells, RGD biomolecules were more effective, especially with cyclic RGD and long spacers. Both cell types showed increased expression of specific adhesion integrins and proteins like vinculin and PTK2; these results were in agreement with the adhesion studies, confirming the cell-specific interactions with modified surfaces. Conclusion This study highlights the importance of tailored biomolecules for improving neural cell adhesion to electrodes. By customizing biomolecules to foster specific and effective interactions with adhesion integrins, our study provides valuable insights for enhancing the integration and functionality of retinal prostheses and other neural implants.
Collapse
Affiliation(s)
- Gal Shpun
- The Alexander Kofkin Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
- School of Optometry and Visual Science, Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan, Israel
| | - Amos Markus
- School of Optometry and Visual Science, Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan, Israel
| | - Nairouz Farah
- School of Optometry and Visual Science, Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan, Israel
| | - Zeev Zalevsky
- The Alexander Kofkin Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan, Israel
| | - Yossi Mandel
- School of Optometry and Visual Science, Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan, Israel
- The Gonda Multidisciplinary Brain Research Centre, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
5
|
Kobayakawa T, Tsuji K, Tamamura H. Design, synthesis and evaluation of bioactivity of peptidomimetics based on chloroalkene dipeptide isosteres. Bioorg Med Chem 2024; 110:117811. [PMID: 38959684 DOI: 10.1016/j.bmc.2024.117811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Ample biologically active peptides have been found, identified and modified for use in drug discovery to date. However, several factors, such as low metabolic stability due to proteolysis and non-specific interactions with multiple off-target molecules, might limit the therapeutic use of peptides. To enhance the stability and/or bioactivity of peptides, the development of "peptidomimetics," which mimick peptide molecules, is considered to be idealistic. Hence, chloroalkene dipeptide isosteres (CADIs) was designed, and their synthetic methods have been developed by us. Briefly, in a CADI an amide bond in peptides is replaced with a chloroalkene structure. CADIs might be superior mimetics of amide bonds because the Van der Waals radii (VDR) and the electronegativity value of a chlorine atom are close to those of the replaced oxygen atom. By a developed method of the "liner synthesis", N-tert-butylsulfonyl protected CADIs can be synthesized via a key reaction involving diastereoselective allylic alkylation using organocopper reagents. On the other hand, by a developed method of the "convergent synthesis", N-fluorenylmethoxycarbonyl (Fmoc)-protected carboxylic acids can be also constructed based on N- and C-terminal analogues from corresponding amino acid starting materials via an Evans syn aldol reaction and the Ichikawa allylcyanate rearrangement reaction involving a [3.3] sigmatropic rearrangement. Notably, CADIs can also be applied for Fmoc-based solid-phase peptide synthesis and therefore introduced into bioactive peptides including as the Arg-Gly-Asp (RGD) peptide and the amyloid β fragment Lys-Leu-Val-Phe-Phe (KLVFF) peptide, which are correlated with cell attachment and Alzheimer's disease (AD), respectively. These CADI-containing peptidomimetics stabilized the conformation and enhanced the potency of the cyclic RGD peptide and the cyclic KLVFF peptide.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
6
|
Paulus J, Sewald N. Small molecule- and peptide-drug conjugates addressing integrins: A story of targeted cancer treatment. J Pept Sci 2024; 30:e3561. [PMID: 38382900 DOI: 10.1002/psc.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 02/23/2024]
Abstract
Targeted cancer treatment should avoid side effects and damage to healthy cells commonly encountered during traditional chemotherapy. By combining small molecule or peptidic ligands as homing devices with cytotoxic drugs connected by a cleavable or non-cleavable linker in peptide-drug conjugates (PDCs) or small molecule-drug conjugates (SMDCs), cancer cells and tumours can be selectively targeted. The development of highly affine, selective peptides and small molecules in recent years has allowed PDCs and SMDCs to increasingly compete with antibody-drug conjugates (ADCs). Integrins represent an excellent target for conjugates because they are overexpressed by most cancer cells and because of the broad knowledge about native binding partners as well as the multitude of small-molecule and peptidic ligands that have been developed over the last 30 years. In particular, integrin αVβ3 has been addressed using a variety of different PDCs and SMDCs over the last two decades, following various strategies. This review summarises and describes integrin-addressing PDCs and SMDCs while highlighting points of great interest.
Collapse
Affiliation(s)
- Jannik Paulus
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
7
|
Krukiewicz K, Contessotto P, Nedjari S, Martino MM, Redenski I, Gabet Y, Speranza G, O'Brien T, Altankov G, Awaja F. Clinical potential of plasma-functionalized graphene oxide ultrathin sheets for bone and blood vessel regeneration: Insights from cellular and animal models. BIOMATERIALS ADVANCES 2024; 161:213867. [PMID: 38669824 DOI: 10.1016/j.bioadv.2024.213867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/01/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Graphene and graphene oxide (GO), due to their unique chemical and physical properties, possess biochemical characteristics that can trigger intercellular signals promoting tissue regeneration. Clinical applications of thin GO-derived sheets have inspired the development of various tissue regeneration and repair approaches. In this study, we demonstrate that ultrathin sheets of plasma-functionalized and reduced GO, with the oxygen content ranging from 3.2 % to 22 % and the nitrogen content from 0 % to 8.3 %, retain their essential mechanical and molecular integrity, and exhibit robust potential for regenerating bone tissue and blood vessels across multiple cellular and animal models. Initially, we observed the growth of blood vessels and bone tissue in vitro using these functionalized GO sheets on human adipose-derived mesenchymal stem cells and umbilical vein endothelial cells. Remarkably, our study indicates a 2.5-fold increase in mineralization and two-fold increase in tubule formation even in media lacking osteogenic and angiogenic supplements. Subsequently, we observed the initiation, conduction, and formation of bone and blood vessels in a rat tibial osteotomy model, evident from a marked 4-fold increase in the volume of low radio-opacity bone tissue and a significant elevation in connectivity density, all without the use of stem cells or growth factors. Finally, we validated these findings in a mouse critical-size calvarial defect model (33 % higher healing rate) and a rat skin lesion model (up to 2.5-fold increase in the number of blood vessels, and 35 % increase in blood vessels diameter). This study elucidates the pro-osteogenic and pro-angiogenic properties of both pristine and plasma-treated GO ultrathin films. These properties suggest their significant potential for clinical applications, and as valuable biomaterials for investigating fundamental aspects of bone and blood vessel regeneration.
Collapse
Affiliation(s)
- Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.
| | - Paolo Contessotto
- Department of Molecular Medicine, Università degli Studi di Padova, Padua, Italy.
| | - Salima Nedjari
- Molecular Dynamics at Cell-Biomaterial Interface, Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| | - Idan Redenski
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| | | | - Timothy O'Brien
- Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| | - George Altankov
- ICREA & Institute for Bioengineering of Catalonia, Barcelona, Spain; Medical University Pleven, Bulgaria
| | - Firas Awaja
- Department of Medicine, University of Galway, Galway, Ireland; Engmat Ltd., Clybaun Road, Galway, Ireland.
| |
Collapse
|
8
|
Kosovari M, Buffeteau T, Thomas L, Guay Bégin AA, Vellutini L, McGettrick JD, Laroche G, Durrieu MC. Silanization Strategies for Tailoring Peptide Functionalization on Silicon Surfaces: Implications for Enhancing Stem Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29770-29782. [PMID: 38832565 DOI: 10.1021/acsami.4c03727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Biomaterial surface engineering and the integration of cell-adhesive ligands are crucial in biological research and biotechnological applications. The interplay between cells and their microenvironment, influenced by chemical and physical cues, impacts cellular behavior. Surface modification of biomaterials profoundly affects cellular responses, especially at the cell-surface interface. This work focuses on enhancing cellular activities through material manipulation, emphasizing silanization for further functionalization with bioactive molecules such as RGD peptides to improve cell adhesion. The grafting of three distinct silanes onto silicon wafers using both spin coating and immersion methods was investigated. This study sheds light on the effects of different alkyl chain lengths and protecting groups on cellular behavior, providing valuable insights into optimizing silane-based self-assembled monolayers (SAMs) before peptide or protein grafting for the first time. Specifically, it challenges the common use of APTES molecules in this context. These findings advance our understanding of surface modification strategies, paving the way for tailoring biomaterial surfaces to modulate the cellular behavior for diverse biotechnological applications.
Collapse
Affiliation(s)
- Melissa Kosovari
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac F-33600, France
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1 V 0A6, Canada
- Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | - Thierry Buffeteau
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
| | - Laurent Thomas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
| | - Andrée-Anne Guay Bégin
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1 V 0A6, Canada
- Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | - Luc Vellutini
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
| | - James D McGettrick
- College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, U.K
| | - Gaétan Laroche
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1 V 0A6, Canada
- Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | | |
Collapse
|
9
|
Gómez SG, Guillem-Marti J, Martín-Gómez H, Mas-Moruno C, Ginebra MP, Gil FJ, Barraquer RI, Manero JM. Titanium Boston keratoprosthesis with corneal cell adhesive and bactericidal dual coating. BIOMATERIALS ADVANCES 2023; 154:213654. [PMID: 37837906 DOI: 10.1016/j.bioadv.2023.213654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
The Boston keratoprosthesis (BKPro) is a medical device used to restore vision in complicated cases of corneal blindness. This device is composed by a front plate of polymethylmethacrylate (PMMA) and a backplate usually made of titanium (Ti). Ti is an excellent biomaterial with numerous applications, although there are not many studies that address its interaction with ocular cells. In this regard, despite the good retention rates of the BKPro, two main complications compromise patients' vision and the viability of the prosthesis: imperfect adhesion of the corneal tissue to the upside of the backplate and infections. Thus, in this work, two topographies (smooth and rough) were generated on Ti samples and tested with or without functionalization with a dual peptide platform. This molecule consists of a branched structure that links two peptide moieties to address the main complications associated with BKPro: the well-known RGD peptide in its cyclic version (cRGD) as cell pro-adherent motif and the first 11 residues of lactoferrin (LF1-11) as antibacterial motif. Samples were physicochemically characterized, and their biological response was evaluated in vitro with human corneal keratocytes (HCKs) and against the gram-negative bacterial strain Pseudomonas aeruginosa. The physicochemical characterization allowed to verify the functionalization in a qualitative and quantitative manner. A higher amount of peptide was anchored to the rough surfaces. The studies performed using HCKs showed increased long-term proliferation on the functionalized samples. Gene expression was affected by topography and peptide functionalization. Roughness promoted α-smooth muscle actin (α-SMA) overexpression, and the coating notably increased the expression of extracellular matrix components (ECM). Such changes may favour the development of unwanted fibrosis, and thus, corneal haze. In contrast, the combination of the coating with a rough topography decreased the expression of α-SMA and ECM components, which would be desirable for the long-term success of the prosthesis. Regarding the antibacterial activity, the functionalized smooth and rough surfaces promoted the death of bacteria, as well as a perturbation in their wall definition and cellular morphology. Bacterial killing values were 58 % for smooth functionalised and 68 % for rough functionalised samples. In summary, this study suggests that the use of the dual peptide platform with cRGD and LF1-11 could be a good strategy to improve the in vitro and in vivo performance of the rough topography used in the commercial BKPro.
