1
|
Deng Y, Long T, Wang P, Huang H, Deng Z, Gu C, An C, Liao B, Malpuech G, Solnyshkov D, Fu H, Liao Q. Spin-Valley-Locked Electroluminescence for High-Performance Circularly Polarized Organic Light-Emitting Diodes. J Am Chem Soc 2024. [PMID: 39265069 DOI: 10.1021/jacs.4c10020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Circularly polarized (CP) organic light-emitting diodes (OLEDs) have attracted attention in potential applications, including novel display and photonic technologies. However, conventional approaches cannot meet the requirements of device performance, such as high dissymmetry factor, high directionality, narrowband emission, simplified device structure, and low costs. Here, we demonstrate spin-valley-locked CP-OLEDs without chiral emitters but based on photonic spin-orbit coupling, where photons with opposite CP characteristics are emitted from different optical valleys. These spin-valley-locked OLEDs exhibit a narrowband emission of 16 nm, a high external quantum efficiency of 3.65%, a maximum luminance of near 98,000 cd/m2, and a gEL of up to 1.80, which are among the best performances of active single-crystal CP-OLEDs, achieved with a simple device structure. This strategy opens an avenue for practical applications toward three-dimensional displays and on-chip CP-OLEDs.
Collapse
Affiliation(s)
- Yibo Deng
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Teng Long
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Pingyang Wang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Han Huang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zijian Deng
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chunling Gu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Cunbin An
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Bo Liao
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Guillaume Malpuech
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, Clermont-Ferrand F-63000, France
| | - Dmitry Solnyshkov
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, Clermont-Ferrand F-63000, France
- Institut Universitaire de France (IUF), Paris 75231, France
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
2
|
Lu M, Li P, Dong X, Jiang Z, Ren S, Yao J, Dong H, Zhao YS. Adaptive Helical Chirality in Supramolecular Microcrystals for Circularly Polarized Lasing. Angew Chem Int Ed Engl 2024; 63:e202408619. [PMID: 38924245 DOI: 10.1002/anie.202408619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Chiral organic molecules offer a promising platform for exploring circularly polarized lasing, which, however, faces a great challenge that the spatial separation of molecular chiral and luminescent centers limits chiroptical activity. Here we develop a helically chiral supramolecular system with completely overlapped chiral and luminescent units for realizing high-performance circularly polarized lasing. Adaptive helical chirality is obtained by incorporating chiral agents into organic microcrystals. Benefiting from the efficient coupling of stimulated emission with the adaptive helical chirality, the supramolecular microcrystals enable high-performance circularly polarized lasing emission with dissymmetry factors up to ~0.7. This work opens up the way to rational design of chiral organic materials for circularly polarized lasing.
Collapse
Affiliation(s)
- Miaosen Lu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Penghao Li
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengjun Jiang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shizhe Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Zhao P, Guo WC, Li M, Lu HY, Chen CF. Single-Molecule White Circularly Polarized Photoluminescence and Electroluminescence from Dual-Emission Enantiomers. Angew Chem Int Ed Engl 2024; 63:e202409020. [PMID: 38899789 DOI: 10.1002/anie.202409020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
The strategy of integrating conformational isomerization donors and chiral acceptors in a single molecule was proposed to construct white circularly polarized luminescence (WCPL) materials in this work. Consequently, a pair of dual-emission enantiomers, namely (R/S)-DO-PTZ, were designed and synthesized, which displayed white emission with blue and yellow dual-emission bands in solution and solid films with Commission Internationale de l'Eclairage (CIE) coordinates of (0.30, 0.33) and (0.33, 0.35), respectively. Meanwhile, (R/S)-DO-PTZ exhibited a high PLQY of up to 67 % in doped films and clear mirror-image WCPL signals with a |glum| value of 3.0×10-3. Moreover, white circularly polarized electroluminescence (WCPEL) based on organic light-emitting diodes (OLEDs) with (R/S)-DO-PTZ as emitters were also achieved with CIE coordinates of (0.32, 0.37) and EQEmax of 4.7 %, representing the state-of-the-art level of white OLEDs based on single-molecule purely organic emitters. By optimizing the device structure, warm WCPEL devices were further obtained with a |gEL| value of 2.8×10-3, CIE coordinates of (0.37, 0.48) and EQEmax of up to 15.6 %. To our knowledge, this is the first report of CP-WOLEDs based on single-molecule purely organic emitters.
Collapse
Affiliation(s)
- Pei Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Chen Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of, Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Meng Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of, Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Hai-Yan Lu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Feng Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of, Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
4
|
Ge C, Shang W, Chen Z, Liu J, Tang H, Wu Y, He S, Liu M, Li H. Self-Assembled Pure Covalent Tubes Exhibiting Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024; 63:e202408056. [PMID: 38758007 DOI: 10.1002/anie.202408056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/18/2024]
Abstract
Here, we successfully synthesized four structurally analogous, self-assembled chiral molecular tubes with relatively high yields. This achievement involved the condensation of six equivalents of enantiomerically pure trans-cyclohexane-1,2-diamine (trans-CHDA) and three equivalents of the corresponding tetraformyl precursor. Each precursor was equipped with a luminescent linker terminated by two m-phthalaldehyde units. Even though these tetraformyl precursors are barely soluble in almost all organic solvents, the molecular tubes are highly soluble in nonpolar solvents such as chloroform, allowing us to fully characterize them in solution. The stereo-chirality of the chiral bisamino building blocks endows the frameworks of molecular tubes with planar chirality. As a consequence, all of these molecular tubes exhibit circularly polarized luminescence (CPL) with relatively large dissymmetry values |glum| up to 7×10-3, providing an efficient method for synthesizing CPL-active materials.
Collapse
Affiliation(s)
- Chenqi Ge
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Weili Shang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, 310024, China
| | - Jiyong Liu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hua Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yating Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Siyu He
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| |
Collapse
|
5
|
Yuan L, Xu JW, Yan ZP, Yang YF, Mao D, Hu JJ, Ni HX, Li CH, Zuo JL, Zheng YX. Tetraborated Intrinsically Axial Chiral Multi-resonance Thermally Activated Delayed Fluorescence Materials. Angew Chem Int Ed Engl 2024; 63:e202407277. [PMID: 38780892 DOI: 10.1002/anie.202407277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Chiral multi-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials hold promise for circularly polarized organic light-emitting diodes (CP-OLEDs) and 3D displays. Herein, we present two pairs of tetraborated intrinsically axial CP-MR-TADF materials, R/S-BDBF-BOH and R/S-BDBT-BOH, with conjugation-extended bidibenzo[b,d]furan and bidibenzo[b,d]thiophene as chiral sources, which effectively participate in the distribution of the frontier molecular orbitals. Due to the heavy-atom effect, sulfur atoms are introduced to accelerate the reverse intersystem crossing process and increase the efficiency of molecules. R/S-BDBF-BOH and R/S-BDBT-BOH manifest ultra-pure blue emission with a maximum at 458/459 nm with a full width at half maximum of 27 nm, photoluminescence quantum yields of 90 %/91 %, and dissymmetry factors (|gPL|) of 6.8×10-4/8.5×10-4, respectively. Correspondingly, the CP-OLEDs exhibit good performances with an external quantum efficiency of 30.1 % and |gEL| factors of 1.2×10-3.
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun-Wei Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | | | - Yi-Fan Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Dan Mao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jia-Jun Hu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hua-Xiu Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
6
|
Moreno-Naranjo JM, Furlan F, Wang J, Ryan STJ, Matulaitis T, Xu Z, Zhang Q, Minion L, Di Girolamo M, Jávorfi T, Siligardi G, Wade J, Gasparini N, Zysman-Colman E, Fuchter MJ. Enhancing Circularly Polarized Electroluminescence through Energy Transfer within a Chiral Polymer Host. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402194. [PMID: 38865650 DOI: 10.1002/adma.202402194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Organic light-emitting diodes (OLEDs) that are able to emit high levels of circularly polarized (CP) light hold significant promise in numerous future technologies. Such devices require chiral emissive materials to enable CP electroluminescence. However, the vast majority of current OLED emitter classes, including the state-of-the-art triplet-harvesting thermally activated delayed fluorescence (TADF) materials, produce very low levels of CP electroluminescence. Here a host-guest strategy that allows for energy transfer between a chiral polymer host and a representative chiral TADF emitter is showcased. Such a mechanism results in a large amplification of the circular polarization of the emitter. As such, this study presents a promising avenue to further boost the performance of circularly polarized organic light-emitting diode devices, enabling their further development and eventual commercialization.
