1
|
Wang H, Bai S, Gu G, Zhang C, Wang Y. Chemical Reaction Steers Spatiotemporal Self-Assembly of Supramolecular Hydrogels. Chempluschem 2024; 89:e202400396. [PMID: 38923325 DOI: 10.1002/cplu.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Supramolecular structures are widespread in living system, which are usually spatiotemporally regulated by sophisticated metabolic processes to enable vital biological functions. Inspired by living system, tremendous efforts have been made to realize spatiotemporal control over the self-assembly of supramolecular materials in synthetic scenario by coupling chemical reaction with molecular self-assembly process. In this review, we focused on the works related to supramolecular hydrogels that are regulated in space and time using chemical reaction. Firstly, we summarized how spatially controlled self-assembly of supramolecular hydrogels can be achieved via chemical reaction-instructed self-assembly, and the application of such a self-assembly methodology in biotherapy was discussed as well. Second, we reviewed dynamic supramolecular hydrogels dictated by chemical reaction networks that can evolve their structures and properties against time. Third, we discussed the recent progresses in the control of the self-assembly of supramolecular hydrogels in both space and time though a reaction-diffusion-coupled self-assembly approach. Finally, we provided a perspective on the further development of spatiotemporally controlled supramolecular hydrogels using chemical reaction in the future.
Collapse
Affiliation(s)
- Hucheng Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shengyu Bai
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guanyao Gu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunyu Zhang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yiming Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
2
|
Ivanov NM, Slivkov AI, Huck WTS. A Urease-Based pH Photoswitch: A General Route to Light-to-pH Transduction. Angew Chem Int Ed Engl 2024:e202415614. [PMID: 39263723 DOI: 10.1002/anie.202415614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
New approaches for the integration of chemical and physical stimuli to control the dynamics of artificial enzymatic reaction networks (ERNs) are needed. Here, we present a general approach to convert a light stimulus into a time-programmed pH response. We developed and characterized a panel of photoswitchable inhibitors of urease. Urease activity, now regulated by light via the photoinhibitors, leads to an increase in pH upon hydrolysis of urea into ammonia. Careful choice of characteristics of light, and concentrations of enzyme, substrate, and photoinhibitor, allowed us to control the timing of the pH transition. Furthermore, as all enzymes have an activity-pH profile, the urease photoinhibitor system can be used to regulate the activities of other enzymes in small reaction networks.
Collapse
Affiliation(s)
- Nikita M Ivanov
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Alexandar I Slivkov
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Wang H, Wang K, Bai S, Wei L, Gao Y, Zhi K, Guo X, Wang Y. Spatiotemporal control over self-assembly of supramolecular hydrogels through reaction-diffusion. J Colloid Interface Sci 2024; 664:938-945. [PMID: 38503079 DOI: 10.1016/j.jcis.2024.03.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Supramolecular self-assembly is ubiquitous in living system and is usually controlled to proceed in time and space through sophisticated reaction-diffusion processes, underpinning various vital cellular functions. In this contribution, we demonstrate how spatiotemporal self-assembly of supramolecular hydrogels can be realized through a simple reaction-diffusion-mediated transient transduction of pH signal. In the reaction-diffusion system, a relatively faster diffusion of acid followed by delayed enzymatic production and diffusion of base from the opposite site enables a transient transduction of pH signal in the substrate. By coupling such reaction-diffusion system with pH-sensitive gelators, dynamic supramolecular hydrogels with tunable lifetimes are formed at defined locations. The hydrogel fibers show interesting dynamic growing behaviors under the regulation of transient pH signal, reminiscent of their biological counterpart. We further demonstrate a proof-of-concept application of the developed methodology for dynamic information encoding in a soft substrate. We envision that this work may provide a potent approach to enable transient transduction of various chemical signals for the construction of new colloidal materials with the capability to evolve their structures and functionalities in time and space.
Collapse
Affiliation(s)
- Hucheng Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kainan Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shengyu Bai
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lai Wei
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuliang Gao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kangkang Zhi
- Department of Vascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiming Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
4
|
van den Akker WP, van Benthem RATM, Voets IK, van Hest JCM. Dampened Transient Actuation of Hydrogels Autonomously Controlled by pH-Responsive Bicontinuous Nanospheres. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19642-19650. [PMID: 38569110 DOI: 10.1021/acsami.4c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The fabrication of a soft actuator with a dampened actuation response is presented. This was achieved via the incorporation into an actuating hydrogel of urease-loaded pH-responsive bicontinuous nanospheres (BCNs), whose membrane was able to regulate the permeability and thus conversion of fuel urea into ammonia. The dampened response of these nanoreactors to the enzymatically induced pH change was translated to a pH-responsive soft actuator. In hydrogels composed of a pH-responsive and nonresponsive layer, the transient pH gradient yielded an asymmetric swelling behavior, which induced a bending response. The transient actuation profile could be controlled by varying the external fuel concentrations. Furthermore, we showed that the spatial organization of the BCNs within the actuator had a great influence on the actuation response. Embedding the urease-loaded nanoreactors within the active, pH-responsive layer resulted in a reduced response due to local substrate conversion in comparison to embedding them within the passive layer of the bilayer hydrogel. Finally, we were able to induce transient actuation in a hydrogel comprising two identical active layers by the immobilization of the BCNs within one specific layer. Upon addition of urea, a local pH gradient was generated, which caused accelerated swelling in the BCN layer and transient bending of the device before the pH gradient was attenuated over time.
