1
|
Wang T, Liao X, Zhao X, Chen K, Chen Y, Wen H, Yin D, Wang Y, Lin B, Zhang S, Cui H. Rational design of 2-benzylsulfinyl-benzoxazoles as potent and selective indoleamine 2,3-dioxygenase 1 inhibitors to combat inflammation. Bioorg Chem 2024; 152:107740. [PMID: 39217780 DOI: 10.1016/j.bioorg.2024.107740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Mimicking the transition state of tryptophan (Trp) and O2 in the enzymatic reaction is an effective approach to design indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. In this study, we firstly assembled a small library of 2-substituted benzo-fused five membered heterocycles and found 2-sulfinyl-benzoxazoles with interesting IDO1 inhibitory activities. Next the inhibitory activity toward IDO1 was gradually improved. Several benzoxazoles showed potent IDO1 inhibitory activity with IC50 of 82-91 nM, and exhibited selectivity between IDO1 and tryptophan 2,3-dioxygenase (TDO2). Enzyme binding studies showed that benzoxazoles are reversible type II IDO1 inhibitors, and modeling studies suggested that the oxygen atom of the sulfoxide in benzoxazoles interacts with the iron atom of the heme group, which mimics the transition state of Fe-O-O-Trp complex. Especially, 10b can effectively inhibit the NO production in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and it also shows good anti-inflammation effect on mice acute inflammation model of croton oil induced ear edema.
Collapse
Affiliation(s)
- Ting Wang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiufeng Liao
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiaodi Zhao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Kai Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yangzhonghui Chen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Hui Wen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Dali Yin
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Yuchen Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Huaqing Cui
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
2
|
Jiang K, Wang Q, Chen XL, Wang X, Gu X, Feng S, Wu J, Shang H, Ba X, Zhang Y, Tang K. Nanodelivery Optimization of IDO1 Inhibitors in Tumor Immunotherapy: Challenges and Strategies. Int J Nanomedicine 2024; 19:8847-8882. [PMID: 39220190 PMCID: PMC11366248 DOI: 10.2147/ijn.s458086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/13/2024] [Indexed: 09/04/2024] Open
Abstract
Tryptophan (Trp) metabolism plays a vital role in cancer immunity. Indoleamine 2.3-dioxygenase 1 (IDO1), is a crucial enzyme in the metabolic pathway by which Trp is degraded to kynurenine (Kyn). IDO1-mediated Trp metabolites can inhibit tumor immunity and facilitate immune evasion by cancer cells; thus, targeting IDO1 is a potential tumor immunotherapy strategy. Recently, numerous IDO1 inhibitors have been introduced into clinical trials as immunotherapeutic agents for cancer treatment. However, drawbacks such as low oral bioavailability, slow onset of action, and high toxicity are associated with these drugs. With the continuous development of nanotechnology, medicine is gradually entering an era of precision healthcare. Nanodrugs carried by inorganic, lipid, and polymer nanoparticles (NPs) have shown great potential for tumor therapy, providing new ways to overcome tumor diversity and improve therapeutic efficacy. Compared to traditional drugs, nanomedicines offer numerous significant advantages, including a prolonged half-life, low toxicity, targeted delivery, and responsive release. Moreover, based on the physicochemical properties of these nanomaterials (eg, photothermal, ultrasonic response, and chemocatalytic properties), various combination therapeutic strategies have been developed to synergize the effects of IDO1 inhibitors and enhance their anticancer efficacy. This review is an overview of the mechanism by which the Trp-IDO1-Kyn pathway acts in tumor immune escape. The classification of IDO1 inhibitors, their clinical applications, and barriers for translational development are discussed, the use of IDO1 inhibitor-based nanodrug delivery systems as combination therapy strategies is summarized, and the issues faced in their clinical application are elucidated. We expect that this review will provide guidance for the development of IDO1 inhibitor-based nanoparticle nanomedicines that can overcome the limitations of current treatments, improve the efficacy of cancer immunotherapy, and lead to new breakthroughs in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Qing Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiao-Long Chen
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiaodong Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiaoya Gu
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Shuangshuang Feng
