1
|
Wang SX, Waite JH. Catechol redox maintenance in mussel adhesion. Nat Rev Chem 2025:10.1038/s41570-024-00673-4. [PMID: 39809861 DOI: 10.1038/s41570-024-00673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 01/16/2025]
Abstract
Catechol-functionalized proteins in mussel holdfasts are essential for underwater adhesion and cohesion and have inspired countless synthetic polymeric materials and devices. However, as catechols are prone to oxidation, long-term performance and stability of these inventions awaits effective antioxidation strategies. In mussels, catechol-mediated interactions are stabilized by 'built-in' homeostatic redox reservoirs that restore catechols oxidized to quinones. Mussel byssus has a typical 'core-shell' architecture in which the core is a degradable fibrous block copolymer consisting of collagen and fibroin coated by robust protein networks stabilized by bis-catecholato-metal and tris-catecholato-metal ion complexes. The coating is well-adapted to protect the core against abrasion, hydrolysis and microbial attack, but it is not impervious to oxidative damage, which, during function, is promptly repaired by redox poise via coacervated catechol-rich and thiol-rich reducing interlayers and inclusions. However, when the e- and H+ equivalents from these reducing reservoirs are depleted, coating damage accumulates, leading to exposure of the vulnerable core to environmental attack. Heeding and translating these strategies is essential for deploying catechols with longer service lifetimes and designing more sustainable next-generation polymeric adhesives.
Collapse
Affiliation(s)
- Stephanie X Wang
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - J Herbert Waite
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.
- Department of Molecular, Cell & Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
2
|
Dong L, Li L, Chen H, Cao Y, Lei H. Mechanochemistry: Fundamental Principles and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403949. [PMID: 39206931 DOI: 10.1002/advs.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Mechanochemistry is an emerging research field at the interface of physics, mechanics, materials science, and chemistry. Complementary to traditional activation methods in chemistry, such as heat, electricity, and light, mechanochemistry focuses on the activation of chemical reactions by directly or indirectly applying mechanical forces. It has evolved as a powerful tool for controlling chemical reactions in solid state systems, sensing and responding to stresses in polymer materials, regulating interfacial adhesions, and stimulating biological processes. By combining theoretical approaches, simulations and experimental techniques, researchers have gained intricate insights into the mechanisms underlying mechanochemistry. In this review, the physical chemistry principles underpinning mechanochemistry are elucidated and a comprehensive overview of recent significant achievements in the discovery of mechanically responsive chemical processes is provided, with a particular emphasis on their applications in materials science. Additionally, The perspectives and insights into potential future directions for this exciting research field are offered.
Collapse
Affiliation(s)
- Liang Dong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Luofei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Huiyan Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Institute of Advanced Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
3
|
Prüßner T, Meinderink D, Zhu S, Orive AG, Kielar C, Huck M, Steinrück HG, Keller A, Grundmeier G. Molecular Adhesion of a Pilus-Derived Peptide Involved in Pseudomonas aeruginosa Biofilm Formation on Non-Polar ZnO-Surfaces. Chemistry 2024; 30:e202302464. [PMID: 37909474 DOI: 10.1002/chem.202302464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023]
Abstract
Bacterial colonization and biofilm formation on abiotic surfaces are initiated by the adhesion of peptides and proteins. Understanding the adhesion of such peptides and proteins at a molecular level thus represents an important step toward controlling and suppressing biofilm formation on technological and medical materials. This study investigates the molecular adhesion of a pilus-derived peptide that facilitates biofilm formation of Pseudomonas aeruginosa, a multidrug-resistant opportunistic pathogen frequently encountered in healthcare settings. Single-molecule force spectroscopy (SMFS) was performed on chemically etched ZnO11 2 ‾ 0 ${\left(11\bar{2}0\right)}$ surfaces to gather insights about peptide adsorption force and its kinetics. Metal-free click chemistry for the fabrication of peptide-terminated SMFS cantilevers was performed on amine-terminated gold cantilevers and verified by X-ray photoelectron spectroscopy (XPS) and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). Atomic force microscopy (AFM) and XPS analyses reveal stable topographies and surface chemistries of the substrates that are not affected by SMFS. Rupture events described by the worm-like chain model (WLC) up to 600 pN were detected for the non-polar ZnO surfaces. The dissociation barrier energy at zero force ΔG(0), the transition state distance xb and bound-unbound dissociation rate at zero force koff (0) for the single crystalline substrate indicate that coordination and hydrogen bonds dominate the peptide/surface interaction.
Collapse
Affiliation(s)
- Tim Prüßner
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Dennis Meinderink
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Siqi Zhu
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Alejandro G Orive
- Department of Chemistry, Materials and Nanotechnology Institute, University of La Laguna, Avda. Astrofisico Francisco Sánchez s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Charlotte Kielar
- Insitute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Marten Huck
- Chemistry Department, Paderborn University, 33098, Paderborn, Germany
| | | | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| |
Collapse
|
4
|
Lamberty ZD, Tran NT, van Engers CD, Karnal P, Knorr DB, Frechette J. Cooperative Tridentate Hydrogen-Bonding Interactions Enable Strong Underwater Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37450657 PMCID: PMC10375471 DOI: 10.1021/acsami.3c06545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Multidentate hydrogen-bonding interactions are a promising strategy to improve underwater adhesion. Molecular and macroscale experiments have revealed an increase in underwater adhesion by incorporating multidentate H-bonding groups, but quantitatively relating the macroscale adhesive strength to cooperative hydrogen-bonding interactions remains challenging. Here, we investigate whether tridentate alcohol moieties incorporated in a model epoxy act cooperatively to enhance adhesion. We first demonstrate that incorporation of tridentate alcohol moieties leads to comparable adhesive strength with mica and aluminum in air and in water. We then show that the presence of tridentate groups leads to energy release rates that increase with an increase in crack velocity in air and in water, while materials lacking these groups do not display rate-dependent adhesion. We model the rate-dependent adhesion to estimate the activation energy of the interfacial bonds. Based on our data, we estimate the lifetime of these bonds to be between 2 ms and 6 s, corresponding to an equilibrium activation energy between 23kBT and 31kBT. These values are consistent with tridentate hydrogen bonding, suggesting that the three alcohol groups in the Tris moiety bond cooperatively form a robust adhesive interaction underwater.
