1
|
Song J, Zhai T, Hahm HS, Li Y, Mao H, Wang X, Jo J, Chang JW. Development of a Dual-Factor Activatable Covalent Targeted Photoacoustic Imaging Probe for Tumor Imaging. Angew Chem Int Ed Engl 2024; 63:e202410645. [PMID: 38935405 DOI: 10.1002/anie.202410645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 06/28/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging modality in biomedical imaging with superior imaging depth and specificity. However, PAI still has significant limitations, such as the background noise from endogenous chromophores. To overcome these limitations, we developed a covalent activity-based PAI probe, NOx-JS013, targeting NCEH1. NCEH1, a highly expressed and activated serine hydrolase in aggressive cancers, has the potential to be employed for the diagnosis of cancers. We show that NOx-JS013 labels active NCEH1 in live cells with high selectivity relative to other serine hydrolases. NOx-JS013 also presents its efficacy as a hypoxia-responsive imaging probe in live cells. Finally, NOx-JS013 successfully visualizes aggressive prostate cancer tumors in mouse models of PC3, while being negligibly detected in tumors of non-aggressive LNCaP mouse models. These findings show that NOx-JS013 has the potential to be used to develop precision PAI reagents for detecting metastatic progression in various cancers.
Collapse
Affiliation(s)
- Jiho Song
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, 30322, United States
| | - Tianqu Zhai
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Heung Sik Hahm
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, 30322, United States
| | - Yuancheng Li
- Department of Radiology and Imaging Science, Emory University, Atlanta, Georgia, 30322, United States
| | - Hui Mao
- Department of Radiology and Imaging Science, Emory University, Atlanta, Georgia, 30322, United States
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Janggun Jo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jae Won Chang
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, 30322, United States
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, 30322, United States
- Winship Cancer Institute, Emory University, Atlanta, Georgia, 30322, United States
| |
Collapse
|
2
|
Xu J, Lv Z, Wang L, Wu X, Tan B, Shen XC, Chen H. Tuning Tumor Targeting and Ratiometric Photoacoustic Imaging by Fine-Tuning Torsion Angle for Colorectal Liver Metastasis Diagnosis. Chemistry 2024; 30:e202402019. [PMID: 38923040 DOI: 10.1002/chem.202402019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Photoacoustic (PA) tomography is an emerging biomedical imaging technology for precision cancer medicine. Conventional small-molecule PA probes usually exhibit a single PA signal and poor tumor targeting that lack the imaging reliability. Here, we introduce a series of cyanine/hemicyanine interconversion dyes (denoted Cy-HCy) for PA/fluorescent dual-mode probe development that features optimized ratiometric PA imaging and tunable tumor-targeting ability for precise diagnosis and resection of colorectal cancer (CRC). Importantly, Cy-HCy can be presented in cyanine (inherent tumor targeting and long NIR PA wavelength) and hemicyanine (poor tumor targeting and short NIR PA wavelength) by fine-tuning torsion angle and the ingenious transformation between cyanine and hemicyanine through regulation optically tunable group endows the NIR ratiometric PA and tunable tumor-targeting properties. To demonstrate the applicability of Cy-HCy dyes, we designed the first small-molecule tumor-targeting and NIR ratiometric PA probe Cy-HCy-H2S for precise CRC liver metastasis diagnosis, activated by H2S (a CRC biomarker). Using this probe, we not only visualized the subcutaneous tumor and liver metastatic cancers in CRC mouse models but also realized PA and fluorescence image-guided tumor excision. We expect that Cy-HCy will be generalized for creating a wide variety of inherently tumor-targeting NIR ratiometric PA probes in oncological research and practice.
