1
|
Nabatilan A, Thomas Morgan M, Netzer S, Fahrni CJ. Selective removal of copper from complex biological media with an agarose-immobilized high-affinity PSP ligand. J Biol Inorg Chem 2024; 29:531-540. [PMID: 39066798 DOI: 10.1007/s00775-024-02065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024]
Abstract
The elucidation of metal-dependent biological processes requires selective reagents for manipulating metal ion levels within biological solutions such as growth media or cell lysates. To this end, we immobilized a phosphine sulfide-stabilized phosphine (PSP) ligand on agarose to create a resin for the selective removal of copper from chemically complex biological media through simple filtration or centrifugation. Comprised of a conformationally preorganized phenylene-bridged backbone, the PSP-ligand binds Cu(I) with a 1:1 stoichiometry and exhibits a pH-independent Cu(I) dissociation constant in the low zeptomolar range. Neither Zn(II), Fe(II), nor Mn(II) interact with the ligand at millimolar concentrations, thus offering a much-improved selectivity towards copper over other commonly employed solid-supported chelators such as Chelex 100. As revealed by X-ray fluorescence elemental analysis, the immobilized chelator effectively removes copper from cell culture growth media and cell lysate isolated from mouse fibroblasts. In addition to preparing copper-depleted media or cell lysates for biological studies, PSP-immobilized ligands might prove equally useful for applications in radiochemistry, materials science, and environmental science.
Collapse
Affiliation(s)
- Arielle Nabatilan
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - M Thomas Morgan
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Sara Netzer
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Christoph J Fahrni
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Stone DJ, Macias-Contreras M, Crist SM, Bucag CFT, Seo G, Zhu L. SNAP-tagging live cells via chelation-assisted copper-catalyzed azide-alkyne cycloaddition. Org Biomol Chem 2023; 21:7419-7436. [PMID: 37665276 DOI: 10.1039/d3ob01003a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
SNAP-tag is a single-turnover enzyme that has become a powerful tool, hence a popular choice, of targeted cellular protein labeling. Three SNAP-tag substrates that carry the copper-chelating 2-picolyl azide moiety are prepared, one of which has an unconventional 5-pyridylmethyl-substituted guanine structure, rather than the usual benzylguanine that is optimized to be accepted by SNAP-tag. All three substrates are effective in transferring a 2-picolyl azide moiety to SNAP-tag in live cells under conventional labeling conditions (30-minute incubation of cells with labeling reagents at 37 °C under 5% CO2). Live cells that are decorated with chelating azido groups on the extracellular side of membranes undergo copper-catalyzed azide-alkyne cycloaddition (CuAAC) with an ethynyl-functionalized fluorophore to accomplish membrane protein labeling by a fluorescent dye. The chelation-assisted CuAAC labeling step is rapid (<1 minute) with a relatively low dose of the copper catalyst (20 μM), and consequently exerts no ill effect on the labeled cells. A SNAP-tag substrate that carries a non-chelating azide moiety, on the other hand, fails to produce satisfactory labeling under the same constraints. The rapid, live cell-compatible SNAP-tag/chelation-assisted CuAAC two-step method expands the utility of SNAP-tag in protein labeling applications.
Collapse
Affiliation(s)
- Daniel J Stone
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| | - Miguel Macias-Contreras
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| | - Shaun M Crist
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| | - Christelle F T Bucag
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| | - Gwimoon Seo
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306-4380, USA
| | - Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| |
Collapse
|
4
|
Pain PK, Palit D, Shegane M, Singh RP, Manna D. Optochemical control of Cu(I) homeostasis in mammalian cells. Chem Commun (Camb) 2023; 59:2315-2318. [PMID: 36748368 DOI: 10.1039/d2cc05830h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Copper can act as a double-edged sword as it can cause fatal diseases when in excess or shortage. Precise control of copper homeostasis is maintained by a complex machinery inside cells. To overcome imbalances in copper concentration, we have developed a simple system to control the cellular copper concentration by using a photocaged chelator and light. This photocaged chelator allowed us to control cellular copper concentration in a spatiotemporal manner.