Collapse
Affiliation(s)
- Wouter P van den Akker
- Department of Chemistry & Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Department of Chemistry & Chemical Engineering, Self-Organizing Soft Matter, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Rolf A T M van Benthem
- Department of Chemistry & Chemical Engineering, Laboratory of Physical Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Shell Energy Transition Center Amsterdam, Grasweg 31, 1031 HW Amsterdam, The Netherlands
| | - Ilja K Voets
- Department of Chemistry & Chemical Engineering, Self-Organizing Soft Matter, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Department of Chemistry & Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
5
|
Ranganath VA, Maity I. Artificial Homeostasis Systems Based on Feedback Reaction Networks: Design Principles and Future Promises. Angew Chem Int Ed Engl 2024; 63:e202318134. [PMID: 38226567 DOI: 10.1002/anie.202318134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Feedback-controlled chemical reaction networks (FCRNs) are indispensable for various biological processes, such as cellular mechanisms, patterns, and signaling pathways. Through the intricate interplay of many feedback loops (FLs), FCRNs maintain a stable internal cellular environment. Currently, creating minimalistic synthetic cells is the long-term objective of systems chemistry, which is motivated by such natural integrity. The design, kinetic optimization, and analysis of FCRNs to exhibit functions akin to those of a cell still pose significant challenges. Indeed, reaching synthetic homeostasis is essential for engineering synthetic cell components. However, maintaining homeostasis in artificial systems against various agitations is a difficult task. Several biological events can provide us with guidelines for a conceptual understanding of homeostasis, which can be further applicable in designing artificial synthetic systems. In this regard, we organize our review with artificial homeostasis systems driven by FCRNs at different length scales, including homogeneous, compartmentalized, and soft material systems. First, we stretch a quick overview of FCRNs in different molecular and supramolecular systems, which are the essential toolbox for engineering different nonlinear functions and homeostatic systems. Moreover, the existing history of synthetic homeostasis in chemical and material systems and their advanced functions with self-correcting, and regulating properties are also emphasized.
Collapse
Affiliation(s)
- Vinay Ambekar Ranganath
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| | - Indrajit Maity
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| |
Collapse
|
6
|
Ghosh S, Baltussen MG, Ivanov NM, Haije R, Jakštaitė M, Zhou T, Huck WTS. Exploring Emergent Properties in Enzymatic Reaction Networks: Design and Control of Dynamic Functional Systems. Chem Rev 2024; 124:2553-2582. [PMID: 38476077 PMCID: PMC10941194 DOI: 10.1021/acs.chemrev.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The intricate and complex features of enzymatic reaction networks (ERNs) play a key role in the emergence and sustenance of life. Constructing such networks in vitro enables stepwise build up in complexity and introduces the opportunity to control enzymatic activity using physicochemical stimuli. Rational design and modulation of network motifs enable the engineering of artificial systems with emergent functionalities. Such functional systems are useful for a variety of reasons such as creating new-to-nature dynamic materials, producing value-added chemicals, constructing metabolic modules for synthetic cells, and even enabling molecular computation. In this review, we offer insights into the chemical characteristics of ERNs while also delving into their potential applications and associated challenges.
Collapse
Affiliation(s)
- Souvik Ghosh
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mathieu G. Baltussen
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Nikita M. Ivanov
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Rianne Haije
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Miglė Jakštaitė
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Tao Zhou
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
7
|
Fu H, Cao N, Zeng W, Liao M, Yao S, Zhou J, Zhang W. Pumping Small Molecules Selectively through an Energy-Assisted Assembling Process at Nonequilibrium States. J Am Chem Soc 2024; 146:3323-3330. [PMID: 38273768 DOI: 10.1021/jacs.3c12228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
In living organisms, precise control over the spatial and temporal distribution of molecules, including pheromones, is crucial. This level of control is equally important for the development of artificial active materials. In this study, we successfully controlled the distribution of small molecules in the system at nonequilibrium states by actively transporting them, even against the apparent concentration gradient, with high selectivity. As a demonstration, in the aqueous solution of acid orange (AO7) and TMC10COOH, we found that AO7 molecules can coassemble with transient anhydride (TMC10CO)2O to form larger assemblies in the presence of chemical fuel 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride (EDC). This led to a decrease in local free AO7 concentration and caused AO7 molecules from other locations in the solution to move toward the assemblies. Consequently, AO7 accumulates at the location where EDC was injected. By continuously injecting EDC, we could maintain a stable high value of the apparent AO7 concentration at the injection point. We also observed that this process which operated at nonequilibrium states exhibited high selectivity.
Collapse
Affiliation(s)
- Huimin Fu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Nengjie Cao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wang Zeng
- National Centre for Inorganic Mass Spectrometry in Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Min Liao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shenglin Yao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
8
|
Tang J, Cheng Y, Ding M, Wang C. Bio-Inspired Far-From-Equilibrium Hydrogels: Design Principles and Applications. Chempluschem 2023; 88:e202300449. [PMID: 37787015 DOI: 10.1002/cplu.202300449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Inspired from dynamic living systems that operate under out-of-equilibrium conditions in biology, developing supramolecular hydrogels with self-regulating and autonomously dynamic properties to further advance adaptive hydrogels with life-like behavior is important. This review presents recent progress of bio-inspired supramolecular hydrogels out-of-equilibrium. The principle of out-of-equilibrium self-assembly for creating bio-inspired hydrogels is discussed. Various design strategies have been identified, such as chemical-driven reaction cycles with feedback control and physically oscillatory systems. These strategies can be coupled with hydrogels to achieve temporal and spatial control over structural and mechanical properties as well as programmable lifetime. These studies open up huge opportunities for potential applications, such as fluidic guidance, information storage, drug delivery, actuators and more. Finally, we address the challenges ahead of us in the coming years, and future possibilities and prospects are identified.