Collapse
Affiliation(s)
- Zachary D Lamberty
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, Berkeley, California 94760, United States
| | - Ngon T Tran
- DEVCOM U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Christian D van Engers
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Preetika Karnal
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E Morton Street, Building 205, Bethlehem, Pennsylvania 18015, United States
| | - Daniel B Knorr
- DEVCOM U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Joelle Frechette
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, Berkeley, California 94760, United States
| |
Collapse
|
5
|
Yu Y, Lv B, Wu J, Chen W. Mussel-Based Biomimetic Strategies in Musculoskeletal Disorder Treatment: From Synthesis Principles to Diverse Applications. Int J Nanomedicine 2023; 18:455-472. [PMID: 36718191 PMCID: PMC9884062 DOI: 10.2147/ijn.s386635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/03/2022] [Indexed: 01/26/2023] Open
Abstract
Musculoskeletal disorders are the second leading cause of disability worldwide, posing a huge global burden to the public sanitation system. Currently, tissue engineering-based approaches act as effective strategies, which are, however, challenging in limited application scenarios. Mussel-based biomimetic materials, exhibit numerous unique properties such as intense adhesion, biocompatibility, moisture resistance, and injectability, to name only a few, and have attracted extensive research interest. In particular, featuring state-of-the-art properties, mussel-inspired biomaterials have been widely explored in innumerable musculoskeletal disorder treatments including osteochondral defects, osteosarcoma, osteoarthritis, ligament rupture, and osteoporosis. Nevertheless, a comprehensive and timely discussion of their applications in musculoskeletal disorders is insufficient. In this review, we emphasize on (1) the main categories and characteristics of mussel foot proteins and their fundamental mechanisms for the spectacular adhesion in mussels; (2) the diverse synthetic methods and modification of various polymers; and (3) the emerging applications of mussel-biomimetic materials, the future perspectives, and challenges, especially in the area of musculoskeletal disorder. We envision that this review will provide a unique and insightful perspective to improve the development of a new generation of mussel biomimetic strategies.
Collapse
Affiliation(s)
- Yajie Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Bin Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Juntao Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Correspondence: Wei Chen, Email
| |
Collapse
|
6
|
Chen J, Zeng H. Mussel-Inspired Reversible Molecular Adhesion for Fabricating Self-Healing Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12999-13008. [PMID: 36260819 DOI: 10.1021/acs.langmuir.2c02372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nature offers inspiration for the development of high-performance synthetic materials. Extensive studies on the universal adhesion and self-healing behavior of mussel byssus reveal that a series of reversible molecular interactions occurring in byssal plaques and threads play an essential role, and the mussel-inspired chemistry can serve as a versatile platform for the design of self-healing materials. In this Perspective, we provide an overview of the recent progress in the detection, quantification, and utilization of mussel-inspired reversible molecular interactions, which includes the elucidation of their binding mechanisms via force-measuring techniques and the development of self-healing materials based on these dynamic interactions. Both conventional catechol-medicated interactions and newly discovered chemistry beyond the catechol groups are discussed, providing insights into the design strategies of advanced self-healing materials via mussel-inspired chemistry.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
7
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
8
|
Mussel adhesion: A fundamental perspective on factors governing strong underwater adhesion. Biointerphases 2022; 17:058501. [DOI: 10.1116/6.0002051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Protein-based underwater adhesives of marine organisms exhibit extraordinary binding strength in high salinity based on utilizing a variety of molecular interaction mechanisms. These include acid-base interactions, bidentate bindings or complex hydrogen bonding interactions, and electrochemical manipulation of interfacial bonding. In this Perspective, we briefly review recent progress in the field, and we discuss how interfacial electrochemistry can vary interfacial forces by concerted tuning of surface charging, hydration forces, and tuning of the interfacial ion concentration. We further discuss open questions, controversial findings, and new paths into understanding and utilizing redox-proteins and derived polymers for enhancing underwater adhesion in a complex salt environment.
Collapse
|
9
|
Lim C, Kim D. Biodegradable polyaspartamide-g-C 18 /DOPA/GLY-NEO nano-adhesives for wound closure/healing with antimicrobial activity. J Biomed Mater Res A 2022; 110:1749-1760. [PMID: 35770845 DOI: 10.1002/jbm.a.37424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/08/2022]
Abstract
This study was focused on the development of biodegradable nano-adhesives with efficient sealing and antibiotic effects for wound healing. Biodegradable polyaspartamide (PASPAM) was grafted with several functional groups to implement diverse roles-octadecylamine (C18 ) for nano-aggregate formation, dopamine (DOPA) for adhesive function, neomycin (NEO) for inhibition of bacterial infection. Specifically, NEO was conjugated to PASPAM with a pH-sensitive glycine (GLY) linker for targeted delivery on the acidic wound site. About 60% of the drug was ramteleased at pH 6.0, while about 22% was released at pH 7.4, showing the faster drug release pattern of nano-adhesives in the acidic environment. The C18 /DOPA/GLY-NEO-g-PASPAM nano-adhesives showed the bacterial viability higher than 70% at pH 7.4, but about 40% at pH 6.0. The wound breaking strength of the polymer-treated skin was much higher than that of the bare skin. According to the in vivo wound healing test using a mouse model, C18 /DOPA/GLY-NEO-g-PASPAM nano-adhesives showed much faster healing performance than sutures. From those results, C18 /DOPA/GLY-NEO-g-PASPAM nano-adhesives are expected to be utilized as effective adhesives that promote the wound healing with inhibition of bacterial infection.