Collapse
Affiliation(s)
- Silvia González Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona Tech (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain
| | - Jordi Guillem-Marti
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona Tech (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain.
| | - Helena Martín-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona Tech (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona Tech (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona Tech (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
| | - Francisco Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| | | | - José María Manero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona Tech (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain
| |
Collapse
|
10
|
Oliver-Cervelló L, Martin-Gómez H, Gonzalez-Garcia C, Salmeron-Sanchez M, Ginebra MP, Mas-Moruno C. Protease-degradable hydrogels with multifunctional biomimetic peptides for bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1192436. [PMID: 37324414 PMCID: PMC10267393 DOI: 10.3389/fbioe.2023.1192436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Mimicking bone extracellular matrix (ECM) is paramount to develop novel biomaterials for bone tissue engineering. In this regard, the combination of integrin-binding ligands together with osteogenic peptides represents a powerful approach to recapitulate the healing microenvironment of bone. In the present work, we designed polyethylene glycol (PEG)-based hydrogels functionalized with cell instructive multifunctional biomimetic peptides (either with cyclic RGD-DWIVA or cyclic RGD-cyclic DWIVA) and cross-linked with matrix metalloproteinases (MMPs)-degradable sequences to enable dynamic enzymatic biodegradation and cell spreading and differentiation. The analysis of the intrinsic properties of the hydrogel revealed relevant mechanical properties, porosity, swelling and degradability to engineer hydrogels for bone tissue engineering. Moreover, the engineered hydrogels were able to promote human mesenchymal stem cells (MSCs) spreading and significantly improve their osteogenic differentiation. Thus, these novel hydrogels could be a promising candidate for applications in bone tissue engineering, such as acellular systems to be implanted and regenerate bone or in stem cells therapy.
Collapse
Affiliation(s)
- Lluís Oliver-Cervelló
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Helena Martin-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Cristina Gonzalez-Garcia
- Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| |
Collapse
|
11
|
Gui X, Zhang H, Zhang R, Li Q, Zhu W, Nie Z, Zhao J, Cui X, Hao W, Wen X, Shen W, Song H. Exosomes incorporated with black phosphorus quantum dots attenuate retinal angiogenesis via disrupting glucose metabolism. Mater Today Bio 2023; 19:100602. [PMID: 36942311 PMCID: PMC10024194 DOI: 10.1016/j.mtbio.2023.100602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/06/2023] Open
Abstract
Black phosphorus quantum dots (BPQDs) have shown potential in tumor therapy, however, their anti-angiogenic functions have not been studied. Although BPQDs are easily degraded to non-toxic phosphrous, the reported toxicity, poor stability, and non-selectivity largely limit their further application in medicine. In this study, a vascular targeting, biocompatible, and cell metabolism-disrupting nanoplatform is engineered by incorporating BPQDs into exosomes modified with the Arg-Gly-Asp (RGD) peptide (BPQDs@RGD-EXO nanospheres, BREs). BREs inhibit endothelial cells (ECs) proliferation, migration, tube formation, and sprouting in vitro. The anti-angiogenic role of BREs in vivo is evaluated using mouse retinal vascular development model and oxygen-induced retinopathy model. Combined RNA-seq and metabolomic analysis reveal that BREs disrupt glucose metabolism, which is further confirmed by evaluating metabolites, ATP production and the c-MYC/Hexokinase 2 pathway. These BREs are promising anti-angiogenic platforms for the treatment of pathological retinal angiogenesis with minimal side effects.
Collapse
Affiliation(s)
- Xiao Gui
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Haorui Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Rui Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Qing Li
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Weiye Zhu
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Zheng Nie
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Jiawei Zhao
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Xiao Cui
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Weiju Hao
- University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Xudong Wen
- Department of Gastroenterology, Chengdu Integrated TCM&Western Medicine Hospital, Chengdu University of TCM, Chengdu, 610016, China
- Corresponding author.
| | - Wei Shen
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
- Corresponding author.
| | - Hongyuan Song
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
- Corresponding author.
| |
Collapse
|
12
|
Parfenova LV, Galimshina ZR, Gil’fanova GU, Alibaeva EI, Danilko KV, Aubakirova VR, Farrakhov RG, Parfenov EV, Valiev RZ. Modeling of Biological Activity of PEO-Coated Titanium Implants with Conjugates of Cyclic RGD Peptide with Amino Acid Bisphosphonates. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8120. [PMID: 36431607 PMCID: PMC9699121 DOI: 10.3390/ma15228120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Titanium is considered to be the most essential metal in the field of implantology. The main factors determining metal biocompatibility, among others, include the morphology and chemical composition of the titanium surface. Therefore, the aim of this work was to develop approaches to control the biological activity of the titanium surface by creating coatings that combine both an inorganic phase with a given morphology and organic molecules containing an integrin-selective peptide that regulate cell adhesion and proliferation. As such, we synthesized new c(RGDfC) derivatives of amino acid bisphosphonates (four examples) with different bisphosphonate anchors and maleimide linkers. These molecules were deposited on a highly developed porous surface obtained via the plasma electrolytic oxidation (PEO) of coarse-grained and nanostructured titanium. In vitro studies demonstrated the increase in the viability degree of mesenchymal stem cells and fibroblasts on the surface of coarse-grained or nanostructured titanium modified with PEO and a c(RGDfC) derivative of ε-aminocaproic acid bisphophonate with an SMCC linker. As a result, the use of conjugates of amino acid bisphosphonates with a cyclic RGD peptide for the modification of PEO-coated titanium opens the ways for the effective control of the biological activity of the metal implant surface.
Collapse
Affiliation(s)
- Lyudmila V. Parfenova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141, Prospekt Oktyabrya, 450075 Ufa, Russia
| | - Zulfiya R. Galimshina
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141, Prospekt Oktyabrya, 450075 Ufa, Russia
| | - Guzel U. Gil’fanova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141, Prospekt Oktyabrya, 450075 Ufa, Russia
| | - Eliza I. Alibaeva
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141, Prospekt Oktyabrya, 450075 Ufa, Russia
| | - Ksenia V. Danilko
- Central Research Laboratory, Bashkir State Medical University, 3 Lenin Street, 450000 Ufa, Russia
| | - Veta R. Aubakirova
- Department of Electronic Engineering, Ufa State Aviation Technical University, 12 Karl Marx Street, 450008 Ufa, Russia
| | - Ruzil G. Farrakhov
- Department of Electronic Engineering, Ufa State Aviation Technical University, 12 Karl Marx Street, 450008 Ufa, Russia
| | - Evgeny V. Parfenov
- Department of Materials Science and Physics of Metals, Ufa State Aviation Technical University, 12 Karl Marx Street, 450008 Ufa, Russia
| | - Ruslan Z. Valiev
- Department of Materials Science and Physics of Metals, Ufa State Aviation Technical University, 12 Karl Marx Street, 450008 Ufa, Russia
| |
Collapse
|
13
|
Peptides for Coating TiO 2 Implants: An In Silico Approach. Int J Mol Sci 2022; 23:ijms232214048. [PMID: 36430525 PMCID: PMC9693858 DOI: 10.3390/ijms232214048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Titanium is usually used in the manufacturing of metal implants due to its biocompatibility and high resistance to corrosion. A structural and functional connection between the living bone and the surface of the implant, a process called osseointegration, is mandatory for avoiding prolonged healing, infections, and tissue loss. Therefore, osseointegration is crucial for the success of the implantation procedure. Osseointegration is a process mediated by bone-matrix progenitor cells' proteins, named integrins. In this study, we used an in silico approach to assemble and test peptides that can be strategically used in sensitizing TiO2 implants in order to improve osseointegration. To do so, we downloaded PDB structures of integrins α5β1, αvβ3, and αIIbβ3; their biological ligands; and low-cost proteins from the Protein Data Bank, and then we performed a primary (integrin-protein) docking analysis. Furthermore, we modeled complex peptides with the potential to bind to the TiO2 surface on the implant, as well as integrins in the bone-matrix progenitor cells. Then we performed a secondary (integrin-peptide) docking analysis. The ten most promising integrin-peptide docking results were further verified by molecular dynamics (MD) simulations. We recognized 82 peptides with great potential to bind the integrins, and therefore to be used in coating TiO2 implants. Among them, peptides 1 (GHTHYHAVRTQTTGR), 3 (RKLPDATGR), and 8 (GHTHYHAVRTQTLKA) showed the highest binding stability during the MD simulations. This bioinformatics approach saves time and more effectively directs in vitro studies.
Collapse
|
14
|
Ruan Y, Sohail M, Zhao J, Hu F, Li Y, Wang P, Zhang L. Applications of Material-Binding Peptides: A Review. ACS Biomater Sci Eng 2022; 8:4738-4750. [PMID: 36229413 DOI: 10.1021/acsbiomaterials.2c00651] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Material-binding peptides (MBPs) are functionalized adhesive materials consisting of a few to several dozen amino acids. This affinity between MBPs and materials is regulated by multiple interactions, including hydrogen bonding, electrostatic, hydrophobic interactions, and π-π stacking. They show selective binding and high affinity to a diverse range of inorganic and organic materials, such as silicon-based materials, metals, metal compounds, carbon materials, and polymers. They are used to improve the biocompatibility of materials, increase the efficiency of material synthesis, and guide the controlled synthesis of nanomaterials. In addition, these can be used for precise targeting of proteins by conjugating to target biomolecules. In this review, we summarize the main designs and applications of MBPs in recent years. The discussions focus on more efficient and functional peptides, including evolution and overall design of MBPs. We have also highlighted the recent applications of MBPs, such as functionalization of material surfaces, synthesis of nanomaterials, drug delivery, cancer therapy, and plastic degradation. Besides, we also discussed the development trend of MBPs. This interpretation will accelerate future investigations to bottleneck the drawbacks of available MBPs, promoting their commercial applications.
Collapse
Affiliation(s)
- Yongqiang Ruan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jindi Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Fanghui Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yunhan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Panlin Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
15
|
Oliver‐Cervelló L, Martin‐Gómez H, Mandakhbayar N, Jo Y, Cavalcanti‐Adam EA, Kim H, Ginebra M, Lee J, Mas‐Moruno C. Mimicking Bone Extracellular Matrix: From BMP-2-Derived Sequences to Osteogenic-Multifunctional Coatings. Adv Healthc Mater 2022; 11:e2201339. [PMID: 35941083 PMCID: PMC11468143 DOI: 10.1002/adhm.202201339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 01/28/2023]
Abstract
Cell-material interactions are regulated by mimicking bone extracellular matrix on the surface of biomaterials. In this regard, reproducing the extracellular conditions that promote integrin and growth factor (GF) signaling is a major goal to trigger bone regeneration. Thus, the use of synthetic osteogenic domains derived from bone morphogenetic protein 2 (BMP-2) is gaining increasing attention, as this strategy is devoid of the clinical risks associated with this molecule. In this work, the wrist and knuckle epitopes of BMP-2 are screened to identify peptides with potential osteogenic properties. The most active sequences (the DWIVA motif and its cyclic version) are combined with the cell adhesive RGD peptide (linear and cyclic variants), to produce tailor-made biomimetic peptides presenting the bioactive cues in a chemically and geometrically defined manner. Such multifunctional peptides are next used to functionalize titanium surfaces. Biological characterization with mesenchymal stem cells demonstrates the ability of the biointerfaces to synergistically enhance cell adhesion and osteogenic differentiation. Furthermore, in vivo studies in rat calvarial defects prove the capacity of the biomimetic coatings to improve new bone formation and reduce fibrous tissue thickness. These results highlight the potential of mimicking integrin-GF signaling with synthetic peptides, without the need for exogenous GFs.