Collapse
Affiliation(s)
- Jiadong Tang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| | - Yibo Cheng
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Muhua Ding
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Chen Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| |
Collapse
|
9
|
Wang H, Fu X, Gu G, Bai S, Li R, Zhong W, Guo X, Eelkema R, van Esch JH, Cao Z, Wang Y. Dynamic Growth of Macroscopically Structured Supramolecular Hydrogels through Orchestrated Reaction-Diffusion. Angew Chem Int Ed Engl 2023; 62:e202310162. [PMID: 37671694 DOI: 10.1002/anie.202310162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Living organisms are capable of dynamically changing their structures for adaptive functions through sophisticated reaction-diffusion processes. Here we show how active supramolecular hydrogels with programmable lifetimes and macroscopic structures can be created by relying on a simple reaction-diffusion strategy. Two hydrogel precursors (poly(acrylic acid) PAA/CaCl2 and Na2 CO3 ) diffuse from different locations and generate amorphous calcium carbonate (ACC) nanoparticles at the diffusional fronts, leading to the formation of hydrogel structures driven by electrostatic interactions between PAA and ACC nanoparticles. Interestingly, the formed hydrogels are capable of autonomously disintegrating over time because of a delayed influx of electrostatic-interaction inhibitors (NaCl). The hydrogel growth process is well explained by a reaction-diffusion model which offers a theoretical means to program the dynamic growth of structured hydrogels. Furthermore, we demonstrate a conceptual access to dynamic information storage in soft materials using the developed reaction-diffusion strategy. This work may serve as a starting point for the development of life-like materials with adaptive structures and functionalities.
Collapse
Affiliation(s)
- Hucheng Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - Xiaoming Fu
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - Guanyao Gu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - Shengyu Bai
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - Runlai Li
- Department of Chemistry, National University of Singapore, Singapore, 119077, Singapore
| | - Weimin Zhong
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Jan H van Esch
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Zhixing Cao
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - Yiming Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| |
Collapse
|
10
|
Wu CY, Su YT, Su CK. 4D-printed needle panel meters coupled with enzymatic derivatization for reading urea and glucose concentrations in biological samples. Biosens Bioelectron 2023; 237:115500. [PMID: 37390641 DOI: 10.1016/j.bios.2023.115500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
On-site analytical techniques continue being developed with advances in modern technology. To demonstrate the applicability of four-dimensional printing (4DP) technologies in the direct fabrication of stimuli-responsive analytical devices for on-site determination of urea and glucose, we used digital light processing three-dimensional printing (3DP) and 2-carboxyethyl acrylate (CEA)-incorporated photocurable resins to fabricate all-in-one needle panel meters. When adding a sample having a value of pH above the pKa of CEA (ca. 4.6-5.0) into the fabricated needle panel meter, the [H+]-responsive layer of the needle, printed using the CEA-incorporated photocurable resins, swelled as a result of electrostatic repulsion among the dissociated carboxyl groups of the copolymer, leading to [H+]-dependent bending of the needle. When coupled with a derivatization reaction (urease-mediated hydrolysis of urea to decrease [H+]; glucose oxidase-mediated oxidization of glucose to increase [H+]), the bending of the needle allowed reliable quantification of urea or glucose when referencing pre-calibrated concentration scales. After method optimization, the method's detection limits for urea and glucose were 4.9 and 7.0 μM, respectively, within a working concentration range from 0.1 to 10 mM. We verified the reliability of this analytical method by determining the concentrations of urea and glucose in samples of human urine, fetal bovine serum, and rat plasma with spike analyses and comparing the results with those obtained using commercial assay kits. Our results confirm that 4DP technologies can allow the direct fabrication of stimuli-responsive devices for quantitative chemical analysis, and that they can advance the development and applicability of 3DP-enabling analytical methods.
Collapse
Affiliation(s)
- Chun-Yi Wu
- Department of Chemistry, National Chung Hsing University, Taichung City, 402, Taiwan, ROC
| | - Yi-Ting Su
- Department of Chemistry, National Chung Hsing University, Taichung City, 402, Taiwan, ROC
| | - Cheng-Kuan Su
- Department of Chemistry, National Chung Hsing University, Taichung City, 402, Taiwan, ROC.
| |
Collapse
|
11
|
Zhao T, Wang Z, Yang Y, Liu K, Wang X. Cyclic Macroscopic Assembly and Disassembly Driven by Ionic Strength Fuel: A Waste-Free Approach. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37402443 DOI: 10.1021/acsami.3c06995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Nonequilibrium assembling systems developed so far have relied on chemical fuels to drive the programmable pH cycles, redox reactions, and metastable bond formations. However, these methods often result in the unwanted accumulation of chemical waste. Herein, we present a novel strategy for achieving cyclic and waste-free nonequilibrium assembly and disassembly of macroscopic hydrogels, utilizing an ionic strength-mediated approach. Our strategy involves using ammonium carbonate as a chemical fuel to temporally regulate the attractions between oppositely charged hydrogels via ionic strength-controlled charge screening and hydrogel elasticity changes. This chemical fuel effectively mediates the assembly/disassembly processes and prevents waste accumulation, as ammonium carbonate can completely decompose into volatile chemical waste. The cyclic and reversible assembly process can be achieved without significant damping due to the self-clearance mechanism, as long as the chemical fuel is repeatedly supplied. This concept holds promise for creating macroscopic and microscopic nonequilibrium systems and self-adaptive materials.