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Yanlong Zhang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
3
|
Zhong J, Yuan H, Yang J, Du Y, Li Z, Liu X, Yang H, Wang Z, Wang Z, Jiang L, Ren Z, Li H, Li Z, Liu Y. Bioinformatics and system biology approach to identify potential common pathogenesis for COVID-19 infection and sarcopenia. Front Med (Lausanne) 2024; 11:1378846. [PMID: 38978778 PMCID: PMC11228343 DOI: 10.3389/fmed.2024.1378846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
Sarcopenia is a condition characterized by age-related loss of muscle mass and strength. Increasing evidence suggests that patients with sarcopenia have higher rates of coronavirus 2019 (COVID-19) infection and poorer post-infection outcomes. However, the exact mechanism and connections between the two is unknown. In this study, we used high-throughput data from the GEO database for sarcopenia (GSE111016) and COVID-19 (GSE171110) to identify common differentially expressed genes (DEGs). We conducted GO and KEGG pathway analyses, as well as PPI network analysis on these DEGs. Using seven algorithms from the Cytoscape plug-in cytoHubba, we identified 15 common hub genes. Further analyses included enrichment, PPI interaction, TF-gene and miRNA-gene regulatory networks, gene-disease associations, and drug prediction. Additionally, we evaluated immune cell infiltration with CIBERSORT and assessed the diagnostic accuracy of hub genes for sarcopenia and COVID-19 using ROC curves. In total, we identified 66 DEGs (34 up-regulated and 32 down-regulated) and 15 hub genes associated with sarcopenia and COVID-19. GO and KEGG analyses revealed functions and pathways between the two diseases. TF-genes and TF-miRNA regulatory network suggest that FOXOC1 and hsa-mir-155-5p may be identified as key regulators, while gene-disease analysis showed strong correlations with hub genes in schizophrenia and bipolar disorder. Immune infiltration showed a correlation between the degree of immune infiltration and the level of infiltration of different immune cell subpopulations of hub genes in different datasets. The ROC curves for ALDH1L2 and KLF5 genes demonstrated their potential as diagnostic markers for both sarcopenia and COVID-19. This study suggests that sarcopenia and COVID-19 may share pathogenic pathways, and these pathways and hub genes offer new targets and strategies for early diagnosis, effective treatment, and tailored therapies for sarcopenia patients with COVID-19.
Collapse
Affiliation(s)
- Jun Zhong
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Hui Yuan
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jinghong Yang
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yimin Du
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zheng Li
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Liu
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Haibo Yang
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhaojun Wang
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zi Wang
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Lujun Jiang
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhiqiang Ren
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Hongliang Li
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhong Li
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yanshi Liu
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Wang Y, Jia S, Chen Y, Liao X, Jie R, Jiang L, Wang T, Wen H, Gan W, Cui H. Taking advantage of the interaction between the sulfoxide and heme cofactor to develop indoleamine 2, 3-dioxygenase 1 inhibitors. Bioorg Chem 2024; 148:107426. [PMID: 38733750 DOI: 10.1016/j.bioorg.2024.107426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Taking advantage of key interactions between sulfoxide and heme cofactor, we used the sulfoxide as the anchor functional group to develop two series of indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors: 2-benzylsulfinylbenzoxazoles (series 1) and 2-phenylsulfinylbenzoxazoles (series 2). In vitro enzymatic screening shows that both series can inhibit the activity of IDO1 in low micromolar (series 1) or nanomolar (series 2) levels. They also show inhibitory selectivity between IDO1 and tryptophan 2, 3-dioxygenase 2. Interestingly, although series 1 is less potent IDO1 inhibitors of these two series, it exhibited stronger inhibitory activity toward kynurenine production in interferon-γ stimulated BxPC-3 cells. Enzyme kinetics and binding studies demonstrated that 2-sulfinylbenzoxazoles are non-competitive inhibitors of tryptophan, and they interact with the ferrous form of heme. These results demonstrated 2-sulfinylbenzoxazoles as type II IDO1 inhibitors. Furthermore, molecular docking studies supports the sulfoxide being of the key functional group that interacts with the heme cofactor. Compound 22 (series 1) can inhibit NO production in a concentration dependent manner in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and can relieve pulmonary edema and lung injury in LPS induced mouse acute lung injury models.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Shumi Jia