Collapse
Affiliation(s)
- Jinyuan Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhangkang Lv
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Liping Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xingqing Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bisui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
3
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
4
|
Wang X, Liew SS, Huang J, Hu Y, Wei X, Pu K. Dual-Locked Enzyme-Activatable Bioorthogonal Fluorescence Turn-On Imaging of Senescent Cancer Cells. J Am Chem Soc 2024; 146:22689-22698. [PMID: 39101919 DOI: 10.1021/jacs.4c07286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Bioorthogonal pretargeting optical imaging shows the potential for enhanced diagnosis and prognosis. However, the bioorthogonal handles, known for being "always reactive", may engage in reactions at unintended sites with their counterparts, resulting in nonspecific fluorescence activation and diminishing detection specificity. Meanwhile, despite the importance of detecting senescent cancer cells in cancer therapy, current methods mainly rely on common single senescence-associated biomarkers, which lack specificity for differentiating between various types of senescent cells. Herein, we report a dual-locked enzyme-activatable bioorthogonal fluorescence (DEBOF) turn-on imaging approach for the specific detection of senescent cancer cells. A dual-locked bioorthogonal targeting agent (DBTA) and a bioorthogonally activatable fluorescent imaging probe (BAP) are synthesized as the biorthogonal pair. DBTA is a tetrazine derivative dually caged by two enzyme-cleavable moieties, respectively, associated with senescence and cancer, which ensures that its bioorthogonal reactivity ("clickability") is only triggered in the presence of senescent cancer cells. BAP is a fluorophore caged by trans-cyclooctane (TCO), whose fluorescence is only activated upon bioorthogonal reaction between its TCO and the decaged tetrazine of DBTA. As such, the DEBOF imaging approach differentiates senescent cancer cells from nonsenescent cancer cells or other senescent cells, allowing noninvasive tracking of the population fluctuation of senescent cancer cells in the tumor of living mice to guide cancer therapies. This study thus provides a general molecular strategy for biomarker-activatable in vivo bioorthogonal pretargeting imaging with the potential to be applied to other imaging modalities beyond optics.
Collapse
Affiliation(s)
- Xinzhu Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Si Si Liew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Yuxuan Hu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
5
|
Müller M, Liu N, Gujrati V, Valavalkar A, Hartmann S, Anzenhofer P, Klemm U, Telek A, Dietzek-Ivanšić B, Hartschuh A, Ntziachristos V, Thorn-Seshold O. Merged Molecular Switches Excel as Optoacoustic Dyes: Azobenzene-Cyanines Are Loud and Photostable NIR Imaging Agents. Angew Chem Int Ed Engl 2024; 63:e202405636. [PMID: 38807438 DOI: 10.1002/anie.202405636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
Optoacoustic (or photoacoustic) imaging promises micron-resolution noninvasive bioimaging with much deeper penetration (>cm) than fluorescence. However, optoacoustic imaging of enzyme activity would require loud, photostable, NIR-absorbing molecular contrast agents, which remain unknown. Most organic molecular contrast agents are repurposed fluorophores, with severe shortcomings of photoinstability or phototoxicity under optoacoustic imaging, as consequences of their slow S1→S0 electronic relaxation. We now report that known fluorophores can be rationally modified to reach ultrafast S1→S0 rates, without much extra molecular complexity, simply by merging them with molecular switches. Here, we merge azobenzene switches with cyanine dyes to give ultrafast relaxation (<10 ps, >100-fold faster). Without even adapting instrument settings, these azohemicyanines display outstanding improvements in signal longevity (>1000-fold increase of photostability) and signal loudness (>3-fold even at time zero). We show why this simple but unexplored design strategy can still offer stronger performance in the future, and can also increase the spatial resolution and the quantitative linearity of photoacoustic response over extended longitudinal imaging. By bringing the world of molecular switches and rotors to bear on problems facing optoacoustic agents, this practical strategy will help to unleash the full potential of optoacoustic imaging in fundamental studies and translational uses.