Collapse
Affiliation(s)
- Lluís Oliver‐Cervelló
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
| | - Helena Martin‐Gómez
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Department of Biomaterials ScienceSchool of DentistryDankook UniversityCheonan330‐714Republic of Korea
| | - Young‐Woo Jo
- Neobiotech Co.Ltd R&D CenterSeoul08381Republic of Korea
| | - Elisabetta Ada Cavalcanti‐Adam
- Department of Cellular BiophysicsGrowth Factor Mechanobiology groupMax Planck Institute for Medical Research Jahnstraße 2969120HeidelbergGermany
| | - Hae‐Won Kim
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Department of Biomaterials ScienceSchool of DentistryDankook UniversityCheonan330‐714Republic of Korea
| | - Maria‐Pau Ginebra
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
- Institute for Bioengineering of CataloniaBarcelona08028Spain
| | - Jung‐Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Department of Biomaterials ScienceSchool of DentistryDankook UniversityCheonan330‐714Republic of Korea
| | - Carlos Mas‐Moruno
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
| |
Collapse
|
16
|
Endothelial cell spreading on lipid bilayers with combined integrin and cadherin binding ligands. Bioorg Med Chem 2022; 68:116850. [PMID: 35714536 DOI: 10.1016/j.bmc.2022.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022]
Abstract
Endothelial cells play a central role in the vascular system, where their function is tightly regulated by both cell-extracellular matrix (e.g., via integrins) and cell-cell interactions (e.g., via cadherins). In this study, we incorporated cholesterol-modified integrin and N-cadherin peptide binding ligands in fluid supported lipid bilayers. Human umbilical vein endothelial cell adhesion, spreading and vinculin localization in these cells were dependent on ligand density. One composition led to observe a higher extent of cell spreading, where cells exhibited extensive lamellipodia formation and a qualitatively more distinct N-cadherin localization at the cell periphery, which is indicative of N-cadherin clustering and a mimic of cell-cell contact formation. The results can be used to reconstitute the endothelial-pericyte interface on biomedical devices and materials.
Collapse
|
17
|
Atrisco-Morales J, Ramírez M, Castañón-Sánchez CA, Román-Román A, Román-Fernández IV, Martínez-Carrillo DN, García-Arellano S, Muñoz-Valle JF, Rodríguez-Ruiz HA, Fernández-Tilapa G. In Peripheral Blood Mononuclear Cells Helicobacter pylori Induces the Secretion of Soluble and Exosomal Cytokines Related to Carcinogenesis. Int J Mol Sci 2022; 23:ijms23158801. [PMID: 35955936 PMCID: PMC9368997 DOI: 10.3390/ijms23158801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Helicobacter pylori promotes the secretion of cytokines that regulate inflammation and carcinogenesis. Immune cells secrete cytokines into the extracellular medium or packaged in exosomes. The objective of this study was to analyze the profile of soluble and exosomal cytokines that were secreted by human peripheral blood mononuclear cells (PBMCs) that were infected with H. pylori and to build a network of interaction between cytokines and cellular proteins. PBMCs were obtained by density gradient centrifugation and infected with H. pylori for 24 h. The infection was verified by immunofluorescence and Western blot for CagA. The exosomes were obtained from culture supernatant by ultracentrifugation and characterized by transmission electron microscopy, particle size analysis, and Western blot for CD9 and CD81. Cytokines were quantified using a multiplex immunoassay in the culture supernatant, intact exosomes, and lysed exosomes. H. pylori adheres to lymphocytes and translocates CagA. In PBMCs, H. pylori induces an increase in the soluble and exosomal IL-1β, IL-6, TNF-α, IL-10, IL-17A, IL-21, and IL-22. The protein-protein interaction (PPI) network shows that soluble and exosomal cytokines interact with proteins that participate in signaling pathways such as NF-κB, MAPK, PI3K-Akt, Jak-STAT, FoxO, and mTOR, that are related to carcinogenesis; moreover, TNF-α had the highest number of interactions. Cytokine-loaded exosomes represent another means of intercellular communication that is activated by H. pylori to stimulate inflammation, carcinogenesis, or cancer progression. Cytokine-loaded exosomes are likely to be associated with extragastrointestinal diseases of inflammatory origin.
Collapse
Affiliation(s)
- Josefina Atrisco-Morales
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
| | - Mónica Ramírez
- CONACYT-Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
| | - Carlos Alberto Castañón-Sánchez
- Laboratorio de Investigación Biomédica, Hospital Regional de Alta Especialidad de Oaxaca, San Bartolo Coyotepec 71256, Oaxaca, Mexico
| | - Adolfo Román-Román
- Laboratorio de Investigación en Bacteriología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
| | - Ilce Valeria Román-Fernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Dinorah Nashely Martínez-Carrillo
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
| | - Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Hugo Alberto Rodríguez-Ruiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
| | - Gloria Fernández-Tilapa
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
- Correspondence:
| |
Collapse
|
18
|
Zheng CY, Chu XY, Gao CY, Hu HY, He X, Chen X, Yang K, Zhang DL. TAT&RGD Peptide-Modified Naringin-Loaded Lipid Nanoparticles Promote the Osteogenic Differentiation of Human Dental Pulp Stem Cells. Int J Nanomedicine 2022; 17:3269-3286. [PMID: 35924260 PMCID: PMC9342892 DOI: 10.2147/ijn.s371715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Naringin is a naturally occurring flavanone that promotes osteogenesis. Owing to the high lipophilicity, poor in vivo bioavailability, and extensive metabolic alteration upon administration, the clinical efficacy of naringin is understudied. Additionally, information on the molecular mechanism by which it promotes osteogenesis is limited. Methods In this study, we prepared TAT & RGD peptide-modified naringin-loaded nanoparticles (TAT-RGD-NAR-NPs), evaluated their potency on the osteogenic differentiation of human dental pulp stem cells (hDPSCs), and studied its mechanism of action through metabolomic analysis. Results The particle size and zeta potential of TAT-RGD-NAR-NPs were 160.70±2.05 mm and –20.77±0.47mV, respectively. The result of cell uptake assay showed that TAT-RGD-NAR-NPs could effectively enter hDPSCs. TAT-RGD-NAR-NPs had a more significant effect on cell proliferation and osteogenic differentiation promotion. Furthermore, in metabolomic analysis, naringin particles showed a strong influence on the glycerophospholipid metabolism pathway of hDPSCs. Specifically, it upregulated the expression of PLA2G3 and PLA2G1B (two isozymes of phospholipase A2, PLA2), increased the biosynthesis of lysophosphatidic acid (LPA). Conclusion These results suggested that TAT-RGD-NPs might be used for transporting naringin to hDPSCs for modulating stem cell osteogenic differentiation. The metabolomic analysis was used for the first time to elucidate the mechanism by which naringin promotes hDPSCs osteogenesis by upregulating PLA2G3 and PLA2G1B.
Collapse
Affiliation(s)
- Chun-Yan Zheng
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
| | - Xiao-Yang Chu
- Department of Stomatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Chun-Yan Gao
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
| | - Hua-Ying Hu
- Birth Defects Prevention and Control Technology Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xin He
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
| | - Xu Chen
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Dong-Liang Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Dong-Liang Zhang, Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, 11 Xilahutong Road, Beijing, 100040, People’s Republic of China, Email
| |
Collapse
|
19
|
MISIRLI D, BİNGÖL ÖZAKPINAR Ö, ŞEKERLER T, ARU B, YANIKKAYA DEMİREL G, TUNOĞLU S, OZSAVCİ D. Effects of SPARC and Possible Receptors on Colon Cancer Cell Line. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022. [DOI: 10.33808/clinexphealthsci.1100770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Objective: The aim of this study was to observe the apoptotic/cytotoxic effects of exogenous SPARC on colon cancer cell line HT-29, then to investigate the function of stabilin-1 and integrin αvβ3, which are possible receptors for SPARC in colon cancer cells and to determine the quantitation of their receptor numbers.
Methods: Appropriate doses of exogenous SPARC and it’s inhibitor, cilengitide added to HT-29 cell line were determined by xCELLigence Real-Time Cell Analysis system, SPARC-mediated caspase 3 expressions were measured. Using the RT-PCR system, gene expression levels of SPARC, stabilin-1 and integrin αvβ3 receptors (silenced/nonsilenced with cilengitide) were detected then the numbers of receptors per cell were quantitated by flow cytometry.
Results: IC50 value of SPARC was determined as 4.57 μg/mL and IC50 value of cilengitide was determined as 50 nM. 5 μg/mL exogenous SPARC caused increased apoptosis in the HT-29 line. Significant increase in gene expression of integrin αvβ3 receptor was observed in the group incubated with 5 μg/mL SPARC, contrarily, the addition of cilengitide decreased gene expressions. The integrin αvβ3 receptor numbers
increased approximately 2-fold with SPARC compared to the control. No significant changes were observed in the gene expression and receptor numbers of stabilin-1.
Conclusion: Exogenous SPARC was shown to reduce proliferation and induce apoptosis in colon cancer cells. Integrin αvβ3 is thought to be the possible receptor mediating SPARC in colon cancer cells. Quantification of surface receptors per cell, which we think we have done first, can be considered as a marker in the follow-up of anticancer treatments.
Collapse
|
20
|
Design, synthesis and evaluation of RGD peptidomimetic – Gold nanostar conjugates as M21 cell adhesion inhibitors. Bioorg Chem 2022; 126:105873. [DOI: 10.1016/j.bioorg.2022.105873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022]
|
21
|
Paulus J, Sewald N. Synthesis and Evaluation of a Non-Peptide Small-Molecule Drug Conjugate Targeting Integrin αVβ3. Front Chem 2022; 10:869639. [PMID: 35480387 PMCID: PMC9035832 DOI: 10.3389/fchem.2022.869639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 01/16/2023] Open
Abstract
An integrin αVβ3-targeting linear RGD mimetic containing a small-molecule drug conjugate (SMDC) was synthesized by combining the antimitotic agent monomethyl auristatin E (MMAE), an enzymatically cleavable Val-Ala-PABC linker with a linear conjugable RGD mimetic. The structure proposal for the conjugable RGD mimetic was suggested upon the DAD mapping analysis of a previously synthesized small-molecule RGD mimetic array based on a tyrosine scaffold. Therefore, a diversifying strategy was developed as well as a novel method for the partial hydrogenation of pyrimidines in the presence of the hydrogenolytically cleavable Cbz group. The small-molecule RGD mimetics were evaluated in an ELISA-like assay, and the structural relationships were analyzed by DAD mapping revealing activity differences induced by structural changes as visualized in dependence on special structural motifs. This provided a lead structure for generation of an SMDC containing the antimitotic drug MMAE. The resulting SMDC containing a linear RGD mimetic was tested in a cell adhesion and an in vitro cell viability assay in comparison to reference SMDCs containing cRGDfK or cRADfK as the homing device. The linear RGD SMDC and the cRGDfK SMDC inhibited adhesion of αVβ3-positive WM115 cells to vitronectin with IC50 values in the low µM range, while no effect was observed for the αVβ3-negative M21-L cell line. The cRADfK SMDC used as a negative control was about 30-fold less active in the cell adhesion assay than the cRGDfK SMDC. Conversely, both the linear RGD SMDC and the cRGDfK SMDC are about 55-fold less cytotoxic than MMAE against the αVβ3-positive WM115 cell line with IC50 values in the nM range, while the cRADfK SMDC is 150-fold less cytotoxic than MMAE. Hence, integrin binding also influences the antiproliferative activity giving a targeting index of 2.8.
