1
|
Jung W, Asaduddin M, Yoo D, Lee DY, Son Y, Kim D, Keum H, Lee J, Park SH, Jon S. Noninvasive ROS imaging and drug delivery monitoring in the tumor microenvironment. Biomaterials 2024; 310:122633. [PMID: 38810387 DOI: 10.1016/j.biomaterials.2024.122633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Reactive oxygen species (ROS) that are overproduced in certain tumors can be considered an indicator of oxidative stress levels in the tissue. Here, we report a magnetic resonance imaging (MRI)-based probe capable of detecting ROS levels in the tumor microenvironment (TME) using ROS-responsive manganese ion (Mn2+)-chelated, biotinylated bilirubin nanoparticles (Mn@bt-BRNPs). These nanoparticles are disrupted in the presence of ROS, resulting in the release of free Mn2+, which induces T1-weighted MRI signal enhancement. Mn@BRNPs show more rapid and greater MRI signal enhancement in high ROS-producing A549 lung carcinoma cells compared with low ROS-producing DU145 prostate cancer cells. A pseudo three-compartment model devised for the ROS-reactive MRI probe enables mapping of the distribution and concentration of ROS within the tumor. Furthermore, doxorubicin-loaded, cancer-targeting ligand biotin-conjugated Dox/Mn@bt-BRNPs show considerable accumulation in A549 tumors and also effectively inhibit tumor growth without causing body weight loss, suggesting their usefulness as a new theranostic agent. Collectively, these findings suggest that Mn@bt-BRNPs could be used as an imaging probe capable of detecting ROS levels and monitoring drug delivery in the TME with potential applicability to other inflammatory diseases.
Collapse
Affiliation(s)
- Wonsik Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Muhammad Asaduddin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Dohyun Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Seoul, 05505, Republic of Korea
| | - Youngju Son
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Dohyeon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Hyeongseop Keum
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Jungun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Jung W, Asaduddin M, Keum H, Son Y, Yoo D, Kim D, Lee S, Lee DY, Roh J, Park SH, Jon S. Longitudinal Magnetic Resonance Imaging with ROS-Responsive Bilirubin Nanoparticles Enables Monitoring of Nonalcoholic Steatohepatitis Progression to Cirrhosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305830. [PMID: 38459924 DOI: 10.1002/adma.202305830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Despite the vital importance of monitoring the progression of nonalcoholic fatty liver disease (NAFLD) and its progressive form, nonalcoholic steatohepatitis (NASH), an efficient imaging modality that is readily available at hospitals is currently lacking. Here, a new magnetic-resonance-imaging (MRI)-based imaging modality is presented that allows for efficient and longitudinal monitoring of NAFLD and NASH progression. The imaging modality uses manganese-ion (Mn2+)-chelated bilirubin nanoparticles (Mn@BRNPs) as a reactive-oxygen-species (ROS)-responsive MRI imaging probe. Longitudinal T1-weighted MR imaging of NASH model mice is performed after injecting Mn@BRNPs intravenously. The MR signal enhancement in the liver relative to muscle gradually increases up to 8 weeks of NASH progression, but decreases significantly as NASH progresses to the cirrhosis-like stage at weeks 10 and 12. A new dual input pseudo-three-compartment model is developed to provide information on NASH stage with a single MRI scan. It is also demonstrated that the ROS-responsive Mn@BRNPs can be used to monitor the efficacy of potential anti-NASH drugs with conventional MRI. The findings suggest that the ROS-responsive Mn@BRNPs have the potential to serve as an efficient MRI contrast for monitoring NASH progression and its transition to the cirrhosis-like stage.
Collapse
Affiliation(s)
- Wonsik Jung
- Department of Biological Sciences, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Muhammad Asaduddin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Hyeongseop Keum
- Department of Biological Sciences, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Youngju Son
- Department of Biological Sciences, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Dohyun Yoo
- Department of Biological Sciences, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Dohyeon Kim
- Department of Biological Sciences, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Seojung Lee
- Department of Biological Sciences, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Seoul, 05505, South Korea
| | - Jin Roh
- Department of Pathology, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, 16499, South Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Sangyong Jon
- Department of Biological Sciences, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| |
Collapse
|
3
|
Geng Y, Zou H, Li Z, Wu H. Recent advances in nanomaterial-driven strategies for diagnosis and therapy of vascular anomalies. J Nanobiotechnology 2024; 22:120. [PMID: 38500178 PMCID: PMC10949774 DOI: 10.1186/s12951-024-02370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Nanotechnology has demonstrated immense potential in various fields, especially in biomedical field. Among these domains, the development of nanotechnology for diagnosing and treating vascular anomalies has garnered significant attention. Vascular anomalies refer to structural and functional anomalies within the vascular system, which can result in conditions such as vascular malformations and tumors. These anomalies can significantly impact the quality of life of patients and pose significant health concerns. Nanoscale contrast agents have been developed for targeted imaging of blood vessels, enabling more precise identification and characterization of vascular anomalies. These contrast agents can be designed to bind specifically to abnormal blood vessels, providing healthcare professionals with a clearer view of the affected areas. More importantly, nanotechnology also offers promising solutions for targeted therapeutic interventions. Nanoparticles can be engineered to deliver drugs directly to the site of vascular anomalies, maximizing therapeutic effects while minimizing side effects on healthy tissues. Meanwhile, by incorporating functional components into nanoparticles, such as photosensitizers, nanotechnology enables innovative treatment modalities such as photothermal therapy and photodynamic therapy. This review focuses on the applications and potential of nanotechnology in the imaging and therapy of vascular anomalies, as well as discusses the present challenges and future directions.
Collapse
Affiliation(s)
- Yiming Geng
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China
| | - Huwei Zou
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China
| | - Zhaowei Li
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an, 271000, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China.
| |
Collapse
|
4
|
Ma J, Wu Y, Zou H, Wang H, Zhou M, Wang H. Acid-Responsive Aggregation of Gold Nanoparticles for the Photothermal Treatment of Bacterial Infections. ACS Infect Dis 2023; 9:2538-2547. [PMID: 37963273 DOI: 10.1021/acsinfecdis.3c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Photothermal therapy (PTT) is considered to be one of the promising methods to combat pathogenic bacteria. However, traditional PTT is prone to generate undesired temperature increase to surrounding normal tissues, which limits the application of PTT. Herein, an acid-responsive PTT system (Au nanoparticles system: AuNPs-S) was constructed based on the photothermal feature of spherical gold nanoparticles (AuNPs) and the low pH of the bacterial infected site. AuNPs-S is composed of two kinds of AuNPs: AuNPs modified with Asp-Asp-Asp-Asp-Asp-Cys (peptide A) were denoted as AuNPs-A; AuNPs modified with 2,3-dimethylmaleic anhydride (DA) grafted Lys-Gly-Gly-Lys-Gly-Gly-Lys-Cys (peptide B) were denoted as AuNPs-B/DA. AuNPs-B/DA with an acid-responsive moiety showed a charge-convertible feature. The negatively charged AuNPs-B/DA became positively charged AuNPs-B at low pH, aggregating with the negatively charged AuNPs-A via an electrostatic interaction, reaching the threshold to the interparticle plasmonic coupling effect among AuNPs, thereby killing bacteria precisely under the irradiation of near-infrared (NIR) light through the elevated temperature at the targeted area. This acid-responsive PTT strategy supplies an excellent mode for combating bacterial infections with no vital damage to normal tissues.
Collapse
Affiliation(s)
- Jiale Ma
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Yiming Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Han Zou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Hongxun Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
- Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, P. R. China
| | - Min Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
- Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, P. R. China
| | - Huajuan Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
- Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, P. R. China
| |
Collapse
|
5
|
Cui Y, Wu C, Li L, shi H, Li C, Yin S. Toward nanotechnology-enabled application of bilirubin in the treatment and diagnosis of various civilization diseases. Mater Today Bio 2023; 20:100658. [PMID: 37214553 PMCID: PMC10196858 DOI: 10.1016/j.mtbio.2023.100658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Bilirubin, an open chain tetrapyrrole, has powerful antioxidant, anti-inflammatory, immuno-suppressive, metabolic-modulating and anti-proliferative activities. Bilirubin is a natural molecule that is produced and metabolized within the human body, making it highly biocompatible and well suited for clinical use. However, the use of bilirubin has been hampered by its poor water solubility and instability. With advanced construction strategies, bilirubin-derived nanoparticles (BRNPs) have not only overcome the disadvantages of bilirubin but also enhanced its therapeutic effects by targeting damaged tissues, passing through physiological barriers, and ensuring controlled sustained release. We review the mechanisms underlying the biological activities of bilirubin, BRNP preparation strategies and BRNP applications in various disease models. Based on their superior performance, BRNPs require further exploration of their efficacy, biodistribution and long-term biosafety in nonhuman primate models that recapitulate human disease to promote their clinical translation.