Collapse
Affiliation(s)
- Cheolwon Lim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea
| | - Dukjoon Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea
| |
Collapse
|
10
|
Liu Y, Guan G, Li Y, Tan J, Cheng P, Yang M, Li B, Wang Q, Zhong W, Mequanint K, Zhu C, Xing M. Gelation of highly entangled hydrophobic macromolecular fluid for ultrastrong underwater in situ fast tissue adhesion. SCIENCE ADVANCES 2022; 8:eabm9744. [PMID: 35594348 PMCID: PMC9122319 DOI: 10.1126/sciadv.abm9744] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/06/2022] [Indexed: 05/25/2023]
Abstract
Although strong underwater bioadhesion is important for many biomedical applications, designing adhesives to perform in the presence of body fluids proves to be a challenge. To address this, we propose an underwater and in situ applicable hydrophobic adhesive (UIHA) composed of polydimethylsiloxane, entangled macromolecular silicone fluid, and a reactive silane. The hydrophobic fluid displaced the boundary water, formed an in situ gel, bonded to tissues, and achieved exceptional underwater adhesion strength. Its underwater lap shear adhesion on porcine skin was significantly higher than that of cyanoacrylate and fibrin glues, demonstrating excellent water resistance. The burst pressure of UIHA on porcine skin was 10 times higher than that of fibrin glue. The cytocompatible UIHA successfully sealed ruptured arteries, skin, and lungs in rats, pigs, rabbits, and dogs. Together, the gelation of highly entangled hydrophobic macromolecular fluid provided a means to prepare underwater bioadhesives with strong bonding to tissues and excellent water resistance.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ge Guan
- Department of Anatomy, Key Laboratory for Biomechanics and Tissue Engineering of Chongqing Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yinghao Li
- Department of Anatomy, Key Laboratory for Biomechanics and Tissue Engineering of Chongqing Army Medical University (Third Military Medical University), Chongqing 400038, China
- Chongqing Institute of Zhong Zhi Yi Gu, Shapingba District, Chongqing 400030, China
| | - Ju Tan
- Department of Anatomy, Key Laboratory for Biomechanics and Tissue Engineering of Chongqing Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Panke Cheng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Mingcan Yang
- Department of Anatomy, Key Laboratory for Biomechanics and Tissue Engineering of Chongqing Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Quan Wang
- School of Civil Engineering, Shantou University, Shantou 515063, China
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
- School of Biomedical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Chuhong Zhu
- Department of Anatomy, Key Laboratory for Biomechanics and Tissue Engineering of Chongqing Army Medical University (Third Military Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Plastic and Aesthetic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
11
|
Zhang Y, Zhu X, Chen B. Adhesion force evolution of protein on the surfaces with varied hydration extent: Quantitative determination via atomic force microscopy. J Colloid Interface Sci 2022; 608:255-264. [PMID: 34626972 DOI: 10.1016/j.jcis.2021.09.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/05/2021] [Accepted: 09/21/2021] [Indexed: 01/03/2023]
Abstract
The adhesion force evolution of protein on surfaces with continuously varied hydrophobicity/hydration layer has not been completely clarified yet, limiting the further development of environmental applications such as membrane anti-biofouling and selective adsorption of the functional surfaces. Herein, chemical force spectroscopy using atomic force microscopy (AFM) was utilized to quantify the evolution of the adhesion forces of protein on hydration surfaces in water, where bovine serum albumin (BSA) was immobilized on an AFM tip as the representative protein. The stiffness, roughness and charge properties of the substrate surfaces were kept constant and the hydrophobicity was the only variant to monitor the role of hydrated water layers in protein adhesion. The adhesion force increased non-monotonically as a function of hydrophobicity of substrate surfaces, which was related to the concentration of humic acid, and independent of pH values and ionic strength. The non-monotonic variation occurred in the range of contact angle at 60-80° due to the mutual restriction between solid-liquid interface energy and solid-solid interface energy. Hydrophobic attraction was the dominant force that drove adhesion of BSA to these model substrate surfaces, but the passivation of hydration layers at the interface could weaken the hydrophobic attraction. In contrast to the measurements in water, the adhesion forces decreased as a function of surface hydrophobicity when measured in air, because capillary forces from condensation water dominated adhesion forces. The passivation of hydration layers of protein was revealed by quantitatively determining the evolution of adhesion forces on the hydration surfaces of varying hydrophobicity, which was ignored by traditional adhesion theory.
Collapse
Affiliation(s)
- Yuyao Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
12
|
Zhang C, Xiang L, Zhang J, Liu C, Wang Z, Zeng H, Xu ZK. Revisiting the adhesion mechanism of mussel-inspired chemistry. Chem Sci 2022; 13:1698-1705. [PMID: 35282627 PMCID: PMC8827048 DOI: 10.1039/d1sc05512g] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
Mussel-inspired chemistry has become an ideal platform to engineer a myriad of functional materials, but fully understanding the underlying adhesion mechanism is still missing. Particularly, one of the most pivotal questions is whether catechol still plays a dominant role in molecular-scale adhesion like that in mussel adhesive proteins. Herein, for the first time, we reveal an unexplored adhesion mechanism of mussel-inspired chemistry that is strongly dictated by 5,6-dihydroxyindole (DHI) moieties, amending the conventional viewpoint of catechol-dominated adhesion. We demonstrate that polydopamine (PDA) delivers an unprecedented adhesion of 71.62 mN m-1, which surpasses that of many mussel-inspired derivatives and is even 121-fold higher than that of polycatechol. Such a robust adhesion mainly stems from a high yield of DHI moieties through a delicate synergy of leading oxidation and subsidiary cyclization within self-polymerization, allowing for governing mussel-inspired adhesion by the substituent chemistry and self-polymerization manner. The adhesion mechanisms revealed in this work offer a useful paradigm for the exploitation of functional mussel-inspired materials.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
- Department of Chemical and Materials Engineering, University of Alberta Edmonton Alberta T6G 1H9 Canada
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta Edmonton Alberta T6G 1H9 Canada
| | - Jiawen Zhang
- Department of Chemical and Materials Engineering, University of Alberta Edmonton Alberta T6G 1H9 Canada
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University Nanjing 211189 China
| | - Chang Liu
- Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong Hong Kong 999077 China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta Edmonton Alberta T6G 1H9 Canada
| | - Zhi-Kang Xu
- Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
13
|
Ferretti A, Prampolini G, d’Ischia M. Noncovalent interactions in catechol/ammonium-rich adhesive motifs: Reassessing the role of cation-π complexes? Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Liu L, Liu Z, Ren Y, Zou X, Peng W, Li W, Wu Y, Zheng S, Wang X, Yan F. A Superstrong and Reversible Ionic Crystal-Based Adhesive Inspired by Ice Adhesion. Angew Chem Int Ed Engl 2021; 60:8948-8959. [PMID: 33527627 DOI: 10.1002/anie.202100984] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Indexed: 12/18/2022]
Abstract
In this study, we developed a superstrong and reversible adhesive, which can possess a high bonding strength in the "adhesive" state and detach with the application of heating. An ionic crystal (IC) gel, in which an IC was immobilized within a soft-polymer matrix, were synthesized via in situ photo-crosslinking of a precursor solution composed of N, N-dimethyl acrylamide (DMAA) and a melted IC. The obtained IC gel is homogenous and transparent at melt point. When cooled to the phase transition temperature of the IC, the gel turns into the adhesive with the adhesion strength of 5.82 MPa (on glasses), due to the excellent wetting of melted gel and a thin layer of crystalline IC with high cohesive strength formed on the substrates. The synergistic effects between IC, polymer networks and substrates were investigated by solid state 1 H NMR and molecular dynamics simulation. Such an adhesive layer is reversable and can be detached by heating and subsequent re-adhesion via cooling. This study proposed the new design of removable adhesives, which can be used in dynamic and complex environments.