Collapse
|
22
|
Wang S, Lin S, Xue B, Wang C, Yan N, Guan Y, Hu Y, Wen X. Bruch's-Mimetic Nanofibrous Membranes Functionalized with the Integrin-Binding Peptides as a Promising Approach for Human Retinal Pigment Epithelium Cell Transplantation. Molecules 2022; 27:1429. [PMID: 35209218 PMCID: PMC8874486 DOI: 10.3390/molecules27041429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/02/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study aimed to develop an ultrathin nanofibrous membrane able to, firstly, mimic the natural fibrous architecture of human Bruch's membrane (BM) and, secondly, promote survival of retinal pigment epithelial (RPE) cells after surface functionalization of fibrous membranes. METHODS Integrin-binding peptides (IBPs) that specifically interact with appropriate adhesion receptors on RPEs were immobilized on Bruch's-mimetic membranes to promote coverage of RPEs. Surface morphologies, Fourier-transform infrared spectroscopy spectra, contact angle analysis, Alamar Blue assay, live/dead assay, immunofluorescence staining, and scanning electron microscopy were used to evaluate the outcome. RESULTS Results showed that coated membranes maintained the original morphology of nanofibers. After coating with IBPs, the water contact angle of the membrane surfaces varied from 92.38 ± 0.67 degrees to 20.16 ± 0.81 degrees. RPE cells seeded on IBP-coated membranes showed the highest viability at all time points (Day 1, p < 0.05; Day 3, p < 0.01; Days 7 and 14, p < 0.001). The proliferation rate of RPE cells on uncoated poly(ε-caprolactone) (PCL) membranes was significantly lower than that of IBP-coated membranes (p < 0.001). SEM images showed a well-organized hexa/polygonal monolayer of RPE cells on IBP-coated membranes. RPE cells proliferated rapidly, contacted, and became confluent. RPE cells formed a tight adhesion with nanofibers under high-magnification SEM. Our findings confirmed that the IBP-coated PCL membrane improved the attachment, proliferation, and viability of RPE cells. In addition, in this study, we used serum-free culture for RPE cells and short IBPs without immunogenicity to prevent graft rejection and immunogenicity during transplantation. CONCLUSIONS These results indicated that the biomimic BM-IBP-RPE nanofibrous graft might be a new, practicable approach to increase the success rate of RPE cell transplantation.
Collapse
Affiliation(s)
- Shaocheng Wang
- Endocrine Department, Third Central Hospital of Tianjin, Tianjin 300170, China; (S.W.); (N.Y.); (Y.G.)
- Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
| | - Siyong Lin
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
- Department of Ophthalmology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Bo Xue
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
| | - Chenyu Wang
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
| | - Nana Yan
- Endocrine Department, Third Central Hospital of Tianjin, Tianjin 300170, China; (S.W.); (N.Y.); (Y.G.)
- Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Yueyan Guan
- Endocrine Department, Third Central Hospital of Tianjin, Tianjin 300170, China; (S.W.); (N.Y.); (Y.G.)
- Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Yuntao Hu
- Department of Ophthalmology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
- International Institute for Biomedical Biomaterials (IBM), Zhengzhou 450018, China
| |
Collapse
|
23
|
On-Growth and In-Growth Osseointegration Enhancement in PM Porous Ti-Scaffolds by Two Different Bioactivation Strategies: Alkali Thermochemical Treatment and RGD Peptide Coating. Int J Mol Sci 2022; 23:ijms23031750. [PMID: 35163682 PMCID: PMC8835960 DOI: 10.3390/ijms23031750] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 02/01/2023] Open
Abstract
A lack of primary stability and osteointegration in metallic implants may result in implant loosening and failure. Adding porosity to metallic implants reduces the stress shielding effect and improves implant performance, allowing the surrounding bone tissue to grow into the scaffold. However, a bioactive surface is needed to stimulate implant osteointegration and improve mechanical stability. In this study, porous titanium implants were produced via powder sintering to create different porous diameters and open interconnectivity. Two strategies were used to generate a bioactive surface on the metallic foams: (1) an inorganic alkali thermochemical treatment, (2) grafting a cell adhesive tripeptide (RGD). RGD peptides exhibit an affinity for integrins expressed by osteoblasts, and have been reported to improve osteoblast adhesion, whereas the thermochemical treatment is known to improve titanium implant osseointegration upon implantation. Bioactivated scaffolds and control samples were implanted into the tibiae of rabbits to analyze the effect of these two strategies in vivo regarding bone tissue regeneration through interconnected porosity. Histomorphometric evaluation was performed at 4 and 12 weeks after implantation. Bone-to-implant contact (BIC) and bone in-growth and on-growth were evaluated in different regions of interest (ROIs) inside and outside the implant. The results of this study show that after a long-term postoperative period, the RGD-coated samples presented higher quantification values of quantified newly formed bone tissue in the implant's outer area. However, the total analyzed bone in-growth was observed to be slightly greater in the scaffolds treated with alkali thermochemical treatment. These results suggest that both strategies contribute to enhancing porous metallic implant stability and osteointegration, and a combination of both strategies might be worth pursuing.
Collapse
|
24
|
The Effects of αvβ3 Integrin Blockage in Breast Tumor and Endothelial Cells under Hypoxia In Vitro. Int J Mol Sci 2022; 23:ijms23031745. [PMID: 35163668 PMCID: PMC8835904 DOI: 10.3390/ijms23031745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is characterized by a hypoxic microenvironment inside the tumor mass, contributing to cell metastatic behavior. Hypoxia induces the expression of hypoxia-inducible factor (HIF-1α), a transcription factor for genes involved in angiogenesis and metastatic behavior, including the vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMPs), and integrins. Integrin receptors play a key role in cell adhesion and migration, being considered targets for metastasis prevention. We investigated the migratory behavior of hypoxia-cultured triple-negative breast cancer cells (TNBC) and endothelial cells (HUVEC) upon αvβ3 integrin blocking with DisBa-01, an RGD disintegrin with high affinity to this integrin. Boyden chamber, HUVEC transmigration, and wound healing assays in the presence of DisBa-01 were performed in hypoxic conditions. DisBa-01 produced similar effects in the two oxygen conditions in the Boyden chamber and transmigration assays. In the wound healing assay, hypoxia abolished DisBa-01′s inhibitory effect on cell motility and decreased the MMP-9 activity of conditioned media. These results indicate that αvβ3 integrin function in cell motility depends on the assay and oxygen levels, and higher inhibitor concentrations may be necessary to achieve the same inhibitory effect as in normoxia. These versatile responses add more complexity to the role of the αvβ3 integrin during tumor progression.
Collapse
|
25
|
Di Russo J, Young JL, Wegner JW, Steins T, Kessler H, Spatz JP. Integrin α5β1 nano-presentation regulates collective keratinocyte migration independent of substrate rigidity. eLife 2021; 10:69861. [PMID: 34554089 PMCID: PMC8460267 DOI: 10.7554/elife.69861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/13/2021] [Indexed: 01/01/2023] Open
Abstract
Nanometer-scale properties of the extracellular matrix influence many biological processes, including cell motility. While much information is available for single-cell migration, to date, no knowledge exists on how the nanoscale presentation of extracellular matrix receptors influences collective cell migration. In wound healing, basal keratinocytes collectively migrate on a fibronectin-rich provisional basement membrane to re-epithelialize the injured skin. Among other receptors, the fibronectin receptor integrin α5β1 plays a pivotal role in this process. Using a highly specific integrin α5β1 peptidomimetic combined with nanopatterned hydrogels, we show that keratinocyte sheets regulate their migration ability at an optimal integrin α5β1 nanospacing. This efficiency relies on the effective propagation of stresses within the cell monolayer independent of substrate stiffness. For the first time, this work highlights the importance of extracellular matrix receptor nanoscale organization required for efficient tissue regeneration.
Collapse
Affiliation(s)
- Jacopo Di Russo
- Max Planck Institute for Medical Research, Heidelberg, Germany.,Interdisciplinary Centre for Clinical Research, Aachen, Germany.,DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse, Aachen, Germany.,Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Jennifer L Young
- Max Planck Institute for Medical Research, Heidelberg, Germany.,Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | | | - Timmy Steins
- Interdisciplinary Centre for Clinical Research, Aachen, Germany.,Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Horst Kessler
- Institute for Advance Study, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Heidelberg, Germany.,Institute for Molecular System Engineering - IMSE - Heidelberg University, Heidelberg, Germany.,Max Planck School Matter to Life, Heidelberg, Germany
| |
Collapse
|
26
|
Vedaraman S, Bernhagen D, Haraszti T, Licht C, Castro Nava A, Omidinia Anarkoli A, Timmerman P, De Laporte L. Bicyclic RGD peptides enhance nerve growth in synthetic PEG-based Anisogels. Biomater Sci 2021; 9:4329-4342. [PMID: 33724266 PMCID: PMC8204161 DOI: 10.1039/d0bm02051f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/16/2021] [Indexed: 02/03/2023]
Abstract
Nerve regeneration scaffolds often consist of soft hydrogels modified with extracellular matrix (ECM) proteins or fragments, as well as linear and cyclic peptides. One of the commonly used integrin-mediated cell adhesive peptide sequences is Arg-Gly-Asp (RGD). Despite its straightforward coupling mechanisms to artificial extracellular matrix (aECM) constructs, linear RGD peptides suffer from low stability towards degradation and lack integrin selectivity. Cyclization of RGD improves the affinity towards integrin subtypes but lacks selectivity. In this study, a new class of short bicyclic peptides with RGD in a cyclic loop and 'random screened' tri-amino acid peptide sequences in the second loop is investigated as a biochemical cue for cell growth inside three-dimensional (3D) synthetic poly(ethylene glycol) (PEG)-based Anisogels. These peptides impart high integrin affinity and selectivity towards either αvβ3 or α5β1 integrin subunits. Enzymatic conjugation of such bicyclic peptides to the PEG backbone enables the formulation of an aECM hydrogel that supports nerve growth. Furthermore, different proteolytic cleavable moieties are incorporated and compared to promote cell migration and proliferation, resulting in enhanced cell growth with different degradable peptide crosslinkers. Mouse fibroblasts and primary nerve cells from embryonic chick dorsal root ganglions (DRGs) show superior growth in bicyclic RGD peptide conjugated gels selective towards αvβ3 or α5β1, compared to monocyclic or linear RGD peptides, with a slight preference to αvβ3 selective bicyclic peptides in the case of nerve growth. Synthetic Anisogels, modified with bicyclic RGD peptides and containing short aligned, magneto-responsive fibers, show oriented DRG outgrowth parallel to the fibers. This report shows the potential of PEG hydrogels coupled with bicyclic RGD peptides as an aECM model and paves the way for a new class of integrin selective biomolecules for cell growth and nerve regeneration.