Collapse
|
6
|
Liu W, Li X, Wang T, Xiong F, Sun C, Yao X, Huang W. Platinum Drug-Incorporating Polymeric Nanosystems for Precise Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208241. [PMID: 36843317 DOI: 10.1002/smll.202208241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Indexed: 05/25/2023]
Abstract
Platinum (Pt) drugs are widely used in clinic for cancer therapy, but their therapeutic outcomes are significantly compromised by severe side effects and acquired drug resistance. With the emerging immunotherapy and imaging-guided cancer therapy, precise delivery and release of Pt drugs have drawn great attention these days. The targeting delivery of Pt drugs can greatly increase the accumulation at tumor sites, which ultimately enhances antitumor efficacy. Further, with the combination of Pt drugs and other theranostic agents into one nanosystem, it not only possesses excellent synergistic efficacy but also achieves real-time monitoring. In this review, after the introduction of Pt drugs and their characteristics, the recent progress of polymeric nanosystems for efficient delivery of Pt drugs is summarized with an emphasis on multi-modal synergistic therapy and imaging-guided Pt-based cancer treatment. In the end, the conclusions and future perspectives of Pt-encapsulated nanosystems are given.
Collapse
Affiliation(s)
- Wei Liu
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ting Wang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Fei Xiong
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Changrui Sun
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
7
|
Han HH, Kim SJ, Kim J, Park W, Kim C, Kim H, Hahn SK. Bimetallic Hyaluronate-Modified Au@Pt Nanoparticles for Noninvasive Photoacoustic Imaging and Photothermal Therapy of Skin Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11609-11620. [PMID: 36847648 DOI: 10.1021/acsami.3c01858] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although spherical gold (Au) nanoparticles have remarkable photothermal conversion efficiency and photostability, their weak absorption in the near-infrared (NIR) region and poor penetration into deep tissues have limited further applications to NIR light-mediated photoacoustic (PA) imaging and noninvasive photothermal cancer therapy. Here, we developed bimetallic hyaluronate-modified Au-platinum (HA-Au@Pt) nanoparticles for noninvasive cancer theranostics by NIR light-mediated PA imaging and photothermal therapy (PTT). The growth of Pt nanodots on the surface of spherical Au nanoparticles enhanced the absorbance in the NIR region and broadened the absorption bandwidth of HA-Au@Pt nanoparticles by the surface plasmon resonance (SPR) coupling effect. In addition, HA facilitated the transdermal delivery of HA-Au@Pt nanoparticles through the skin barrier and enabled clear tumor-targeted PA imaging. Compared to conventional PTT via injection, HA-Au@Pt nanoparticles were noninvasively delivered into deep tumor tissues and completely ablated the targeted tumor tissues by NIR light irradiation. Taken together, we could confirm the feasibility of HA-Au@Pt nanoparticles as a NIR light-mediated biophotonic agent for noninvasive skin cancer theranostics.
Collapse
Affiliation(s)
- Hye Hyeon Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Seong-Jong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Jiwoong Kim
- Department of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Wonchan Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Hyemin Kim
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| |
Collapse
|
8
|
He YC, Hao ZN, Li Z, Gao DW. Nanomedicine-based multimodal therapies: Recent progress and perspectives in colon cancer. World J Gastroenterol 2023; 29:670-681. [PMID: 36742173 PMCID: PMC9896619 DOI: 10.3748/wjg.v29.i4.670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/26/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Colon cancer has attracted much attention due to its annually increasing incidence. Conventional chemotherapeutic drugs are unsatisfactory in clinical application because of their lack of targeting and severe toxic side effects. In the past decade, nanomedicines with multimodal therapeutic strategies have shown potential for colon cancer because of their enhanced permeability and retention, high accumulation at tumor sites, co-loading with different drugs, and comb-ination of various therapies. This review summarizes the advances in research on various nanomedicine-based therapeutic strategies including chemotherapy, radiotherapy, phototherapy (photothermal therapy and photodynamic therapy), chemodynamic therapy, gas therapy, and immunotherapy. Additionally, the therapeutic mechanisms, limitations, improvements, and future of the above therapies are discussed.
Collapse
Affiliation(s)
- Yu-Chu He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Laboratory of Hebei Province, Applying Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066000, Hebei Province, China
| | - Zi-Ning Hao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Laboratory of Hebei Province, Applying Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066000, Hebei Province, China
| | - Zhuo Li
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Laboratory of Hebei Province, Applying Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066000, Hebei Province, China
| | - Da-Wei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Laboratory of Hebei Province, Applying Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066000, Hebei Province, China
| |
Collapse
|
9
|
Jung W, Lee DY, Moon E, Jon S. Nanoparticles derived from naturally occurring metal chelators for theranostic applications. Adv Drug Deliv Rev 2022; 191:114620. [PMID: 36379406 DOI: 10.1016/j.addr.2022.114620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
Metals are indispensable for the activities of all living things, from single-celled organisms to higher organisms, including humans. Beyond their intrinsic quality as metal ions, metals help creatures to maintain requisite biological processes by forming coordination complexes with endogenous ligands that are broadly distributed in nature. These types of naturally occurring chelating reactions are found through the kingdoms of life, including bacteria, plants and animals. Mimicking these naturally occurring coordination complexes with intrinsic biocompatibility may offer an opportunity to develop nanomedicine toward clinical applications. Herein, we introduce representative examples of naturally occurring coordination complexes in a selection of model organisms and highlight such bio-inspired metal-chelating nanomaterials for theranostic applications.
Collapse
Affiliation(s)
- Wonsik Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Seoul 05505, Republic of Korea; Translational Biomedical Research Group, Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, 88 Olympic-ro 43-gil, Seoul 05505, Republic of Korea.
| | - Eugene Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea.
| |
Collapse
|
10
|
Zheng Y, Liu M, Jiang L. Progress of photoacoustic imaging combined with targeted photoacoustic contrast agents in tumor molecular imaging. Front Chem 2022; 10:1077937. [PMID: 36479441 PMCID: PMC9720136 DOI: 10.3389/fchem.2022.1077937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022] Open
Abstract
Molecular imaging visualizes, characterizes, and measures biological processes at the molecular and cellular level. In oncology, molecular imaging is an important technology to guide integrated and precise diagnosis and treatment. Photoacoustic imaging is mainly divided into three categories: photoacoustic microscopy, photoacoustic tomography and photoacoustic endoscopy. Different from traditional imaging technology, which uses the physical properties of tissues to detect and identify diseases, photoacoustic imaging uses the photoacoustic effect to obtain the internal information of tissues. During imaging, lasers excite either endogenous or exogenous photoacoustic contrast agents, which then send out ultrasonic waves. Currently, photoacoustic imaging in conjunction with targeted photoacoustic contrast agents is frequently employed in the research of tumor molecular imaging. In this study, we will examine the latest advancements in photoacoustic imaging technology and targeted photoacoustic contrast agents, as well as the developments in tumor molecular imaging research.
Collapse
Affiliation(s)
| | | | - Lixin Jiang
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
11
|
Zou Q, Bao J, Yan X. Functional Nanomaterials Based on Self-Assembly of Endogenic NIR-Absorbing Pigments for Diagnostic and Therapeutic Applications. SMALL METHODS 2022; 6:e2101359. [PMID: 35142112 DOI: 10.1002/smtd.202101359] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Endogenic pigments derived from hemoglobin have been successfully applied in the clinic for both imaging and therapy based on their inherent photophysical and photochemical properties, including light absorption, fluorescence emission, and producing reactive oxygen species. However, the clinically approved endogenic pigments can be excited only by UV/vis light, restricting the penetration depth of in vivo applications. Recently, endogenic pigments with NIR-absorbing properties have been explored for constructing functional nanomaterials. Here, the overview of NIR-absorbing endogenic pigments, mainly bile pigments, and melanins, as emerging building blocks for supramolecular construction of diagnostic and therapeutic nanomaterials is provided. The endogenic origins, synthetic pathways, and structural characteristics of the NIR-absorbing endogenic pigments are described. The self-assembling approaches and noncovalent interactions in fabricating the nanomaterials are emphasized. Since bile pigments and melanins are inherently photothermal agents, the resulting nanomaterials are demonstrated as promising candidates for photoacoustic imaging and photothermal therapy. Integration of additional diagnostic and therapeutic agents by the nanomaterials through chemical conjugation or physical encapsulation toward synergetic effects is also included. Especially, the degradation behaviors of the nanomaterials in biological environments are summarized. Along with the challenges, future perspectives are discussed for accelerating the ration design and clinical translation of NIR-absorbing nanomaterials.