Collapse
Affiliation(s)
- Markus Müller
- Department of Pharmacy, LMU Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Nian Liu
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM) School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Vipul Gujrati
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM) School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Abha Valavalkar
- Institute of Physical Chemistry, University of Jena, Lessingstraße 4, Jena, 07743, Germany
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Sean Hartmann
- Department of Chemistry, LMU Munich, Butenandtstrasse 8, Munich, 81377, Germany
| | - Pia Anzenhofer
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
| | - Uwe Klemm
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
| | - András Telek
- Department of Pharmacy, LMU Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, University of Jena, Lessingstraße 4, Jena, 07743, Germany
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Achim Hartschuh
- Department of Chemistry, LMU Munich, Butenandtstrasse 8, Munich, 81377, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM) School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | | |
Collapse
|
6
|
Li T, Yang ZC, Wang ZQ, Peng ZZ, Mao GJ, Jiang YQ, Li CY. A Tumor-Targeting Dual-Modal imaging probe for nitroreductase in vivo. Bioorg Chem 2024; 149:107531. [PMID: 38850779 DOI: 10.1016/j.bioorg.2024.107531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Nitroreductase (NTR) overexpression often occurs in tumors, highlighting the significance of effective NTR detection. Despite the utilization of various optical methods for this purpose, the absence of an efficient tumor-targeting optical probe for NTR detection remains a challenge. In this research, a novel tumor-targeting probe (Cy-Bio-NO2) is developed to perform dual-modal NTR detection using near-infrared fluorescence and photoacoustic techniques. This probe exhibits exceptional sensitivity and selectivity to NTR. Upon the reaction with NTR, Cy-Bio-NO2 demonstrates a distinct fluorescence "off-on" response at 800 nm, with an impressive detection limit of 12 ng/mL. Furthermore, the probe shows on-off photoacoustic signal with NTR. Cy-Bio-NO2 has been successfully employed for dual-modal NTR detection in living cells, specifically targeting biotin receptor-positive cancer cells for imaging purposes. Notably, this probe effectively detects tumor hypoxia through dual-modal imaging in tumor-bearing mice. The strategy of biotin incorporation markedly enhances the probe's tumor-targeting capability, facilitating its engagement in dual-modal imaging at tumor sites. This imaging capacity holds substantial promise as an accurate tool for cancer diagnosis.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Zhi-Chao Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Zhi-Qing Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Zhen-Zhen Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Yu-Qin Jiang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
7
|
Cheng Z, Benson S, Mendive-Tapia L, Nestoros E, Lochenie C, Seah D, Chang KY, Feng Y, Vendrell M. Enzyme-Activatable Near-Infrared Hemicyanines as Modular Scaffolds for in vivo Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202404587. [PMID: 38717316 DOI: 10.1002/anie.202404587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Indexed: 06/21/2024]
Abstract
Photodynamic therapy is an anti-cancer treatment that requires illumination of photosensitizers to induce local cell death. Current near-infrared organic photosensitizers are built from large and non-modular structures that cannot be tuned to improve safety and minimize off-target toxicity. This work describes a novel chemical platform to generate enzyme-activatable near-infrared photosensitizers. We optimized the Se-bridged hemicyanine scaffold to include caging groups and biocompatible moieties, and generated cathepsin-triggered photosensitizers for effective ablation of human glioblastoma cells. Furthermore, we demonstrated that enzyme-activatable Se-bridged hemicyanines are effective photosensitizers for the safe ablation of microtumors in vivo, creating new avenues in the chemical design of targeted anti-cancer photodynamic therapy agents.
Collapse
Affiliation(s)
- Zhiming Cheng
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Sam Benson
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Eleni Nestoros
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Charles Lochenie
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Deborah Seah
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Kai Yee Chang
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Yi Feng
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, EH4 2XR, Edinburgh, UK
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| |
Collapse
|
8
|
Brøndsted F, Stains CI. Xanthene-Based Dyes for Photoacoustic Imaging and their Use as Analyte-Responsive Probes. Chemistry 2024; 30:e202400598. [PMID: 38662806 PMCID: PMC11219268 DOI: 10.1002/chem.202400598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 06/15/2024]
Abstract
Developing imaging tools that can report on the presence of disease-relevant analytes in multicellular organisms can provide insight into fundamental disease mechanisms as well as provide diagnostic tools for the clinic. Photoacoustic imaging (PAI) is a light-in, sound-out imaging technique that allows for high resolution, deep-tissue imaging with applications in pre-clinical and point-of-care settings. The continued development of near-infrared (NIR) absorbing small-molecule dyes promises to improve the capabilities of this emerging imaging modality. For example, new dye scaffolds bearing chemoselective functionalities are enabling the detection and quantification of disease-relevant analytes through activity-based sensing (ABS) approaches. Recently described strategies to engineer NIR absorbing xanthenes have enabled development of analyte-responsive PAI probes using this classic dye scaffold. Herein, we present current strategies for red-shifting the spectral properties of xanthenes via bridging heteroatom or auxochrome modifications. Additionally, we explore how these strategies, coupled with chemoselective spiroring-opening approaches, have been employed to create ABS probes for in vivo detection of hypochlorous acid, nitric oxide, copper (II), human NAD(P)H: quinone oxidoreductase isozyme 1, and carbon monoxide. Given the versatility of the xanthene scaffold, we anticipate continued growth and development of analyte-responsive PAI imaging probes based on this dye class.