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Yangzhonghui Chen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiufeng Liao
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Ru Jie
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Lei Jiang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Ting Wang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Hui Wen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Wenqiang Gan
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Huaqing Cui
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
5
|
Dötsch L, Davies C, Hennes E, Schönfeld J, Kumar A, Guita CDC, Ehrler JH, Hiesinger K, Thavam S, Janning P, Sievers S, Knapp S, Proschak E, Ziegler S, Waldmann H. Discovery of the sEH Inhibitor Epoxykynin as a Potent Kynurenine Pathway Modulator. J Med Chem 2024; 67:4691-4706. [PMID: 38470246 PMCID: PMC10983002 DOI: 10.1021/acs.jmedchem.3c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
Disease-related phenotypic assays enable unbiased discovery of novel bioactive small molecules and may provide novel insights into physiological systems and unprecedented molecular modes of action (MMOA). Herein, we report the identification and characterization of epoxykynin, a potent inhibitor of the soluble epoxide hydrolase (sEH). Epoxykynin was discovered by means of a cellular assay monitoring modulation of kynurenine (Kyn) levels in BxPC-3 cells upon stimulation with the cytokine interferon-γ (IFN-γ) and subsequent target identification employing affinity-based chemical proteomics. Increased Kyn levels are associated with immune suppression in the tumor microenvironment and, thus, the Kyn pathway and its key player indoleamine 2,3-dioxygenase 1 (IDO1) are appealing targets in immuno-oncology. However, targeting IDO1 directly has led to limited success in clinical investigations, demonstrating that alternative approaches to reduce Kyn levels are in high demand. We uncover a cross-talk between sEH and the Kyn pathway that may provide new opportunities to revert cancer-induced immune tolerance.
Collapse
Affiliation(s)
- Lara Dötsch
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
- Department
of Chemical Biology, Technical University
of Dortmund, Otto-Hahn-Strasse
6, Dortmund 44227, Germany
| | - Caitlin Davies
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Elisabeth Hennes
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Julia Schönfeld
- Goethe
University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Strasse 9, Frankfurt 60438, Germany
| | - Adarsh Kumar
- Goethe
University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Strasse 9, Frankfurt 60438, Germany
- Structural
Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, Frankfurt 60438, Germany
| | - Celine Da Cruz
Lopes Guita
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Johanna H.M. Ehrler
- Goethe
University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Strasse 9, Frankfurt 60438, Germany
| | - Kerstin Hiesinger
- Goethe
University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Strasse 9, Frankfurt 60438, Germany
| | - Sasikala Thavam
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Petra Janning
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Sonja Sievers
- Compound
Management and Screening Center (COMAS), Otto-Hahn-Strasse 15, Dortmund 44227, Germany
| | - Stefan Knapp
- Goethe
University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Strasse 9, Frankfurt 60438, Germany
- Structural
Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, Frankfurt 60438, Germany
| | - Ewgenij Proschak
- Goethe
University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Strasse 9, Frankfurt 60438, Germany
| | - Slava Ziegler
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Herbert Waldmann
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
- Department
of Chemical Biology, Technical University
of Dortmund, Otto-Hahn-Strasse
6, Dortmund 44227, Germany
| |
Collapse
|
6
|