Collapse
Affiliation(s)
- Ting Zhao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Zhongrui Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Yang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
12
|
Fusi G, Del Giudice D, Skarsetz O, Di Stefano S, Walther A. Autonomous Soft Robots Empowered by Chemical Reaction Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209870. [PMID: 36420882 DOI: 10.1002/adma.202209870] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Hydrogel actuators are important for designing stimuli-sensitive soft robots. They generate mechanical motion by exploiting compartmentalized (de)swelling in response to a stimulus. However, classical switching methods, such as manually lowering or increasing the pH, cannot provide more complex autonomous motions. By coupling an autonomously operating pH-flip with programmable lifetimes to a hydrogel system containing pH-responsive and non-responsive compartments, autoonenomous forward and backward motion as well as more complex tasks, such as interlocking of "puzzle pieces" and collection of objects are realized. All operations are initiated by one simple trigger, and the devices operate in a "fire and forget" mode. More complex self-regulatory behavior is obtained by adding chemo-mechano-chemo feedback mechanisms. Due to its simplicity, this method shows great potential for the autonomous operation of soft grippers and metamaterials.
Collapse
Affiliation(s)
- Giorgio Fusi
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Daniele Del Giudice
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, Roma, I-00185, Italy
| | - Oliver Skarsetz
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Stefano Di Stefano
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, Roma, I-00185, Italy
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
13
|
Sharma C, Maity I, Walther A. pH-feedback systems to program autonomous self-assembly and material lifecycles. Chem Commun (Camb) 2023; 59:1125-1144. [PMID: 36629372 DOI: 10.1039/d2cc06402b] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
pH-responsive systems have gained importance for the development of smart materials and for biomedical applications because they can switch between different states by simple acid/base triggers. However, such equilibrium systems lack the autonomous behaviour that is so ubiquitous in living systems that self-regulate out of equilibrium. As a contribution to the emerging field of autonomous chemical systems, we have developed pH-feedback systems (pH-FS) based on the coupling of acid- and base-producing steps in chemical reaction networks. The resulting autonomous nonlinear pH curves can be coupled with a variety of pH-sensitive building blocks to program the lifecycles of the associated transient state at the level of self-assemblies and material systems. In this article, we discuss the different generations of such pH-feedback systems, the principles of their coupling to self-assemblies with lifecycles and highlight emerging concepts for the design of autonomous functional materials. The specificity, robustness, and flexible operation of such pH-FS can also be used to realize chemo-structural and chemo-mechanical feedbacks that extend the behaviour of such materials systems toward complex and functional life-like systems.
Collapse
Affiliation(s)
- Charu Sharma
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Indrajit Maity
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
14
|
Cao Y, Gabrielli L, Frezzato D, Prins LJ. Persistent ATP-Concentration Gradients in a Hydrogel Sustained by Chemical Fuel Consumption. Angew Chem Int Ed Engl 2023; 62:e202215421. [PMID: 36420591 DOI: 10.1002/anie.202215421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
We show the formation of macroscopic ATP-concentrations in an agarose gel and demonstrate that these gradients can be sustained in time at the expense of the consumption of a chemical fuel. The approach relies on the spatially controlled activation of ATP-producing and ATP-consuming reactions through the local injection of enzymes in the matrix. The reaction-diffusion system is maintained in a stationary non-equilibrium state as long as chemical fuel, phosphocreatine, is present. The reaction-diffusion system is coupled to a supramolecular system composed of monolayer protected gold nanoparticles and a fluorescent probe. As a result of this coupling, fluorescence signals emerge spontaneously in response to the ATP-concentration gradients. We show that the approach permits the rational formation of complex fluorescence patterns that change over time as a function of the evolution of the ATP-concentrations present in the system.