Collapse
Affiliation(s)
- Frederik Brøndsted
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
| | - Cliff I Stains
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
- University of Virginia Cancer Center, University of Virginia, 22908, Charlottesville, VA, USA
- Virginia Drug Discovery Consortium, 24061, Blacksburg, VA, USA
| |
Collapse
|
9
|
Wei X, Xu C, Cheng P, Hu Y, Liu J, Xu M, Huang J, Zhang Y, Pu K. Leveraging Long-Distance Singlet-Oxygen Transfer for Bienzyme-Locked Afterglow Imaging of Intratumoral Granule Enzymes. J Am Chem Soc 2024; 146:17393-17403. [PMID: 38860693 DOI: 10.1021/jacs.4c05012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Dual-locked activatable optical probes, leveraging the orthogonal effects of two biomarkers, hold great promise for the specific imaging of biological processes. However, their design approaches are limited to a short-distance energy or charge transfer mechanism, while the signal readout relies on fluorescence, which inevitably suffers from tissue autofluorescence. Herein, we report a long-distance singlet oxygen transfer approach to develop a bienzyme-locked activatable afterglow probe (BAAP) that emits long-lasting self-luminescence without real-time light excitation for the dynamic imaging of an intratumoral granule enzyme. Composed of an immuno-biomarker-activatable singlet oxygen (1O2) donor and a cancer-biomarker-activatable 1O2 acceptor, BAAP is initially nonafterglow. Only in the presence of both immune and cancer biomarkers can 1O2 be generated by the activated donor and subsequently diffuse toward the activated acceptor, resulting in bright near-infrared afterglow with a high signal-to-background ratio and specificity toward an intratumoral granule enzyme. Thus, BAAP allows for real-time tracking of tumor-infiltrating cytotoxic T lymphocytes, enabling the evaluation of cancer immunotherapy and the differentiation of tumor from local inflammation with superb sensitivity and specificity, which are unachievable by single-locked probes. Thus, this study not only presents the first dual-locked afterglow probe but also proposes a new design way toward dual-locked probes via reactive oxygen species transfer processes.
Collapse
Affiliation(s)
- Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Yuxuan Hu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
10
|
Wang C, Yuan R, Ma S, Miao Q, Zhao X, Liu Y, Bi S, Chen G. Developing NIR xanthene-chalcone fluorophores with large Stokes shifts for fluorescence imaging. Analyst 2024; 149:3372-3379. [PMID: 38712551 DOI: 10.1039/d4an00339j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A series of novel near-infrared (NIR) xanthene-chalcone fluorophores were constructed through a modular synthesis with the electron-donating xanthene moiety and the electron-withdrawing chalcone moiety. These fluorophores are convenient for fluorescence imaging in living cells, benefiting from their NIR emissions (650-710 nm), large Stokes shifts (>100 nm), moderate quantum yields and low cytotoxicity. The substituted hydroxyl group of the xanthene-chalcone fluorophore HCA-E facilitates the development of multifunctional fluorescent probes. As an example, a highly sensitive and selective probe N-HCA-E for glutathione (GSH) detection was developed based on the fluorophore HCA-E. A 4-nitrobenzenesulfonyl (4-Ns) group was introduced to cage the hydroxyl group of HCA-E, which was used as a selective recognition site for the thiol of GSH and an effective fluorescence quencher. Probe N-HCA-E revealed NIR "turn-on" fluorescence (709 nm) for endogenous and exogenous GSH detection in lysosomes with a large Stokes shift (129 nm) and high anti-interference ability.