Davies C, Dötsch L, Ciulla MG, Hennes E, Yoshida K, Gasper R, Scheel R, Sievers S, Strohmann C, Kumar K, Ziegler S, Waldmann H. Identification of a Novel Pseudo-Natural Product Type IV IDO1 Inhibitor Chemotype. Angew Chem Int Ed Engl 2022; 61:e202209374. [PMID: 35959923 DOI: 10.1002/anie.202209374] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Natural product (NP)-inspired design principles provide invaluable guidance for bioactive compound discovery. Pseudo-natural products (PNPs) are de novo combinations of NP fragments to target biologically relevant chemical space not covered by NPs. We describe the design and synthesis of apoxidoles, a novel pseudo-NP class, whereby indole- and tetrahydropyridine fragments are linked in monopodal connectivity not found in nature. Apoxidoles are efficiently accessible by an enantioselective [4+2] annulation reaction. Biological evaluation revealed that apoxidoles define a new potent type IV inhibitor chemotype of indoleamine 2,3-dioxygenase 1 (IDO1), a heme-containing enzyme considered a target for the treatment of neurodegeneration, autoimmunity and cancer. Apoxidoles target apo-IDO1, prevent heme binding and induce unique amino acid positioning as revealed by crystal structure analysis. Novel type IV apo-IDO1 inhibitors are in high demand, and apoxidoles may provide new opportunities for chemical biology and medicinal chemistry research.
Collapse
Affiliation(s)
- Caitlin Davies
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Lara Dötsch
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Maria Gessica Ciulla
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Current address: Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Elisabeth Hennes
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Kei Yoshida
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Raphael Gasper
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Rebecca Scheel
- Technical University of Dortmund, Department of Inorganic Chemistry, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS), Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Technical University of Dortmund, Department of Inorganic Chemistry, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Kamal Kumar
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Current address: AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str. 475, 42117, Wuppertal, Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
7
|
Davies C, Dötsch L, Ciulla MG, Hennes E, Yoshida K, Gasper R, Scheel R, Sievers S, Strohmann C, Kumar K, Ziegler S, Waldmann H. Identification of a Novel Pseudo‐Natural Product Type IV IDO1 Inhibitor Chemotype. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Caitlin Davies
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Lara Dötsch
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Maria Gessica Ciulla
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Elisabeth Hennes
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Kei Yoshida
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Raphael Gasper
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Crystallography and Biophysics Facility GERMANY
| | - Rebecca Scheel
- Technische Universität Dortmund: Technische Universitat Dortmund Inorganic Chemistry GERMANY
| | - Sonja Sievers
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Compound Management and Screening Center GERMANY
| | - Carsten Strohmann
- Technische Universität Dortmund: Technische Universitat Dortmund Inorganic Chemistry GERMANY
| | - Kamal Kumar
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Slava Ziegler
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Herbert Waldmann
- Max-Planck-Institute of Molecular Physiology: Max-Planck-Institut fur molekulare Physiologie Chemical Biology Otto-Hahn-Str. 11 44227 Dortmund GERMANY
| |
Collapse
|
8
|
He X, He G, Chu Z, Wu H, Wang J, Ge Y, Shen H, Zhang S, Shan J, Peng K, Wei Z, Zou Y, Xu Y, Zhu Q. Discovery of the First Potent IDO1/IDO2 Dual Inhibitors: A Promising Strategy for Cancer Immunotherapy. J Med Chem 2021; 64:17950-17968. [PMID: 34854662 DOI: 10.1021/acs.jmedchem.1c01305] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Indoleamine 2,3-dioxygenase-1 (IDO1) plays an important role in tumor immune escape. However, unsatisfactory clinical efficacies of selective IDO1 inhibitors have impeded their further development, suggesting that they do not exert sufficient antitumor effects by selectively inhibiting IDO1. IDO2, an isoenzyme of IDO1, is overexpressed in some human tumors, and emerging evidence suggests that concomitant inhibition of IDO1/2 may have synergistic effects in cancer treatment, revealing a promising cancer immunotherapeutic strategy. Herein, we describe the discovery of compound 4t, the first inhibitor targeting both IDO1/2 that has excellent in vitro inhibitory activity (IDO1 IC50 = 28 nM and IDO2 IC50 = 144 nM). Notably, 4t (TGI = 69.7%) exhibited significantly stronger in vivo antitumor potency than epacadostat (TGI = 49.4%) in CT26 xenograft mouse models, highlighting the advantages of IDO1/2 dual inhibitors for tumor immunotherapy. Preliminary mechanistic studies in vivo further identified that 4t exerts its antitumor effect by inhibiting IDO1/2.