Collapse
Affiliation(s)
- Yingjuan Cao
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Luca Gabrielli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Diego Frezzato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Leonard J Prins
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
15
|
Ravarino P, Panja S, Adams DJ. Spatiotemporal Control Over Base-Catalysed Hydrogelation Using a Bilayer System. Macromol Rapid Commun 2022; 43:e2200606. [PMID: 35995598 DOI: 10.1002/marc.202200606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Indexed: 11/06/2022]
Abstract
Controlling the formation and directional growth of hydrogels is a challenge. In this paper, we propose a new methodology to program the gel formation both over space and time, using the diffusion and subsequent hydrolysis of 1,1'-carbonyldiimidazole (CDI) from an immiscible organic solution to the aqueous gel media. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Paolo Ravarino
- Dipartimento di Chimica Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Selmi, 2, Bologna, 40126, Italy
| | - Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, U.K
| |
Collapse
|
16
|
Del Giudice D, Frateloreto F, Sappino C, Di Stefano S. Chemical Tools for the Temporal Control of Water Solution pH and Applications in Dissipative Systems. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniele Del Giudice
- University of Rome La Sapienza: Universita degli Studi di Roma La Sapienza Chemistry ITALY
| | - Federico Frateloreto
- University of Rome La Sapienza: Universita degli Studi di Roma La Sapienza Chemistry ITALY
| | - Carla Sappino
- University of Rome La Sapienza: Universita degli Studi di Roma La Sapienza Chemistry ITALY
| | - Stefano Di Stefano
- University of Rome La Sapienza: Universita degli Studi di Roma La Sapienza Chemistry Department Piazzale Aldo Moro 5 00185 Rome ITALY
| |
Collapse
|
17
|
Sharma C, Walther A. Self-Regulating Colloidal Co-Assemblies That Accelerate Their Own Destruction via Chemo-Structural Feedback. Angew Chem Int Ed Engl 2022; 61:e202201573. [PMID: 35235231 PMCID: PMC9311650 DOI: 10.1002/anie.202201573] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 11/13/2022]
Abstract
Biological self‐assemblies self‐ and cross‐regulate each other via chemical reaction networks (CRNs) and feedback. Although artificial transient self‐assemblies have been realized via activation/deactivation CRNs, the transient structures themselves do mostly not engage in the CRN. We introduce a rational design approach for chemo‐structural feedback, and present a transient colloidal co‐assembly system, where the formed co‐assemblies accelerate their destruction autonomously. We achieve this by immobilizing enzymes of a deactivating acid‐producing enzymatic cascade on pH‐switchable microgels that can form co‐assemblies at high pH. Since the enzyme partners are immobilized on individual microgels, the co‐assembled state brings them close enough for enhanced acid generation. The amplified deactivator production (acid) leads to an almost two‐fold reduction in the lifetime of the transiently formed pH‐state. Our study thus introduces versatile mechanisms for chemo‐structural feedback.
Collapse
Affiliation(s)
- Charu Sharma
- A3BMS Lab, Department of Chemistry, University of Mainz, 55128, Mainz, Germany
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, 55128, Mainz, Germany.,Cluster of Excellence livMats @ FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79098, Freiburg, Germany
| |
Collapse
|
18
|
Paikar A, Novichkov AI, Hanopolskyi AI, Smaliak VA, Sui X, Kampf N, Skorb EV, Semenov SN. Spatiotemporal Regulation of Hydrogel Actuators by Autocatalytic Reaction Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106816. [PMID: 34910837 DOI: 10.1002/adma.202106816] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Regulating hydrogel actuators with chemical reaction networks is instrumental for constructing life-inspired smart materials. Herein, hydrogel actuators are engineered that are regulated by the autocatalytic front of thiols. The actuators consist of two layers. The first layer, which is regular polyacrylamide hydrogel, is in a strained conformation. The second layer, which is polyacrylamide hydrogel with disulfide crosslinks, maintains strain in the first layer. When thiols released by the autocatalytic front reduce disulfide crosslinks, the hydrogel actuates by releasing the mechanical strain in the first layer. The autocatalytic front is sustained by the reaction network, which uses thiouronium salts, disulfides of β-aminothiols, and maleimide as starting components. The gradual actuation by the autocatalytic front enables movements such as gradual unrolling, screwing, and sequential closing of "fingers." This actuation also allows the transmission of chemical signals in a relay fashion and the conversion of a chemical signal to an electrical signal. Locations and times of spontaneous initiation of autocatalytic fronts can be preprogrammed in the spatial distribution of the reactants in the hydrogel. To approach the functionality of living matter, the actuators triggered by an autocatalytic front can be integrated into smart materials regulated by chemical circuits.
Collapse
Affiliation(s)
- Arpita Paikar
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alexander I Novichkov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Anton I Hanopolskyi
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Viktoryia A Smaliak
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Xiaomeng Sui
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Nir Kampf
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, Saint Petersburg, 191002, Russia
| | - Sergey N Semenov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
19
|
Sharma C, Walther A. Self‐Regulating Colloidal Co‐Assemblies That Accelerate Their Own Destruction via Chemo‐Structural Feedback. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Charu Sharma
- A3BMS Lab Department of Chemistry University of Mainz 55128 Mainz Germany
| | - Andreas Walther
- A3BMS Lab Department of Chemistry University of Mainz 55128 Mainz Germany
- Cluster of Excellence livMats @ FIT Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg 79098 Freiburg Germany
| |
Collapse
|
20
|
Deng J, Liu W, Sun M, Walther A. Dissipative Organization of DNA Oligomers for Transient Catalytic Function. Angew Chem Int Ed Engl 2022; 61:e202113477. [PMID: 35026052 PMCID: PMC9306540 DOI: 10.1002/anie.202113477] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 12/31/2022]
Abstract
The development of synthetic non-equilibrium systems opens doors for man-made life-like materials. Yet, creating distinct transient functions from artificial fuel-driven structures remains a challenge. Building on our ATP-driven dynamic covalent DNA assembly in an enzymatic reaction network of concurrent ATP-powered ligation and restriction, we introduce ATP-fueled transient organization of functional subunits for various functions. The programmability of the ligation/restriction site allows to precisely organize multiple sticky-end-encoded oligo segments into double-stranded (ds) DNA complexes. We demonstrate principles of ATP-driven organization into sequence-defined oligomers by sensing barcode-embedded targets with different defects. Furthermore, ATP-fueled DNAzymes for substrate cleavage are achieved by transiently ligating two DNAzyme subunits into a dsDNA complex, rendering ATP-fueled transient catalytic function.