Collapse
Affiliation(s)
- Pritam Kumar Pain
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, MP, India.
| | - Dipanwita Palit
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, MP, India.
| | - Meenakshi Shegane
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, MP, India.
| | - Rajnish Pratap Singh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, MP, India.
| | - Debasish Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, MP, India.
| |
Collapse
|
5
|
Yu J, Bacsa J, Fahrni CJ. Conformationally Preorganized High-Affinity Ligands for Copper Biology with Hinged and Rigid Thiophene Backbones. Inorg Chem 2023; 62:1287-1296. [PMID: 36661323 PMCID: PMC10118051 DOI: 10.1021/acs.inorgchem.2c03524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Copper-selective ligands are essential tools for probing the affinity of cuproproteins or manipulating the cellular copper availability. They also harbor significant potential as antiangiogenic agents in cancer therapy or as therapeutics to combat copper toxicity in Wilson's disease. To achieve the high Cu(I) affinities required for competing effectively with cellular cuproproteins, we recently devised a ligand design based on phosphine-sulfide-stabilized phosphine (PSP) donor motifs. Building on this design strategy, we integrated two PSP donors within preorganized ligand architectures composed of either a hinged bithiophene backbone (bithipPS) or a single rigid thiophene bridge (thipPS). Extensive characterization based on X-ray crystal structures, solution NMR data, spectrophotometric titrations, and electrochemical studies established that bithipPS adapts well to the coordination preferences of Cu(I) to form a discrete air-stable mononuclear Cu(I) complex with a dissociation constant of 4 zM. In contrast, the wider bite angle of thipPS introduces some strain upon Cu(I) coordination to yield an almost 10-fold lower affinity with a Kd of 35 zM. As revealed by ICP-MS and two-photon excitation microscopy studies with the Cu(I)-selective fluorescent probe crisp-17, both ligands are effective at removing cellular copper from live mouse fibroblasts with rapid kinetics. Altogether, the stability and redox properties of PSP-ligand-Cu(I) complexes can be effectively tuned by judicious balancing of their geometrical preorganization and conformational flexibility.
Collapse
Affiliation(s)
- Jiyao Yu
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - John Bacsa
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
- X-ray Crystallography Center, Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Christoph J. Fahrni
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
6
|
Heuberger DM, Wolint P, Jang JH, Itani S, Jungraithmayr W, Waschkies CF, Meier-Bürgisser G, Andreoli S, Spanaus K, Schuepbach RA, Calcagni M, Fahrni CJ, Buschmann J. High-Affinity Cu(I)-Chelator with Potential Anti-Tumorigenic Action-A Proof-of-Principle Experimental Study of Human H460 Tumors in the CAM Assay. Cancers (Basel) 2022; 14:cancers14205122. [PMID: 36291910 PMCID: PMC9600560 DOI: 10.3390/cancers14205122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022] Open
Abstract
Human lung cancer ranks among the most frequently treated cancers worldwide. As copper appears critical to angiogenesis and tumor growth, selective removal of copper represents a promising strategy to restrict tumor growth. To this end, we explored the activity of the novel high-affinity membrane-permeant Cu(I) chelator PSP-2 featuring a low-zeptomolar dissociation constant. Using H460 human lung cancer cells, we generated small tumors on the chorioallantoic membrane of the chicken embryo (CAM assay) and studied the effects of topical PSP-2 application on their weight and vessel density after one week. We observed a significant angiosuppression along with a marked decrease in tumor weight under PSP-2 application compared to controls. Moreover, PSP-2 exposure resulted in lower ki67+ cell numbers at a low dose but increased cell count under a high dose. Moreover, HIF-1α+ cells were significantly reduced with low-dose PSP-2 exposure compared to high-dose and control. The total copper content was considerably lower in PSP-2 treated tumors, although statistically not significant. Altogether, PSP-2 shows promising potential as an anti-cancer drug. Nevertheless, further animal experiments and application to different tumor types are mandatory to support these initial findings, paving the way toward clinical trials.