Collapse
Affiliation(s)
- Chao Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Rongrong Yuan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Siyue Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Qing Miao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Xufang Zhao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Yuxia Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Guang Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| |
Collapse
|
11
|
Xu M, Sun Q, Wang X, Gao H, Liu Z. Near-Infrared Absorbing BODIPY-Xanthene Hybrids for Multiplexed Photoacoustic Imaging. Org Lett 2024; 26:3750-3755. [PMID: 38667340 DOI: 10.1021/acs.orglett.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
We report a series of ethenylene-bridged D-π-A BODIPY-xanthene hybrid dyes with precisely regulated absorption bands ranging from the far-red to the near-infrared region (NIR, 700-1000 nm) through rational molecular design. These dyes have excellent photoacoustic properties, and their biocompatibility can be significantly improved by facilely introducing water-soluble groups. In vivo two-channel multiplexed photoacoustic imaging demonstrated their high-resolution imaging capabilities, making them promising candidates for future NIR bioimaging applications.
Collapse
Affiliation(s)
- Mohan Xu
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qian Sun
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xiaoqing Wang
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Hu Gao
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhipeng Liu
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
12
|
He Y, Yang M, Cui J, Zhao C, Jiang B, Guan J, Zhou X, He M, Zhen Y, Zhang Y, Jing R, Wang Q, Qin Y, Wu L. Non-invasive diagnosis of bacterial and non-bacterial inflammations using a dual-enzyme-responsive fluorescent indicator. Chem Sci 2024; 15:5775-5785. [PMID: 38638235 PMCID: PMC11023053 DOI: 10.1039/d3sc06866h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
Bacterial infections, as the second leading cause of global death, are commonly treated with antibiotics. However, the improper use of antibiotics contributes to the development of bacterial resistance. Therefore, the accurate differentiation between bacterial and non-bacterial inflammations is of utmost importance in the judicious administration of clinical antibiotics and the prevention of bacterial resistance. However, as of now, no fluorescent probes have yet been designed for the relevant assessments. To this end, the present study reports the development of a novel fluorescence probe (CyQ) that exhibits dual-enzyme responsiveness. The designed probe demonstrated excellent sensitivity in detecting NTR and NAD(P)H, which served as critical indicators for bacterial and non-bacterial inflammations. The utilization of CyQ enabled the efficient detection of NTR and NAD(P)H in distinct channels, exhibiting impressive detection limits of 0.26 μg mL-1 for NTR and 5.54 μM for NAD(P)H, respectively. Experimental trials conducted on living cells demonstrated CyQ's ability to differentiate the variations in NTR and NAD(P)H levels between A. baumannii, S. aureus, E. faecium, and P. aeruginosa-infected as well as LPS-stimulated HUVEC cells. Furthermore, in vivo zebrafish experiments demonstrated the efficacy of CyQ in accurately discerning variations in NTR and NAD(P)H levels resulting from bacterial infection or LPS stimulation, thereby facilitating non-invasive detection of both bacterial and non-bacterial inflammations. The outstanding discriminatory ability of CyQ between bacterial and non-bacterial inflammation positions it as a promising clinical diagnostic tool for acute inflammations.