Collapse
Affiliation(s)
- Jie Deng
- ABMS Lab, Department of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
- Department of Cancer BiologyDana-Farber Cancer Institute and Wyss Institute for Biologically Inspired EngineeringHarvard Medical SchoolBostonMA 02115USA
| | - Wei Liu
- ABMS Lab, Department of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
| | - Mo Sun
- Cluster of Excellence livMatS @ FIT – Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
- Department of ChemistryFudan UniversityShanghai200438China
| | - Andreas Walther
- ABMS Lab, Department of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
- Cluster of Excellence livMatS @ FIT – Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
21
|
Using Rheology to Understand Transient and Dynamic Gels. Gels 2022; 8:gels8020132. [PMID: 35200514 PMCID: PMC8872063 DOI: 10.3390/gels8020132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Supramolecular gels can be designed such that pre-determined changes in state occur. For example, systems that go from a solution (sol) state to a gel state and then back to a sol state can be prepared using chemical processes to control the onset and duration of each change of state. Based on this, more complex systems such as gel-to-sol-to-gel and gel-to-gel-to-gel systems can be designed. Here, we show that we can provide additional insights into such systems by using rheological measurements at varying values of frequency or strain during the evolution of the systems. Since the different states are affected to different degrees by the frequency and/or strain applied, this allows us to better understand and follow the changes in state in such systems.
Collapse
|
22
|
Deng J, Liu W, Sun M, Walther A. Dissipative Organization of DNA Oligomers for Transient Catalytic Function. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Deng
- A3BMS Lab, Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
- Department of Cancer Biology Dana-Farber Cancer Institute and Wyss Institute for Biologically Inspired Engineering Harvard Medical School Boston MA 02115 USA
| | - Wei Liu
- A3BMS Lab, Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Mo Sun
- Cluster of Excellence livMatS @ FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
- Department of Chemistry Fudan University Shanghai 200438 China
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
- Cluster of Excellence livMatS @ FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
23
|
Német N, Miele Y, Shuszter G, Tóth EL, Maróti JE, Szabó PJ, Rossi F, Lagzi I. Inhibition of the urea-urease reaction by the components of the zeolite imidazole frameworks-8 and the formation of urease-zinc-imidazole hybrid compound. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-021-02139-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
AbstractIn the past decade, much effort has been devoted to using chemical clock-type reactions in material design and driving the self-assembly of various building blocks. Urea-urease enzymatic reaction has chemical pH clock behavior in an unbuffered medium, in which the induction time and the final pH can be programmed by the concentrations of the reagents. The urea-urease reaction can offer a new alternative in material synthesis, where the pH and its course in time are crucial factors in the synthesis. However, before using it in any synthesis method, it is important to investigate the possible effects of the reagents on the enzymatic reaction. Here we investigate the effect of the reagents of the zeolite imidazole framework-8 (zinc ions and 2-methylimidazole) on the urea-urease reaction. We have chosen the zeolite imidazole framework-8 because its formation serves as a model reaction for the formation of other metal–organic frameworks. We found that, besides the inhibition effect of the zinc ions which is well-known in the literature, 2-methylimidazole inhibits the enzymatic reaction as well. In addition to the observed inhibition effect, we report the formation of a hybrid urease-zinc-2-methylimidazole hybrid material. To support the inhibition effect, we developed a kinetic model which reproduced qualitatively the experimentally observed kinetic curves.
Collapse
|
24
|
Spatola E, Rispoli F, Del Giudice D, Cacciapaglia R, Casnati A, Marchiò L, Baldini L, Di Stefano S. Dissipative control of the fluorescence of a 1,3-dipyrenyl calix[4]arene in the cone conformation. Org Biomol Chem 2021; 20:132-138. [PMID: 34816861 DOI: 10.1039/d1ob02096j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The temporal control (ON/OFF/ON) of the fluorescence of a dichloromethane/acetonitrile 1 : 1 solution of calixarene 3 decorated with two pyrenyl moieties at the upper rim is attained by the addition of CCl3CO2H used as a convenient chemical fuel.
Collapse
Affiliation(s)
- Emanuele Spatola
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Roma, Italy.
| | - Francesco Rispoli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Daniele Del Giudice
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Roma, Italy.
| | - Roberta Cacciapaglia
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Roma, Italy.
| | - Alessandro Casnati
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Luciano Marchiò
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Laura Baldini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Roma, Italy.
| |
Collapse
|
25
|
P C Sekhar K, Zhao K, Gao Z, Ma X, Geng H, Song A, Cui J. Polymorphic transient glycolipid assemblies with tunable lifespan and cargo release. J Colloid Interface Sci 2021; 610:1067-1076. [PMID: 34876263 DOI: 10.1016/j.jcis.2021.11.170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022]
Abstract
HYPOTHESIS In living systems, dynamic processes like dissipative assembly, polymorph formation, and destabilization of hydrophobic domains play an indispensable role in the biochemical processes. Adaptation of biological self-assembly processes to an amphiphilic molecule leads to the fabrication of intelligent biomaterials with life-like behavior. EXPERIMENTS An amphiphilic glycolipid molecule was engineered into various dissipative assemblies (vesicles and supramolecular nanotube-composed hydrogels) by using two activation steps, including heating-cooling and shear force in method-1 or boric acid/glycolipid complexation and shear force in method-2. The influence of number of activation steps on vesicle to nanotube phase transitions and activation method on the properties of hydrogels were investigated, where the morphological transformations and destabilization of hydrophobic domains resulted from a bilayer to a higher-order crystal structure. FINDINGS Hydrophobic and hydrophilic cargos encapsulated in the dissipative assemblies (vesicles and injectable hydrogels) can be released in a controlled manner via changing the activation method. The reported adaptive materials engineered by dual activation steps are promising self-assembled systems for programmed release of loaded cargos at a tunable rate.