Collapse
Affiliation(s)
- Juan Manuel Moreno-Naranjo
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Francesco Furlan
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Seán Timothy James Ryan
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Zhiyu Xu
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Qianyi Zhang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Louis Minion
- Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Marta Di Girolamo
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
- Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Tamás Jávorfi
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Giuliano Siligardi
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Jessica Wade
- Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Nicola Gasparini
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Matthew John Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
7
|
Liang JQ, Hu JJ, Huo ZZ, Yan ZP, Yuan L, Zhong XS, Wei Y, Song SQ, Liu QM, Song Y, Zheng YX. Two Different Chiral Groups Based Thermally Activated Delayed Fluorescence Materials for Circularly Polarized OLEDs. Chem Asian J 2024:e202400664. [PMID: 39078718 DOI: 10.1002/asia.202400664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/03/2024] [Indexed: 10/19/2024]
Abstract
Circularly polarized organic light-emitting diodes (CP-OLEDs) hold significant promise for applications in 3D displays due to the ability to generate circularly polarized luminescence (CPL) directly. In this study, two pairs of circularly polarized thermally activated delayed fluorescence (CP-TADF) enantiomers, named RR/SS-ONCN and RS/SR-ONCN, were synthesized by integrating two distinct chiral groups into the dicyanobenzene unit. The RR/SS-ONCN and RS/SR-ONCN enantiomers show CPL properties with dissymmetry photoluminescence factors (|gPL|) of 1.3×10-3 and 2.0×10-3 in doped films, respectively. Notably, RR/SS-ONCN exhibit higher |gPL| values than that of RS/SR-ONCN, especially in doped films, indicating that when the configurations of the two chiral groups are identical, the |gPL| value of the CP-TADF materials can be enhanced, demonstrating a certain stacking effect. Moreover, the corresponding CP-OLEDs demonstrate good performances, achieving maximum external quantum efficiencies of up to 21.9 % and notable CP electroluminescence with |gEL| factors of up to 1.0×10-3.
Collapse
Affiliation(s)
- Jia-Qi Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jia-Jun Hu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhong-Zhong Huo
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | | | - Li Yuan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiao-Sheng Zhong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shi-Quan Song
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Qi-Ming Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - You Song
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
8
|
Gu MJ, Han XN, Han Y, Chen CF. Strategies for Constructing Macrocyclic Arene-Based Color-Tunable Supramolecular Luminescent Materials. Chempluschem 2024; 89:e202400023. [PMID: 38288886 DOI: 10.1002/cplu.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Over the past decades, supramolecular luminescent materials (SLMs) have attracted considerable attention due to their dynamic noncovalent interactions, versatile functions, and intriguing applications in many research fields. From construction to application, great efforts and progress have been made in color-tunable SLMs in recent years. In order to realize multicolor luminescence, various design strategies have been proposed. Macrocyclic chemistry, one of the brightest jewels in the field of supramolecular chemistry, has played a crucial role in the construction of stimuli-responsive and emission-tunable SLMs. Moreover, the flexible and tunable conformation and multiple noncovalent complexation sites of the macrocyclic arenes (MAs) afford a new opportunity to create such dynamic smart luminescent materials. Inspired by our reported work on the color-tunable supramolecular crystalline assemblies modulated by the conformation of naphth[4]arene, this Concept provides a summary of the latest developments in the construction of color-tunable MA-based SLMs, accompanied by the various construction strategies. The aim is to provide researchers with a new perspective to construct color-tunable SLMs with fascinating functions.
Collapse
Affiliation(s)
- Meng-Jie Gu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 1, 00190, China
- University of Chinese Academy of Science, Beijing, 100084, China
| | - Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 1, 00190, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 1, 00190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 1, 00190, China
- University of Chinese Academy of Science, Beijing, 100084, China
| |
Collapse
|
9
|
Zhao W, Tan K, Guo W, Guo C, Li M, Chen C. Acceptor Copolymerized Axially Chiral Conjugated Polymers with TADF Properties for Efficient Circularly Polarized Electroluminescence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309031. [PMID: 38553794 PMCID: PMC11186117 DOI: 10.1002/advs.202309031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/29/2023] [Indexed: 06/20/2024]
Abstract
Chiral conjugated polymer has promoted the development of the efficient circularly polarized electroluminescence (CPEL) device, nevertheless, it remains a challenge to develop chiral polymers with high electroluminescence performance. Herein, by the acceptor copolymerization of axially chiral biphenyl emitting skeleton and benzophenone, a pair of axially chiral conjugated polymers namely R-PAC and S-PAC are synthesized. The target polymers exhibit obvious thermally activated delayed fluorescence (TADF) activities with high photoluminescence quantum yields of 81%. Moreover, the chiral polymers display significant circularly polarized luminescence features, with luminescence dissymmetry factor (|glum|) of nearly 3 × 10-3. By using the chiral polymers as emitters, the corresponding circularly polarized organic light-emitting diodes (CP-OLEDs) exhibit efficient CPEL signals with electroluminescence dissymmetry factor |gEL| of 3.4 × 10-3 and high maximum external quantum efficiency (EQEmax) of 17.8%. Notably, considering both EQEmax and |gEL| comprehensively, the device performance of R-PAC and S-PAC is the best among all the reported CP-OLEDs with chiral conjugated polymers as emitters. This work provides a facile approach to constructing chiral conjugated TADF polymers and discloses the potential of axially chiral conjugated luminescent skeletons in architecting high-performance CP-OLEDs.
Collapse
Affiliation(s)
- Wen‐Long Zhao
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Ke‐Ke Tan
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Wei‐Chen Guo
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Chen‐Hao Guo
- College of Chemistry and Chemical EngineeringShanxi UniversityTaiyuan030006China
| | - Meng Li
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Chuan‐Feng Chen
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
10
|
Zhang T, Zhang Y, He Z, Yang T, Hu X, Zhu T, Zhang Y, Tang Y, Jiao J. Recent Advances of Chiral Isolated and Small Organic Molecules: Structure and Properties for Circularly Polarized Luminescence. Chem Asian J 2024; 19:e202400049. [PMID: 38450996 DOI: 10.1002/asia.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
This paper explores recent advancements in the field of circularly polarized luminescence (CPL) exhibited by small and isolated organic molecules. The development and application of small CPL molecule are systematically reviewed through eight different chiral skeleton sections. Investigating the intricate interplay between molecular structure and CPL properties, the paper aims at providing and enlighting novel strategies for CPL-based applications.
Collapse
Affiliation(s)
- Tingwei Zhang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yue Zhang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Zhiyuan He
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Tingjun Yang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Xu Hu
- School of Chemistry and Chemical Engineering at, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Tengfei Zhu
- Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yanfeng Zhang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yuhai Tang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jiao Jiao
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| |
Collapse
|
11
|
Liu S, Liu S, Gao Y, Lin L, Wang CK, Fan J, Song Y. Modulation of luminescence properties of circularly polarized thermally activated delayed fluorescence molecules with axial chirality by donor engineering. Phys Chem Chem Phys 2024; 26:9931-9939. [PMID: 38482988 DOI: 10.1039/d4cp00341a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic light-emitting diodes (OLEDs). Among these, circularly polarized thermally activated delayed fluorescence (CP-TADF) materials have the advantage of being able to directly achieve highly efficient circularly polarized luminescence (CPL). The simultaneous integration of outstanding luminescence efficiency and excellent luminescence asymmetry factor (glum) is a major constraint for the development of CP-TADF materials. Therefore, on the basis of first-principles calculations in conjunction with the thermal vibration correlation function (TVCF) method, we study CP-TADF molecules with different donors to explore the feasibility of using the donor substitution strategy for optimizing the CPL and TADF properties. The results indicate that molecules with the phenothiazine (PTZ) unit as the donor possess small energy difference, a great spin-orbit coupling constant and a rapid reverse intersystem crossing rate, which endow them with remarkable TADF features. Meanwhile, compared with the reported molecules, the three designed molecules exhibit better CPL properties with higher glum values. Effective molecular design strategies by donor engineering to modulate the CPL and TADF properties are theoretically proposed. Our findings reveal the relationship between molecular structures and luminescence properties of CP-TADF molecules and further provide theoretical design strategies for optimizing the CPL and TADF properties.