Collapse
Affiliation(s)
- Qianli Zou
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Jianwei Bao
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xuehai Yan
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
12
|
Abed A, Derakhshan M, Karimi M, Shirazinia M, Mahjoubin-Tehran M, Homayonfal M, Hamblin MR, Mirzaei SA, Soleimanpour H, Dehghani S, Dehkordi FF, Mirzaei H. Platinum Nanoparticles in Biomedicine: Preparation, Anti-Cancer Activity, and Drug Delivery Vehicles. Front Pharmacol 2022; 13:797804. [PMID: 35281900 PMCID: PMC8904935 DOI: 10.3389/fphar.2022.797804] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/13/2022] [Indexed: 01/09/2023] Open
Abstract
Cancer is the main cause of morbidity and mortality worldwide, excluding infectious disease. Because of their lack of specificity in chemotherapy agents are used for cancer treatment, these agents have severe systemic side effects, and gradually lose their therapeutic effects because most cancers become multidrug resistant. Platinum nanoparticles (PtNPs) are relatively new agents that are being tested in cancer therapy. This review covers the various methods for the preparation and physicochemical characterization of PtNPs. PtNPs have been shown to possess some intrinsic anticancer activity, probably due to their antioxidant action, which slows tumor growth. Targeting ligands can be attached to functionalized metal PtNPs to improve their tumor targeting ability. PtNPs-based therapeutic systems can enable the controlled release of drugs, to improve the efficiency and reduce the side effects of cancer therapy. Pt-based materials play a key role in clinical research. Thus, the diagnostic and medical industries are exploring the possibility of using PtNPs as a next-generation anticancer therapeutic agent. Although, biologically prepared nanomaterials exhibit high efficacy with low concentrations, several factors still need to be considered for clinical use of PtNPs such as the source of raw materials, stability, solubility, the method of production, biodistribution, accumulation, controlled release, cell-specific targeting, and toxicological issues to human beings. The development of PtNPs as an anticancer agent is one of the most valuable approaches for cancer treatment. The future of PtNPs in biomedical applications holds great promise, especially in the area of disease diagnosis, early detection, cellular and deep tissue imaging, drug/gene delivery, as well as multifunctional therapeutics.
Collapse
Affiliation(s)
- Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Kashan, Iran
| | - Merat Karimi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| | - Matin Shirazinia
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Homayonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, 2028 Doornfontein, Johannesburg, South Africa
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamidreza Soleimanpour
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Keum H, Yoo D, Jon S. Photomedicine based on heme-derived compounds. Adv Drug Deliv Rev 2022; 182:114134. [PMID: 35122881 DOI: 10.1016/j.addr.2022.114134] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/16/2021] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
Photoimaging and phototherapy have become major platforms for the diagnosis and treatment of various health complications. These applications require a photosensitizer (PS) that is capable of absorbing light from a source and converting it into other energy forms for detection and therapy. While synthetic inorganic materials such as quantum dots and gold nanorods have been widely explored for their medical diagnosis and photodynamic (PDT) and photothermal (PTT) therapy capabilities, translation of these technologies has lagged, primarily owing to potential cytotoxicity and immunogenicity issues. Of the various photoreactive molecules, the naturally occurring endogenous compound heme, a constituent of red blood cells, and its derivatives, porphyrin, biliverdin and bilirubin, have shown immense potential as noteworthy candidates for clinically translatable photoreactive agents, as evidenced by previous reports. While porphyrin-based photomedicines have attracted significant attention and are well documented, research on photomedicines based on two other heme-derived compounds, biliverdin and bilirubin, has been relatively lacking. In this review, we summarize the unique photoproperties of heme-derived compounds and outline recent efforts to use them in biomedical imaging and phototherapy applications.
Collapse
|
14
|
Fathi P, Moitra P, McDonald MM, Esch MB, Pan D. Near-infrared emitting dual-stimuli-responsive carbon dots from endogenous bile pigments. NANOSCALE 2021; 13:13487-13496. [PMID: 34477753 DOI: 10.1039/d1nr01295a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Carbon dots are biocompatible nanoparticles suitable for a variety of biomedical applications. Careful selection of carbon dot precursors and surface modification techniques has allowed for the development of carbon dots with strong near-infrared fluorescence emission. However, carbon dots that provide strong fluorescence contrast would prove even more useful if they were also responsive to stimuli. In this work, endogenous bile pigments bilirubin (BR) and biliverdin (BV) were used for the first time to synthesize stimuli-responsive carbon dots (BR-CDots and BV-CDots respectively). The precursor choice lends these carbon dots spectroscopic characteristics that are enzyme-responsive and pH-responsive without the need for surface modifications post-synthesis. Both BV- and BR-CDots are water-dispersible and provide fluorescence contrast, while retaining the stimuli-responsive behaviors intrinsic to their precursors. Nanoparticle Tracking Analysis revealed that the hydrodynamic size of the BR-CDots and BV-CDots decreased with exposure to bilirubin oxidase and biliverdin reductase, respectively, indicating potential enzyme-responsive degradation of the carbon dots. Fluorescence spectroscopic data demonstrate that both BR-CDots and BV-CDots exhibit changes in their fluorescence spectra in response to changes in pH, indicating that these carbon dots have potential applications in pH sensing. In addition, BR-CDots are biocompatible and provide near-infrared fluorescence emission when excited with light at wavelengths of 600 nm or higher. This work demonstrates the use of rationally selected carbon sources for obtaining near-infrared fluorescence and stimuli-responsive behavior in carbon dots that also provide strong fluorescence contrast.
Collapse
Affiliation(s)
- Parinaz Fathi
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois, 61801, USA
| | | | | | | | | |
Collapse
|
15
|
Ruan J, Liu H, Chen B, Wang F, Wang W, Zha Z, Qian H, Miao Z, Sun J, Tian T, He Y, Wang H. Interfacially Engineered Zn xMn 1-xS@Polydopamine Hollow Nanospheres for Glutathione Depleting Photothermally Enhanced Chemodynamic Therapy. ACS NANO 2021; 15:11428-11440. [PMID: 34152125 DOI: 10.1021/acsnano.1c01077] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fenton-like reactions driven by manganese-based nanostructures have been widely applied in cancer treatment owing to the intrinsic physiochemical properties of these nanostructures and their improved sensitivity to the tumor microenvironment. In this work, ZnxMn1-xS@polydopamine composites incorporating alloyed ZnxMn1-xS and polydopamine (PDA) were constructed, in which the Fenton-like reactions driven by Mn ions can be tuned by a controllable release of Mn ions in vitro and in vivo. As a result, the ZnxMn1-xS@PDA exhibited good biocompatibility with normal cells but was specifically toxic to cancer cells. In addition, the shell thickness of PDA was carefully investigated to obtain excellent specific toxicity to cancer cells and promote synergistic chemodynamic and photothermal therapies. Overall, this work highlights an alternative strategy for fabricating high-performance, multifunctional composite nanostructures for a combined cancer treatment.
Collapse
Affiliation(s)
- Juan Ruan
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hang Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Benjin Chen
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Fei Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research and The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Wanni Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Zhaohua Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Jianan Sun
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Tian Tian
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230036, P. R. China
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research and The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230036, P. R. China
| |
Collapse
|
16
|
Er Saw P. Voice Series: Interview with Prof. Dr. Sangyong Jon, KAIST Chair Professor : Published Online: January 13 2021. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Yoo D, Jung W, Son Y, Jon S. Glutathione-Responsive Gold Nanoparticles as Computed Tomography Contrast Agents for Hepatic Diseases. ACS APPLIED BIO MATERIALS 2021; 4:4486-4494. [DOI: 10.1021/acsabm.1c00224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dohyun Yoo
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Wonsik Jung
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Youngju Son
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| |
Collapse
|
18
|
Khan FA, Albalawi R, Pottoo FH. Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment. Med Res Rev 2021; 42:227-258. [PMID: 33891325 DOI: 10.1002/med.21809] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Colon cancer is an adenocarcinoma, which subsequently develops into malignant tumors, if not treated properly. The current colon cancer therapy mainly revolves around chemotherapy, radiotherapy and surgery, but the search continues for more effective interventions. With the advancement of nanoparticles (NPs), it is now possible to diagnose and treat colon cancers with different types, shapes, and sizes of NPs. Nanoformulations such as quantum dots, iron oxide, polymeric NPs, dendrimers, polypeptides, gold NPs, silver NPs, platinum NPs, and cerium oxide have been either extensively used alone or in combination with other nanomaterials or drugs in colon cancer diagnosis, and treatments. These nanoformulations possess high biocompatibility and bioavailability, which makes them the most suitable candidates for cancer treatment. The size and shape of NPs are critical to achieving an effective drug delivery in cancer treatment and diagnosis. Most NPs currently are under different testing phases (in vitro, preclinical, and clinical), whereas some of them have been approved for therapeutic applications. We have comprehensively reviewed the recent advances in the applications of NPs-based formulations in colon cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Firdos A Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem Albalawi
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Student of the volunteer/training program at IRMC
| | - Faheem H Pottoo
- College of Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
19
|
Fathi P, Roslend A, Mehta K, Moitra P, Zhang K, Pan D. UV-trained and metal-enhanced fluorescence of biliverdin and biliverdin nanoparticles. NANOSCALE 2021; 13:4785-4798. [PMID: 33434263 PMCID: PMC9297654 DOI: 10.1039/d0nr08485a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Increasing the fluorescence quantum yield of fluorophores is of great interest for in vitro and in vivo biomedical imaging applications. At the same time, photobleaching and photodegradation resulting from continuous exposure to light are major considerations in the translation of fluorophores from research applications to industrial or healthcare applications. A number of tetrapyrrolic compounds, such as heme and its derivatives, are known to provide fluorescence contrast. In this work, we found that biliverdin (BV), a naturally-occurring tetrapyrrolic fluorophore, exhibits an increase in fluorescence quantum yield, without exhibiting photobleaching or degradation, in response to continuous ultraviolet (UV) irradiation. We attribute this increased fluorescence quantum yield to photoisomerization and conformational changes in BV in response to UV irradiation. This enhanced fluorescence can be further altered by chelating BV with metals. UV irradiation of BV led to an approximately 10-fold increase in its 365 nm fluorescence quantum yield, and the most favorable combination of UV irradiation and metal chelation led to an approximately 18.5-fold increase in its 365 nm fluorescence quantum yield. We also evaluated these stimuli-responsive behaviors in biliverdin nanoparticles (BVNPs) at the bulk-state and single-particle level. We determined that UV irradiation led to an approximately 2.4-fold increase in BVNP 365 nm quantum yield, and the combination of UV irradiation and metal chelation led to up to a 6.75-fold increase in BVNP 365 nm quantum yield. Altogether, these findings suggest that UV irradiation and metal chelation can be utilized alone or in combination to tailor the fluorescence behavior of imaging probes such as BV and BVNPs at selected wavelengths.