Collapse
Affiliation(s)
- Dorothea M. Heuberger
- Institute of Intensive Care Medicine, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Petra Wolint
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Jae-Hwi Jang
- Division of Thoracic Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Saria Itani
- Division of Thoracic Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Wolfgang Jungraithmayr
- Division of Thoracic Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
- Department of Thoracic Surgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Conny F. Waschkies
- Division of Radiation Protection, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Gabriella Meier-Bürgisser
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Stefano Andreoli
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Katharina Spanaus
- Clinical Chemistry, University Hospital Zurich, 8001 Zurich, Switzerland
| | - Reto A. Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Christoph J. Fahrni
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332-0400, USA
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
- Correspondence: ; Tel.: +41-442559895
| |
Collapse
|
7
|
Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, Dou QP, Franz KJ, Gohil VM, Gupta S, Kaler SG, Lutsenko S, Mittal V, Petris MJ, Polishchuk R, Ralle M, Schilsky ML, Tonks NK, Vahdat LT, Van Aelst L, Xi D, Yuan P, Brady DC, Chang CJ. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer 2022; 22:102-113. [PMID: 34764459 PMCID: PMC8810673 DOI: 10.1038/s41568-021-00417-2] [Citation(s) in RCA: 629] [Impact Index Per Article: 209.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Copper is an essential nutrient whose redox properties make it both beneficial and toxic to the cell. Recent progress in studying transition metal signalling has forged new links between researchers of different disciplines that can help translate basic research in the chemistry and biology of copper into clinical therapies and diagnostics to exploit copper-dependent disease vulnerabilities. This concept is particularly relevant in cancer, as tumour growth and metastasis have a heightened requirement for this metal nutrient. Indeed, the traditional view of copper as solely an active site metabolic cofactor has been challenged by emerging evidence that copper is also a dynamic signalling metal and metalloallosteric regulator, such as for copper-dependent phosphodiesterase 3B (PDE3B) in lipolysis, mitogen-activated protein kinase kinase 1 (MEK1) and MEK2 in cell growth and proliferation and the kinases ULK1 and ULK2 in autophagy. In this Perspective, we summarize our current understanding of the connection between copper and cancer and explore how challenges in the field could be addressed by using the framework of cuproplasia, which is defined as regulated copper-dependent cell proliferation and is a representative example of a broad range of metalloplasias. Cuproplasia is linked to a diverse array of cellular processes, including mitochondrial respiration, antioxidant defence, redox signalling, kinase signalling, autophagy and protein quality control. Identifying and characterizing new modes of copper-dependent signalling offers translational opportunities that leverage disease vulnerabilities to this metal nutrient.
Collapse
Affiliation(s)
- Eva J Ge
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Q Ping Dou
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, NY, USA
- Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
- Irwin S. and Sylvia Chanin Institute for Cancer Research, Albert Einstein College of Medicine, New York, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
| | - Stephen G Kaler
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Department of Ophthalmology, University of Missouri, Columbia, MO, USA
- Genetics Area Program, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
| | | | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, USA
| | - Michael L Schilsky
- Section of Transplantation and Immunology, Division of Digestive Diseases, Department of Medicine and Surgery, Yale University Medical Center, New Haven, CT, USA
| | | | - Linda T Vahdat
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Dan Xi
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Yuan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, MI, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MI, USA
| | - Donita C Brady
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
8
|
Abstract
The functions, purposes, and roles of metallothioneins have been the subject of speculations since the discovery of the protein over 60 years ago. This article guides through the history of investigations and resolves multiple contentions by providing new interpretations of the structure-stability-function relationship. It challenges the dogma that the biologically relevant structure of the mammalian proteins is only the one determined by X-ray diffraction and NMR spectroscopy. The terms metallothionein and thionein are ambiguous and insufficient to understand biological function. The proteins need to be seen in their biological context, which limits and defines the chemistry possible. They exist in multiple forms with different degrees of metalation and types of metal ions. The homoleptic thiolate coordination of mammalian metallothioneins is important for their molecular mechanism. It endows the proteins with redox activity and a specific pH dependence of their metal affinities. The proteins, therefore, also exist in different redox states of the sulfur donor ligands. Their coordination dynamics allows a vast conformational landscape for interactions with other proteins and ligands. Many fundamental signal transduction pathways regulate the expression of the dozen of human metallothionein genes. Recent advances in understanding the control of cellular zinc and copper homeostasis are the foundation for suggesting that mammalian metallothioneins provide a highly dynamic, regulated, and uniquely biological metal buffer to control the availability, fluctuations, and signaling transients of the most competitive Zn(II) and Cu(I) ions in cellular space and time.