Collapse
Affiliation(s)
- Shulei Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Songsong Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Yang Gao
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
12
|
Huang W, Zhu Y, Zhou K, Chen L, Zhao Z, Zhao E, He Z. Boosting Circularly Polarized Luminescence from Alkyl-Locked Axial Chirality Scaffold by Restriction of Molecular Motions. Chemistry 2024; 30:e202303667. [PMID: 38057693 DOI: 10.1002/chem.202303667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Boosting the circularly polarized luminescence of small organic molecules has been a stubborn challenge because of weak structure rigidity and dynamic molecular motions. To investigate and eliminate these factors, here, we carried out the structure-property relationship studies on a newly-developed axial chiral scaffold of bidibenzo[b,d]furan. The molecular rigidity was finely tuned by gradually reducing the alkyl-chain length. The environmental factors were considered in solution, crystal, and polymer matrix at different temperatures. As a result, a significant amplification of the dissymmetry factor glum from 10-4 to 10-1 was achieved, corresponding to the situation from (R)-4C in solution to (R)-1C in polymer film at room temperature. A synergistic strategy of increasing the intramolecular rigidity and enhancing the intermolecular interaction to restrict the molecular motions was thus proposed to improve circularly polarized luminescence. The though-out demonstrated relationship will be of great importance for the development of high-performance small organic chiroptical systems in the future.
Collapse
Affiliation(s)
- Wenbin Huang
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yuxin Zhu
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Kang Zhou
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Letian Chen
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zujin Zhao
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Engui Zhao
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Zikai He
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| |
Collapse
|
13
|
Jiang A, Cui H, Zhang L, Cao C, Dai H, Lu C, Ge C, Lu H, Wu ZG. Functionalization of the Octahydro-Binaphthol Skeleton: A Universal Strategy for Directly Constructing D-A Type Axially Chiral Biphenyl Luminescent Molecules. J Org Chem 2024; 89:3605-3611. [PMID: 38364322 DOI: 10.1021/acs.joc.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
D-A type axially chiral biphenyl luminescent molecules are directly constructed through ingenious functionalization of the octahydro-binaphthol skeleton without optical resolution. The circularly polarized organic light-emitting diodes based on them display remarkable circularly polarized electroluminescence emission, a high luminance of >10 000 cd m-2, a maximum external quantum efficiency of 6.6%, and an extremely low-efficiency roll-off. This work provides a universal strategy for developing efficient and diverse axially chiral biphenyl emitters.
Collapse
Affiliation(s)
- Aiwei Jiang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Huihui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Li Zhang
- Nantong Cellulose Fibers Company, Ltd., Nantong, Jiangsu 226007, P. R. China
| | - Chenhui Cao
- Anhui Sholon New Material Technology Company, Ltd., Chuzhou, Anhui 239500, P. R. China
| | - Hong Dai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Chaowu Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Cunwang Ge
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Hongbin Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Zheng-Guang Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
14
|
Iwata K, Tsurui M, Itaya K, Hamaguchi N, Egawa Y, Kitagawa Y, Hasegawa Y, Tsuji H. Circularly polarized luminescence and high photoluminescence quantum yields from rigid 5,10-dihydroindeno[2,1- a]indene and 2,2'-dialkoxy-1,1'-binaphthyl conjugates and copolymers. RSC Adv 2024; 14:7251-7257. [PMID: 38433937 PMCID: PMC10902698 DOI: 10.1039/d4ra00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024] Open
Abstract
5,5,10,10-Tetramethyl-5,10-dihydroindeno[2,1-a]indene (COPV1(Me)) was installed into either the 3,3'- or 6,6'-positions of chiral 2,2'-dioctyloxy-1,1'-binaphthyl to afford 2 : 1 conjugates (monomeric compounds) and 1 : 1 copolymers. These compounds showed high photoluminescence quantum yields of >0.95 whilst also exhibiting circular dichroism (CD) and circularly polarized luminescence (CPL). The dissymmetry factors of CPL (gCPL) for the 3,3'- and 6,6'-monomeric compounds in THF were 6.6 × 10-4 and 3.3 × 10-4, respectively. The 3,3'-isomer has a higher g value than the 6,6'-isomer, which was attributed to the difference in the extent of π-conjugation and the angle between electronic and magnetic transition moments. The gCPL values of the 3,3'-linked and 6,6'-linked copolymers were 1.1 × 10-3 and 6.8 × 10-4, respectively. The structural rigidity of the COPV units is beneficial to achieve relatively high g values whilst maintaining a photoluminescence quantum yield that is close to unity by using a single type of fluorophore.
Collapse
Affiliation(s)
- Keisuke Iwata
- Department of Chemistry, Faculty of Science, Kanagawa University 3-27-1 Rokkaku-bashi, Kanagawa-ku Yokohama 221-8686 Japan
| | - Makoto Tsurui
- Faculty of Engineering, Hokkaido University Kita13 Nishi8, Kita-ku Sapporo 060-8628 Japan
| | - Kosuke Itaya
- Faculty of Engineering, Hokkaido University Kita13 Nishi8, Kita-ku Sapporo 060-8628 Japan
| | - Naoto Hamaguchi
- Department of Chemistry, Faculty of Science, Kanagawa University 3-27-1 Rokkaku-bashi, Kanagawa-ku Yokohama 221-8686 Japan
| | - Yasunobu Egawa
- Department of Chemistry, Faculty of Science, Kanagawa University 3-27-1 Rokkaku-bashi, Kanagawa-ku Yokohama 221-8686 Japan
| | - Yuichi Kitagawa
- Faculty of Engineering, Hokkaido University Kita13 Nishi8, Kita-ku Sapporo 060-8628 Japan
| | - Yasuchika Hasegawa
- Faculty of Engineering, Hokkaido University Kita13 Nishi8, Kita-ku Sapporo 060-8628 Japan
| | - Hayato Tsuji
- Department of Chemistry, Faculty of Science, Kanagawa University 3-27-1 Rokkaku-bashi, Kanagawa-ku Yokohama 221-8686 Japan
| |
Collapse
|
15
|
Xue N, Zhou HY, Han Y, Li M, Lu HY, Chen CF. A general supramolecular strategy for fabricating full-color-tunable thermally activated delayed fluorescence materials. Nat Commun 2024; 15:1425. [PMID: 38365888 PMCID: PMC10873404 DOI: 10.1038/s41467-024-45717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
Developing a facile and feasible strategy to fabricate thermally activated delayed fluorescence materials exhibiting full-color tunability remains an appealing yet challenging task. In this work, a general supramolecular strategy for fabricating thermally activated delayed fluorescence materials is proposed. Consequently, a series of host-guest cocrystals are prepared by electron-donating calix[3]acridan and various electron-withdrawing guests. Owing to the through-space charge transfer mediated by multiple noncovalent interactions, these cocrystals all display efficient thermally activated delayed fluorescence. Especially, by delicately modulating the electron-withdrawing ability of the guest molecules, the emission colors of these cocrystals can be continuously tuned from blue (440 nm) to red (610 nm). Meanwhile, high photoluminescence quantum yields of up to 87% is achieved. This research not only provides an alternative and general strategy for the fabrication of thermally activated delayed fluorescence materials, but also establishes a reliable supramolecular protocol toward the design of advanced luminescent materials.
Collapse
Affiliation(s)
- Nan Xue
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Meng Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hai-Yan Lu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chuan-Feng Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
16
|
Zhang C, Guan S, Li HY, Dong XY, Zang SQ. Metal Clusters Confined in Chiral Zeolitic Imidazolate Framework for Circularly Polarized-Luminescence Inks. NANO LETTERS 2024; 24:2048-2056. [PMID: 38166154 DOI: 10.1021/acs.nanolett.3c04698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Chiroptical activities arising in nanoclusters (NCs) are emerging as one of the most dynamic areas of modern science. However, devising an overarching strategy that is capable of concurrently enhancing the photoluminescence (PL) and circularly polarized luminescence (CPL) of metal NCs remains a formidable challenge. Herein, gold and silver nanoclusters (AuNCs, AgNCs) are endowed with CPL, for the first time, through a universal host-guest approach─centered around perturbing a chiral microenvironment within chiral hosts, simultaneously enhancing emissions. Remarkably, the photoluminescence quantum yield (PLQY) of AuNCs has undergone an increase of over 200 times upon confinement, escalating from 0.05% to 12%, and demonstrates a CPL response. Moreover, a three-dimensional (3D) model termed "NCs@CMOF" featuring CPL activity is created using metal cluster-based assembly inks through the process of 3D printing. This work introduces a potentially straightforward and versatile approach for achieving both PL enhancement and CPL activities in metal clusters.