Collapse
Affiliation(s)
- Sitara Vedaraman
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany and Institute for Technical and Macromolecular Chemistry, RWTH Aachen, Worringerweg 1-2, 52074 Aachen, Germany.
| | - Dominik Bernhagen
- Pepscan Therapeutics, Zuidersluisweg 2, 8243 RC Lelystad, the Netherlands
| | - Tamas Haraszti
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany and Institute for Technical and Macromolecular Chemistry, RWTH Aachen, Worringerweg 1-2, 52074 Aachen, Germany.
| | - Christopher Licht
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany and Institute for Technical and Macromolecular Chemistry, RWTH Aachen, Worringerweg 1-2, 52074 Aachen, Germany.
| | - Arturo Castro Nava
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany and Institute for Technical and Macromolecular Chemistry, RWTH Aachen, Worringerweg 1-2, 52074 Aachen, Germany.
| | - Abdolrahman Omidinia Anarkoli
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany and Institute for Technical and Macromolecular Chemistry, RWTH Aachen, Worringerweg 1-2, 52074 Aachen, Germany.
| | - Peter Timmerman
- Pepscan Therapeutics, Zuidersluisweg 2, 8243 RC Lelystad, the Netherlands and Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Laura De Laporte
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany and Institute for Technical and Macromolecular Chemistry, RWTH Aachen, Worringerweg 1-2, 52074 Aachen, Germany. and Institute of Applied Medical Engineering, RWTH University, Pauwelsstraße 20, 52074 Aachen, Germany
| |
Collapse
|
27
|
Tomassi S, D’Amore VM, Di Leva FS, Vannini A, Quilici G, Weinmüller M, Reichart F, Amato J, Romano B, Izzo AA, Di Maro S, Novellino E, Musco G, Gianni T, Kessler H, Marinelli L. Halting the Spread of Herpes Simplex Virus-1: The Discovery of an Effective Dual αvβ6/αvβ8 Integrin Ligand. J Med Chem 2021; 64:6972-6984. [PMID: 33961417 PMCID: PMC8279406 DOI: 10.1021/acs.jmedchem.1c00533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Over recent years, αvβ6 and αvβ8 Arg-Gly-Asp (RGD) integrins have risen to prominence as interchangeable co-receptors for the cellular entry of herpes simplex virus-1 (HSV-1). In fact, the employment of subtype-specific integrin-neutralizing antibodies or gene-silencing siRNAs has emerged as a valuable strategy for impairing HSV infectivity. Here, we shift the focus to a more affordable pharmaceutical approach based on small RGD-containing cyclic pentapeptides. Starting from our recently developed αvβ6-preferential peptide [RGD-Chg-E]-CONH2 (1), a small library of N-methylated derivatives (2-6) was indeed synthesized in the attempt to increase its affinity toward αvβ8. Among the novel compounds, [RGD-Chg-(NMe)E]-CONH2 (6) turned out to be a potent αvβ6/αvβ8 binder and a promising inhibitor of HSV entry through an integrin-dependent mechanism. Furthermore, the renewed selectivity profile of 6 was fully rationalized by a NMR/molecular modeling combined approach, providing novel valuable hints for the design of RGD integrin ligands with the desired specificity profile.
Collapse
Affiliation(s)
- Stefano Tomassi
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Vincenzo Maria D’Amore
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Francesco Saverio Di Leva
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Andrea Vannini
- Department
of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Giacomo Quilici
- Biomolecular
NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Michael Weinmüller
- Institute
for Advanced Study, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Florian Reichart
- Institute
for Advanced Study, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Jussara Amato
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Barbara Romano
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Angelo Antonio Izzo
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Salvatore Di Maro
- DiSTABiF, University of Campania
“Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ettore Novellino
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
- Facoltà
di Medicina e Chirurgia, Università
Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Roma, Italy
| | - Giovanna Musco
- Biomolecular
NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Tatiana Gianni
- Department
of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Horst Kessler
- Institute
for Advanced Study, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Luciana Marinelli
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
28
|
Oliver-Cervelló L, Martin-Gómez H, Mas-Moruno C. New trends in the development of multifunctional peptides to functionalize biomaterials. J Pept Sci 2021; 28:e3335. [PMID: 34031952 DOI: 10.1002/psc.3335] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
Improving cell-material interactions is a major goal in tissue engineering. In this regard, functionalization of biomaterials with cell instructive molecules from the extracellular matrix stands out as a powerful strategy to enhance their bioactivity and achieve optimal tissue integration. However, current functionalization strategies, like the use of native full-length proteins, are associated with drawbacks, thus urging the need of developing new methodologies. In this regard, the use of synthetic peptides encompassing specific bioactive regions of proteins represents a promising alternative. In particular, the combination of peptide sequences with complementary or synergistic effects makes it possible to address more than one biological target at the biomaterial surface. In this review, an overview of the main strategies using peptides to install multifunctionality on biomaterials is presented, mostly focusing on the combination of the RGD motif with other peptides sequences. The evolution of these approaches, starting from simple methods, like using peptide mixtures, to more advanced systems of peptide presentation, with very well defined chemical properties, are explained. For each system of peptide's presentation, three main aspects of multifunctionality-improving receptor selectivity, mimicking the extracellular matrix and preventing bacterial colonization while improving cell adhesion-are highlighted.
Collapse
Affiliation(s)
- Lluís Oliver-Cervelló
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Helena Martin-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| |
Collapse
|
29
|
Minguela J, Müller DW, Mücklich F, Llanes L, Ginebra MP, Roa JJ, Mas-Moruno C. Peptidic biofunctionalization of laser patterned dental zirconia: A biochemical-topographical approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112096. [PMID: 33965106 DOI: 10.1016/j.msec.2021.112096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
A dual approach employing peptidic biofunctionalization and laser micro-patterns on dental zirconia was explored, with the aim of providing a flexible tool to improve tissue integration of restorations. Direct laser interference patterning with a femtosecond Ti:Sapphire laser was employed, and two periodic grooved patterns were produced with a periodicity of 3 and 10 μm. A platform containing the cell-adhesive RGD and the osteogenic DWIVA peptides was used to functionalize the grooved surfaces. Topography and surface damage were characterized by confocal laser scanning (CLSM), scanning electron and scanning transmission electron microscopy techniques. The surface patterns exhibited a high homogeneity and subsurface damage was found in the form of nano-cracks and nano-pores, at the bottom of the valleys. Accelerated tests in water steam were carried out to assess hydrothermal degradation resistance, which slightly decreased after the laser treatment. Interestingly, the detrimental effects of the laser modification were reverted by a post-laser thermal treatment. The attachment of the molecule was verified trough fluorescence CLSM and X-ray photoelectron spectroscopy. Finally, the biological properties of the surfaces were studied in human mesenchymal stem cells. Cell adhesion, morphology, migration and differentiation were investigated. Cells on grooved surfaces displayed an elongated morphology and aligned along the patterns. On these surfaces, migration was greatly enhanced along the grooves, but also highly restricted in the perpendicular direction as compared to flat specimens. After biofunctionalization, cell number and cell area increased and well-developed cell cytoskeletons were observed. However, no effects on cell migration were found for the peptidic platform. Although some osteogenic potential was found in specimens grooved with a periodicity of 10 μm, the largest effects were observed from the biomolecule, which favored upregulation of several genes related to osteoblastic differentiation in all the surfaces.
Collapse
Affiliation(s)
- J Minguela
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya-BarcelonaTECH, 08019 Barcelona, Spain; Center for Structural Integrity, Reliability and Micromechanics of Materials (CIEFMA), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya-BarcelonaTECH, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya-BarcelonaTECH, 08019 Barcelona, Spain
| | - D W Müller
- Functional Materials, Department of Materials Science and Engineering, Saarland University, 66123 Saarbruecken, Germany
| | - F Mücklich
- Functional Materials, Department of Materials Science and Engineering, Saarland University, 66123 Saarbruecken, Germany
| | - L Llanes
- Center for Structural Integrity, Reliability and Micromechanics of Materials (CIEFMA), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya-BarcelonaTECH, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya-BarcelonaTECH, 08019 Barcelona, Spain
| | - M P Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya-BarcelonaTECH, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya-BarcelonaTECH, 08019 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain
| | - J J Roa
- Center for Structural Integrity, Reliability and Micromechanics of Materials (CIEFMA), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya-BarcelonaTECH, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya-BarcelonaTECH, 08019 Barcelona, Spain
| | - C Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya-BarcelonaTECH, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya-BarcelonaTECH, 08019 Barcelona, Spain.
| |
Collapse
|
30
|
Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers (Basel) 2021; 13:1711. [PMID: 33916607 PMCID: PMC8038522 DOI: 10.3390/cancers13071711] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.
Collapse
Affiliation(s)
- Beatrice S. Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
| | - Horst Kessler
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
31
|
Oliver‐Cervelló L, Martin‐Gómez H, Reyes L, Noureddine F, Ada Cavalcanti‐Adam E, Ginebra M, Mas‐Moruno C. An Engineered Biomimetic Peptide Regulates Cell Behavior by Synergistic Integrin and Growth Factor Signaling. Adv Healthc Mater 2021; 10:e2001757. [PMID: 33336559 DOI: 10.1002/adhm.202001757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Indexed: 01/04/2023]
Abstract
Recreating the healing microenvironment is essential to regulate cell-material interactions and ensure the integration of biomaterials. To repair bone, such bioactivity can be achieved by mimicking its extracellular matrix (ECM) and by stimulating integrin and growth factor (GF) signaling. However, current approaches relying on the use of GFs, such as bone morphogenetic protein 2 (BMP-2), entail clinical risks. Here, a biomimetic peptide integrating the RGD cell adhesive sequence and the osteogenic DWIVA motif derived from the wrist epitope of BMP-2 is presented. The approach offers the advantage of having a spatial control over the single binding of integrins and BMP receptors. Such multifunctional platform is designed to incorporate 3,4-dihydroxyphenylalanine to bind metallic oxides with high affinity in a one step process. Functionalization of glass substrates with the engineered peptide is characterized by physicochemical methods, proving a successful surface modification. The biomimetic interfaces significantly improve the adhesion of C2C12 cells, inhibit myotube formation, and activate the BMP-dependent signaling via p38. These effects are not observed on surfaces displaying only one bioactive motif, a mixture of both motifs or soluble DWIVA. These data prove the biological potential of recreating the ECM and engaging in integrin and GF crosstalk via molecular-based mimics.
Collapse
Affiliation(s)
- Lluís Oliver‐Cervelló
- Biomaterials, Biomechanics and Tissue Engineering Group Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC) Barcelona 08019 Spain
- Barcelona Research Center in Multiscale Science and Engineering UPC Barcelona 08019 Spain
| | - Helena Martin‐Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC) Barcelona 08019 Spain
- Barcelona Research Center in Multiscale Science and Engineering UPC Barcelona 08019 Spain
| | - Leslie Reyes
- Biomaterials, Biomechanics and Tissue Engineering Group Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC) Barcelona 08019 Spain
| | - Fatima Noureddine
- Department of Cellular Biophysics Max Planck Institute for Medical Research Jahnstraße 29 Heidelberg 69120 Germany
| | | | - Maria‐Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC) Barcelona 08019 Spain
- Barcelona Research Center in Multiscale Science and Engineering UPC Barcelona 08019 Spain
- Institute for Bioengineering of Catalonia Barcelona 08028 Spain
| | - Carlos Mas‐Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC) Barcelona 08019 Spain
- Barcelona Research Center in Multiscale Science and Engineering UPC Barcelona 08019 Spain
| |
Collapse
|
32
|
Yoshikawa C, Nakaji-Hirabayashi T, Nishijima N, Nonsuwan P, Toh RJ, Kowalczyk W, Thissen H. Ultra-low fouling photocrosslinked coatings for the selective capture of cells expressing CD44. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111630. [PMID: 33545815 DOI: 10.1016/j.msec.2020.111630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/27/2020] [Accepted: 10/13/2020] [Indexed: 11/27/2022]
Abstract
The effective control of biointerfacial interactions is of outstanding interest in a broad range of biomedical applications, ranging from cell culture tools to biosensors and implantable medical devices. For many of these applications, highly specific interactions between cells and material surfaces are desired. Sophisticated control over these interactions requires reducing or preventing non-specific interactions on the one hand and displaying highly specific signals that can be recognized by extracellular receptors on the other. We have recently developed ultra-low fouling coatings that can be applied in a single step using photoreactive copolymers of 2-hydroxypropyl acrylamide and N-benzophenone acrylamide. Here, we have expanded this approach by incorporating polymerizable peptide monomers into these copolymers. The monomers QQGWFGAGK(acrylamide) and acrylamide-GAGQQGWF were synthesized after identifying the QQGWF sequence as a binding motif for CD44 by phage display for the first time. Our results demonstrate that UV-crosslinked coatings fabricated using the QQGWFGAGK(acrylamide) monomer are effective at selectively binding hMSC in the presence of HepG2 and HEK293 cells due to the difference in CD44 expression. Our results also demonstrate that the peptide modified coatings retain their low biofouling character using a BCA protein binding assay as well as an E. coli bacterial attachment assay over a 24 h period. Our approach provides an alternative to traditional integrin-mediated selective cell binding on surfaces and opens the door to new diagnostic applications, exploiting the fact that the transmembrane protein CD44 is highly expressed in multiple diseases.