Collapse
Affiliation(s)
- Parinaz Fathi
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Ayman Roslend
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Kritika Mehta
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Parikshit Moitra
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kai Zhang
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Dipanjan Pan
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. and Departments of Diagnostic Radiology Nuclear Medicine, Pediatrics, and Chemical and Biomolecular Engineering, University of Maryland School of Medicine and University of Maryland Baltimore County, Baltimore, MD 21201, USA
| |
Collapse
|
20
|
Lv Z, He S, Wang Y, Zhu X. Noble Metal Nanomaterials for NIR-Triggered Photothermal Therapy in Cancer. Adv Healthc Mater 2021; 10:e2001806. [PMID: 33470542 DOI: 10.1002/adhm.202001806] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/06/2021] [Indexed: 12/24/2022]
Abstract
It is of great significance to develop anticancer therapeutic agents or technologies with high degree of specificity and patient compliance, while low toxicity. The emerging photothermal therapy (PTT) has become a new and powerful therapeutic technology due to its noninvasiveness, high specificity, low side effects to normal tissues and strong anticancer efficacy. Noble metal nanomaterials possess strong surface plasmon resonance (SPR) effect and synthetic tunability, which make them facile and effective PTT agents with superior optical and photothermal characteristics, such as high absorption cross-section, incomparable optical-thermal conversion efficiency in the near infrared (NIR) region, as well as the potential of bioimaging. By incorporating with various functional reagents such as antibodies, peptides, biocompatible polymers, chemo-drug and immune factors, noble metal nanomaterials have presented strong potential in multifunctional cancer therapy. Herein, the recent development regarding the application of noble metal nanomaterials for NIR-triggered PTT in cancer treatment is summarized. A variety of studies with good therapeutic effects against cancer from impressive photothermal efficacy of noble metal nanomaterials are concluded. Intelligent nanoplatforms through ingenious fabrication showing potential of multifunctional PTT, combined with chemo-therapy, immunotherapy, photodynamic therapy (PDT), as well as simultaneous imaging modality are also demonstrated.
Collapse
Affiliation(s)
- Zhuoqian Lv
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Sijia He
- Cancer Center Shanghai General Hospital Shanghai Jiao Tong University School of Medicine 650 Xinsongjiang Road Shanghai 201620 China
| | - Youfu Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
21
|
Recent progress in development and applications of second near-infrared (NIR-II) nanoprobes. Arch Pharm Res 2021; 44:165-181. [PMID: 33538959 DOI: 10.1007/s12272-021-01313-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/16/2021] [Indexed: 02/03/2023]
Abstract
Optical probes for near-infrared (NIR) light have clear advantages over UV/VIS-based optical probes, such as their low levels of interfering auto-fluorescence and high tissue penetration. The second NIR (NIR-II) window (1000-1350 nm) offers better light penetration, lower background signal, higher safety limit, and higher maximum permitted exposure than the first NIR (NIR-I) window (650-950 nm). Therefore, NIR-II laser-based photoacoustic (PA) and fluorescence (FL) imaging can offer higher sensitivity and penetration depth than was previously available, and deeper lesions can be treated in vivo by photothermal therapy (PTT) and photodynamic therapy (PDT) with an NIR-II laser than with an NIR-I laser. Advances in creation of novel nanomaterials have increased options for improving light-induced bioimaging and treatment. Nanotechnology can provide advantages such as good disease targeting ability and relatively long circulation times to supplement the advantages of optical technologies. In this review, we present recent progress in development and applications of NIR-II light-based nanoplatforms for FL, PA, image-guided surgery, PDT, and PTT. We also discuss recent advances in smart NIR-II nanoprobes that can respond to stimuli in the tumor microenvironment and inflamed sites. Finally, we consider the challenges involved in using NIR-II nanomedicine for effective diagnosis and treatment.
Collapse
|
22
|
Er Saw P. BIOI Virtual Academic Series PART 2: Frontiers and Multidisciplinarity in Nanomedicine. BIO INTEGRATION 2020. [DOI: 10.15212/bioi-2020-0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
23
|
Yao Q, Chen R, Ganapathy V, Kou L. Therapeutic application and construction of bilirubin incorporated nanoparticles. J Control Release 2020; 328:407-424. [DOI: 10.1016/j.jconrel.2020.08.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
|
24
|
Zhang J, Zhao B, Chen S, Wang Y, Zhang Y, Wang Y, Wei D, Zhang L, Rong G, Weng Y, Hao J, Li B, Hou XQ, Kang X, Zhao Y, Wang F, Zhao Y, Yu Y, Wu QP, Liang XJ, Xiao H. Near-Infrared Light Irradiation Induced Mild Hyperthermia Enhances Glutathione Depletion and DNA Interstrand Cross-Link Formation for Efficient Chemotherapy. ACS NANO 2020; 14:14831-14845. [PMID: 33084319 DOI: 10.1021/acsnano.0c03781] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
DNA alkylating agents generally kill tumor cells by covalently binding with DNA to form interstrand or intrastrand cross-links. However, in the case of cisplatin, only a few DNA adducts (<1%) are highly toxic irreparable interstrand cross-links. Furthermore, cisplatin is rapidly detoxified by high levels of intracellular thiols such as glutathione (GSH). Since the discovery of its mechanism of action, people have been looking for ways to directly and efficiently remove intracellular GSH and increase interstrand cross-links to improve drug efficacy and overcome resistance, but there has been little breakthrough. Herein, we hypothesized that the anticancer efficiency of cisplatin can be enhanced through iodo-thiol click chemistry mediated GSH depletion and increased formation of DNA interstrand cross-links via mild hyperthermia triggered by near-infrared (NIR) light. This was achieved by preparing an amphiphilic polymer with platinum(IV) (Pt(IV)) prodrugs and pendant iodine atoms (iodides). The polymer was further used to encapsulate IR780 and assembled into Pt-I-IR780 nanoparticles. Induction of mild hyperthermia (43 °C) at the tumor site by NIR light irradiation had three effects: (1) it accelerated the GSH-mediated reduction of Pt(IV) in the polymer main chain to platinum(II) (Pt(II)); (2) it boosted the iodo-thiol substitution click reaction between GSH and iodide, thereby attenuating the GSH-mediated detoxification of cisplatin; (3) it increased the proportion of highly toxic and irreparable Pt-DNA interstrand cross-links. Therefore, we find that mild hyperthermia induced via NIR irradiation can enhance the killing of cancer cells and reduce the tumor burden, thus delivering efficient chemotherapy.
Collapse
Affiliation(s)
- Jimei Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Baochang Zhao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Shizhu Chen
- Beijing Pharmaceutical Group Company Limited, Beijing 100101, China
- The National Institutes of Pharmaceutical R&D Co., Ltd., China Resources Pharmaceutical Group Limited, Beijing 102206, China
| | - Yongchao Wang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxuan Zhang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufei Wang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dengshuai Wei
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghua Rong
- Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Yuhua Weng
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Jifu Hao
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Binglong Li
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Xue-Qin Hou
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Xiaoxu Kang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fuyi Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumour Theranostics and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Yingjie Yu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin-Pei Wu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Chen SX, Xue F, Kuang Y, Chen S, Sheng D, Chen H. A self-activating nanovesicle with oxygen-depleting capability for efficient hypoxia-responsive chemo-thermo cancer therapy. Biomaterials 2020; 269:120533. [PMID: 33228991 DOI: 10.1016/j.biomaterials.2020.120533] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/30/2022]
Abstract
Hypoxia-activated prodrugs (HAPs) promise to mitigate side effects of conventional chemotherapy and to enable precise medication treatment. One challenge facing HAPs-based chemotherapy is prodrug failure in normoxic tumor region. However, current strategies to enhance tumor hypoxia rely on delivery of oxygen-consuming agents and external stimulation, which can impede the optimal application of HAPs. Herein, a novel self-activating nanovesicle, TH-302@BR-Chitosan NPs, is constructed by assembling bilirubin-chitosan conjugate (named as BR-Chitosan) with a HAP, TH-302. It is interesting to find that the BR-Chitosan shows the inherent oxygen-depleting performance, especially in the presence of over expressed H2O2 in tumor area, during which the BR-Chitosan can facily transform into biliverdin-chitosan (BV-Chitosan) and subsequently result in the disassembly of nanovesicles to release and activate the prodrug. Thus, this in situ strengthening hypoxia level of tumor can greatly promote the chemotherapy efficacy of HAPs. Moreover, as the oxidation derivatives of BR-Chitosan, BV-Chitosan exhibits intense absorbance at the range from long wavelength of visible region to near-infrared region, which can be acted as an effective photothermal agent for photothermal therapy (PTT). This biodegradable and self-activating nanovesicle with concise formulation demonstrates greatly enhanced synergistic therapeutic outcome in the activatable chemo-thermo combined therapy, showing much promising in future clinical transformation.