Collapse
Affiliation(s)
- Lili Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ziyang Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yongyuan Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiuyang Zou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wansu Peng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weizheng Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yiqing Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sijie Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoliang Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Feng Yan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
15
|
Liu L, Liu Z, Ren Y, Zou X, Peng W, Li W, Wu Y, Zheng S, Wang X, Yan F. A Superstrong and Reversible Ionic Crystal‐Based Adhesive Inspired by Ice Adhesion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lili Liu
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Ziyang Liu
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Yongyuan Ren
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Xiuyang Zou
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Wansu Peng
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Weizheng Li
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Yiqing Wu
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Sijie Zheng
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Xiaoliang Wang
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Feng Yan
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| |
Collapse
|
16
|
Park HK, Park JH, Lee H, Hong S. Material-Selective Polydopamine Coating in Dimethyl Sulfoxide. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49146-49154. [PMID: 32985875 DOI: 10.1021/acsami.0c11440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polydopamine coating is known to be performed in a material-independent manner and has become a popular tool when designing a surface-functionalization strategy of a given material. Studies to improve polydopamine coatings have been reported, aiming to reduce the coating time (by transition metals, oxidants, applied voltages, or microwave irradiation), control surface roughness using catechol derivatives, and vary the ad-layer molecules formed on an underlying polydopamine layer. However, none of the techniques have changed the most important intrinsic property of polydopamine, the surface-independent coating. Currently, no method has been reported to modify this property to create a material-selective 'smart' polydopamine coating. Herein, we report a method with polydopamine to differentiate the chemistry of surfaces. We found that the polydopamine coating was largely inhibited on silicon-containing surfaces such as Si wafers and quartz crystals in a dimethyl sulfoxide (DMSO)/phosphate-buffered saline (PBS) cosolvent, while the coating properties on other materials remained mostly unchanged. Among the various interface bonding mechanisms of coordination, namely, cation-π, π-π stacking, and hydrogen-bonding interactions, the DMSO/PBS cosolvent effectively inhibits hydrogen-bond formation between catechol and SiO2, resulting in surface-selective 'smart' polydopamine coatings. The new polydopamine coating is useful for functionalizing patterned surfaces such as Au patterns on SiO2 substrates. Considering that Si wafer is the most widely used substrate, the surface-selective polydopamine coating technique described herein opens up a new direction in surface functionalization and interface chemistry.
Collapse
Affiliation(s)
- Hong K Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seonki Hong
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
17
|
Wislez A, Sluysmans D, Giamblanco N, Willet N, Bano F, Van De Weerdt C, Detrembleur C, Duwez AS. How to Increase Adhesion Strength of Catechol Polymers to Wet Inorganic Surfaces. Biomacromolecules 2020; 22:183-189. [PMID: 32786525 DOI: 10.1021/acs.biomac.0c00968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mussel wet adhesion is known for its outstanding strength on a variety of surfaces. On the basis of the hypothesis that 3,4-dihydroxyphenylalanine, a catecholic amino acid, governs mussel adhesion, chemists have put much effort into the design of adhesive synthetic polymers containing catechols. However, the exceptional properties exhibited by the native proteins were hardly captured. The attempts to make those polymers stick to wet inorganic surfaces resulted in low adhesive forces. Here we synthesized poly(dopamine acrylamide) and measured the interaction forces with various inorganic surfaces using atomic force microscopy-based single-molecule force spectroscopy. We show that hydroxylation of the surface plays a pivotal role on the formation of strong bonds. We demonstrate that depending on the conditions, the whole range of interactions, from weak interactions to covalent bonds, can come into play.
Collapse
Affiliation(s)
- Arnaud Wislez
- Department of Chemistry, UR MolSys, University of Liège, Sart-Tilman, B6a, B-4000 Liège, Belgium
| | - Damien Sluysmans
- Department of Chemistry, UR MolSys, University of Liège, Sart-Tilman, B6a, B-4000 Liège, Belgium
| | - Nicoletta Giamblanco
- Department of Chemistry, UR MolSys, University of Liège, Sart-Tilman, B6a, B-4000 Liège, Belgium
| | - Nicolas Willet
- Department of Chemistry, UR MolSys, University of Liège, Sart-Tilman, B6a, B-4000 Liège, Belgium
| | - Fouzia Bano
- Department of Chemistry, UR MolSys, University of Liège, Sart-Tilman, B6a, B-4000 Liège, Belgium
| | | | | | - Anne-Sophie Duwez
- Department of Chemistry, UR MolSys, University of Liège, Sart-Tilman, B6a, B-4000 Liège, Belgium
| |
Collapse
|
18
|
Schwiderek S, Orive AG, Karimi Aghda S, Schneider JM, de Los Arcos T, Grundmeier G. Single-Molecule Desorption Studies of Poly(acrylic acid) at Electrolyte/Oxide/TiAlN Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9489-9498. [PMID: 32689801 DOI: 10.1021/acs.langmuir.0c00188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The presented studies correlate the surface chemistry of electrochemically oxidized TiAlN hard coatings with the desorption forces of poly(acrylic acid) (PAA) at the electrolyte/oxide/TiAlN interface. Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) was performed at different pH values to investigate surface chemistry-induced changes in desorption force. The chemical state was characterized by X-ray photoemission spectroscopy and electrochemical analysis. The results show that the desorption forces continuously decrease with increasing pH in the range from pH 5 to 9. The comparison of the desorption forces on rf-sputtered titanium dioxide and aluminum oxide films shows that the electrochemically oxidized surface of TiAlN, in agreement with the revealed surface composition, shows interfacial adhesive properties in contact with PAA and water that resemble a pure titanium oxide layer. Load rate-dependent measurements were performed to analyze both the free energy barrier and the transition state distance.
Collapse
Affiliation(s)
- Sabrina Schwiderek
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Strasse 100, 33098 Paderborn, Germany
| | - Alejandro G Orive
- Department of Chemistry, Materials and Nanotechnology Institute, University of La Laguna, Avda. Astrofísico Francisco Sánchez s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Soheil Karimi Aghda
- Materials Chemistry, RWTH Aachen University, Kupernikusstrasse 10, 52074 Aachen, Germany
| | - Jochen M Schneider
- Materials Chemistry, RWTH Aachen University, Kupernikusstrasse 10, 52074 Aachen, Germany
| | - Teresa de Los Arcos
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Strasse 100, 33098 Paderborn, Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Strasse 100, 33098 Paderborn, Germany
| |
Collapse
|
19
|
Qiao Y, Li Y, Zhang Q, Wang Q, Gao J, Wang L. Dopamine-Mediated Zwitterionic Polyelectrolyte-Coated Polypropylene Hernia Mesh with Synergistic Anti-inflammation Effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5251-5261. [PMID: 32336102 DOI: 10.1021/acs.langmuir.0c00602] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over 20 million ventral hernia repairs are performed worldwide annually and only a minority (<10%) of cases are not mesh-based. However, even polypropylene (PP), endorsed as the "gold standard" of all prosthetic materials used in this field, is still subject to many complications caused by the foreign body reaction (FBR). Here, we describe the buildup of dopamine-mediated zwitterionic poly(sulfobetaine methacrylate) (PSBMA) coatings to inhibit nonspecific protein adsorption. Based on the universal adhesive ability of polydopamine (PDA), PSBMA has been coated on the PP mesh surface via two strategies: sequential deposition (PSBMA-PDA-PP) and co-deposition (PSBMA@PDA-PP). The presence of PSBMA shows great contribution to obviously decreased hydrophobicity of the PP surface (WCAco = 36.3° and WCAseq = 30.7°) as well as improved protein resistance (Reductionco = 74% and Reductionseq = 82%). Notably, as the intermedia between PP and PSBMA, PDA can endow the PP mesh with antioxidant activity, further featuring synergistic anti-inflammation therapeutic effect when coupled with PSBMA. With almost equal surface content of PSBMA, PSBMA-PDA-PP exhibited a more superior ability against macrophage adhesion and proliferation and showed more significantly decreased releases of TNF-α and IL-6 (p < 0.05) than those of PSBMA@PDA-PP, fundamentally attributed to its more neutral surface potential and the protection for polyphenols of PDA from oxidation with PSBMA as the outer layer. Furthermore, the coating layers demonstrated good stability and no sacrifice of the pristine mechanical property. The proposed dopamine-mediated PSBMA coatings possess high potential in biomedical implant areas for attenuating the FBR.