Collapse
Affiliation(s)
- Chong Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shan Guan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hai-Yang Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
17
|
Chen R, Liang N, Zhai T. Dual-color emissive OLED with orthogonal polarization modes. Nat Commun 2024; 15:1331. [PMID: 38351002 PMCID: PMC10864411 DOI: 10.1038/s41467-024-45311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/21/2024] [Indexed: 02/16/2024] Open
Abstract
Linearly polarized organic light-emitting diodes have become appealing functional expansions of polarization optics and optoelectronic applications. However, the current linearly polarized diodes exhibit low polarization performance, cost-prohibitive process, and monochromatic modulation limit. Herein, we develop a switchable dual-color orthogonal linear polarization mode in organic light-emitting diode, based on a dielectric/metal nanograting-waveguide hybrid-microcavity using cost-efficient laser interference lithography and vacuum thermal evaporation. This acquired diode presents a transverse-electric/transverse-magnetic polarization extinction ratio of 15.8 dB with a divergence angle of ±30°, an external quantum efficiency of 2.25%, and orthogonal polarized colors from green to sky-blue. This rasterization of dielectric/metal-cathode further satisfies momentum matching between waveguide and air mode, diffracting both the targeted sky-blue transverse-electric mode and the off-confined green transverse-magnetic mode. Therefore, a polarization-encrypted colorful optical image is proposed, representing a significant step toward the low-cost high-performance linearly polarized light-emitting diodes and electrically-inspired polarization encryption for color images.
Collapse
Affiliation(s)
- Ruixiang Chen
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Ningning Liang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Tianrui Zhai
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
18
|
Zhou BA, Li XN, Zhang CL, Wang ZX, Ye S. Enantioselective Synthesis of Axially Chiral Diaryl Ethers via NHC Catalyzed Desymmetrization and Following Resolution. Angew Chem Int Ed Engl 2024; 63:e202314228. [PMID: 38019184 DOI: 10.1002/anie.202314228] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 11/30/2023]
Abstract
Axially chiral diaryl ethers are present in numerous natural products and bioactive molecules. However, only few catalytic enantioselective approaches have been established to access diaryl ether atropisomers. Herein, we report the N-heterocyclic carbene-catalyzed enantioselective synthesis of axially chiral diaryl ethers via desymmetrization of prochiral 2-aryloxyisophthalaldehydes with aliphatic alcohols, phenol derivatives, and heteroaromatic amines. This reaction features mild reaction conditions, good functional group tolerance, broad substrate scope and excellent enantioselectivity. The utility of this methodology is illustrated by late-stage functionalization, gram-scale synthesis, and diverse enantioretentive transformations. Control experiments and DFT calculations support the association of NHC-catalyzed desymmetrization with following kinetic resolution to enhance the enantioselectivity.
Collapse
Affiliation(s)
- Bang-An Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xue-Ning Li
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zhi-Xiang Wang
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
19
|
Wang Q, Yuan L, Qu C, Huang T, Song X, Xu Y, Zheng YX, Wang Y. Constructing Highly Efficient Circularly Polarized Multiple-Resonance Thermally Activated Delayed Fluorescence Materials with Intrinsically Helical Chirality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305125. [PMID: 37461260 DOI: 10.1002/adma.202305125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 09/16/2023]
Abstract
Advanced circularly polarized multiple-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials synergize the advantages of circularly polarized luminescence (CPL), narrowband emission, and the TADF characteristic, which can be fabricated into highly efficient circularly polarized organic light-emitting diodes (CP-OLEDs) with high color purity, directly facing the urgent market strategic demand of ultrahigh-definition and 3D displays. In this work, based on an edge-topology molecular-engineering (ETME) strategy, a pair of high-performance CP-MR-TADF enantiomers, (P and M)-BN-Py, is developed, which merges the intrinsically helical chirality into the MR framework. The optimized CP-OLEDs with (P and M)-BN-Py emitters and the newly developed ambipolar transport host PhCbBCz exhibit pure green emission with sharp peaks of 532 nm, full-width at half-maximum (FWHM) of 37 nm, and Commission Internationale de L'Eclairage (CIE) coordinates of (0.29, 0.68). Importantly, they achieve remarkable maximum external quantum efficiencies (EQEs) of 30.6% and 29.2%, and clear circularly polarized electroluminescence (CPEL) signals with electroluminescence dissymmetry factors (gEL s) of -4.37 × 10-4 and +4.35 × 10-4 for (P)-BN-Py and (M)-BN-Py, respectively.
Collapse
Affiliation(s)
- Qingyang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Jihua Laboratory, 28 Huandao South Road, Foshan, Guangdong Province, 528200, P. R. China
| | - Li Yuan
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Tingting Huang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaoxian Song
- Jihua Laboratory, 28 Huandao South Road, Foshan, Guangdong Province, 528200, P. R. China
| | - Yincai Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Jihua Laboratory, 28 Huandao South Road, Foshan, Guangdong Province, 528200, P. R. China
| |
Collapse
|
20
|
Muthig AMT, Wieland J, Lenczyk C, Koop S, Tessarolo J, Clever GH, Hupp B, Steffen A. Towards Fast Circularly Polarized Luminescence in 2-Coordinate Chiral Mechanochromic Copper(I) Carbene Complexes. Chemistry 2023; 29:e202300946. [PMID: 37272620 DOI: 10.1002/chem.202300946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
A series of chiral mechanochromic copper(I) cAAC (cAAC=cyclic (alkyl)(amino)carbene) complexes with a variety of amide ligands have been studied with regard to their photophysical and chiroptical properties to elucidate structure-property relationships for the design of efficient triplet exciton emitters exhibiting circularly polarized luminescence. Depending on the environment, which determines the excited state energies, either thermally activated delayed fluorescence (TADF) from 1/3 LLCT states or phosphorescence from 3 LLCT/LC states occurs. However, neither chiral moieties at the carbene nor at the carbazolate ligands provide detectable luminescence dissymmetries glum . An exception is [Cu(phenoxazinyl)(cAAC)], showing orange to deep red TADF with λmax =601-715 nm in solution, powders and in PMMA. In this case, the amide ligand can undergo distortions in the excited state. This design motif leads to the first linear, non-aggregated CPL-active copper(I) complex with glum of -3.4 ⋅ 10-3 combined with a high radiative rate constant of 6.7 ⋅ 105 s-1 .
Collapse
Affiliation(s)
- André M T Muthig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Justin Wieland
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Carsten Lenczyk
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Stefan Koop
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Jacopo Tessarolo
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Benjamin Hupp
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Andreas Steffen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
21
|
Li Z, Zhao C, Lin X, Ouyang G, Liu M. Stepwise Solution-Interfacial Nanoarchitectonics for Assembled Film with Full-Color and White-Light Circularly Polarized Luminescence. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37329570 DOI: 10.1021/acsami.3c05803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The fabrication of chiral thin films with tunable circularly polarized luminescence (CPL) colors is important in developing chiroptical materials but remains challenging due to the lack of assembly-initiated chiral film formation methodology. Here, by adopting a combined solution aggregation and interfacial assembly strategy, we report the fabrication of chiral film materials with full-color and white-light CPL. A biquinoline glutamic acid ester (abbreviated as BQGE) shows a typical aggregation-induced emission property with blue CPL after solution aggregation. Subsequent interfacial assembly of these solution aggregates on a solid substrate leads to the formation of a CPL active film consisting of nanobelt structures. Since the BQGE molecule has a coordination site, the CPL emission of an individual BQGE film can be extended from blue to green emission upon coordination with a zinc ion, accompanied by morphology transition from nanobelts to nanofibers. Further extension to red-color CPL is successfully achieved by coassembly with an achiral acceptor dye. Interestingly, the proper combination of coordination ratio and acceptor loading ratio provides bright white-light CPL emission from the BQGE/Zn2+/PDA triad composite film. This work provides a new approach to fabricating chiroptical film materials with controlled microscopic morphology and tunable CPL properties.
Collapse
Affiliation(s)
- Zujian Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| | - Chenyang Zhao
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| | - Xuerong Lin
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| | - Guanghui Ouyang
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| | - Minghua Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| |
Collapse
|
22
|
Chen Z, Huang M, Zhong C, Gong S, Coropceanu V, Brédas JL, Yang C. Pivotal role of transition density in circularly polarized luminescence. Chem Sci 2023; 14:6022-6031. [PMID: 37293641 PMCID: PMC10246659 DOI: 10.1039/d3sc01809a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Realizing high luminescence dissymmetry factor (g) in circularly polarized luminescence (CPL) materials remains a big challenge, which necessitates understanding systematically how their molecular structure controls the CPL. Here we investigate representative organic chiral emitters with different transition density distributions and reveal the pivotal role of transition density in CPL. We rationalize that to obtain large g-factors, two conditions should be simultaneously satisfied: (i) the transition density for the S1 (or T1)-to-S0 emission must be delocalized over the entire chromophore; and (ii) the chromophore inter-segment twisting must be restricted and tuned to an optimal value (∼50°). Our findings offer molecular-level insights into the CPL of organic emitters, with potential applications in the design of chiroptical materials and systems with strong CPL effects.