Collapse
Affiliation(s)
- Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, U.K
| |
Collapse
|
9
|
Priessner M, Summers PA, Lewis BW, Sastre M, Ying L, Kuimova MK, Vilar R. Selective Detection of Cu
+
Ions in Live Cells via Fluorescence Lifetime Imaging Microscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Martin Priessner
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Peter A. Summers
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Benjamin W. Lewis
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Magdalena Sastre
- Department of Brain Sciences Imperial College London Hammersmith Campus London W12 0NN UK
| | - Liming Ying
- National Heart and Lung Institute Molecular Sciences Research Hub White City Campus Imperial College London London W12 0BZ UK
| | - Marina K. Kuimova
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Ramon Vilar
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| |
Collapse
|
10
|
Priessner M, Summers PA, Lewis BW, Sastre M, Ying L, Kuimova MK, Vilar R. Selective Detection of Cu + Ions in Live Cells via Fluorescence Lifetime Imaging Microscopy. Angew Chem Int Ed Engl 2021; 60:23148-23153. [PMID: 34379368 PMCID: PMC8596571 DOI: 10.1002/anie.202109349] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/06/2022]
Abstract
Copper is an essential trace element in living organisms with its levels and localisation being carefully managed by the cellular machinery. However, if misregulated, deficiency or excess of copper ions can lead to several diseases. Therefore, it is important to have reliable methods to detect, monitor and visualise this metal in cells. Herein we report a new optical probe based on BODIPY, which shows a switch-on in its fluorescence intensity upon binding to copper(I), but not in the presence of high concentration of other physiologically relevant metal ions. More interestingly, binding to copper(I) leads to significant changes in the fluorescence lifetime of the new probe, which can be used to visualize copper(I) pools in lysosomes of live cells via fluorescence lifetime imaging microscopy (FLIM).
Collapse
Affiliation(s)
- Martin Priessner
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| | - Peter A. Summers
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| | - Benjamin W. Lewis
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| | - Magdalena Sastre
- Department of Brain SciencesImperial College LondonHammersmith CampusLondonW12 0NNUK
| | - Liming Ying
- National Heart and Lung InstituteMolecular Sciences Research HubWhite City CampusImperial College LondonLondonW12 0BZUK
| | - Marina K. Kuimova
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| | - Ramon Vilar
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| |
Collapse
|
11
|
Osman D, Cooke A, Young TR, Deery E, Robinson NJ, Warren MJ. The requirement for cobalt in vitamin B 12: A paradigm for protein metalation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118896. [PMID: 33096143 PMCID: PMC7689651 DOI: 10.1016/j.bbamcr.2020.118896] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Vitamin B12, cobalamin, is a cobalt-containing ring-contracted modified tetrapyrrole that represents one of the most complex small molecules made by nature. In prokaryotes it is utilised as a cofactor, coenzyme, light sensor and gene regulator yet has a restricted role in assisting only two enzymes within specific eukaryotes including mammals. This deployment disparity is reflected in another unique attribute of vitamin B12 in that its biosynthesis is limited to only certain prokaryotes, with synthesisers pivotal in establishing mutualistic microbial communities. The core component of cobalamin is the corrin macrocycle that acts as the main ligand for the cobalt. Within this review we investigate why cobalt is paired specifically with the corrin ring, how cobalt is inserted during the biosynthetic process, how cobalt is made available within the cell and explore the cellular control of cobalt and cobalamin levels. The partitioning of cobalt for cobalamin biosynthesis exemplifies how cells assist metalation.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Anastasia Cooke
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Tessa R Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Nigel J Robinson
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
12
|
Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nat Commun 2020; 11:3701. [PMID: 32709883 PMCID: PMC7381612 DOI: 10.1038/s41467-020-17549-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
Despite its importance in human cancers, including colorectal cancers (CRC), oncogenic KRAS has been extremely challenging to target therapeutically. To identify potential vulnerabilities in KRAS-mutated CRC, we characterize the impact of oncogenic KRAS on the cell surface of intestinal epithelial cells. Here we show that oncogenic KRAS alters the expression of a myriad of cell-surface proteins implicated in diverse biological functions, and identify many potential surface-accessible therapeutic targets. Cell surface-based loss-of-function screens reveal that ATP7A, a copper-exporter upregulated by mutant KRAS, is essential for neoplastic growth. ATP7A is upregulated at the surface of KRAS-mutated CRC, and protects cells from excess copper-ion toxicity. We find that KRAS-mutated cells acquire copper via a non-canonical mechanism involving macropinocytosis, which appears to be required to support their growth. Together, these results indicate that copper bioavailability is a KRAS-selective vulnerability that could be exploited for the treatment of KRAS-mutated neoplasms.