Collapse
Affiliation(s)
- Kanaparedu P C Sekhar
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Kaijie Zhao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xuebin Ma
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
26
|
Maity I, Sharma C, Lossada F, Walther A. Feedback and Communication in Active Hydrogel Spheres with pH Fronts: Facile Approaches to Grow Soft Hydrogel Structures. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Indrajit Maity
- A3BMS Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
- Freiburg Institute for Advanced Studies University of Freiburg Freiburg Germany
| | - Charu Sharma
- A3BMS Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Francisco Lossada
- A3BMS Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Andreas Walther
- A3BMS Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
27
|
Maity I, Sharma C, Lossada F, Walther A. Feedback and Communication in Active Hydrogel Spheres with pH Fronts: Facile Approaches to Grow Soft Hydrogel Structures. Angew Chem Int Ed Engl 2021; 60:22537-22546. [PMID: 34347941 PMCID: PMC8518392 DOI: 10.1002/anie.202109735] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Compartmentalized reaction networks regulating signal processing, communication and pattern formation are central to living systems. Towards achieving life-like materials, we compartmentalized urea-urease and more complex urea-urease/ester-esterase pH-feedback reaction networks into hydrogel spheres and investigate how fuel-driven pH fronts can be sent out from these spheres and regulated by internal reaction networks. Membrane characteristics are installed by covering urease spheres with responsive hydrogel shells. We then encapsulate the two networks (urea-urease and ester-esterase) separately into different hydrogel spheres to devise communication, pattern formation and attraction. Moreover, these pH fronts and patterns can be used for self-growing hydrogels, and for developing complex geometries from non-injectable hydrogels without 3D printing tools. This study opens possibilities for compartmentalized feedback reactions and their use in next generation materials fabrication.
Collapse
Affiliation(s)
- Indrajit Maity
- A3BMS LabDepartment of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
- Freiburg Institute for Advanced StudiesUniversity of FreiburgFreiburgGermany
| | - Charu Sharma
- A3BMS LabDepartment of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
| | - Francisco Lossada
- A3BMS LabDepartment of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
| | - Andreas Walther
- A3BMS LabDepartment of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
28
|
Mariottini D, Del Giudice D, Ercolani G, Di Stefano S, Ricci F. Dissipative operation of pH-responsive DNA-based nanodevices. Chem Sci 2021; 12:11735-11739. [PMID: 34659709 PMCID: PMC8442697 DOI: 10.1039/d1sc03435a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022] Open
Abstract
We demonstrate here the use of 2-(4-chlorophenyl)-2-cyanopropanoic acid (CPA) and nitroacetic acid (NAA) as convenient chemical fuels to drive the dissipative operation of DNA-based nanodevices. Addition of either of the fuel acids to a water solution initially causes a rapid transient pH decrease, which is then followed by a slower pH increase. We have employed such low-to-high pH cycles to control in a dissipative way the operation of two model DNA-based nanodevices: a DNA nanoswitch undergoing time-programmable open–close–open cycles of motion, and a DNA-based receptor able to release-uptake a DNA cargo strand. The kinetics of the transient operation of both systems can be easily modulated by varying the concentration of the acid fuel added to the solution and both acid fuels show an efficient reversibility which further supports their versatility. We demonstrate here the use of 2-(4-chlorophenyl)-2-cyanopropanoic acid (CPA) and nitroacetic acid (NAA) as convenient chemical fuels to drive the dissipative operation of DNA-based nanodevices.![]()
Collapse
Affiliation(s)
- Davide Mariottini
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata Via della Ricerca Scientifica 00133 Roma Italy
| | - Daniele Del Giudice
- Dipartimento di Chimica, Università di Roma La Sapienza, ISB-CNR Sede Secondaria di Roma-Meccanismi di Reazione P.le A. Moro 5 00185 Roma Italy
| | - Gianfranco Ercolani
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata Via della Ricerca Scientifica 00133 Roma Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università di Roma La Sapienza, ISB-CNR Sede Secondaria di Roma-Meccanismi di Reazione P.le A. Moro 5 00185 Roma Italy
| | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata Via della Ricerca Scientifica 00133 Roma Italy
| |
Collapse
|
29
|
Deng J, Walther A. Autonomous DNA nanostructures instructed by hierarchically concatenated chemical reaction networks. Nat Commun 2021; 12:5132. [PMID: 34446724 PMCID: PMC8390752 DOI: 10.1038/s41467-021-25450-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Concatenation and communication between chemically distinct chemical reaction networks (CRNs) is an essential principle in biology for controlling dynamics of hierarchical structures. Here, to provide a model system for such biological systems, we demonstrate autonomous lifecycles of DNA nanotubes (DNTs) by two concatenated CRNs using different thermodynamic principles: (1) ATP-powered ligation/restriction of DNA components and (2) input strand-mediated DNA strand displacement (DSD) using energy gains provided in DNA toeholds. This allows to achieve hierarchical non-equilibrium systems by concurrent ATP-powered ligation-induced DSD for activating DNT self-assembly and restriction-induced backward DSD reactions for triggering DNT degradation. We introduce indirect and direct activation of DNT self-assemblies, and orthogonal molecular recognition allows ATP-fueled self-sorting of transient multicomponent DNTs. Coupling ATP dissipation to DNA nanostructures via programmable DSD is a generic concept which should be widely applicable to organize other DNA nanostructures, and enable the design of automatons and life-like systems of higher structural complexity.