Collapse
Affiliation(s)
- Xin He
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guangchao He
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhaoxing Chu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Huanhuan Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Junjie Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yiran Ge
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Shen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Shan Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jinxi Shan
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Kewen Peng
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yi Zou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yungen Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Qihua Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
9
|
Wu Y, Duan Q, Zou Y, Zhu Q, Xu Y. Discovery of novel IDO1 inhibitors targeting the protein's apo form through scaffold hopping from holo-IDO1 inhibitor. Bioorg Med Chem Lett 2021; 52:128373. [PMID: 34560264 DOI: 10.1016/j.bmcl.2021.128373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022]
Abstract
Immunomodulating enzyme IDO1 plays an important role in tumor immune resistance. Inhibiting IDO1 by small molecules with new mechanism of action is a potential strategy in IDO1 inhibitor development. Based on our urea derived compound originally binding with holo-IDO1, through scaffold hopping, a series of diisobutylaminophenyl hydroxyamidine compounds were designed. Unexpectedly, this novel class of IDO1 inhibitor does not target the holo form of IDO1 protein but displaces heme and binds to its apo form. Representative compound I-4 exhibits moderate potency with IC50 value of 0.44 μM in cell-based IDO1 assay, which has the potential to be developed for IDO1-related cancer treatment.
Collapse
Affiliation(s)
- Yunze Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qizhu Duan
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yi Zou
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qihua Zhu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
10
|
Hennes E, Lampe P, Dötsch L, Bruning N, Pulvermacher LM, Sievers S, Ziegler S, Waldmann H. Cell-Based Identification of New IDO1 Modulator Chemotypes. Angew Chem Int Ed Engl 2021; 60:9869-9874. [PMID: 33565680 PMCID: PMC8252559 DOI: 10.1002/anie.202016004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/08/2021] [Indexed: 12/12/2022]
Abstract
The immunoregulatory enzyme indoleamine-2,3-dioxygenase (IDO1) strengthens cancer immune escape, and inhibition of IDO1 by means of new chemotypes and mechanisms of action is considered a promising opportunity for IDO1 inhibitor discovery. IDO1 is a cofactor-binding, redox-sensitive protein, which calls for monitoring of IDO1 activity in its native cellular environment. We developed a new, robust fluorescence-based assay amenable to high throughput, which detects kynurenine in cells. Screening of a ca. 150 000-member compound library discovered unprecedented, potent IDO1 modulators with different mechanisms of action, including direct IDO1 inhibitors, regulators of IDO1 expression, and inhibitors of heme synthesis. Three IDO1-modulator chemotypes were identified that bind to apo-IDO1 and compete with the heme cofactor. Our new cell-based technology opens up novel opportunities for medicinal chemistry programs in immuno-oncology.
Collapse
Affiliation(s)
- Elisabeth Hennes
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.,Department of Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Philipp Lampe
- Compound Management and Screening Center, Otto-Hahn-Str.11, 44227, Dortmund, Germany
| | - Lara Dötsch
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.,Department of Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Nora Bruning
- Department of Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Lisa-Marie Pulvermacher
- Department of Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Sonja Sievers
- Compound Management and Screening Center, Otto-Hahn-Str.11, 44227, Dortmund, Germany
| | - Slava Ziegler
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.,Department of Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|