Collapse
Affiliation(s)
- Zhanxiang Chen
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Manli Huang
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Cheng Zhong
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China
| | - Shaolong Gong
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China
| | - Veaceslav Coropceanu
- Department of Chemistry and Biochemistry, The University of Arizona Tucson Arizona 85721-0088 USA
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona Tucson Arizona 85721-0088 USA
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
23
|
Xu L, Liu H, Peng X, Shen P, Zhong Tang B, Zhao Z. Efficient Circularly Polarized Electroluminescence from Achiral Luminescent Materials**. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Letian Xu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Xiaoluo Peng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| |
Collapse
|
24
|
Muthig AMT, Mrózek O, Ferschke T, Rödel M, Ewald B, Kuhnt J, Lenczyk C, Pflaum J, Steffen A. Mechano-Stimulus and Environment-Dependent Circularly Polarized TADF in Chiral Copper(I) Complexes and Their Application in OLEDs. J Am Chem Soc 2023; 145:4438-4449. [PMID: 36795037 DOI: 10.1021/jacs.2c09458] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Molecular emitters that combine circularly polarized luminescence (CPL) and high radiative rate constants of the triplet exciton decay are highly attractive for electroluminescent devices (OLEDs) or next-generation photonic applications, such as spintronics, quantum computing, cryptography, or sensors. However, the design of such emitters is a major challenge because the criteria for enhancing these two properties are mutually exclusive. In this contribution, we show that enantiomerically pure {Cu(CbzR)[(S/R)-BINAP]} [R = H (1), 3,6-tBu (2)] are efficient thermally activated delayed fluorescence (TADF) emitters with high radiative rate constants of kTADF up to 3.1 × 105 s-1 from 1/3LLCT states according to our temperature-dependent time-resolved luminescence studies. The efficiency of the TADF process and emission wavelengths are highly sensitive to environmental hydrogen bonding of the ligands, which can be disrupted by grinding of the crystalline materials. The origin of this pronounced mechano-stimulus photophysical behavior is a thermal equilibrium between the 1/3LLCT states and a 3LC state of the BINAP ligand, which depends on the relative energetic order of the excited states and is prone to inter-ligand C-H···π interactions. The copper(I) complexes are also efficient CPL emitters displaying exceptional dissymmetry values glum of up to ±0.6 × 10-2 in THF solution and ±2.1 × 10-2 in the solid state. Importantly for application in electroluminescence devices, the C-H···π interactions can also be disrupted by employing sterically bulky matrices. Accordingly, we have investigated various matrix materials for successful implementation of the chiral copper(I) TADF emitters in proof-of-concept CP-OLEDs.
Collapse
Affiliation(s)
- André Martin Thomas Muthig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Ondřej Mrózek
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Thomas Ferschke
- Experimental Physics VI, Julius-Maximilian University, Am Hubland, 97074 Würzburg, Germany
| | - Maximilian Rödel
- Experimental Physics VI, Julius-Maximilian University, Am Hubland, 97074 Würzburg, Germany
| | - Björn Ewald
- Experimental Physics VI, Julius-Maximilian University, Am Hubland, 97074 Würzburg, Germany
| | - Julia Kuhnt
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Carsten Lenczyk
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Jens Pflaum
- Experimental Physics VI, Julius-Maximilian University, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Steffen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
25
|
Xu Y, Wang Q, Song X, Wang Y, Li C. New Fields, New Opportunities and New Challenges: Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Materials. Chemistry 2023; 29:e202203414. [PMID: 36585378 DOI: 10.1002/chem.202203414] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Circularly polarized luminescence (CPL) materials that concurrently exhibit high efficiency and narrowband emission are extremely promising applications in 3D and wide color gamut display. By merging the CPL optical property and multiple resonance (MR) induced thermally activated delayed fluorescence (TADF) characteristic into one molecule, a new strategy, namely CP-MR-TADF, is proposed to generate organic emitters with CPL activity, TADF and narrowband emission. High-performance red, green and blue CP-MR-TADF emitters have been developed following this strategy. Herein, the present status and progress of CP-MR-TADF materials in the field of organic light-emitting diodes (OLEDs) is summarized. Finally, for this rapidly growing new research field, the future opportunities are forecasted and the present challenges are discussed.
Collapse
Affiliation(s)
- Yincai Xu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qingyang Wang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaoxian Song
- Jihua Laboratory, 28 Huandao South Road, Foshan, 528200, Guangdong Province, P. R. China.,Jihua Hengye Electronic Materials CO. LTD., Foshan, 528200, Guangdong Province, P. R. China
| | - Yue Wang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.,Jihua Hengye Electronic Materials CO. LTD., Foshan, 528200, Guangdong Province, P. R. China
| | - Chenglong Li
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.,Chongqing Research Institute, Jilin University, Chongqing, 401123, P. R. China
| |
Collapse
|
26
|
Xu L, Liu H, Peng X, Shen P, Tang BZ, Zhao Z. Efficient Circularly Polarized Electroluminescence from Achiral Luminescent Materials. Angew Chem Int Ed Engl 2023; 62:e202300492. [PMID: 36825493 DOI: 10.1002/anie.202300492] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 02/25/2023]
Abstract
Circularly polarized electroluminescence (CP-EL) is generally produced in organic light-emitting diodes (OLEDs) based on special CP luminescent (CPL) materials, while common achiral luminescent materials are rarely considered to be capable of direct producing CP-EL. Herein, near ultraviolet CPL materials with high photoluminescence quantum yields and good CPL dissymmetry factors are developed, which can induce blue to red CPL for various achiral luminescent materials. Strong near ultraviolet CP-EL with the best external quantum efficiencies (ηext s) of 9.0 % and small efficiency roll-offs are achieved by using them as emitters for CP-OLEDs. By adopting them as hosts or sensitizers, commercially available yellow-orange achiral phosphorescence, thermally activated delayed fluorescence (TADF) and multi-resonance (MR) TADF materials can generate intense CP-EL, with high dissymmetry factors and outstanding ηext s (30.8 %), demonstrating a simple and universal avenue towards efficient CP-EL.
Collapse
Affiliation(s)
- Letian Xu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoluo Peng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
27
|
Dong Q, Xiao C, He B, Yang X, Zeng S, Zhong Q, Duan P, Zhu W, Wang Y. Binaphthol-based chiral host molecules for efficient solution-processed circularly polarized OLEDs. Chem Commun (Camb) 2023; 59:1473-1476. [PMID: 36651725 DOI: 10.1039/d2cc06420k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Two kinds of chiral hosts, named (R/S)-BN-mCP and (R/S)-BN-2mCP, are prepared. Solution processable circularly polarized organic light-emitting diodes (CP-OLEDs) based on the chiral hosts and achiral emitter Ir(mypp)3 present the maximum external quantum efficiency (EQEmax) and dissymmetry factor values (gEL) of 12.7%/-1.7 × 10-3 and 17.1%/-1.3 × 10-3, respectively. Using (R)-BN-2mCP as the chiral host and Ir(mypp)3 and Ir(piq)2(acac) as the achiral emitters, the solution-processed OLED exhibits a broad emission spectrum with the EQEmax of 12.1% and gEL of -1.1 × 10-3.
Collapse
Affiliation(s)
- Qiwei Dong
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China. .,School of Materials Engineering, Changzhou Vocational Institute of Industry Technology, Changzhou 213164, China
| | - Chen Xiao
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| | - Binghong He
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| | - Xuefeng Yang
- CAS Center for Excellence in Nanoscience CAS, Key Laboratory of Nano system and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Songkun Zeng
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| | - Qihang Zhong
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience CAS, Key Laboratory of Nano system and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Weiguo Zhu
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| | - Yafei Wang
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
28
|
Liu G, Zhang W, Xiao Y, Cao J, Liang Y, Liu G, Zhou L, Gong J, Wang J, Wang Q. Dimerized Nitrogen-Annulated Perylene Synthesized from 1,6-Diazecine as Chiral Emitter. Chemistry 2023; 29:e202203550. [PMID: 36720699 DOI: 10.1002/chem.202203550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
In this work, nitrogen-annulated perylene (NP) was dimerized into one framework connected by two nitrogen atoms, generating the target molecule of DNP-DA. Owing to the substructure of 1,6-diazecine ten-membered ring, DNP-DA illustrates helical chirality with moderate dissymmetry factor, elevated molecular levels, expanded conjugation and supramolecular interactions with acceptors etc. Notably, DNP-DA represents a limited example of nitrogen-perylene based CPL emitter with glum around 6×10-3 . Intrigued by the facile fabrication via a simple amination-cross coupling sequence and other above advancing features, this work demonstrates the potential generality of utilizing 1,6-diazecine as a chiral unit to build CPL-active materials.