Collapse
Affiliation(s)
- Jie Deng
- A3BMS Lab, Department of Chemistry, University of Mainz, Mainz, Germany.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Mainz, Germany.
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
30
|
Mai AQ, Bánsági T, Taylor AF, Pojman JA. Reaction-diffusion hydrogels from urease enzyme particles for patterned coatings. Commun Chem 2021; 4:101. [PMID: 36697546 PMCID: PMC9814597 DOI: 10.1038/s42004-021-00538-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/07/2021] [Indexed: 01/28/2023] Open
Abstract
The reaction and diffusion of small molecules is used to initiate the formation of protective polymeric layers, or biofilms, that attach cells to surfaces. Here, inspired by biofilm formation, we present a general method for the growth of hydrogels from urease enzyme-particles by combining production of ammonia with a pH-regulated polymerization reaction in solution. We show through experiments and simulations how the propagating basic front and thiol-acrylate polymerization were continuously maintained by the localized urease reaction in the presence of urea, resulting in hydrogel layers around the enzyme particles at surfaces, interfaces or in motion. The hydrogels adhere the enzyme-particles to surfaces and have a tunable growth rate of the order of 10 µm min-1 that depends on the size and spatial distribution of particles. This approach can be exploited to create enzyme-hydrogels or chemically patterned coatings for applications in biocatalytic flow reactors.
Collapse
Affiliation(s)
- Anthony Q. Mai
- grid.64337.350000 0001 0662 7451Department of Chemistry & The Macromolecular Studies Group, Louisiana State University, Baton Rouge, LA USA
| | - Tamás Bánsági
- grid.11835.3e0000 0004 1936 9262Chemical and Biological Engineering, University of Sheffield, Sheffield, UK ,grid.6572.60000 0004 1936 7486Department of Chemistry, University of Birmingham, Birmingham, UK
| | - Annette F. Taylor
- grid.11835.3e0000 0004 1936 9262Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - John A. Pojman
- grid.64337.350000 0001 0662 7451Department of Chemistry & The Macromolecular Studies Group, Louisiana State University, Baton Rouge, LA USA
| |
Collapse
|
31
|
Panja S, Adams DJ. Urea-Urease Reaction in Controlling Properties of Supramolecular Hydrogels: Pros and Cons. Chemistry 2021; 27:8928-8939. [PMID: 33861488 PMCID: PMC8360084 DOI: 10.1002/chem.202100490] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Supramolecular hydrogels are useful in many areas such as cell culturing, catalysis, sensing, tissue engineering, drug delivery, environmental remediation and optoelectronics. The gels need specific properties for each application. The properties arise from a fibrous network that forms the matrix. A common method to prepare hydrogels is to use a pH change. Most methods result in a sudden pH jump and often lead to gels that are hard to reproduce and control. The urease-urea reaction can be used to control hydrogel properties by a uniform and controlled pH increase as well as to set up pH cycles. The reaction involves hydrolysis of urea by urease and production of ammonia which increases the pH. The rate of ammonia production can be controlled which can be used to prepare gels with differing properties. Herein, we show how the urease-urea reaction can be used for the construction of next generation functional materials.
Collapse
Affiliation(s)
- Santanu Panja
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| | - Dave J. Adams
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
32
|
Fan X, Walther A. pH Feedback Lifecycles Programmed by Enzymatic Logic Gates Using Common Foods as Fuels. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Str. 31 79104 Freiburg Germany
| | - Andreas Walther
- Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Str. 31 79104 Freiburg Germany
- A3BMS Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
33
|
Fan X, Walther A. pH Feedback Lifecycles Programmed by Enzymatic Logic Gates Using Common Foods as Fuels. Angew Chem Int Ed Engl 2021; 60:11398-11405. [PMID: 33682231 PMCID: PMC8252529 DOI: 10.1002/anie.202017003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Artificial temporal signaling systems, which mimic living out-of-equilibrium conditions, have made large progress. However, systems programmed by enzymatic reaction networks in multicomponent and unknown environments, and using biocompatible components remain a challenge. Herein, we demonstrate an approach to program temporal pH signals by enzymatic logic gates. They are realized by an enzymatic disaccharide-to-monosaccharide-to-sugar acid reaction cascade catalyzed by two metabolic chains: invertase-glucose oxidase and β-galactosidase-glucose oxidase, respectively. Lifetimes of the transient pH signal can be programmed from less than 15 min to more than 1 day. We study enzymatic kinetics of the reaction cascades and reveal the underlying regulatory mechanisms. Operating with all-food grade chemicals and coupling to self-regulating hydrogel, our system is quite robust to work in a complicated medium with unknown components and in a biocompatible fashion.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Str. 3179104FreiburgGermany
| | - Andreas Walther
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Str. 3179104FreiburgGermany
- ABMS LabDepartment of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|