Collapse
Affiliation(s)
- Shi-Xiong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fengfeng Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.
| | - Yichen Kuang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Siyu Chen
- Department of Medical Imaging, The Third Affiliated Hospital, Orthopedic Hospital of Guangdong Province, Southern Medical University, Guangdong, 510000, PR China
| | - Danli Sheng
- Department of Ultrasound, Fudan University, Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China.
| |
Collapse
|
26
|
Li Z, Yang F, Wu D, Liu Y, Gao Y, Lian H, Zhang H, Yin Z, Wu A, Zeng L. Ce6-Conjugated and polydopamine-coated gold nanostars with enhanced photoacoustic imaging and photothermal/photodynamic therapy to inhibit lung metastasis of breast cancer. NANOSCALE 2020; 12:22173-22184. [PMID: 33135699 DOI: 10.1039/d0nr05386d] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Metastasis is the main cause of treatment failure in breast cancer, and integrated phototheranostics is a promising strategy to achieve both precision theranostics and metastasis inhibition. In this work, a multifunctional phototheranostic nanoprobe composed of chlorin e6 (Ce6)-conjugated and polydopamine (PDA)-coated gold nanostars (AuNSs) was synthesized for simultaneous photoacoustic (PA) imaging, photothermal therapy (PTT) and photodynamic therapy (PDT). Under the irradiation of near infrared laser, AuNSs@PDA showed enhanced photothermal conversion and amplified PA imaging performance, compared with single AuNSs. By the covalent conjugation of Ce6, the AuNSs@PDA-Ce6 nanoprobe showed robust stability and excellent singlet oxygen (1O2) generation ability. Under the combination of PTT/PDT, the AuNSs@PDA-Ce6 nanoprobes significantly reduced the growth of 4T1 tumors and suppressed their lung metastasis. All the results demonstrated the considerable potential of AuNSs@PDA-Ce6 phototheranostic nanoprobes for precision theranostics and metastasis inhibition of breast cancer.
Collapse
Affiliation(s)
- Ziwei Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fathi P, Pan D. Current trends in pyrrole and porphyrin-derived nanoscale materials for biomedical applications. Nanomedicine (Lond) 2020; 15:2493-2515. [PMID: 32975469 PMCID: PMC7610151 DOI: 10.2217/nnm-2020-0125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/14/2020] [Indexed: 02/01/2023] Open
Abstract
This article is written to provide an up-to-date review of pyrrole-based biomedical materials. Porphyrins and other tetrapyrrolic molecules possess unique magnetic, optical and other photophysical properties that make them useful for bioimaging and therapy. This review touches briefly on some of the synthetic strategies to obtain porphyrin- and tetrapyrrole-based nanoparticles, as well as the variety of applications in which crosslinked, self-assembled, porphyrin-coated and other nanoparticles are utilized. We explore examples of these nanoparticles' applications in photothermal therapy, drug delivery, photodynamic therapy, stimuli response, fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, computed tomography and positron emission tomography. We anticipate that this review will provide a comprehensive summary of pyrrole-derived nanoparticles and provide a guideline for their further development.
Collapse
Affiliation(s)
- Parinaz Fathi
- Departments of Bioengineering, Materials Science & Engineering & Beckman Institute, University of Illinois, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Dipanjan Pan
- Departments of Bioengineering, Materials Science & Engineering & Beckman Institute, University of Illinois, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Departments of Diagnostic Radiology & Nuclear Medicine & Pediatrics, University of Maryland Baltimore, Health Sciences Facility III, 670 W Baltimore St., Baltimore, MD 21201, USA
- Department of Chemical, Biochemical & Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle Baltimore, MD 21250, USA
| |
Collapse
|
28
|
Yao Q, Lan QH, Jiang X, Du CC, Zhai YY, Shen X, Xu HL, Xiao J, Kou L, Zhao YZ. Bioinspired biliverdin/silk fibroin hydrogel for antiglioma photothermal therapy and wound healing. Theranostics 2020; 10:11719-11736. [PMID: 33052243 PMCID: PMC7545989 DOI: 10.7150/thno.47682] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Photothermal therapy employs the photoabsorbers to generate heat under the near-infrared (NIR) irradiation for thermal tumor ablation. However, NIR irradiation might damage the adjacent tissue due to the leakage of the photoabsorbers and the residual materials after treatment might hinder the local healing process. A bifunctional hydrogel that holds both photothermal property and potent pro-healing ability provides a viable option to resolve this issue. Methods: In this study, we developed a bioinspired green hydrogel (BVSF) with the integration of bioproduct biliverdin into natural derived silk fibroin matrix for antiglioma photothermal therapy and wound healing. Results: The BVSF hydrogel possessed excellent and controllable photothermal activity under NIR irradiation and resulted in effective tumor ablation both in vitro and in vivo. Additionally, the BVSF hydrogel exerted anti-inflammatory effects both in vitro and in vivo, and stimulated angiogenesis and wound healing in a full-thickness defect rat model. Conclusion: Overall, this proof-of-concept study was aimed to determine the feasibility and reliability of using an all-natural green formulation for photothermal therapy and post-treatment care.
Collapse
|
29
|
Keum H, Kim TW, Kim Y, Seo C, Son Y, Kim J, Kim D, Jung W, Whang CH, Jon S. Bilirubin nanomedicine alleviates psoriatic skin inflammation by reducing oxidative stress and suppressing pathogenic signaling. J Control Release 2020; 325:359-369. [DOI: 10.1016/j.jconrel.2020.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/05/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022]
|
30
|
Chung CH, Jung W, Keum H, Kim TW, Jon S. Nanoparticles Derived from the Natural Antioxidant Rosmarinic Acid Ameliorate Acute Inflammatory Bowel Disease. ACS NANO 2020; 14:6887-6896. [PMID: 32449857 DOI: 10.1021/acsnano.0c01018] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rosmarinic acid (RA), one of the most important polyphenol-based antioxidants, has received growing interest because of its bioactive properties, including anti-inflammatory, anticancer, and antibacterial activities. Despite the high therapeutic potential of RA, its intrinsic properties of poor water solubility and low bioavailability have limited its translation into the clinic. Here, we report on the synthesis and preparation of PEGylated RA-derived nanoparticles (RANPs) and their use as a therapeutic nanomedicine for treatment of inflammatory bowel disease (IBD) in a dextran sulfate sodium (DSS)-induced acute colitis mouse model. PEGylated RA, synthesized via a one-step process from RA and a PEG-containing amine, self-assembled in buffer to form nanoparticles (RANPs) with a diameter of 63.5 ± 4.0 nm. The resulting RANPs showed high colloidal stability in physiological medium up to 2 weeks. RANPs were capable of efficiently scavenging H2O2, thereby protecting cells from H2O2-induced damage. Furthermore, the corticosteroid drug, dexamethasone (DEX), could be loaded into RANPs and released in response to a reactive oxygen species stimulus. Intravenously administered RANPs exhibited significantly improved pharmacokinetic parameters compared with those of the parent RA and were preferentially localized to the inflamed colon. Intravenous administration of RANPs in DSS-induced colitis mice substantially mitigated colonic inflammation in a dose-dependent manner compared with the parent RA, as evidenced by significantly reduced disease activity index scores, body weight loss, and colonic inflammatory damage. In addition, RANPs suppressed expression and production of typical pro-inflammatory cytokines in the inflamed colon. Furthermore, DEX-loaded RANPs showed enhanced therapeutic efficacy in the colitis model compared with bare RANPs at the equivalent dose, indicating synergy with a conventional medication. These findings suggest that RANPs deserve further consideration as a potential therapeutic nanomedicine for the treatment of various inflammatory diseases, including IBD.
Collapse
|
31
|
Li CW, Li LL, Chen S, Zhang JX, Lu WL. Antioxidant Nanotherapies for the Treatment of Inflammatory Diseases. Front Bioeng Biotechnol 2020; 8:200. [PMID: 32258013 PMCID: PMC7093330 DOI: 10.3389/fbioe.2020.00200] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) are essential in regulating various physiological functions. However, overproduction of ROS is implicated in the pathogenesis of various inflammatory diseases. Antioxidant therapy has thus represented an effective strategy for the treatment of oxidative stress relevant inflammatory diseases. Conventional anti-oxidative agents showed limited in vivo effects owing to their non-specific distribution and low retention in disease sites. Over the past decades, significant achievements have been made in the development of antioxidant nanotherapies that exhibit multiple advantages such as excellent pharmacokinetics, stable anti-oxidative activity, and intrinsic ROS-scavenging properties. This review provides a comprehensive overview on recent advances in antioxidant nanotherapies, including ROS-scavenging inorganic nanoparticles, organic nanoparticles with intrinsic antioxidant activity, and drug-loaded anti-oxidant nanoparticles. We highlight the biomedical applications of antioxidant nanotherapies in the treatment of different inflammatory diseases, with an emphasis on inflammatory bowel disease, cardiovascular disease, and brain diseases. Current challenges and future perspectives to promote clinical translation of antioxidant nanotherapies are also briefly discussed.