Collapse
Affiliation(s)
- Guiru Liu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Wenhao Zhang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Yao Xiao
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Jing Cao
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Yamei Liang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Guanghua Liu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Laiyun Zhou
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Jianye Gong
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Jianguo Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Qing Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| |
Collapse
|
29
|
Zheng Y, Zhang L, Huang Z, Li S, Zuo L, Liang Y, Liu C, Luo S, Shi G, Zhao Z, Sun F, Xu B. Bright Organic Mechanoluminescence and Remarkable Mechanofluorochromism from Circularly Polarized TADF Enantiomers with Aggregation-Induced Emission Properties. Chemistry 2023; 29:e202202594. [PMID: 36318097 DOI: 10.1002/chem.202202594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
The development of circularly polarized thermally activated delayed fluorescence (CP-TADF) luminogens with stimuli-response characteristics remains challenging. Herein, a pair of organic enantiomers, S-CzTA and R-CzTA, with aggregation-induced emission properties, have been successfully developed by introducing chiral 1,2,3,4-tetrahydronaphthalene and carbazole to phthalimide. They present CP-TADF properties in toluene solutions, giving dissymmetric factors of 0.84×10-3 and -1.03×10-3 , respectively. In the crystalline state, both S-CzTA and R-CzTA can emit intense blue TADF and produce very bright sky-blue mechanoluminescence (ML) and remarkable mechanofluorochromism (MFC) under the stimuli of mechanical force. Single-crystal analysis and theoretical calculation results suggest that their ML activities are probably associated with their chiral and polar molecular structures and unique non-centrosymmetric molecular packing modes. Furthermore, the MFC properties of the enantiomers likely originate from the destruction of crystal structure, leading to the planarization of molecular conformation. This work may provide helpful guidance for developing new CP-TADF materials with force-stimuli-responsive properties.
Collapse
Affiliation(s)
- Yitao Zheng
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Letian Zhang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zihao Huang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shufeng Li
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Lingqi Zuo
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yaohui Liang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Cong Liu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Suilian Luo
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Guang Shi
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Fengqiang Sun
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Bingjia Xu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
30
|
Ren C, Zhao T, Shi Y, Duan P. Cascade energy transfer augmented circular polarization in photofluorochromic cholesteric texture. Chem Commun (Camb) 2023; 59:567-570. [PMID: 36533681 DOI: 10.1039/d2cc06317d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Circularly polarized luminescence (CPL)-active light-harvesting systems consisting of a light-responsive donor (R-1), mediator (Nile red), and terminal acceptor (Cyanine 5) are constructed in cholesteric liquid crystals. A dynamically tunable CPL dissymmetry factor and energy transfer modes, are achieved via the closed-ring and open-ring conversion between R-1-O and R-1-C.
Collapse
Affiliation(s)
- Chao Ren
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Tonghan Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Yonghong Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| |
Collapse
|
31
|
Circularly polarized electroluminescence from a single-crystal organic microcavity light-emitting diode based on photonic spin-orbit interactions. Nat Commun 2023; 14:31. [PMID: 36596798 PMCID: PMC9810703 DOI: 10.1038/s41467-022-35745-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Circularly polarized (CP) electroluminescence from organic light-emitting diodes (OLEDs) has aroused considerable attention for their potential in future display and photonic technologies. The development of CP-OLEDs relies largely on chiral-emitters, which not only remain rare owing to difficulties in design and synthesis but also limit the performance of electroluminescence. When the polarization (pseudospin) degrees of freedom of a photon interact with its orbital angular momentum, photonic spin-orbit interaction (SOI) emerges such as Rashba-Dresselhaus (RD) effect. Here, we demonstrate a chiral-emitter-free microcavity CP-OLED with a high dissymmetry factor (gEL) and high luminance by embedding a thin two-dimensional organic single crystal (2D-OSC) between two silver layers which serve as two metallic mirrors forming a microcavity and meanwhile also as two electrodes in an OLED architecture. In the presence of the RD effect, the SOIs in the birefringent 2D-OSC microcavity result in a controllable spin-splitting with CP dispersions. Thanks to the high emission efficiency and high carrier mobility of the OSC, chiral-emitter-free CP-OLEDs have been demonstrated exhibiting a high gEL of 1.1 and a maximum luminance of about 60000 cd/m2, which places our device among the best performing CP-OLEDs. This strategy opens an avenue for practical applications towards on-chip microcavity CP-OLEDs.
Collapse
|
32
|
Duan Y, Guo R, Wang Y, Di K, Wang L. A sensitization strategy for highly efficient blue fluorescent organic light-emitting diodes. FRONTIERS OF OPTOELECTRONICS 2022; 15:44. [PMID: 36637617 PMCID: PMC9756245 DOI: 10.1007/s12200-022-00046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/12/2022] [Indexed: 06/17/2023]
Abstract
Highly efficient blue fluorescent materials have recently attracted great interest for organic light-emitting diode (OLED) application. Here, two new pyrene based organic molecules consisting of a highly rigid skeleton, namely SPy and DPy, are developed. These two blue light emitters exhibit excellent thermal stability. The experiment reveals that the full-width at half-maximum (FWHM) of the emission spectrum can be tuned by introducing different amounts of 9,9-diphenyl-N-phenyl-9H-fluoren-2-amine on pyrene units. The FWHM of the emission spectrum is only 37 nm in diluted toluene solution for DPy. Furthermore, highly efficient blue OLEDs are obtained by thermally activated delayed fluorescence (TADF) sensitization strategy. The blue fluorescent OLEDs utilizing DPy as emitters achieve a maximum external quantum efficiency (EQE) of 10.4% with the electroluminescence (EL) peak/FWHM of 480 nm/49 nm. Particularly, the EQE of DPy-based device is boosted from 2.6% in non-doped device to 10.4% in DMAc-DPS TADF sensitized fluorescence (TSF) device, which is a 400% enhancement. Therefore, this work demonstrates that the TSF strategy is promising for highly efficient fluorescent OLEDs application in wide-color-gamut display field.
Collapse
Affiliation(s)
- Yalei Duan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Runda Guo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yaxiong Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kaiyuan Di
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lei Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
33
|
Liu S, Qin M, Liu S, Gao Y, Li B, Lin L, Wang CK, Fan J, Song Y. Theoretical perspective for the relationship between molecular structures and circularly polarised thermally activated delayed fluorescence properties. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2127381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Shulei Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University Jinan, People’s Republic of China
| | - Ming Qin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University Jinan, People’s Republic of China
| | - Songsong Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University Jinan, People’s Republic of China
| | - Yang Gao
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University Jinan, People’s Republic of China
| | - Bihe Li
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University Jinan, People’s Republic of China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University Jinan, People’s Republic of China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University Jinan, People’s Republic of China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University Jinan, People’s Republic of China
| | - Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University Jinan, People’s Republic of China
| |
Collapse
|
34
|
Míguez-Lago S, Mariz IFA, Medel MA, Cuerva JM, Maçôas E, Cruz CM, Campaña AG. Highly contorted superhelicene hits near-infrared circularly polarized luminescence. Chem Sci 2022; 13:10267-10272. [PMID: 36277627 PMCID: PMC9473535 DOI: 10.1039/d2sc03452b] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Herein we describe a novel superhelicene structure consisting of three hexa-peri-hexabenzocoronene (HBC) units arranged in a helical geometry and creating two carbo[5]helicenes and a carbo[7]helicene. The central HBC bears a tropone moiety, which induces a saddle-helix hybrid geometry into the 3D structure of the prepared nanographene. The introduction of multiple helicenes and the position of the tropone unit trigger near-infrared circularly polarized luminescence (NIR-CPL, up to 850 nm, |g lum| = 3.0 × 10-3) combined with good photoluminescence quantum yields (ϕ F = 0.43) and upconverted emission based on two-photon absorption (TPA). Compared to previously reported superhelicenes of similar size, higher quantum yields, CPL brightness, and red-shifted absorption and emission spectra are achieved. Besides, chiroptical properties of enantiopure thin films were evaluated. These findings place this novel superhelicene as the first NIR-CPL superhelicene ever reported and make it a promising candidate for use as a chiral luminescent material in optoelectronic devices.