Collapse
|
13
|
Santoro A, Calvo JS, Peris-Díaz MD, Krężel A, Meloni G, Faller P. The Glutathione/Metallothionein System Challenges the Design of Efficient O 2 -Activating Copper Complexes. Angew Chem Int Ed Engl 2020; 59:7830-7835. [PMID: 32049413 PMCID: PMC7294961 DOI: 10.1002/anie.201916316] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Indexed: 01/17/2023]
Abstract
Copper complexes are of medicinal and biological interest, including as anticancer drugs designed to cleave intracellular biomolecules by O2 activation. To exhibit such activity, the copper complex must be redox active and resistant to dissociation. Metallothioneins (MTs) and glutathione (GSH) are abundant in the cytosol and nucleus. Because they are thiol-rich reducing molecules with high CuI affinity, they are potential competitors for a copper ion bound in a copper drug. Herein, we report the investigation of a panel of CuI /CuII complexes often used as drugs, with diverse coordination chemistries and redox potentials. We evaluated their catalytic activity in ascorbate oxidation based on redox cycling between CuI and CuII , as well as their resistance to dissociation or inactivation under cytosolically relevant concentrations of GSH and MT. O2 -activating CuI /CuII complexes for cytosolic/nuclear targets are generally not stable against the GSH/MT system, which creates a challenge for their future design.
Collapse
Affiliation(s)
- Alice Santoro
- Institut de Chimie, UMR 7177, University of Strasbourg/ CNRS, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Jenifer S Calvo
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | - Manuel David Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | - Peter Faller
- Institut de Chimie, UMR 7177, University of Strasbourg/ CNRS, 4 rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
14
|
Santoro A, Calvo JS, Peris‐Díaz MD, Krężel A, Meloni G, Faller P. The Glutathione/Metallothionein System Challenges the Design of Efficient O
2
‐Activating Copper Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alice Santoro
- Institut de Chimie UMR 7177 University of Strasbourg/ CNRS 4 rue Blaise Pascal 67000 Strasbourg France
| | - Jenifer S. Calvo
- Department of Chemistry and Biochemistry The University of Texas at Dallas 800 W Campbell Rd. Richardson TX 75080 USA
| | - Manuel David Peris‐Díaz
- Department of Chemical Biology, Faculty of Biotechnology University of Wrocław F. Joliot-Curie 14a 50–383 Wrocław Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology University of Wrocław F. Joliot-Curie 14a 50–383 Wrocław Poland
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry The University of Texas at Dallas 800 W Campbell Rd. Richardson TX 75080 USA
| | - Peter Faller
- Institut de Chimie UMR 7177 University of Strasbourg/ CNRS 4 rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
15
|
Saeedifard F, Morgan MT, Bacsa J, Fahrni CJ. Preorganized PSP Ligands Yield Monomeric Cu(I) Complexes with Subzeptomolar Cu(I) Dissociation Constants. Inorg Chem 2019; 58:13631-13638. [PMID: 31124662 DOI: 10.1021/acs.inorgchem.9b00965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Unraveling the function of biological copper (Cu) requires tools that can selectively recognize and manipulate this trace nutrient within the complex chemical environment of biological systems. Increasing evidence suggests that cells maintain an exchangeable pool of Cu(I) that is buffered in the high zeptomolar to low attomolar range. While mixed amine-thioether donors have been commonly employed for the design of Cu(I)-selective ligands and probes, their dissociation constants are limited to the pico- to femtomolar range. To address this challenge, we combined our previously devised phosphine sulfide-stabilized phosphine donor motifs with a rigid 1,2-phenylene or 1,8-naphthylene ligand backbone. The resulting ligands, phenPS and naphPS, bind Cu(I) with a 1:1 complex stoichiometry and offer dissociation constants of 0.6 and 0.8 zM, respectively. Concluding from the crystal structures of the free and Cu(I)-bound ligands, the 1,2-phenylene-bridged ligand phenPS provides a high degree of structural preorganization to accommodate the Cu(I) center without large conformational changes, while the 1,8-naphthylene-bridged ligand revealed significant out-of-plane distortions in both the free and Cu(I)-bound states. Both ligands were accessed by palladium-catalyzed cross-coupling reactions from the corresponding arylhalides under mild conditions, an approach that could be readily expanded toward the design of other ligands and probes.