Collapse
Affiliation(s)
- Chiaki Yoshikawa
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1, Tsukuba, Ibaraki 305-0047, Japan.
| | - Tadashi Nakaji-Hirabayashi
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1, Tsukuba, Ibaraki 305-0047, Japan; Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan; Graduate School of Innovative Life Science, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan.
| | - Nanami Nishijima
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1, Tsukuba, Ibaraki 305-0047, Japan; Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Punnida Nonsuwan
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1, Tsukuba, Ibaraki 305-0047, Japan
| | - Rou Jun Toh
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - Wioleta Kowalczyk
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia.
| |
Collapse
|
33
|
Martin-Gómez H, Oliver-Cervelló L, Sánchez-Campillo I, Marchán V, Ginebra MP, Mas-Moruno C. A versatile click chemistry-based approach for functionalizing biomaterials of diverse nature with bioactive peptides. Chem Commun (Camb) 2021; 57:982-985. [PMID: 33438695 DOI: 10.1039/d0cc07463b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel and versatile toolkit approach for the functionalization of biomaterials of different nature is described. This methodology is based on the solid-phase conjugation of specific anchoring units onto a resin-bound azido-functionalized peptide by using click chemistry. A synergistic multifunctional peptidic scaffold with cell adhesive properties was used as a model compound to showcase the versatility of this new approach. Titanium, gold and polylactic acid surfaces were biofunctionalized by this method, as validated by physicochemical surface characterization with XPS. In vitro assays using mesenchymal stem cells showed enhanced cell adhesion on the functionalized samples, proving the capacity of this strategy to efficiently bioactivate different types of biomaterials.
Collapse
Affiliation(s)
- Helena Martin-Gómez
- Department of Materials Science and Engineering, Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Universitat Politècnica de Catalunya, Spain.
| | | | | | | | | | | |
Collapse
|
34
|
Zhang M, Sun Q, Liu Y, Chu Z, Yu L, Hou Y, Kang H, Wei Q, Zhao W, Spatz JP, Zhao C, Cavalcanti-Adam EA. Controllable ligand spacing stimulates cellular mechanotransduction and promotes stem cell osteogenic differentiation on soft hydrogels. Biomaterials 2020; 268:120543. [PMID: 33260094 DOI: 10.1016/j.biomaterials.2020.120543] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 01/14/2023]
Abstract
Hydrogels with tunable mechanical properties have provided a tremendous opportunity to regulate stem cell differentiation. Hydrogels with osteoid (about 30-40 kPa) or higher stiffness are usually required to induce the osteogenic differentiation of mesenchymal stem cells (MSCs). It is yet difficult to achieve the same differentiation on very soft hydrogels, because of low environmental mechanical stimuli and restricted cellular mechanotransduction. Here, we modulate cellular spatial sensing of integrin-adhesive ligands via quasi-hexagonally arranged nanopatterns to promote cell mechanosensing on hydrogels having low stiffness (about 3 kPa). The increased interligand spacing has been shown to regulate actomyosin force loading to recruit extra integrins on soft hydrogels. It therefore activates mechanotransduction and promotes the osteogenic differentiation of MSCs on soft hydrogels to the level comparable with the one observed on osteoid stiffness. Our work opens up new possibilities for the design of biomaterials and tissue scaffolds for regenerative therapeutics.
Collapse
Affiliation(s)
- Man Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065, Chengdu, China; Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany; Department of Biophysical Chemistry, Heidelberg University, INF 253, 69120, Heidelberg, Germany
| | - Qian Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065, Chengdu, China
| | - Yiling Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065, Chengdu, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Leixiao Yu
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Yong Hou
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Heemin Kang
- Department of Biomicrosystem Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065, Chengdu, China; College of Biomedical Engineering, Sichuan University, 610064, Chengdu, China.
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065, Chengdu, China.
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany; Department of Biophysical Chemistry, Heidelberg University, INF 253, 69120, Heidelberg, Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065, Chengdu, China; College of Biomedical Engineering, Sichuan University, 610064, Chengdu, China
| | - Elisabetta A Cavalcanti-Adam
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany; Department of Biophysical Chemistry, Heidelberg University, INF 253, 69120, Heidelberg, Germany
| |
Collapse
|
35
|
Martin-Gómez H, Oliver-Cervelló L, Buxadera-Palomero J, Ginebra MP, Mas-Moruno C. Chemically Diverse Multifunctional Peptide Platforms with Antimicrobial and Cell Adhesive Properties. Chembiochem 2020; 22:839-844. [PMID: 33094896 DOI: 10.1002/cbic.202000670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/22/2020] [Indexed: 12/16/2022]
Abstract
Bacterial infections and incomplete biomaterial integration are major problems that can lead to the failure of medical implants. However, simultaneously addressing these two issues remains a challenge. Here, we present a chemical peptide library based on a multifunctional platform containing the antimicrobial peptide LF1-11 and the cell-adhesive motif RGD. The scaffolds were customized with catechol groups to ensure straightforward functionalization of the implant surface, and linkers of different length to assess the effect of peptide accessibility on the biological response. The peptidic platforms significantly improved the adhesion of mesenchymal stem cells and showed antimicrobial effects against Staphylococcus aureus. Of note is that peptides bearing spacers that were too long displayed the lowest efficiency. Subsequently, we designed a platform replacing linear RGD by cyclic RGD; this further enhanced eukaryotic cell adhesion while retaining excellent antimicrobial properties, thus being a suitable candidate for tissue engineering applications.
Collapse
Affiliation(s)
- Helena Martin-Gómez
- Department of Materials Science and Engineering, Biomaterials Biomechanics and Tissue Engineering Group (BBT), Universitat Politècnica de Catalunya (UPC), Diagonal, 647, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain
| | - Lluís Oliver-Cervelló
- Department of Materials Science and Engineering, Biomaterials Biomechanics and Tissue Engineering Group (BBT), Universitat Politècnica de Catalunya (UPC), Diagonal, 647, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain
| | - Judit Buxadera-Palomero
- Department of Materials Science and Engineering, Biomaterials Biomechanics and Tissue Engineering Group (BBT), Universitat Politècnica de Catalunya (UPC), Diagonal, 647, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain
| | - Maria-Pau Ginebra
- Department of Materials Science and Engineering, Biomaterials Biomechanics and Tissue Engineering Group (BBT), Universitat Politècnica de Catalunya (UPC), Diagonal, 647, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain
| | - Carles Mas-Moruno
- Department of Materials Science and Engineering, Biomaterials Biomechanics and Tissue Engineering Group (BBT), Universitat Politècnica de Catalunya (UPC), Diagonal, 647, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain
| |
Collapse
|
36
|
Kozyrina AN, Piskova T, Di Russo J. Mechanobiology of Epithelia From the Perspective of Extracellular Matrix Heterogeneity. Front Bioeng Biotechnol 2020; 8:596599. [PMID: 33330427 PMCID: PMC7717998 DOI: 10.3389/fbioe.2020.596599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding the complexity of the extracellular matrix (ECM) and its variability is a necessary step on the way to engineering functional (bio)materials that serve their respective purposes while relying on cell adhesion. Upon adhesion, cells receive messages which contain both biochemical and mechanical information. The main focus of mechanobiology lies in investigating the role of this mechanical coordination in regulating cellular behavior. In recent years, this focus has been additionally shifted toward cell collectives and the understanding of their behavior as a whole mechanical continuum. Collective cell phenomena very much apply to epithelia which are either simple cell-sheets or more complex three-dimensional structures. Researchers have been mostly using the organization of monolayers to observe their collective behavior in well-defined experimental setups in vitro. Nevertheless, recent studies have also reported the impact of ECM remodeling on epithelial morphogenesis in vivo. These new concepts, combined with the knowledge of ECM biochemical complexity are of key importance for engineering new interactive materials to support both epithelial remodeling and homeostasis. In this review, we summarize the structure and heterogeneity of the ECM before discussing its impact on the epithelial mechanobiology.
Collapse
Affiliation(s)
- Aleksandra N. Kozyrina
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Teodora Piskova
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Jacopo Di Russo
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
- DWI – Leibniz-Institute for Interactive Materials, Aachen, Germany
| |
Collapse
|
37
|
Posa F, Baha-Schwab EH, Wei Q, Di Benedetto A, Neubauer S, Reichart F, Kessler H, Spatz JP, Albiges-Rizo C, Mori G, Cavalcanti-Adam EA. Surface Co-presentation of BMP-2 and integrin selective ligands at the nanoscale favors α 5β 1 integrin-mediated adhesion. Biomaterials 2020; 267:120484. [PMID: 33142116 DOI: 10.1016/j.biomaterials.2020.120484] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
Abstract
Here we present the use of surface nanopatterning of covalently immobilized BMP-2 and integrin selective ligands to determine the specificity of their interactions in regulating cell adhesion and focal adhesion assembly. Gold nanoparticle arrays carrying single BMP-2 dimers are prepared by block-copolymer micellar nanolithography and azide-functionalized integrin ligands (cyclic-RGD peptides or α5β1 integrin peptidomimetics) are immobilized on the surrounding polyethylene glycol alkyne by click chemistry. Compared to BMP-2 added to the media, surface immobilized BMP-2 (iBMP-2) favors the spatial segregation of adhesion clusters and enhances focal adhesion (FA) size in cells adhering to α5β1 integrin selective ligands. Moreover, iBMP-2 copresented with α5β1 integrin ligands induces the recruitment of αvβ3 integrins in FAs. When copresented with RGD, iBMP-2 induces the assembly of a higher number of FAs, which are not affected by α5β1 integrin blocking. Our dual-functionalized platforms offer the possibility to study the crosstalk between integrins and BMP receptors, and more in general they could be used to address the spatial regulation of growth factors and adhesion receptors crosstalk on biomimetic surfaces.
Collapse
Affiliation(s)
- Francesca Posa
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, Heidelberg, 69120, Germany
| | - Elisabeth H Baha-Schwab
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, Heidelberg, 69120, Germany
| | - Qiang Wei
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, Heidelberg, 69120, Germany
| | - Adriana Di Benedetto
- University of Foggia, Department of Clinical and Experimental Medicine, viale Pinto 1, Foggia, 71122, Italy
| | - Stefanie Neubauer
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Florian Reichart
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, Heidelberg, 69120, Germany
| | - Corinne Albiges-Rizo
- Institut Albert Bonniot, Université Joseph Fourier, INSERM U823, CNRS ERL 5284, Grenoble Alpessite Santé, Grenoble Cedex, 09, F38042, France
| | - Giorgio Mori
- University of Foggia, Department of Clinical and Experimental Medicine, viale Pinto 1, Foggia, 71122, Italy
| | - Elisabetta Ada Cavalcanti-Adam
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, Heidelberg, 69120, Germany.
| |
Collapse
|
38
|
Yu L, Hou Y, Xie W, Camacho JLC, Cheng C, Holle A, Young J, Trappmann B, Zhao W, Melzig MF, Cavalcanti-Adam EA, Zhao C, Spatz JP, Wei Q, Haag R. Ligand Diffusion Enables Force-Independent Cell Adhesion via Activating α5β1 Integrin and Initiating Rac and RhoA Signaling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002566. [PMID: 32537880 DOI: 10.1002/adma.202002566] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Indexed: 05/12/2023]
Abstract
Cells reside in a dynamic microenvironment in which adhesive ligand availability, density, and diffusivity are key factors regulating cellular behavior. Here, the cellular response to integrin-binding ligand dynamics by directly controlling ligand diffusivity via tunable ligand-surface interactions is investigated. Interestingly, cell spread on the surfaces with fast ligand diffusion is independent of myosin-based force generation. Fast ligand diffusion enhances α5β1 but not αvβ3 integrin activation and initiates Rac and RhoA but not ROCK signaling, resulting in lamellipodium-based fast cell spreading. Meanwhile, on surfaces with immobile ligands, αvβ3 and α5β1 integrins synergistically initiate intracellular-force-based canonical mechanotransduction pathways to enhance cell adhesion and osteogenic differentiation of stem cells. These results indicate the presence of heretofore-unrecognized pathways, distinct from canonical actomyosin-driven mechanisms, that are capable of promoting cell adhesion.