Collapse
Affiliation(s)
- Yansha Qiao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yan Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Qian Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Qian Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jing Gao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
20
|
Zhang C, Wu B, Zhou Y, Zhou F, Liu W, Wang Z. Mussel-inspired hydrogels: from design principles to promising applications. Chem Soc Rev 2020; 49:3605-3637. [DOI: 10.1039/c9cs00849g] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents the recent progress of mussel-inspired hydrogels from fundamental interaction mechanisms and design principles to promising applications.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Mechanical Engineering
- City University of Hong Kong
- China
| | - Baiheng Wu
- Institute of Process Equipment
- College of Energy Engineering
- Zhejiang University
- Hangzhou
- China
| | - Yongsen Zhou
- Department of Mechanical Engineering
- City University of Hong Kong
- China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Zuankai Wang
- Department of Mechanical Engineering
- City University of Hong Kong
- China
| |
Collapse
|
21
|
Phuong PTM, Won HJ, Oh YJ, Lee HS, Lee KD, Park SY. The chemistry and engineering of mussel-inspired glue matrix for tissue adhesive and hemostatic. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Golabchi A, Wu B, Cao B, Bettinger CJ, Cui XT. Zwitterionic polymer/polydopamine coating reduce acute inflammatory tissue responses to neural implants. Biomaterials 2019; 225:119519. [PMID: 31600673 PMCID: PMC6896321 DOI: 10.1016/j.biomaterials.2019.119519] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
The inflammatory brain tissue response to implanted neural electrode devices has hindered the longevity of these implants. Zwitterionic polymers have a potent anti-fouling effect that decreases the foreign body response to subcutaneous implants. In this study, we developed a nanoscale anti-fouling coating composed of zwitterionic poly (sulfobetaine methacrylate) (PSB) and polydopamine (PDA) for neural probes. The addition of PDA improved the stability of the coating compared to PSB alone, without compromising the anti-fouling properties of the film. PDA-PSB coating reduced protein adsorption by 89% compared to bare Si samples, while fibroblast adhesion was reduced by 86%. PDA-PSB coated silicon based neural probes were implanted into mouse brain, and the inflammatory tissue responses to the implants were assessed by immunohistochemistry one week after implantation. The PSB-PDA coated implants showed a significantly decreased expression of glial fibrillary acidic protein (GFAP), a marker for reactive astrocytes, within 70 μm from the electrode-tissue interface (p < 0.05). Additionally, the coating reduced the microglia activation as shown in decreased Iba-1 and lectin staining, and improved blood-brain barrier integrity indicated by reduced immunoglobulin (IgG) leakage into the tissue around the probes. These findings demonstrate that anti-fouling zwitterionic coating is effective in suppressing the acute inflammatory brain tissue response to implants, and should be further investigated for its potential to improve chronic performance of neural implants.
Collapse
Affiliation(s)
- Asiyeh Golabchi
- Department of Bioengineering, University of Pittsburgh, USA; Center for Neural Basis of Cognition, USA
| | - Bingchen Wu
- Department of Bioengineering, University of Pittsburgh, USA; Center for Neural Basis of Cognition, USA
| | - Bin Cao
- Department of Bioengineering, University of Pittsburgh, USA; Center for Neural Basis of Cognition, USA
| | - Christopher J Bettinger
- Department of Biomedical Engineering, Department of Material Science and Engineering, Carnegie Mellon University, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, USA; Center for Neural Basis of Cognition, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA.
| |
Collapse
|
23
|
Li S, Chen N, Li Y, Li X, Zhan Q, Ban J, Zhao J, Hou X, Yuan X. Metal-crosslinked ɛ-poly-L-lysine tissue adhesives with high adhesive performance: Inspiration from mussel adhesive environment. Int J Biol Macromol 2019; 153:1251-1261. [PMID: 31778704 DOI: 10.1016/j.ijbiomac.2019.10.257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/10/2019] [Accepted: 10/28/2019] [Indexed: 01/01/2023]
Abstract
Strong glue of mussels has long been considered as an ideal model to design synthetic bio-adhesives but the adhesive strength of metal-crosslinked mussel-inspired glues is not often satisfactory. Herein, inspired by the adhesive environment of mussels, we obtained metal-crosslinked ε-poly-L-lysine adhesives with high adhesive performance by introducing the elements of suitable adhesive environment (SAE) into the adhesives. The elements of SAE were clarified as weak alkaline conditions (pH ∼ 7.4) and low Fe3+ contents. The adhesive strength (∼105 kPa) of the metal-crosslinked adhesives endowed with the elements of SAE (PL-Cat/Fe-SAE) was about 8 times higher than that of fibrin glues. The high adhesive strength was found to originate from distinctive interfacial adhesion and cohesion strength of PL-Cat/Fe-SAE. PL-Cat/Fe-SAE showed strong interfacial adhesion capacity and nearly comparable cohesion strength to those PL-Cat/Fe adhesives with higher Fe3+ contents. The nearly comparable cohesion strength of PL-Cat/Fe-SAE was then found to be due to more amount of stable tris-complex existed in PL-Cat/Fe-SAE. In addition, PL-Cat/Fe-SAE was able to efficiently close the full thickness skin incisions. The study highlighted the importance of introducing SAE elements into the design of tissue adhesives and provided a facile and efficient strategy for constructing tissue adhesives with high adhesive performance.
Collapse
Affiliation(s)
- Sidi Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ning Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yang Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xueping Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qi Zhan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiamin Ban
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Xin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
24
|
Li Y, Cao Y. The molecular mechanisms underlying mussel adhesion. NANOSCALE ADVANCES 2019; 1:4246-4257. [PMID: 36134404 PMCID: PMC9418609 DOI: 10.1039/c9na00582j] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 10/09/2019] [Indexed: 06/12/2023]
Abstract
Marine mussels are able to firmly affix on various wet surfaces by the overproduction of special mussel foot proteins (mfps). Abundant fundamental studies have been conducted to understand the molecular basis of mussel adhesion, where the catecholic amino acid, l-3,4-dihydroxyphenylalanine (DOPA) has been found to play the major role. These studies continue to inspire the engineering of novel adhesives and coatings with improved underwater performances. Despite the fact that the recent advances of adhesives and coatings inspired by mussel adhesive proteins have been intensively reviewed in literature, the fundamental biochemical and biophysical studies on the origin of the strong and versatile wet adhesion have not been fully covered. In this review, we show how the force measurements at the molecular level by surface force apparatus (SFA) and single molecule atomic force microscopy (AFM) can be used to reveal the direct link between DOPA and the wet adhesion strength of mussel proteins. We highlight a few important technical details that are critical to the successful experimental design. We also summarize many new insights going beyond DOPA adhesion, such as the surface environment and protein sequence dependent synergistic and cooperative binding. We also provide a perspective on a few uncharted but outstanding questions for future studies. A comprehensive understanding on mussel adhesion will be beneficial to the design of novel synthetic wet adhesives for various biomedical applications.