Collapse
Affiliation(s)
- Farzaneh Saeedifard
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , 901 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - M Thomas Morgan
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , 901 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - John Bacsa
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , 901 Atlantic Drive , Atlanta , Georgia 30332 , United States.,X-ray Crystallography Center, Department of Chemistry , Emory University , 1515 Dickey Drive , Atlanta , Georgia 30322 , United States
| | - Christoph J Fahrni
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , 901 Atlantic Drive , Atlanta , Georgia 30332 , United States
| |
Collapse
|
16
|
Heuberger DM, Harankhedkar S, Morgan T, Wolint P, Calcagni M, Lai B, Fahrni CJ, Buschmann J. High-affinity Cu(I) chelator PSP-2 as potential anti-angiogenic agent. Sci Rep 2019; 9:14055. [PMID: 31575910 PMCID: PMC6773859 DOI: 10.1038/s41598-019-50494-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Copper is an essential trace metal that has been implicated in angiogenesis, the formation of new blood vessels. As tumor growth relies on establishing a functional capillary network for blood supply, copper chelation therapy may hold promise as an anti-cancer strategy by suppressing angiogenesis. To test the anti-angiogenic effect of PSP-2, a recently developed high affinity Cu(I) chelator with low zeptomolar dissociation constant, we utilized the endothelial cancer cell line EAhy926 and assessed changes in cell migration, proliferation, and tube formation in Matrigel. In addition, sprouting was assessed by the chicken and sheep aortic ring assay, and vascular pattern formation was studied in the chorioallantoic membrane of chicken embryos (CAM assay). While incubation with PSP-2 resulted in selective depletion of cellular copper levels, cell migration was not affected and the proliferating activity was even slightly increased. Moreover, the endothelial tube formation assay revealed significant morphological changes in the presence of PSP-2, with thicker tubular walls and an overall decreased meshes area. Similarly, the aortic ring assay and CAM assay showed that PSP-2 evokes significantly longer sprouts with smaller angles at branching points. Altogether, PSP-2 exhibits significant bioactivity at concentrations as low as 5 μM, rendering it a promising anti-angiogenic agent. As EAhy926 cells exhibit both endothelial and tumorigenic properties, the anti-angiogenic effect of PSP-2 might potentially translate also into anti-cancer activity.
Collapse
Affiliation(s)
- Dorothea M Heuberger
- Institute of Intensive Care Medicine, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | - Shefali Harankhedkar
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332-0400, USA
| | - Thomas Morgan
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332-0400, USA
| | - Petra Wolint
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | - Barry Lai
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Christoph J Fahrni
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332-0400, USA.