Collapse
Affiliation(s)
- Chen-Wen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Lan-Lan Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China.,Department of Chemistry, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jian-Xiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Wan-Liang Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
32
|
Yang L, Zhang C, Liu J, Huang F, Zhang Y, Liang XJ, Liu J. ICG-Conjugated and 125 I-Labeled Polymeric Micelles with High Biosafety for Multimodality Imaging-Guided Photothermal Therapy of Tumors. Adv Healthc Mater 2020; 9:e1901616. [PMID: 31990442 DOI: 10.1002/adhm.201901616] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/06/2020] [Indexed: 12/21/2022]
Abstract
Noninvasive multimodality imaging-guided precision photothermal therapy (PTT) is proven to be an effective strategy for tumor theranostics by integrating diagnostics and therapeutics in one nanoplatform. In this study, indocyanine green (ICG)-conjugated and radionuclide iodine-125 (125 I)-labeled polymeric micelles (PEG-PTyr(125 I)-ICG PMs) are strategically prepared by the self-assembly of the ICG-decorated amphiphilic diblock polymer poly(ethylene glycol)-poly(l-tyrosine-125 I)-(indocyanine green) (PEG-PTyr(125 I)-ICG). The as-prepared polymeric micelles exhibit favorable biocompatibility, excellent size/photo/radiolabel stability, a high-photothermal conversion efficiency, a passive tumor-targeting ability, and a fluorescence (FL)/photoacoustic (PA)/single photon emission computed tomography (SPECT) imaging property. After tail intravenous injection, the polymeric micelles can efficiently accumulate at the tumor site and present comprehensive FL/PA/SPECT images with a high sensitivity, excellent spatial resolution, and unlimited tissue penetration under near-infrared (NIR) irradiation. Upon 808 nm laser irradiation, the subsequent precision PTT of tumors can be achieved with minimal cumulative side effects. Thus, this capable multifunctional nanoplatform with simple components and preparation procedures for FL/PA/SPECT multimodality imaging-guided PTT can be a potential candidate for clinical tumor theranostics.
Collapse
Affiliation(s)
- Lijun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Congrou Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
33
|
Vítek L. Bilirubin as a signaling molecule. Med Res Rev 2020; 40:1335-1351. [PMID: 32017160 DOI: 10.1002/med.21660] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/12/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022]
Abstract
For long time bilirubin was only considered as a potentially dangerous sign of liver diseases, but it now appears clear that it is also a powerful signaling molecule. Together with potent antioxidant activities that were only reported in the last few decades, many other biological effects have now been clearly described. These include especially profound inhibitory effects on almost all effectors of the immune system, with their clinical consequences in the bilirubin-mediated protection against autoimmune and inflammatory diseases. Separate from these, bilirubin activates various nuclear and cytoplasmic receptors, resembling the endocrine activities of actual hormonal substances. This is true for the "classical" hepatic nuclear receptors, including the aryl hydrocarbon receptor, or the constitutive androstane receptor; and also for some lesser-explored receptors such as peroxisome proliferator-activated receptors α and γ; Mas-related G protein-coupled receptor; or other signaling molecules including fatty acid binding protein 1, apolipoprotein D, or reactive oxygen species. All of these targets have broad metabolic effects, which in turn may offer protection against obesity, diabetes mellitus, and other metabolic diseases. The (mostly experimental) data are also supported by clinical evidence. In fact, data from the last three decades have convincingly demonstrated the protective effects of mildly elevated serum bilirubin concentrations against various "diseases of civilization." Additionally, even tiny, micromolar changes of serum bilirubin concentrations have been associated with substantial alteration in the risks of these diseases. It is highly likely that all of the biological activities of bilirubin have yet to be exhaustively explored, and thus we can expect further clinical discoveries about this evolutionarily old molecule into the future.
Collapse
Affiliation(s)
- Libor Vítek
- 4th Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, General Faculty Hospital and 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
34
|
Lee DY, Kang S, Lee Y, Kim JY, Yoo D, Jung W, Lee S, Jeong YY, Lee K, Jon S. PEGylated Bilirubin-coated Iron Oxide Nanoparticles as a Biosensor for Magnetic Relaxation Switching-based ROS Detection in Whole Blood. Theranostics 2020; 10:1997-2007. [PMID: 32104497 PMCID: PMC7019166 DOI: 10.7150/thno.39662] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Rationale: Magnetic relaxation switching (MRSw) induced by target-triggered aggregation or dissociation of superparamagnetic iron oxide nanoparticles (SPIONs) have been utilized for detection of diverse biomarkers. However, an MRSw-based biosensor for reactive oxygen species (ROS) has never been documented. Methods: To this end, we constructed a biosensor for ROS detection based on PEGylated bilirubin (PEG-BR)-coated SPIONs (PEG-BR@SPIONs) that were prepared by simple sonication via ligand exchange. In addition, near infra-red (NIR) fluorescent dye was loaded onto PEG-BR@SPIONs as a secondary option for fluorescence-based ROS detection. Results: PEG-BR@SPIONs showed high colloidal stability under physiological conditions, but upon exposure to the model ROS, NaOCl, in vitro, they aggregated, causing a decrease in signal intensity in T2-weighted MR images. Furthermore, ROS-responsive PEG-BR@SPIONs were taken up by lipopolysaccharide (LPS)-activated macrophages to a much greater extent than ROS-unresponsive control nanoparticles (PEG-DSPE@SPIONs). In a sepsis-mimetic clinical setting, PEG-BR@SPIONs were able to directly detect the concentrations of ROS in whole blood samples through a clear change in T2 MR signals and a 'turn-on' signal of fluorescence. Conclusions: These findings suggest that PEG-BR@SPIONs have the potential as a new type of dual mode (MRSw-based and fluorescence-based) biosensors for ROS detection and could be used to diagnose many diseases associated with ROS overproduction.
Collapse
|
35
|
Xie Z, Meng X, Li X, Liang W, Huang W, Chen K, Chen J, Xing C, Qiu M, Zhang B, Nie G, Xie N, Yan X, Zhang H. Two-Dimensional Borophene: Properties, Fabrication, and Promising Applications. RESEARCH (WASHINGTON, D.C.) 2020; 2020:2624617. [PMID: 32607497 PMCID: PMC7312787 DOI: 10.34133/2020/2624617] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/11/2020] [Indexed: 11/06/2022]
Abstract
Monoelemental two-dimensional (2D) materials (Xenes) aroused a tremendous attention in 2D science owing to their unique properties and extensive applications. Borophene, one emerging and typical Xene, has been regarded as a promising agent for energy, sensor, and biomedical applications. However, the production of borophene is still a challenge because bulk boron has rather intricate spatial structures and multiple chemical properties. In this review, we describe its excellent properties including the optical, electronic, metallic, semiconducting, photoacoustic, and photothermal properties. The fabrication methods of borophene are also presented including the bottom-up fabrication and the top-down fabrication. In the end, the challenges of borophene in the latest applications are presented and perspectives are discussed.
Collapse
Affiliation(s)
- Zhongjian Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Shenzhen International Institute for Biomedical Research, 518116 Shenzhen, Guangdong, China
| | - Xiangying Meng
- Shenzhen International Institute for Biomedical Research, 518116 Shenzhen, Guangdong, China
| | - Xiangnan Li
- National-Local Joint Engineering Laboratory of New Energy Photovoltaic Devices, Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Weiyuan Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Weichun Huang
- Nantong Key Lab of Intelligent and New Energy Materials, College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019 Jiangsu, China
| | - Keqiang Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jianming Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Chenyang Xing
- Center for Stretchable Electronics and Nanoscale Systems, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China
| | - Bin Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Guohui Nie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Ni Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xiaobing Yan
- National-Local Joint Engineering Laboratory of New Energy Photovoltaic Devices, Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
36
|
Sun C, Lin H, Gong X, Yang Z, Mo Y, Chen X, Gao J. DOTA-Branched Organic Frameworks as Giant and Potent Metal Chelators. J Am Chem Soc 2019; 142:198-206. [PMID: 31823608 DOI: 10.1021/jacs.9b09269] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multinuclear complexes as metallo-agents for clinical use have caught extensive attention. In this paper, using 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) as both a functioning unit and a constructing junction, we build a series of DOTA-branched organic frameworks with multiple chelating holes by organizing DOTA layer by layer. These giant chelators are well characterized, which reveals their nanosized and soft structures. Further experiments demonstrate that they could efficiently hold abundant metal ions with much higher kinetic stabilities than the conventional small DOTA chelator. Their corresponding polynuclear complexes containing Gd3+, Tb3+, or both show superior imaging properties, excellent feasibility for peripheral modification, and unusual kinetic stability. This work can be easily extended to the fabrication of diverse homomultinuclear complexes and core/shell heteromultinuclear complexes with multifunctional properties. We expect that this new type of giant molecules and the ligand-branching strategy would open up a new avenue for the design and construction of next-generation polymetallic agents with high performance and stabilities for biomedical applications.