Collapse
Affiliation(s)
- Yiran Li
- Shenzhen Research Institute of Nanjing University Shenzhen 518057 China
- Department of Physics, Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Soli State Microstructure, Nanjing University Nanjing 210093 China
| | - Yi Cao
- Shenzhen Research Institute of Nanjing University Shenzhen 518057 China
- Department of Physics, Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Soli State Microstructure, Nanjing University Nanjing 210093 China
- Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing 210093 China
| |
Collapse
|
25
|
Waite JH. Translational bioadhesion research: embracing biology without tokenism. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190207. [PMID: 31495304 DOI: 10.1098/rstb.2019.0207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bioadhesion has attracted a sizable research community of scientists and engineers that is striving increasingly for translational outcomes in anti-fouling and bioinspired adhesion initiatives. As bioadhesion is highly context-dependent, attempts to trivialize or gloss over the fundamental physical, chemical and biological sciences involved will compromise the relevance and durability of translation. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.
Collapse
Affiliation(s)
- J Herbert Waite
- Marine Science Institute, University of California, Santa Barbara, CA 93107, USA
| |
Collapse
|
26
|
Kaur S, Narayanan A, Dalvi S, Liu Q, Joy A, Dhinojwala A. Direct Observation of the Interplay of Catechol Binding and Polymer Hydrophobicity in a Mussel-Inspired Elastomeric Adhesive. ACS CENTRAL SCIENCE 2018; 4:1420-1429. [PMID: 30410980 PMCID: PMC6202650 DOI: 10.1021/acscentsci.8b00526] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 05/29/2023]
Abstract
Marine organisms such as mussels have mastered the challenges in underwater adhesion by incorporating post-translationally modified amino acids like l-3,4-dihydroxyphenylalanine (DOPA) in adhesive proteins. Here we designed a catechol containing elastomer adhesive to identify the role of catechol in interfacial adhesion in both dry and wet conditions. To decouple the adhesive contribution of catechol to the overall adhesion, the elastomer was designed to be cross-linked through [2 + 2] photo-cycloaddition of coumarin. The elastomer with catechol moieties displayed a higher adhesion strength than the catechol-protected elastomer. The contact interface was probed using interface-sensitive sum frequency generation spectroscopy to explore the question of whether catechol can displace water and bond with hydrophilic surfaces. The spectroscopy measurements reveal that the maximum binding energy of the catechol and protected-catechol elastomers to sapphire substrate is 7.0 ± 0.1 kJ/(mole of surface O-H), which is equivalent to 0.10 J/m2. The higher dry and wet adhesion observed in the macroscopic adhesion measurements for the catechol containing elastomer originates from multiple hydrogen bonds of the catechol dihydroxy groups to the surface. In addition, our results show that catechol by itself does not remove the confined interstitial water. In these elastomers, it is the hydrophobic groups that help in partially removing interstitial water. The observation of the synergy between catechol binding and hydrophobicity in enabling the mussel-inspired soft adhesive elastomer to stick underwater provides a framework for designing materials for applications in tissue adhesion and moist-skin wearable electronics.
Collapse
Affiliation(s)
| | | | - Siddhesh Dalvi
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Qianhui Liu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
27
|
Moreno Ostertag L, Utzig T, Klinger C, Valtiner M. Tether-Length Dependence of Bias in Equilibrium Free-Energy Estimates for Surface-to-Molecule Unbinding Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:766-772. [PMID: 29087720 PMCID: PMC6398919 DOI: 10.1021/acs.langmuir.7b02844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/30/2017] [Indexed: 06/07/2023]
Abstract
The capabilities of atomic force microscopes and optical tweezers to probe unfolding or surface-to-molecule bond rupture at a single-molecular level are widely appreciated. These measurements are typically carried out unidirectionally under nonequilibrium conditions. Jarzynski's equality has proven useful to relate the work obtained along these nonequilibrium trajectories to the underlying free energy of the unfolding or unbinding process. Here, we quantify biases that arise from the molecular design of the bond rupture experiment for probing surface-to-molecule bonds. In particular, we probe the well-studied amine/gold bond as a function of the linker's length which is used to anchor the specific amine functionality during a single molecule unbinding experiment. With increasing linker length, we observe a significant increase in the average work spent on polymer stretching and a strongly biased estimated interaction free energy. Our data demonstrate that free energy estimates converge well for linker lengths below 20 nm, where the bias is <10-15%. With longer linkers severe methodical limits of the method are reached, and convergence within a reasonable number of realizations of the bond rupture is not feasible. Our results also provide new insights into stability and work dissipation mechanisms at adhesive interfaces at the single-molecular level, and offer important design and analysis aspects for single-molecular surface-to-molecule experiments.
Collapse
Affiliation(s)
- Laila Moreno Ostertag
- Interaction
Forces and Functional Materials, Department of Interface Chemistry
and Surface Engineering, Max-Planck-Institut
für Eisenforschung GmbH, 40237 Düsseldorf, Germany
| | - Thomas Utzig
- Interaction
Forces and Functional Materials, Department of Interface Chemistry
and Surface Engineering, Max-Planck-Institut
für Eisenforschung GmbH, 40237 Düsseldorf, Germany
| | - Christine Klinger
- Institut
für Physikalische Chemie II, TU Bergakademie
Freiberg, 09599 Freiberg, Germany
| | - Markus Valtiner
- Interaction
Forces and Functional Materials, Department of Interface Chemistry
and Surface Engineering, Max-Planck-Institut
für Eisenforschung GmbH, 40237 Düsseldorf, Germany
- Institute
for Applied Physics, Applied Interface Physics, Technical University of Vienna, 1040 Vienna, Austria
| |
Collapse
|
28
|
Han L, Gong L, Chen J, Zhang J, Xiang L, Zhang L, Wang Q, Yan B, Zeng H. Universal Mussel-Inspired Ultrastable Surface-Anchoring Strategy via Adaptive Synergy of Catechol and Cations. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2166-2173. [PMID: 29276829 DOI: 10.1021/acsami.7b15756] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An outstanding anchoring ligand with robust anchoring ability and universal applicability is highly desirable in materials science and surface engineering. This work reports a novel and universal mussel-inspired anchoring strategy based on a cationic amine-modified catechol ligand coupled with the 2-methacryloyloxyethyl phosphorylcholine moiety. The ligand shows substrate-independent anchoring capability, and the deposited film possesses excellent antifouling properties and superior ultrasonic stability as compared to the conventional catechol ligand. Single-molecule force spectroscopy based on atomic force microscopy reveals that the enhanced ultrastable anchoring is attributed to the synergistic binding effect of cationic amine and catechol. Our results provide new nanomechanical insights into the development of novel coating strategies underwater based on amine-incorporated catechol derivatives for a wide range of materials engineering, bioengineering, and environmental applications.