Collapse
Affiliation(s)
- Sandra Míguez-Lago
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada Avda. Fuente Nueva s/n 18071 Granada Spain
| | - Inês F A Mariz
- Centro de Química Estructural and Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais, 1 1049-001 Lisboa Portugal
| | - Miguel A Medel
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada Avda. Fuente Nueva s/n 18071 Granada Spain
| | - Juan M Cuerva
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada Avda. Fuente Nueva s/n 18071 Granada Spain
| | - Ermelinda Maçôas
- Centro de Química Estructural and Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais, 1 1049-001 Lisboa Portugal
| | - Carlos M Cruz
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada Avda. Fuente Nueva s/n 18071 Granada Spain
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Araceli G Campaña
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada Avda. Fuente Nueva s/n 18071 Granada Spain
| |
Collapse
|
35
|
Yan ZP, Yuan L, Zhang Y, Mao MX, Liao XJ, Ni HX, Wang ZH, An Z, Zheng YX, Zuo JL. A Chiral Dual-Core Organoboron Structure Realizes Dual-Channel Enhanced Ultrapure Blue Emission and Highly Efficient Circularly Polarized Electroluminescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204253. [PMID: 35839149 DOI: 10.1002/adma.202204253] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The realization of luminescent materials with narrowband and circularly polarized luminescence (CPL) is of great significance for the development of future optical and photonic devices. Herein, through a steric-hindrance-assisted dual-core strategy, two pairs of chiral dual-core multiple resonance thermally activated delayed fluorescence (MR-TADF) materials (R/S-DOBN and R/S-DOBNT) are directly constructed by the bonding of two organoboron MR-TADF monocores (SOBN and SOBNT) with carbazole/3,6-di-tert-butyl-9H-carbazole and phenol derivative as donors, realizing obvious CPL and narrowband emissions. Furthermore, the dual-core effect in the prepared R/S-DOBN and R/S-DOBNT increases the transition oscillator strength two times more than that of a monocore structure, while maintaining the ultrapure blue emissions peaking at 453 and 459 nm with a narrower full-width at half-maximum of 21 nm through reorganization energy reduction. The circularly polarized organic light-emitting diodes based on the enantiomers exhibit ultrapure blue emission with Commission Internationale de L'Eclairage (CIE) coordinates of (0.14, 0.10) and (0.13, 0.12), high maximum external quantum efficiencies of 23.9% and 25.6%, and obvious circularly polarized electroluminescence with dissymmetry factors (|gEL |) ≈ 10-3 .
Collapse
Affiliation(s)
- Zhi-Ping Yan
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Jihua Laboratory, No.28 Island Ring South Road, Foshan, 528200, P. R. China
| | - Li Yuan
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuan Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Meng-Xi Mao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiang-Ji Liao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hua-Xiu Ni
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhi-Heng Wang
- Jihua Laboratory, No.28 Island Ring South Road, Foshan, 528200, P. R. China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
36
|
Han J, Wang Y, Wang J, Wu C, Zhang X, Yin X. Amplification of circularly polarized luminescence from chiral cyclometalated platinum(II) complexes by the formation of excimer. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Huang W, Fu C, Liang Z, Zhou K, He Z. Strong Circularly‐Polarized Room‐Temperature Phosphorescence from a Feasibly Separable Scaffold of Bidibenzo[
b
,
d
]furan with Locked Axial Chirality. Angew Chem Int Ed Engl 2022; 61:e202202977. [DOI: 10.1002/anie.202202977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Wenbin Huang
- School of Science Harbin Institute of Technology, Shenzhen Shenzhen 518055 P. R. China
| | - Chunya Fu
- School of Science Harbin Institute of Technology, Shenzhen Shenzhen 518055 P. R. China
| | - Zhiwei Liang
- School of Science Harbin Institute of Technology, Shenzhen Shenzhen 518055 P. R. China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic, Shenzhen Shenzhen 518055 P. R. China
| | - Zikai He
- School of Science Harbin Institute of Technology, Shenzhen Shenzhen 518055 P. R. China
| |
Collapse
|
38
|
Yang Y, Li N, Miao J, Cao X, Ying A, Pan K, Lv X, Ni F, Huang Z, Gong S, Yang C. Chiral Multi-Resonance TADF Emitters Exhibiting Narrowband Circularly Polarized Electroluminescence with an EQE of 37.2 . Angew Chem Int Ed Engl 2022; 61:e202202227. [PMID: 35536020 DOI: 10.1002/anie.202202227] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 12/19/2022]
Abstract
Highly efficient circularly polarized luminescence (CPL) emitters with narrowband emission remain a formidable challenge for circularly polarized OLEDs (CP-OLEDs). Here, a promising strategy for developing chiral emitters concurrently featuring multi-resonance thermally activated delayed fluorescence (MR-TADF) and circularly polarized electroluminescence (CPEL) is demonstrated by the integration of molecular rigidity, central chirality and MR effect. A pair of chiral green emitters denoted as (R)-BN-MeIAc and (S)-BN-MeIAc is designed. Benefited by the rigid and quasi-planar MR-framework, the enantiomers not only display mirror-image CPL spectra, but also exhibit TADF properties with a high photoluminescence quantum yield of 96 %, a narrow FWHM of 30 nm, and a high horizontal dipole orientation of 90 % in the doped film. Consequently, the enantiomer-based CP-OLEDs achieved excellent external quantum efficiencies of 37.2 % with very low efficiency roll-off, representing the highest device efficiency of all the reported CP-OLEDs.
Collapse
Affiliation(s)
- Yiyu Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ao Ying
- Department of Chemistry, Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Ke Pan
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xialei Lv
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Fan Ni
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shaolong Gong
- Department of Chemistry, Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
39
|
Song Y, Qin M, Liu S, Gao Y, Li B, Lin L, Wang CK, Fan J. Theoretical perspective of relationship between molecular structure and luminescence properties for circularly polarized thermally activated delayed fluorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121164. [PMID: 35325856 DOI: 10.1016/j.saa.2022.121164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/25/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Circularly polarized luminescence (CPL) molecules with thermally activated delayed fluorescence (TADF) features show promising applications in high-efficiency circularly polarized organic light emitting diodes (CP-OLEDs). Herein, a pair of chiral molecules (R)-ImNT and (S)-ImNT are studied, two kinds of conformations are found by molecular dynamic conformation search, namely the quasi-axial and the quasi-equatorial conformations. Moreover, molecule with quasi-axial conformation is conducive to achieve outstanding CPL properties due to the large contributions of chiral groups to natural transition orbitals. While the energy gaps for quasi-equatorial conformations are significantly reduced and spin-orbit coupling effects between them are obviously increased. In addition, the quasi-equatorial configuration can facilitate the reverse intersystem crossing process to achieve remarkable TADF feature. Relationships between molecular geometries and CPL as well as TADF properties are revealed. Our research elucidates the relationship between geometric structure and luminescence mechanism, which could provide valuable insights for the design of efficient CPL-TADF emitters.
Collapse
Affiliation(s)
- Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Ming Qin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Songsong Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Yang Gao
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Bihe Li
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
40
|
Solution-processable copper(I) iodide-based inorganic-organic hybrid semiconductors composed of both coordinate and ionic bonds. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Cui Y, Pu Y, Li Z, Liang B, Li C, Wang Y. Structures and Photoluminescence Properties of Bis(aromatic amino)‐Based Isomers with Biphenyl as Bridge. ChemistrySelect 2022. [DOI: 10.1002/slct.202201389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuanyuan Cui
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Yexuan Pu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Zhiqiang Li
- Jihua Hengye (Foshan) Electronic Materials Co. Ltd. Foshan 528200 China
| | - Baoyan Liang
- Jihua Hengye (Foshan) Electronic Materials Co. Ltd. Foshan 528200 China
| | - Chenglong Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Jihua Hengye (Foshan) Electronic Materials Co. Ltd. Foshan 528200 China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Jihua Hengye (Foshan) Electronic Materials Co. Ltd. Foshan 528200 China
| |
Collapse
|
42
|
Yang Y, Li N, Miao J, Cao X, Ying A, Pan K, Lv X, Ni F, Huang Z, Gong S, Yang C. Chiral Multi‐Resonance TADF Emitters Exhibiting Narrowband Circularly Polarized Electroluminescence with an EQE of 37.2 %. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yiyu Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Ao Ying
- Department of Chemistry Renmin Hospital of Wuhan University Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Wuhan University Wuhan 430072 China
| | - Ke Pan
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Xialei Lv
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Fan Ni
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Shaolong Gong
- Department of Chemistry Renmin Hospital of Wuhan University Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Wuhan University Wuhan 430072 China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
43
|
Poulard L, Kasemthaveechok S, Coehlo M, Kumar RA, Frédéric L, Sumsalee P, d'Anfray T, Wu S, Wang J, Matulaitis T, Crassous J, Zysman-Colman E, Favereau L, Pieters G. Circularly polarized-thermally activated delayed fluorescent materials based on chiral bicarbazole donors. Chem Commun (Camb) 2022; 58:6554-6557. [PMID: 35583152 DOI: 10.1039/d2cc00998f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We describe herein a molecular design to generate circularly polarized thermally activated delayed fluorescence emitters in which chiral bicarbazole donors are connected to acceptor units via a rigid 8-membered cycle and how the nature of the donor and acceptor units affect the photophysical and chiroptical properties.