Collapse
Affiliation(s)
- Chengjie Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xuanqing Gong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Zhaoxuan Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Yan Mo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
37
|
Lin Y, Sun L, Zeng F, Wu S. An Unsymmetrical Squaraine-Based Activatable Probe for Imaging Lymphatic Metastasis by Responding to Tumor Hypoxia with MSOT and Aggregation-Enhanced Fluorescent Imaging. Chemistry 2019; 25:16740-16747. [PMID: 31674063 DOI: 10.1002/chem.201904675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/30/2019] [Indexed: 02/06/2023]
Abstract
Optoacoustic imaging has great potential for preclinical research and clinical practice, and designing robust activatable optoacoustic probes for specific diseases is beneficial for its further development. Herein, an activatable probe has been developed for tumor hypoxia imaging. For this probe, indole and quinoline were linked on each side of an oxocyclobutenolate core to form an unsymmetrical squaraine. A triarylamine group was incorporated to endow the molecule with the aggregation enhanced emission (AEE) properties. In aqueous media, the squaraine chromophore aggregates into the nanoprobe, which specifically responds to nitroreductase and produces strong optoacoustic signals due to its high extinction coefficient, as well as prominent fluorescence emission as a result of its AEE feature. The nanoprobe was used to image tumor metastasis via the lymphatic system both optoacoustically and fluorescently. Moreover, both the fluorescence signals and three-dimensional multispectral optoacoustic tomography signals from the activated nanoprobe allow us to locate the tumor site and to map the metastatic route.
Collapse
Affiliation(s)
- Yi Lin
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Lihe Sun
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| |
Collapse
|
38
|
Ouyang J, Sun L, Zeng Z, Zeng C, Zeng F, Wu S. Nanoaggregate Probe for Breast Cancer Metastasis through Multispectral Optoacoustic Tomography and Aggregation‐Induced NIR‐I/II Fluorescence Imaging. Angew Chem Int Ed Engl 2019; 59:10111-10121. [DOI: 10.1002/anie.201913149] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Juan Ouyang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Lihe Sun
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Zhuo Zeng
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Cheng Zeng
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| |
Collapse
|
39
|
Ouyang J, Sun L, Zeng Z, Zeng C, Zeng F, Wu S. Nanoaggregate Probe for Breast Cancer Metastasis through Multispectral Optoacoustic Tomography and Aggregation‐Induced NIR‐I/II Fluorescence Imaging. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913149] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Juan Ouyang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Lihe Sun
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Zhuo Zeng
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Cheng Zeng
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| |
Collapse
|
40
|
Fathi P, Knox HJ, Sar D, Tripathi I, Ostadhossein F, Misra SK, Esch MB, Chan J, Pan D. Biodegradable Biliverdin Nanoparticles for Efficient Photoacoustic Imaging. ACS NANO 2019; 13:7690-7704. [PMID: 31246412 PMCID: PMC6903795 DOI: 10.1021/acsnano.9b01201] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Photoacoustic imaging has emerged as a promising imaging platform with a high tissue penetration depth. However, biodegradable nanoparticles, especially those for photoacoustic imaging, are rare and limited to a few polymeric agents. The development of such nanoparticles holds great promise for clinically translatable diagnostic imaging with high biocompatibility. Metabolically digestible and inherently photoacoustic imaging probes can be developed from nanoprecipitation of biliverdin, a naturally occurring heme-based pigment. The synthesis of nanoparticles composed of a biliverdin network, cross-linked with a bifunctional amine linker, is achieved where spectral tuning relies on the choice of reaction media. Nanoparticles synthesized in water or water containing sodium chloride exhibit higher absorbance and lower fluorescence compared to nanoparticles synthesized in 2-(N-morpholino)ethanesulfonic acid buffer. All nanoparticles display high absorbance at 365 and 680 nm. Excitation at near-infrared wavelengths leads to a strong photoacoustic signal, while excitation with ultraviolet wavelengths results in fluorescence emission. In vivo photoacoustic imaging experiments in mice demonstrated that the nanoparticles accumulate in lymph nodes, highlighting their potential utility as photoacoustic agents for sentinel lymph node detection. The biotransformation of these agents was studied using mass spectroscopy, and they were found to be completely biodegraded in the presence of biliverdin reductase, a ubiquitous enzyme found in the body. Degradation of these particles was also confirmed in vivo. Thus, the nanoparticles developed here are a promising platform for biocompatible biological imaging due to their inherent photoacoustic and fluorescent properties as well as their complete metabolic digestion.
Collapse
Affiliation(s)
- Parinaz Fathi
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois, Urbana, Illinois 61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
- Biomedical Technologies Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Hailey J. Knox
- Department of Chemistry and Beckman Institute, University of Illinois, Urbana, Illinois 61801, United States
| | - Dinabandhu Sar
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois, Urbana, Illinois 61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Indu Tripathi
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois, Urbana, Illinois 61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Fatemeh Ostadhossein
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois, Urbana, Illinois 61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Santosh K. Misra
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois, Urbana, Illinois 61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Mandy B. Esch
- Biomedical Technologies Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute, University of Illinois, Urbana, Illinois 61801, United States
| | - Dipanjan Pan
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois, Urbana, Illinois 61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| |
Collapse
|
41
|
Yao Q, Jiang X, Kou L, Samuriwo AT, Xu HL, Zhao YZ. Pharmacological actions and therapeutic potentials of bilirubin in islet transplantation for the treatment of diabetes. Pharmacol Res 2019; 145:104256. [PMID: 31054312 DOI: 10.1016/j.phrs.2019.104256] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/27/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022]
Abstract
Islet transplantation is the experimental strategy to treat type 1 diabetes by transplanting isolated islets from a donor pancreas into the recipient. While significant progress has been made in the islet transplantation field, islet loss before and after transplantation is still the major obstacle that currently precludes its widespread application. Islet must survive from possible cellular damages during the isolation procedure, storage time, islet injection process and post-transplantation immune rejection, only then the survived islets could produce insulin, actively regulating the blood glucose level. Therefore, islet protection needs to be addressed, especially regarding oxidative stress and immune response induced islet cell damages in diabetic patients. Many clinical data have shown that mildly elevated bilirubin levels in the body negatively correlate to the occurrence of an array of diseases that are related to increased oxidative stress, especially diabetes, and its complications. Recent studies confirmed that bilirubin helps receivers to suppress immune reaction and enable prolonged tolerance to islet transplantation. In this paper, we will review the pharmacological mechanism of bilirubin to modulate oxidative cellular damage and chronic inflammatory reaction in both diabetes and islet transplantation process. Also, we will present the clinical evidence of a strong correlation in bilirubin and diabetes. More importantly, we will summarize undergoing therapeutic applications of bilirubin in islet transplantation and discuss formulation approaches designed to overcome bilirubin delivery issues for future use.
Collapse
Affiliation(s)
- Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Xue Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Adelaide T Samuriwo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
42
|
Saw PE, Lee S, Jon S. Naturally Occurring Bioactive Compound‐Derived Nanoparticles for Biomedical Applications. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen University Guangzhou 510120 P. R. China
| | - Soyoung Lee
- KAIST Institute for the BioCentury, Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Republic of Korea
| | - Sangyong Jon
- KAIST Institute for the BioCentury, Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Republic of Korea
| |
Collapse
|
43
|
Guo T, Lin Y, Jin G, Weng R, Song J, Liu X, Huang G, Hou L, Yang H. Manganese-phenolic network-coated black phosphorus nanosheets for theranostics combining magnetic resonance/photoacoustic dual-modal imaging and photothermal therapy. Chem Commun (Camb) 2019; 55:850-853. [PMID: 30601515 DOI: 10.1039/c8cc08833k] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, we directly coated a layer of tannic acid (TA)-Mn2+ chelate networks on black phosphorus (BP) nanosheets (BPNSs) via a simple one-step method. The as-synthesized TA-Mn2+ chelate-coated BPNSs (BPNS@TA-Mn) have excellent T1 MRI contrast enhancement capability, good photoacoustic imaging performance, and high photothermal conversion efficiency, showing great potential in imaging-guided photothermal therapy.