Collapse
Affiliation(s)
- Leixiao Yu
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Yong Hou
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Wenyan Xie
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin, 14195, Germany
| | - Jose Luis Cuellar Camacho
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Chong Cheng
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Andrew Holle
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, Heidelberg, 69120, Germany
| | - Jennifer Young
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, Heidelberg, 69120, Germany
| | - Britta Trappmann
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, Münster, 48149, Germany
| | - Weifeng Zhao
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Matthias F Melzig
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin, 14195, Germany
| | - Elisabetta A Cavalcanti-Adam
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, Heidelberg, 69120, Germany
- Central Scientific Facility "Cellular Biotechnology", Jahnstr. 29, Heidelberg, 69120, Germany
| | - Changsheng Zhao
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, Heidelberg, 69120, Germany
| | - Qiang Wei
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| |
Collapse
|
39
|
De Marco R, Rampazzo E, Zhao J, Prodi L, Paolillo M, Picchetti P, Gallo F, Calonghi N, Gentilucci L. Integrin-Targeting Dye-Doped PEG-Shell/Silica-Core Nanoparticles Mimicking the Proapoptotic Smac/DIABLO Protein. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1211. [PMID: 32575872 PMCID: PMC7353088 DOI: 10.3390/nano10061211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023]
Abstract
Cancer cells demonstrate elevated expression levels of the inhibitor of apoptosis proteins (IAPs), contributing to tumor cell survival, disease progression, chemo-resistance, and poor prognosis. Smac/DIABLO is a mitochondrial protein that promotes apoptosis by neutralizing members of the IAP family. Herein, we describe the preparation and in vitro validation of a synthetic mimic of Smac/DIABLO, based on fluorescent polyethylene glycol (PEG)-coated silica-core nanoparticles (NPs) carrying a Smac/DIABLO-derived pro-apoptotic peptide and a tumor-homing integrin peptide ligand. At low μM concentration, the NPs showed significant toxicity towards A549, U373, and HeLa cancer cells and modest toxicity towards other integrin-expressing cells, correlated with integrin-mediated cell uptake and consequent highly increased levels of apoptotic activity, without perturbing cells not expressing the α5 integrin subunit.
Collapse
Affiliation(s)
- Rossella De Marco
- Department of Agricultural, Food, Enviromental and Animal Sciences (DI4A), University of Udine, 33100 Udine, Italy;
| | - Enrico Rampazzo
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (E.R.); (J.Z.); (L.P.); (F.G.)
| | - Junwei Zhao
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (E.R.); (J.Z.); (L.P.); (F.G.)
| | - Luca Prodi
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (E.R.); (J.Z.); (L.P.); (F.G.)
| | - Mayra Paolillo
- Department of Drugs Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Pierre Picchetti
- Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 67083 Strasbourg, France;
| | - Francesca Gallo
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (E.R.); (J.Z.); (L.P.); (F.G.)
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (E.R.); (J.Z.); (L.P.); (F.G.)
| |
Collapse
|
40
|
Jurczak P, Witkowska J, Rodziewicz-Motowidło S, Lach S. Proteins, peptides and peptidomimetics as active agents in implant surface functionalization. Adv Colloid Interface Sci 2020; 276:102083. [PMID: 31887572 DOI: 10.1016/j.cis.2019.102083] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
The recent impact of implants on improving the human life quality has been enormous. During the past two decades we witnessed major advancements in both material and structural development of implants. They were driven mainly by the increasing patients' demand and the need to address the major issues that come along with the initially underestimated complexity of the bone-implant interface. While both, the materials and design of implants reached a certain, balanced state, recent years brought a shift in focus towards the bone-implant interface as the weakest link in the increasing implant long-term usability. As a result, several approaches were developed. They aimed at influencing and enhancing the implant osseointegration and its proper behavior when under load and stress. With this review, we would like to discuss the recent advancements in the field of implant surface modifications, emphasizing the importance of chemical methods, focusing on proteins, peptides and peptidomimetics as promising agents for titanium surface coatings.
Collapse
|
41
|
Li K, Liu S, Hu T, Razanau I, Wu X, Ao H, Huang L, Xie Y, Zheng X. Optimized Nanointerface Engineering of Micro/Nanostructured Titanium Implants to Enhance Cell-Nanotopography Interactions and Osseointegration. ACS Biomater Sci Eng 2020; 6:969-983. [PMID: 33464841 DOI: 10.1021/acsbiomaterials.9b01717] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The success of orthopedic implants requires rapid and complete osseointegration which relies on an implant surface with optimal features. To enhance cellular function in response to the implant surface, micro- and nanoscale topography have been suggested as essential. The aim of this study was to identify an optimized Ti nanostructure and to introduce it onto a titanium plasma-sprayed titanium implant (denoted NTPS-Ti) to confer enhanced immunomodulatory properties for optimal osseointegration. To this end, three types of titania nanostructures, namely, nanowires, nanonests, and nanoflakes, were achieved on hydrothermally prepared Ti substrates. The nanowire surface modulated protein conformation and directed integrin binding and specificity in such a way as to augment the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and induce a desirable osteoimmune response of RAW264.7 macrophages. In a coculture system, BMSCs on the optimized micro/nanosurface exerted enhanced effects on nonactivated or lipopolysaccharide-stimulated macrophages, causing them to adopt a less inflammatory macrophage profile. The enhanced immunomodulatory properties of BMSCs grown on NTPS-Ti depended on a ROCK-medicated cyclooxygenase-2 (COX2) pathway to increase prostaglandin E2 (PGE2) production, as evidenced by decreased production of PGE2 and concurrent inhibition of immunomodulatory properties after treatment with ROCK or COX2 inhibitors. In vivo evaluation showed that the NTPS-Ti implant resulted in enhanced osseointegration compared with the TPS-Ti and Ti implants. The results obtained in our study may provide a prospective approach for enhancing osseointegration and supporting the application of micro/nanostructured Ti implants.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Shiwei Liu
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China
| | - Ihar Razanau
- Science and Technology Park of BNTU "Polytechnic", Minsk 220013, Belarus
| | - Xiaodong Wu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P. R. China
| | - Haiyong Ao
- School of Materials Science and Engineering, East China Jiao Tong University, Nanchang 330013, P. R. China
| | - Liping Huang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
42
|
Fraczyk J, Wasko J, Walczak M, Kaminski ZJ, Puchowicz D, Kaminska I, Bogun M, Kolasa M, Stodolak-Zych E, Scislowska-Czarnecka A, Kolesinska B. Conjugates of Copper Alginate with Arginine-Glycine-Aspartic Acid (RGD) for Potential Use in Regenerative Medicine. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E337. [PMID: 31940765 PMCID: PMC7013949 DOI: 10.3390/ma13020337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/02/2023]
Abstract
Current restrictions on the use of antibiotics, associated with increases in bacterial resistance, require new solutions, including materials with antibacterial properties. In this study, copper alginate fibers obtained using the classic wet method were used to make nonwovens which were modified with arginine-glycine-aspartic acid (RGD) derivatives. Stable polysaccharide-peptide conjugates formed by coupling with 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium toluene-4-sulfonate (DMT/NMM/TosO-), and materials with physically embedded RGD derivatives, were obtained. The materials were found to be characterized by very high antibacterial activity against S. aureus and K. pneumoniae. Cytotoxicity studies confirmed that the materials are not cytotoxic. Copper alginate conjugates with RGD peptides have strong potential for use in regenerative medicine, due to their biocompatibility and innate antibacterial activity.
Collapse
Affiliation(s)
- Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90‐924 Lodz, Poland; (J.F.); (J.W.); (M.W.); (Z.J.K.)
| | - Joanna Wasko
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90‐924 Lodz, Poland; (J.F.); (J.W.); (M.W.); (Z.J.K.)
| | - Malgorzata Walczak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90‐924 Lodz, Poland; (J.F.); (J.W.); (M.W.); (Z.J.K.)
| | - Zbigniew J. Kaminski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90‐924 Lodz, Poland; (J.F.); (J.W.); (M.W.); (Z.J.K.)
| | - Dorota Puchowicz
- Lukasiewicz Research Network-Textile Research Institute, Brzezinska 5/15, 92-103 Lodz, Poland; (D.P.); (I.K.); (M.B.)
| | - Irena Kaminska
- Lukasiewicz Research Network-Textile Research Institute, Brzezinska 5/15, 92-103 Lodz, Poland; (D.P.); (I.K.); (M.B.)
| | - Maciej Bogun
- Lukasiewicz Research Network-Textile Research Institute, Brzezinska 5/15, 92-103 Lodz, Poland; (D.P.); (I.K.); (M.B.)
| | - Marcin Kolasa
- Military Institute of Hygiene and Epidemiology Department of Pharmacology and Toxicology, Kozielska 4, 01-163 Warsaw, Poland;
| | - Ewa Stodolak-Zych
- Department of Biomaterials, AGH‐University of Science and Technology, A. Mickiewicz 30, 30-059 Krakow, Poland;
| | - Anna Scislowska-Czarnecka
- Academy of Physical Education, Department of Physiotherapy, Section of Anatomy, 31-008 Krakow, Poland;
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90‐924 Lodz, Poland; (J.F.); (J.W.); (M.W.); (Z.J.K.)
| |
Collapse
|
43
|
Lu RJ, Wang X, He HX, E LL, Li Y, Zhang GL, Li CJ, Ning CY, Liu HC. Tantalum-incorporated hydroxyapatite coating on titanium implants: its mechanical and in vitro osteogenic properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:111. [PMID: 31583537 DOI: 10.1007/s10856-019-6308-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE The fabrication of bioactive coatings on metallic implants to enhance osseointegration has become a topic of general interest in orthopedics and dentistry. Hydroxyapatite (HA) coating has been shown to induce bone formation and promote bone-implant integration. Unfortunately, poor mechanical performance has hindered this from becoming a favorable coating material. The majority of present studies have focused in incorporating different elements into HA coatings to improve mechanical properties. In recent years, tantalum (Ta) has received increasing attention due to its excellent biocompatibility and corrosion resistance. The aim of on the present study was to investigate the fabrication and biological performance of Ta-incorporated HA coatings. METHODS Ta-incorporated HA coatings were fabricated using the plasma spray technique on a titanium substrate, and the surface characteristics and mechanical properties were examined. In addition, the effects of Ta-incorporated HA coatings on the biological behavior of mesenchymal stem cells (BMSCs) were investigated. RESULTS Ta-incorporated HA coatings with microporous structure had higher roughness and wettability. In addition, the bonding strength of Ta/HA coatings with the substrate was substantially superior to HA coatings. Furthermore, Ta-incorporated HA coatings not only facilitated initial cell adhesion and faster proliferation, but also promoted the osteogenic differentiation of BMSCs. CONCLUSION These results indicate that the incorporation of Ta could improve mechanical performance and increase the osteogenic activity of HA coatings. The Ta-incorporated HA coating fabricated by plasma spraying is expected to be a promising bio-coating material for metallic implants.