Collapse
Affiliation(s)
- Laurélie Poulard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | | | - Max Coehlo
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Ramar Arun Kumar
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France. .,SRM Research Institute, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, Tamilnadu, India
| | - Lucas Frédéric
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Patthira Sumsalee
- Univ Rennes, CNRS, ISCR-UMR 6226, ScanMAT-UMS 2001, F-35000 Rennes, France.
| | - Timothée d'Anfray
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
| | - Jeanne Crassous
- Univ Rennes, CNRS, ISCR-UMR 6226, ScanMAT-UMS 2001, F-35000 Rennes, France.
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
| | - Ludovic Favereau
- Univ Rennes, CNRS, ISCR-UMR 6226, ScanMAT-UMS 2001, F-35000 Rennes, France.
| | - Grégory Pieters
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
44
|
Algoazy N, Clarke RG, Penfold TJ, Waddell PG, Probert MR, Aerts R, Herrebout W, Stachelek P, Pal R, Hall MJ, Knight J. NIR Circularly Polarised Luminescence from Helically‐Extended Chiral N,N,O,O‐Boron Chelated Dipyrromethenes. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nawaf Algoazy
- Newcastle University School of natural and environmental sciences (Chemistry) School of Natural and Environmental Sciences (Chemistry)Newcastle University NE17RU Newcastle upon Tyne UNITED KINGDOM
| | - Rebecca G. Clarke
- Newcastle University School of natural and environmental sciences (Chemistry) School of Natural and Environmental Sciences (Chemistry)Newcastle University NE1 7RU Newcastle upon Tyne UNITED KINGDOM
| | - Thomas J. Penfold
- Newcastle University School of natural and environmental sciences (Chemistry) UNITED KINGDOM
| | - Paul G. Waddell
- Newcastle University School of natural and environmental sciences (Chemistry) UNITED KINGDOM
| | - Michael R. Probert
- Newcastle University School of natural and environmental sciences (Chemistry) UNITED KINGDOM
| | - Roy Aerts
- University of Antwerp: Universiteit Antwerpen department of chemistry Groenenborgerlaan 171, 2020 Antwerp BELGIUM
| | - Wouter Herrebout
- Universiteit Antwerpen Department of chemistry Groenenborgerlaan 171, 2020 Antwerp BELGIUM
| | - Patrycja Stachelek
- Durham University Department of chemistry South Road DH1 3LE Durham UNITED KINGDOM
| | - Robert Pal
- Durham University Department of chemistry UNITED KINGDOM
| | - Michael J. Hall
- Newcastle University School of natural and environmental sciences (Chemistry) School of Natural and Environmental Sciences (Chemistry)Newcastle University NE17RU Newcastle upon Tyne UNITED KINGDOM
| | - Julian Knight
- Newcastle University School of Natural and Environmental Sciences (Chemistry) School of Natural and Environmental Sciences (Chemistry)Newcastle University NE17RU Newcastle upon Tyne UNITED KINGDOM
| |
Collapse
|
45
|
Efficient circularly polarized photoluminescence and electroluminescence of chiral spiro-skeleton based thermally activated delayed fluorescence molecules. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1249-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Zhao F, Zhao J, Wang Y, Liu HT, Shang Q, Wang N, Yin X, Zheng X, Chen P. [5]Helicene-based chiral triarylboranes with large luminescence dissymmetry factors over a 10 -2 level: synthesis and design strategy via isomeric tuning of steric substitutions. Dalton Trans 2022; 51:6226-6234. [PMID: 35362491 DOI: 10.1039/d2dt00677d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Constructing chiral luminescent systems with both large luminescence dissymmetry factor (glum) and high luminous efficiency has been considered a great challenge. We herein describe a highly efficient approach to sterically stabilize the helical configurations of carbo[5]helicenes for improved CPL properties in a series of π-donor and π-acceptor substituted [5]helicenes (1, 2, 3, 4 and 5). Enabled by the ortho-installation of methyl groups as well as the steric effects of triarylamine (Ar3N) and triarylborane (Ar3B) handles in meta-substituted [5]helicenes, their optical resolution into enantiomers has been accomplished using preparative chiral HPLC. The molecular chirality of [5]helicenes can be transferred to Ar3B and Ar3N as light emitters, which allowed further investigations of their chiroptics, including optical rotation, circular dichroism (CD) and circularly polarized luminescence (CPL). Remarkably, 4 has been demonstrated to display dramatically enhanced CPL performance with a much larger glum (>1.2 × 10-2) and an increased emission quantum efficiency (ΦS = 0.75) compared with the other analogues, as a result of the isomeric tuning of substitutions with differential steric and electronic effects. These experimentally observed CPL activities were rationalized by TD-DFT computations for the angle (θμ,m) between electric and magnetic transition dipole moments in the excited states. In addition, the conspicuous intramolecular donor-acceptor charge transfer led to thermal responses in the emissions of 2 and 4 over a broad temperature range.
Collapse
Affiliation(s)
- Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Yu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | | | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| |
Collapse
|
47
|
Shikita S, Harada T, Yasuda T. Axially chiral 1,1'-bicarbazolyls with near-ultraviolet circularly polarized luminescence. Chem Commun (Camb) 2022; 58:4849-4852. [PMID: 35347332 DOI: 10.1039/d2cc00936f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The facile synthesis and chiroptical properties of a new family of circularly polarized luminescence (CPL) materials, axially chiral 1,1'-bicarbazolyls (BiCz), are reported. The BiCz derivatives emitted intense near-ultraviolet photoluminescence, with a peak at ∼380 nm. The BiCz enantiomers showed mirror-image circular dichroism and CPL, with glum values on the order of 10-4 in solution.
Collapse
Affiliation(s)
- So Shikita
- INAMORI Frontier Research Center (IFRC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. .,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takunori Harada
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Takuma Yasuda
- INAMORI Frontier Research Center (IFRC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. .,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
48
|
Chen Z, Zhong C, Han J, Miao J, Qi Y, Zou Y, Xie G, Gong S, Yang C. High-Performance Circularly Polarized Electroluminescence with Simultaneous Narrowband Emission, High Efficiency, and Large Dissymmetry Factor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109147. [PMID: 35229379 DOI: 10.1002/adma.202109147] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Organic light-emitting diodes (OLEDs) that can simultaneously achieve narrowband emission, high efficiency, and circularly polarized luminescence remain a formidable challenge. In this study, a simple strategy is developed to address this challenge. A chiral exciplex-forming co-host is first designed by employing a chiral donor and an achiral acceptor molecule. The chiral exciplex host enables an achiral green multiple-resonance thermally activated delayed fluorescence emitter to achieve high-performance circularly polarized electroluminescence (CP-EL) with a high external quantum efficiency of 33.2%, large electroluminescence dissymmetry factor of 2.8 × 10-3 , and a small full-width at half-maximum of 42 nm. This work provides a general approach for realizing CP-EL using easily available achiral emitters and can significantly extend the scope of circularly polarized OLEDs.
Collapse
Affiliation(s)
- Zhanxiang Chen
- Department of Chemistry, Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Cheng Zhong
- Department of Chemistry, Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Jianmei Han
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanyu Qi
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yang Zou
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guohua Xie
- Department of Chemistry, Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Shaolong Gong
- Department of Chemistry, Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Chuluo Yang
- Department of Chemistry, Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
49
|
Huang W, Fu C, Liang Z, Zhou K, He Z. Strong Circularly‐polarized Room‐temperature Phosphorescence from a Feasibly Separable Scaffold of Bidibenzo[b,d]furan with Locked Axial Chirality. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wenbin Huang
- Harbin Institute of Technology, Shenzhen School of Science CHINA
| | - Chunya Fu
- Harbin Institute of Technology, Shenzhen School of Science CHINA
| | - Zhiwei Liang
- Harbin Institute of Technology, Shenzhen School of Science CHINA
| | - Kang Zhou
- Shenzhen Polytechnic School of Science CHINA
| | - Zikai He
- Harbin Institute of Technology Shenzhen Chemistry HIT Campus of University Town of ShenzhenNanshan 518055 Shenzhen CHINA
| |
Collapse
|
50
|
Kanesaka A, Nishimura Y, Yamaguchi A, Imai Y, Mizokuro T, Nishikawa H. Solid-State Photophysical Properties of Chiral Perylene Diimide Derivatives: AIEnh-Circularly Polarized Luminescence from Vacuum-Deposited Thin Films. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Aoba Kanesaka
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-88512, Japan
| | - Yuki Nishimura
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-88512, Japan
| | - Akira Yamaguchi
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-88512, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Toshiko Mizokuro
- RIAEP, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hiroyuki Nishikawa
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-88512, Japan
| |
Collapse
|