Collapse
Affiliation(s)
- Tao Guo
- Fujian Eco-materials Engineering Research Center, Indoor Environment Engineering Technology Research Center of Fujian Province, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yang C, Yu H, Gao Y, Guo W, Li Z, Chen Y, Pan Q, Ren M, Han X, Guo C. Surface-engineered vanadium nitride nanosheets for an imaging-guided photothermal/photodynamic platform of cancer treatment. NANOSCALE 2019; 11:1968-1977. [PMID: 30644942 DOI: 10.1039/c8nr08269c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Of the many strategies for precise tumor treatment, near-infrared (NIR) light-activated "one-for-all" theranostic modality with real-time diagnosis and therapy has attracted extensive attention from researchers. Herein, a brand-new theranostic nanoplatform was established on versatile vanadium nitride (VN) nanosheets, which show significant NIR optical absorption, and resultant photothermal effect and reactive oxygen species activity under NIR excitation, thereby realizing the synergistic action of photothermal/photodynamic co-therapy. As expected, systematic in vitro and in vivo antitumor evaluations demonstrated efficient cancer cell killing and solid tumor removal without recurrence. Meanwhile, the surface modification of VN nanosheets with poly(allylamine hydrochloride) and bovine serum albumin enhanced the biocompatibility of VN and made it more suitable for in vivo delivery. Moreover, VN has been ascertained as a potential photoacoustic imaging contrast for in vivo tumor depiction. Thus, this work highlights the potential of VN nanosheets as a single-component theranostic nanoplatform.
Collapse
Affiliation(s)
- Chunyu Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ling X, Tu J, Wang J, Shajii A, Kong N, Feng C, Zhang Y, Yu M, Xie T, Bharwani Z, Aljaeid BM, Shi B, Tao W, Farokhzad OC. Glutathione-Responsive Prodrug Nanoparticles for Effective Drug Delivery and Cancer Therapy. ACS NANO 2019; 13:357-370. [PMID: 30485068 PMCID: PMC7049173 DOI: 10.1021/acsnano.8b06400] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Spurred by recent progress in medicinal chemistry, numerous lead compounds have sprung up in the past few years, although the majority are hindered by hydrophobicity, which greatly challenges druggability. In an effort to assess the potential of platinum (Pt) candidates, the nanosizing approach to alter the pharmacology of hydrophobic Pt(IV) prodrugs in discovery and development settings is described. The construction of a self-assembled nanoparticle (NP) platform, composed of amphiphilic lipid-polyethylene glycol (PEG) for effective delivery of Pt(IV) prodrugs capable of resisting thiol-mediated detoxification through a glutathione (GSH)-exhausting effect, offers a promising route to synergistically improving safety and efficacy. After a systematic screening, the optimized NPs (referred to as P6 NPs) exhibited small particle size (99.3 nm), high Pt loading (11.24%), reliable dynamic stability (∼7 days), and rapid redox-triggered release (∼80% in 3 days). Subsequent experiments on cells support the emergence of P6 NPs as a highly effective means of transporting a lethal dose of cargo across cytomembranes through macropinocytosis. Upon reduction by cytoplasmic reductants, particularly GSH, P6 NPs under disintegration released sufficient active Pt(II) metabolites, which covalently bound to target DNA and induced significant apoptosis. The PEGylation endowed P6 NPs with in vivo longevity and tumor specificity, which were essential to successfully inhibiting the growth of cisplatin-sensitive and -resistant xenograft tumors, while effectively alleviating toxic side-effects associated with cisplatin. P6 NPs are, therefore, promising for overcoming the bottleneck in the development of Pt drugs for oncotherapy.
Collapse
Affiliation(s)
- Xiang Ling
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jiasheng Tu
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Junqing Wang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Aram Shajii
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310012, China
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Chan Feng
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ye Zhang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mikyung Yu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tian Xie
- Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310012, China
- Corresponding Authors:. . .
| | - Zameer Bharwani
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Bader M. Aljaeid
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Corresponding Authors:. . .
| | - Bingyang Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Corresponding Authors:. . .
| | - Omid C. Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Corresponding Authors:. . .
| |
Collapse
|
46
|
Tang Z, Liu Y, He M, Bu W. Chemodynamic Therapy: Tumour Microenvironment‐Mediated Fenton and Fenton‐like Reactions. Angew Chem Int Ed Engl 2019; 58:946-956. [DOI: 10.1002/anie.201805664] [Citation(s) in RCA: 920] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/22/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Zhongmin Tang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Yanyan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P.R. China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P.R. China
| | - Wenbo Bu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P.R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P.R. China
| |
Collapse
|
47
|
Liu C, Zhang S, Li J, Wei J, Müllen K, Yin M. A Water‐Soluble, NIR‐Absorbing Quaterrylenediimide Chromophore for Photoacoustic Imaging and Efficient Photothermal Cancer Therapy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810541] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Shaobo Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Jianhao Li
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Jie Wei
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Klaus Müllen
- Max Planck Institute for Polymer Research; Institute of Physical ChemistryJohannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Meizhen Yin
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
48
|
Liu C, Zhang S, Li J, Wei J, Müllen K, Yin M. A Water‐Soluble, NIR‐Absorbing Quaterrylenediimide Chromophore for Photoacoustic Imaging and Efficient Photothermal Cancer Therapy. Angew Chem Int Ed Engl 2019; 58:1638-1642. [DOI: 10.1002/anie.201810541] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Chang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Shaobo Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Jianhao Li
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Jie Wei
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Klaus Müllen
- Max Planck Institute for Polymer Research; Institute of Physical ChemistryJohannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Meizhen Yin
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
49
|
Miranda D, Huang H, Kang H, Zhan Y, Wang D, Zhou Y, Geng J, Kilian HI, Stiles W, Razi A, Ortega J, Xia J, Choi HS, Lovell JF. Highly-Soluble Cyanine J-aggregates Entrapped by Liposomes for In Vivo Optical Imaging around 930 nm. Am J Cancer Res 2019; 9:381-390. [PMID: 30809281 PMCID: PMC6376187 DOI: 10.7150/thno.28376] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022] Open
Abstract
Near infrared (NIR) dyes are useful for in vivo optical imaging. Liposomes have been used extensively for delivery of diverse cargos, including hydrophilic cargos which are passively loaded in the aqueous core. However, most currently available NIR dyes are only slightly soluble in water, making passive entrapment in liposomes challenging for achieving high optical contrast. Methods: We modified a commercially-available NIR dye (IR-820) via one-step Suzuki coupling with dicarboxyphenylboronic acid, generating a disulfonated heptamethine; dicarboxyphenyl cyanine (DCP-Cy). DCP-Cy was loaded in liposomes and used for optical imaging. Results: Owing to increased charge in mildly basic aqueous solution, DCP-Cy had substantially higher water solubility than indocyanine green (by an order of magnitude), resulting in higher NIR absorption. Unexpectedly, DCP-Cy tended to form J-aggregates with pronounced spectral red-shifting to 934 nm (from 789 nm in monomeric form). J-aggregate formation was dependent on salt and DCP-Cy concentration. Dissolved at 20 mg/mL, DCP-Cy J-aggregates could be entrapped in liposomes. Full width at half maximum absorption of the liposome-entrapped dye was just 25 nm. The entrapped DCP-Cy was readily detectable by fluorescence and photoacoustic NIR imaging. Upon intravenous administration to mice, liposomal DCP-Cy circulated substantially longer than the free dye. Accumulation was largely in the spleen, which was visualized with fluorescence and photoacoustic imaging. Conclusions: DCP-Cy is simple to synthesize and exhibits high aqueous solubility and red-shifted absorption from J-aggregate formation. Liposomal dye entrapment is possible, which facilitates in vivo photoacoustic and fluorescence imaging around 930 nm.
Collapse
|
50
|
Wang L, Shao H, Lu X, Wang W, Zhang JR, Song RB, Zhu JJ. A glucose/O 2 fuel cell-based self-powered biosensor for probing a drug delivery model with self-diagnosis and self-evaluation. Chem Sci 2018; 9:8482-8491. [PMID: 30568772 PMCID: PMC6256853 DOI: 10.1039/c8sc04019b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
Extending the application of self-powered biosensors (SPB) into the drug delivery field is highly desirable. Herein, a robust glucose/O2 fuel cell-based biosensor is successfully integrated with a targeted drug delivery system to create a self-sustained and highly compact drug delivery model with self-diagnosis and self-evaluation (DDM-SDSE). The glucose/O2 fuel cell-based biosensor firstly performs its diagnostic function by detecting the biomarkers of cancer. The drug delivery system attached on the anode of the glucose/O2 fuel cell can be released during the diagnostic operation to guarantee the occurrence of a therapy process. Accompanied by the therapy process, the glucose/O2 fuel cell-based biosensor can also act as an evaluation component to dynamically monitor the therapy efficacy by analyzing drug-induced apoptotic cells. In addition, the use of an abiotic catalyst largely improves the stability of the glucose/O2 fuel cell without sacrificing the output performance, further ensuring long-time dynamic evaluation as well as highly sensitive diagnosis and evaluation in this DDM-SDSE. Therefore, the present study not only expands the application of SPBs but also offers a promising in vitro "diagnosis-therapy-evaluation" platform to acquire valuable information for clinical cancer therapy.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China . ; ;
| | - Haohua Shao
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China . ; ;
| | - Xuanzhao Lu
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China . ; ;
| | - Wenjing Wang
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China . ; ;
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China . ; ;
- School of Chemistry and Life Science , Nanjing University , Jinling College , Nanjing 210093 , China
| | - Rong-Bin Song
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China . ; ;
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China . ; ;
| |
Collapse
|