Collapse
Affiliation(s)
- Rong-Jian Lu
- Department of Stomatology, the Fifth Medical Center, Chinese PLA General Hospital, 100071, Beijing, China
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, 030001, Taiyuan, China
| | - Hui-Xia He
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Ling-Ling E
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Ying Li
- School of Materials Science and Technology, South China University of Technology, 510641, Guangzhou, China
| | - Gui-Lan Zhang
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Chuan-Jie Li
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Cheng-Yun Ning
- School of Materials Science and Technology, South China University of Technology, 510641, Guangzhou, China
| | - Hong-Chen Liu
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China.
| |
Collapse
|
44
|
Nesterenko Y, Hill CJ, Fleming JR, Murray P, Mayans O. The ZT Biopolymer: A Self-Assembling Protein Scaffold for Stem Cell Applications. Int J Mol Sci 2019; 20:E4299. [PMID: 31484291 PMCID: PMC6747707 DOI: 10.3390/ijms20174299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
The development of cell culture systems for the naturalistic propagation, self-renewal and differentiation of cells ex vivo is a high goal of molecular engineering. Despite significant success in recent years, the high cost of up-scaling cultures, the need for xeno-free culture conditions, and the degree of mimicry of the natural extracellular matrix attainable in vitro using designer substrates continue to pose obstacles to the translation of cell-based technologies. In this regard, the ZT biopolymer is a protein-based, stable, scalable, and economical cell substrate of high promise. ZT is based on the naturally occurring assembly of two human proteins: titin-Z1Z2 and telethonin. These protein building blocks are robust scaffolds that can be conveniently functionalized with full-length proteins and bioactive peptidic motifs by genetic manipulation, prior to self-assembly. The polymer is, thereby, fully encodable. Functionalized versions of the ZT polymer have been shown to successfully sustain the long-term culturing of human embryonic stem cells (hESCs), human induced pluripotent stem cells (hiPSCs), and murine mesenchymal stromal cells (mMSCs). Pluripotency of hESCs and hiPSCs was retained for the longest period assayed (4 months). Results point to the large potential of the ZT system for the creation of a modular, pluri-functional biomaterial for cell-based applications.
Collapse
Affiliation(s)
| | - Christopher J Hill
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | | | - Patricia Murray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Olga Mayans
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
45
|
Kemker I, Schnepel C, Schröder DC, Marion A, Sewald N. Cyclization of RGD Peptides by Suzuki–Miyaura Cross-Coupling. J Med Chem 2019; 62:7417-7430. [DOI: 10.1021/acs.jmedchem.9b00360] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Isabell Kemker
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Christian Schnepel
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - David C. Schröder
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Antoine Marion
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
46
|
Jiang C, Zeng X, Xue B, Campbell D, Wang Y, Sun H, Xu Y, Wen X. Screening of pure synthetic coating substrates for induced pluripotent stem cells and iPSC-derived neuroepithelial progenitors with short peptide based integrin array. Exp Cell Res 2019; 380:90-99. [PMID: 30981669 DOI: 10.1016/j.yexcr.2019.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/27/2023]
Abstract
Simple and pure synthetic coating substrates are needed to overcome the disadvantages of traditional coating products like animal derived Matrigel in stem cell research. Since integrins are of great importance in cell adhesion and cell-ECM communication, in this study, a commercially available integrin array established by synthetic integrin binding peptides is used to screen coating substrates for iPSCs and NEPs. The results showed that binding peptides of integrin α5β1, αVβ1, αMβ2 and αIIbβ3 supported cell adhesion of iPSCs, while α5β1, αVβ1 and αIIbβ3 binding peptides supported NEPs adhesion. Additionally, integrin α5β1 binding peptide was revealed to support rapid expansion of iPSCs and iPSC-derived NEPs, as well as the process of NEPs generation, with equal efficiency as Matrigel. In this work, we demonstrated that by supporting stem cell growth in an integrin dependent manner, the integrin array and coating system has the potential to develop more precise and efficient systems in neurological disease modeling.
Collapse
Affiliation(s)
- Chenyang Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Xiaomei Zeng
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Bo Xue
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Debbie Campbell
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Huifang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Xuejun Wen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23220, USA; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China; Shanghai East Hospital, Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
47
|
Cipriani F, Bernhagen D, García-Arévalo C, de Torre IG, Timmerman P, Rodríguez-Cabello JC. Bicyclic RGD peptides with high integrin α v β 3 and α 5 β 1 affinity promote cell adhesion on elastin-like recombinamers. ACTA ACUST UNITED AC 2019; 14:035009. [PMID: 30630151 DOI: 10.1088/1748-605x/aafd83] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biomaterial design in tissue engineering aims to identify appropriate cellular microenvironments in which cells can grow and guide new tissue formation. Despite the large diversity of synthetic polymers available for regenerative medicine, most of them fail to fully match the functional properties of their native counterparts. In contrast, the few biological alternatives employed as biomaterials lack the versatility that chemical synthesis can offer. Herein, we studied the HUVEC adhesion and proliferation properties of elastin-like recombinamers (ELRs) that were covalently functionalized with each three high-affinity and selectivity α v β 3- and α 5 β 1-binding bicyclic RGD peptides. Next to the bicycles, ELRs were also functionalized with various integrin-binding benchmark peptides, i.e. knottin-RGD, cyclo-[KRGDf] and GRGDS, allowing for better classification of the obtained results. Covalent functionalization with the RGD peptides, as validated by MALDI-TOF analysis, guarantees flexibility and minimal steric hindrance for interactions with cellular integrins. In addition to the covalently modified RGD-ELRs, we also synthesized another benchmark ELR comprising RGD as part of the backbone. HUVEC adhesion and proliferation analysis using the PicoGreen® assay revealed a higher short-term adhesion and proliferative capacity of cells on ELR surfaces functionalized with high affinity, integrin-binding bicyclic RGD-peptides compared with the ELRs containing RGD in the backbone.
Collapse
Affiliation(s)
- Filippo Cipriani
- Technical Proteins Nanobiotechnology S.L., Paseo Belén 9A, E-47001 Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Hoyos-Nogués M, Falgueras-Batlle E, Ginebra MP, Manero JM, Gil J, Mas-Moruno C. A Dual Molecular Biointerface Combining RGD and KRSR Sequences Improves Osteoblastic Functions by Synergizing Integrin and Cell-Membrane Proteoglycan Binding. Int J Mol Sci 2019; 20:E1429. [PMID: 30901841 PMCID: PMC6470513 DOI: 10.3390/ijms20061429] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 11/16/2022] Open
Abstract
Synergizing integrin and cell-membrane heparan sulfate proteoglycan signaling on biomaterials through peptidic sequences is known to have beneficial effects in the attachment and behavior of osteoblasts; however, controlling the exact amount and ratio of peptides tethered on a surface is challenging. Here, we present a dual molecular-based biointerface combining integrin (RGD) and heparin (KRSR)-binding peptides in a chemically controlled fashion. To this end, a tailor-made synthetic platform (PLATF) was designed and synthesized by solid-phase methodologies. The PLATF and the control linear peptides (RGD or KRSR) were covalently bound to titanium via silanization. Physicochemical characterization by means of contact angle, Raman spectroscopy and XPS proved the successful and stable grafting of the molecules. The biological potential of the biointerfaces was measured with osteoblastic (Saos-2) cells both at short and long incubation periods. Biomolecule grafting (either the PLATF, RGD or KRSR) statistically improved (p < 0.05) cell attachment, spreading, proliferation and mineralization, compared to control titanium. Moreover, the molecular PLATF biointerface synergistically enhanced mineralization (p < 0.05) of Saos-2 cells compared to RGD or KRSR alone. These results indicate that dual-function coatings may serve to improve the bioactivity of medical implants by mimicking synergistic receptor binding.
Collapse
Affiliation(s)
- Mireia Hoyos-Nogués
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain.
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.
| | - Elena Falgueras-Batlle
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain.
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain.
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.
| | - José María Manero
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain.
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.
| | - Javier Gil
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain.
- Universitat Internacional de Catalunya (UIC), 08195 Sant Cugat del Vallès, Spain.
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain.
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.
| |
Collapse
|
49
|
Cheng Y, Sun C, Liu R, Yang J, Dai J, Zhai T, Lou X, Xia F. A Multifunctional Peptide-Conjugated AIEgen for Efficient and Sequential Targeted Gene Delivery into the Nucleus. Angew Chem Int Ed Engl 2019; 58:5049-5053. [PMID: 30767348 DOI: 10.1002/anie.201901527] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Indexed: 12/12/2022]
Abstract
Gene therapy has immense potential as a therapeutic approach to serious diseases. However, efficient delivery and real-time tracking of gene therapeutic agents have not been solved well for successful gene-based therapeutics. Herein we present a versatile gene-delivery strategy for efficient and visualized delivery of therapeutic genes into the targeted nucleus. We developed an integrin-targeted, cell-permeable, and nucleocytoplasmic trafficking peptide-conjugated AIEgen named TD NCP for the efficient and sequential targeted delivery of an antisense single-stranded DNA oligonucleotide (ASO) and tracking of the delivery process into the nucleus. As compared with TD NCP/siRNA-NPs (siRNA functions mainly in the cytoplasm), TD NCP/ASO-NPs (ASO functions mainly in the nucleus) exhibited a better interference effect, which further indicates that TD NCP is a nucleus-targeting vector. Moreover, TD NCP/ASO-NPs showed a favorable tumor-suppressive effect in vivo.
Collapse
Affiliation(s)
- Yong Cheng
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.,State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chunli Sun
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Rui Liu
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Juliang Yang
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Dai
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.,State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
50
|
Cheng Y, Sun C, Liu R, Yang J, Dai J, Zhai T, Lou X, Xia F. A Multifunctional Peptide‐Conjugated AIEgen for Efficient and Sequential Targeted Gene Delivery into the Nucleus. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901527] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yong Cheng
- Engineering Research Center of Nano-Geomaterials of the Ministry of EducationFaculty of Materials Science and ChemistryChina University of Geosciences Wuhan 430074 China
- State Key Laboratory of Material Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaSchool of Chemistry and Chemical EngineeringDepartment of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430074 China
| | - Chunli Sun
- State Key Laboratory of Material Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaSchool of Chemistry and Chemical EngineeringDepartment of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430074 China
| | - Rui Liu
- Engineering Research Center of Nano-Geomaterials of the Ministry of EducationFaculty of Materials Science and ChemistryChina University of Geosciences Wuhan 430074 China
| | - Juliang Yang
- Engineering Research Center of Nano-Geomaterials of the Ministry of EducationFaculty of Materials Science and ChemistryChina University of Geosciences Wuhan 430074 China
| | - Jun Dai
- State Key Laboratory of Material Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaSchool of Chemistry and Chemical EngineeringDepartment of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430074 China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaSchool of Chemistry and Chemical EngineeringDepartment of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430074 China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of the Ministry of EducationFaculty of Materials Science and ChemistryChina University of Geosciences Wuhan 430074 China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of the Ministry of EducationFaculty of Materials Science and ChemistryChina University of Geosciences Wuhan 430074 China
- State Key Laboratory of Material Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaSchool of Chemistry and Chemical EngineeringDepartment of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|