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland.
| |
Collapse
|
17
|
Quist DA, Ehudin MA, Schaefer AW, Schneider GL, Solomon EI, Karlin KD. Ligand Identity-Induced Generation of Enhanced Oxidative Hydrogen Atom Transfer Reactivity for a Cu II2(O 2•-) Complex Driven by Formation of a Cu II2( -OOH) Compound with a Strong O-H Bond. J Am Chem Soc 2019; 141:12682-12696. [PMID: 31299154 DOI: 10.1021/jacs.9b05277] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A superoxide-bridged dicopper(II) complex, [CuII2(XYLO)(O2•-)]2+ (1) (XYLO = binucleating m-xylyl derivative with a bridging phenolate ligand donor and two bis(2-{2-pyridyl}ethyl)amine arms), was generated from chemical oxidation of the peroxide-bridged dicopper(II) complex [CuII2(XYLO)(O22-)]+ (2), using ferrocenium (Fc+) derivatives, in 2-methyltetrahydrofuran (MeTHF) at -125 °C. Using Me10Fc+, a 1 ⇆ 2 equilibrium was established, allowing for calculation of the reduction potential of 1 as -0.525 ± 0.01 V vs Fc+/0. Addition of 1 equiv of strong acid to 2 afforded the hydroperoxide-bridged dicopper(II) species [CuII2(XYLO)(OOH)]2+ (3). An acid-base equilibrium between 3 and 2 was achieved through spectral titrations using a derivatized phosphazene base. The pKa of 3 was thus determined to be 24 ± 0.6 in MeTHF at -125 °C. Using a thermodynamic square scheme and the Bordwell relationship, the hydroperoxo complex (3) O-H bond dissociation free energy (BDFE) was calculated as 81.8 ± 1.5 (BDE = 86.8) kcal/mol. The observed oxidizing capability of [CuII2(XYLO)(O2•-)]2+ (1), as demonstrated in H atom abstraction reactions with certain phenolic ArO-H and hydrocarbon C-H substrates, provides direct support for this experimentally determined O-H BDFE. A kinetic study reveals a very fast reaction of TEMPO-H with 1 in MeTHF, with k (-100 °C) = 5.6 M-1 s-1. Density functional theory (DFT) calculations reveal how the structure of 1 may minimize stabilization of the superoxide moiety, resulting in its enhanced reactivity. The thermodynamic insights obtained herein highlight the importance of the interplay between ligand design and the generation and properties of copper (or other metal ion) bound O2-derived reduced species, such as pKa, reduction potential, and BDFE; these may be relevant to the capabilities (i.e., oxidizing power) of reactive oxygen intermediates in metalloenzyme chemical system mediated oxidative processes.
Collapse
Affiliation(s)
- David A Quist
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Melanie A Ehudin
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Andrew W Schaefer
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Gregory L Schneider
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Edward I Solomon
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Kenneth D Karlin
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
18
|
Ratiometric two-photon microscopy reveals attomolar copper buffering in normal and Menkes mutant cells. Proc Natl Acad Sci U S A 2019; 116:12167-12172. [PMID: 31160463 DOI: 10.1073/pnas.1900172116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Copper is controlled by a sophisticated network of transport and storage proteins within mammalian cells, yet its uptake and efflux occur with rapid kinetics. Present as Cu(I) within the reducing intracellular environment, the nature of this labile copper pool remains elusive. While glutathione is involved in copper homeostasis and has been assumed to buffer intracellular copper, we demonstrate with a ratiometric fluorescent indicator, crisp-17, that cytosolic Cu(I) levels are buffered to the vicinity of 1 aM, where negligible complexation by glutathione is expected. Enabled by our phosphine sulfide-stabilized phosphine (PSP) ligand design strategy, crisp-17 offers a Cu(I) dissociation constant of 8 aM, thus exceeding the binding affinities of previous synthetic Cu(I) probes by four to six orders of magnitude. Two-photon excitation microscopy with crisp-17 revealed rapid, reversible increases in intracellular Cu(I) availability upon addition of the ionophoric complex CuGTSM or the thiol-selective oxidant 2,2'-dithiodipyridine (DTDP). While the latter effect was dramatically enhanced in 3T3 cells grown in the presence of supplemental copper and in cultured Menkes mutant fibroblasts exhibiting impaired copper efflux, basal Cu(I) availability in these cells showed little difference from controls, despite large increases in total copper content. Intracellular copper is thus tightly buffered by endogenous thiol ligands with significantly higher affinity than glutathione. The dual utility of crisp-17 to detect normal intracellular buffered Cu(I) levels as well as to probe the depth of the labile copper pool in conjunction with DTDP provides a promising strategy to characterize perturbations of cellular copper homeostasis.
Collapse
|