Collapse
Affiliation(s)
- Linbo Han
- Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2V4, Canada
| | - Lu Gong
- Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2V4, Canada
| | - Jingsi Chen
- Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2V4, Canada
| | - Jiawen Zhang
- Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2V4, Canada
| | - Li Xiang
- Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2V4, Canada
| | - Ling Zhang
- Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2V4, Canada
| | - Qiang Wang
- Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2V4, Canada
| | - Bin Yan
- Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2V4, Canada
- College of Light Industry, Textile & Food Engineering, Sichuan University , Chengdu 610065, China
| | - Hongbo Zeng
- Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2V4, Canada
| |
Collapse
|
29
|
Lyu Q, Song H, Yakovlev NL, Tan WS, Chai CL. In situ insights into the nanoscale deposition of 5,6-dihydroxyindole-based coatings and the implications on the underwater adhesion mechanism of polydopamine coatings. RSC Adv 2018; 8:27695-27702. [PMID: 35542737 PMCID: PMC9083950 DOI: 10.1039/c8ra04472d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/27/2018] [Indexed: 11/30/2022] Open
Abstract
The biomimetic coating polydopamine (PDA) has emerged as a promising coating material for various applications. However, the mechanism of PDA deposition onto surfaces is not fully understood, and the coating components of PDA and its relation to the putative intermediate 5,6-dihydroxyindole (DHI) are still controversial. This investigation discloses the deposition mechanisms of dopamine (DA)-based coatings and DHI-based coatings onto silicon surfaces by monitoring the nanoscale deposition of both coatings in situ using high-precision ellipsometry. We posit that the rapid and instantaneous nano-deposition of PDA coatings onto silicon surface in the initial stages critically involves the oxidation of DHI and/or its related oligomers. Our studies also show that the slow conversion of DA to DHI in PDA solution and the coupling between DA and DHI-derived precursors could be crucial for subsequent PDA coating growth. These findings elucidate the critical role of DHI, acting as an ‘initiator’ and a ‘cross linker’, in the PDA coating formation. Overall, our study provides important information on the early stage nano-deposition behavior in the construction of PDA coatings and DHI-based coatings. The underwater in situ nano-deposition studies of 5,6-dihydroxyindole (DHI) have provided new insights into the controversial deposition mechanism(s) of DHI-based and polydopamine-based coatings.![]()
Collapse
Affiliation(s)
- Qinghua Lyu
- Department of Pharmacy
- National University of Singapore
- Singapore 117543
| | - Hongyan Song
- Institute of Materials Research and Engineering
- Singapore 138634
| | | | - Wui Siew Tan
- Institute of Materials Research and Engineering
- Singapore 138634
| | | |
Collapse
|
30
|
Tang X, Bettinger CJ. Multimodal Underwater Adhesion Using Self-assembled Dopa-bearing ABA Triblock Copolymer Networks. J Mater Chem B 2017; 6:545-549. [PMID: 29657715 DOI: 10.1039/c7tb02371e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Self-assembled mechanically robust Dopa-bearing triblock copolymer networks improve underwater adhesion through both energy dissipation and interfacial bonding. Polymer networks that incorporate energy dissipating motifs could improve the performance of high-performance wet adhesives rather than only by interfacial bonds.
Collapse
Affiliation(s)
- Xiaomin Tang
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Christopher J Bettinger
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
31
|
Lim S, Nguyen MP, Choi Y, Kim J, Kim D. Bioadhesive Nanoaggregates Based on Polyaspartamide-g-C18/DOPA for Wound Healing. Biomacromolecules 2017; 18:2402-2409. [PMID: 28678473 DOI: 10.1021/acs.biomac.7b00584] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biocompatible adhesive nanoaggregates were synthesized based on polyaspartamide copolymers grafted with octadecylamine (C18) and 3,4-dihydroxyphenylalanine (DOPA), and their adhesive properties were investigated with regard to wound healing. The chemical structure and morphology of the synthesized polyaspartamide-g-C18/DOPA nanoaggregates were analyzed using 1H-nuclear magnetic resonance spectroscopy (1H NMR), dynamic light scattering (DLS), and transmission electron microscope (TEM). The in vitro adhesive energy was up to 31.04 J m-2 for poly(dimethylacrylamide) gel substrates and 0.1209 MPa for mouse skin, and the in vivo wound breaking strength after 48 h was 1.8291 MPa for C57BL/6 mouse. The MTT assay demonstrated that the synthesized polymeric nanoaggregates were nontoxic. The polyaspartamide-g-C18/DOPA nanoaggregates were in vivo tested to mouse model and demonstrated successful skin adhesion, as the mouse skin was perfectly cured in their dermis within 6 d. As this material has biocompatibility and enough adhesive strength for wound closure, it is expected to be applied as a new type of bioadhesive agent in the human body.
Collapse
Affiliation(s)
- Sooyoun Lim
- School of Chemical Engineering, Sungkyunkwan University , Suwon, Kyunggi 16419, Republic of Korea
| | - Minh Phuong Nguyen
- School of Chemical Engineering, Sungkyunkwan University , Suwon, Kyunggi 16419, Republic of Korea
| | - Youngjin Choi
- School of Chemical Engineering, Sungkyunkwan University , Suwon, Kyunggi 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University , Suwon, Kyunggi 16419, Republic of Korea
| | - Dukjoon Kim
- School of Chemical Engineering, Sungkyunkwan University , Suwon, Kyunggi 16419, Republic of Korea
| |
Collapse
|
32
|
Abstract
Robust adhesion to wet, salt-encrusted, corroded and slimy surfaces has been an essential adaptation in the life histories of sessile marine organisms for hundreds of millions of years, but it remains a major impasse for technology. Mussel adhesion has served as one of many model systems providing a fundamental understanding of what is required for attachment to wet surfaces. Most polymer engineers have focused on the use of 3,4-dihydroxyphenyl-l-alanine (Dopa), a peculiar but abundant catecholic amino acid in mussel adhesive proteins. The premise of this Review is that although Dopa does have the potential for diverse cohesive and adhesive interactions, these will be difficult to achieve in synthetic homologs without a deeper knowledge of mussel biology; that is, how, at different length and time scales, mussels regulate the reactivity of their adhesive proteins. To deposit adhesive proteins onto target surfaces, the mussel foot creates an insulated reaction chamber with extreme reaction conditions such as low pH, low ionic strength and high reducing poise. These conditions enable adhesive proteins to undergo controlled fluid-fluid phase separation, surface adsorption and spreading, microstructure formation and, finally, solidification.
Collapse
Affiliation(s)
- J Herbert Waite
- Marine Sciences Institute, University of California-Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
33
|
Stock P, Utzig T, Valtiner M. Soft matter interactions at the molecular scale: interaction forces and energies between single hydrophobic model peptides. Phys Chem Chem Phys 2017; 19:4216-4221. [DOI: 10.1039/c6cp07562b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The interaction between single hydrophobic molecules is quantitatively characterized by using an atomic force microscope (AFM).
Collapse
Affiliation(s)
- Philipp Stock
- Max-Planck-Institut für Eisenforschung GmbH
- Department for Interface Chemistry and Surface Engineering
- D-40237 Düsseldorf
- Germany
- Technische Universität Bergakademie Freiberg
| | - Thomas Utzig
- Max-Planck-Institut für Eisenforschung GmbH
- Department for Interface Chemistry and Surface Engineering
- D-40237 Düsseldorf
- Germany
| | - Markus Valtiner
- Max-Planck-Institut für Eisenforschung GmbH
- Department for Interface Chemistry and Surface Engineering
- D-40237 Düsseldorf
- Germany
- Technische Universität Bergakademie Freiberg
| |
Collapse
|
34
|
Li Y, Wang T, Xia L, Wang L, Qin M, Li Y, Wang W, Cao Y. Single-molecule study of the synergistic effects of positive charges and Dopa for wet adhesion. J Mater Chem B 2017; 5:4416-4420. [DOI: 10.1039/c7tb00131b] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Using AFM based single-molecule force spectroscopy, we studied the synergy between Dopa and lysine for wet adhesion on titania (TiO2) and mica surfaces.
Collapse
Affiliation(s)
- Yiran Li
- Collaborative Innovation Center of Advanced Microstructures
- National Laboratory of Solid State Microstructure
- Department of Physics
- Nanjing University
- Nanjing 210093
| | - Tiankuo Wang
- Collaborative Innovation Center of Advanced Microstructures
- National Laboratory of Solid State Microstructure
- Department of Physics
- Nanjing University
- Nanjing 210093
| | - Lei Xia
- Collaborative Innovation Center of Advanced Microstructures
- National Laboratory of Solid State Microstructure
- Department of Physics
- Nanjing University
- Nanjing 210093
| | - Lei Wang
- Jiangsu Engineering Technology Research Centre of Environmental Cleaning Materials
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control
- Jiangsu Joint Laboratory of Atmospheric Pollution Control
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology
- School of Environmental Science and Engineering
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures
- National Laboratory of Solid State Microstructure
- Department of Physics
- Nanjing University
- Nanjing 210093
| | - Ying Li
- Jiangsu Engineering Technology Research Centre of Environmental Cleaning Materials
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control
- Jiangsu Joint Laboratory of Atmospheric Pollution Control
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology
- School of Environmental Science and Engineering
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures
- National Laboratory of Solid State Microstructure
- Department of Physics
- Nanjing University
- Nanjing 210093
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures
- National Laboratory of Solid State Microstructure
- Department of Physics
- Nanjing University
- Nanjing 210093
| |
Collapse
|
35
|
Feng J, Fan H, Zha DA, Wang L, Jin Z. Characterizations of the Formation of Polydopamine-Coated Halloysite Nanotubes in Various pH Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10377-10386. [PMID: 27643526 DOI: 10.1021/acs.langmuir.6b02948] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent studies demonstrated that polydopamine (PDA) coating is universal to nearly all substrates, and it endows substrates with biocompatibility, postfunctionality, and other useful properties. Surface chemistry of PDA coating is important for its postmodifications and applications. However, there is less understanding of the formation mechanism and surface functional groups of PDA layers generated in different conditions. Halloysite is a kind of clay mineral with tubular nanostructure. Water-swellable halloysite has unique reactivity. In this study, we have investigated the reaction of dopamine in the presence of water-swellable halloysite. We have tracked the reaction progresses in different pH environments by using UV-vis spectroscopy and surface-enhanced Raman spectroscopy (SERS). The surface properties of PDA on halloysite were clarified by X-ray photoelectron spectroscopy (XPS), SERS, Fourier transform infrared (FTIR) characterizations, zeta potential, surface wettability, and morphological characterizations. We noticed that the interaction between halloysite surface and dopamine strongly influences the surface functionality of coated PDA. In addition, pH condition further modulates surface functional groups, resulting in less content of secondary/aromatic amine in PDA generated in weak acidic environment. This study demonstrates that the formation mechanism of polydopamine becomes complex in the presence of inorganic nanomaterials. Substrate property and reaction condition dominate the functionality of obtained PDA together.
Collapse
Affiliation(s)
- Junran Feng
- Department of Chemistry, Renmin University of China , 100872 Beijing, People's Republic of China
| | - Hailong Fan
- Department of Chemistry, Renmin University of China , 100872 Beijing, People's Republic of China
| | - Dao-An Zha
- School of Science, Beijing Jiaotong University , No. 3 Shang Yuan Cun, Haidian District, Beijing 100044, People's Republic of China
| | - Le Wang
- Department of Chemistry, Renmin University of China , 100872 Beijing, People's Republic of China
| | - Zhaoxia Jin
- Department of Chemistry, Renmin University of China , 100872 Beijing, People's Republic of China
| |
Collapse
|
36
|
Utzig T, Stock P, Valtiner M. Resolving Non-Specific and Specific Adhesive Interactions of Catechols at Solid/Liquid Interfaces at the Molecular Scale. Angew Chem Int Ed Engl 2016; 55:9524-8. [PMID: 27374053 PMCID: PMC5113705 DOI: 10.1002/anie.201601881] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/19/2016] [Indexed: 12/18/2022]
Abstract
The adhesive system of mussels evolved into a powerful and adaptive system with affinity to a wide range of surfaces. It is widely known that thereby 3,4-dihydroxyphenylalanine (Dopa) plays a central role. However underlying binding energies remain unknown at the single molecular scale. Here, we use single-molecule force spectroscopy to estimate binding energies of single catechols with a large range of opposing chemical functionalities. Our data demonstrate significant interactions of Dopa with all functionalities, yet most interactions fall within the medium-strong range of 10-20 kB T. Only bidentate binding to TiO2 surfaces exhibits a higher binding energy of 29 kB T. Our data also demonstrate at the single-molecule level that oxidized Dopa and amines exhibit interaction energies in the range of covalent bonds, confirming the important role of Dopa for cross-linking in the bulk mussel adhesive. We anticipate that our approach and data will further advance the understanding of biologic and technologic adhesives.
Collapse
Affiliation(s)
- Thomas Utzig
- Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237, Düsseldorf, Germany.
| | - Philipp Stock
- Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237, Düsseldorf, Germany
| | - Markus Valtiner
- Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237, Düsseldorf, Germany.
- Institut für physikalische Chemie, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany.
| |
Collapse
|