Collapse
Affiliation(s)
- Yue He
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Majun Yang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Jingyi Cui
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University No. 20, Xisi Road Nantong 226001 Jiangsu China
| | - Can Zhao
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Bin Jiang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Jiayun Guan
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Xiaobo Zhou
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Miao He
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Yaya Zhen
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Yuxue Zhang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Rongrong Jing
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University No. 20, Xisi Road Nantong 226001 Jiangsu China
| | - Qi Wang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Yuling Qin
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Li Wu
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
- School of Life Science, Nantong University Nantong 226001 China
| |
Collapse
|
13
|
Jiang G, Liu H, Deng G, Liu H, Zhou Z, Ren TB, Wang L, Zhang XB, Yuan L. "Zero" Intrinsic Fluorescence Sensing-Platforms Enable Ultrasensitive Whole Blood Diagnosis and In Vivo Imaging. Angew Chem Int Ed Engl 2024; 63:e202400637. [PMID: 38409519 DOI: 10.1002/anie.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Abnormal physiological processes and diseases can lead to content or activity fluctuations of biocomponents in organelles and whole blood. However, precise monitoring of these abnormalities remains extremely challenging due to the insufficient sensitivity and accuracy of available fluorescence probes, which can be attributed to the background fluorescence arising from two sources, 1) biocomponent autofluorescence (BCAF) and 2) probe intrinsic fluorescence (PIF). To overcome these obstacles, we have re-engineered far-red to NIR II rhodol derivatives that possess weak BCAF interference. And a series of "zero" PIF sensing-platforms were created by systematically regulating the open-loop/spirocyclic forms. Leveraging these advancements, we devised various ultra-sensitive NIR indicators, achieving substantial fluorescence boosts (190 to 1300-fold). Among these indicators, 8-LAP demonstrated accurate tracking and quantifying of leucine aminopeptidase (LAP) in whole blood at various stages of tumor metastasis. Furthermore, coupling 8-LAP with an endoplasmic reticulum-targeting element enabled the detection of ERAP1 activity in HCT116 cells with p53 abnormalities. This delicate design of eliminating PIF provides insights into enhancing the sensitivity and accuracy of existing fluorescence probes toward the detection and imaging of biocomponents in abnormal physiological processes and diseases.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Guohui Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Zhixuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Lu Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
14
|
Qi FY, Qiao L, Peng L, Yang Y, Zhang CH, Liu X. An activatable fluorescent-photoacoustic dual-modal probe for highly sensitive imaging of nitroxyl in vivo. Analyst 2024; 149:2299-2305. [PMID: 38516833 DOI: 10.1039/d4an00188e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Nitroxyl (HNO) plays a vital role in various biological functions and pharmacological activities, so the development of an excellent near-infrared fluorescent (NIRF) and photoacoustic (PA) dual-modality probe is crucial for understanding HNO-related physiological and pathological progression. Herein, we proposed and synthesized a novel NIRF/PA dual probe (QL-HNO) by substituting an indole with quinolinium in hemicyanine for the sensitive detection of exogenous and endogenous HNO in vivo. The designed probe showed the highest sensitivity in NIRF mode and a desirable PA signal-to-noise ratio for HNO detection in vitro and was further applied for NIRF/PA dual-modal imaging of HNO with high contrast in living cells and tumor-bearing animals. Based on the excellent performance of QL-HNO, we believe that this study provides a promising molecular tool for further understanding of HNO-related physiological and pathological progression.
Collapse
Affiliation(s)
- Fang-Yuan Qi
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Lei Qiao
- Central Laboratory of the Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Xuzhou 221116, Jiangsu, China.
| | - Lan Peng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Yu Yang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Chong-Hua Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Xianjun Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| |
Collapse
|
15
|
Jiang G, Liu H, Liu H, Ke G, Ren TB, Xiong B, Zhang XB, Yuan L. Chemical Approaches to Optimize the Properties of Organic Fluorophores for Imaging and Sensing. Angew Chem Int Ed Engl 2024; 63:e202315217. [PMID: 38081782 DOI: 10.1002/anie.202315217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/30/2023]
Abstract
Organic fluorophores are indispensable tools in cells, tissue and in vivo imaging, and have enabled much progress in the wide range of biological and biomedical fields. However, many available dyes suffer from insufficient performances, such as short absorption and emission wavelength, low brightness, poor stability, small Stokes shift, and unsuitable permeability, restricting their application in advanced imaging technology and complex imaging. Over the past two decades, many efforts have been made to improve these performances of fluorophores. Starting with the luminescence principle of fluorophores, this review clarifies the mechanisms of the insufficient performance for traditional fluorophores to a certain extent, systematically summarizes the modified approaches of optimizing properties, highlights the typical applications of the improved fluorophores in imaging and sensing, and indicates existing problems and challenges in this area. This progress not only proves the significance of improving fluorophores properties, but also provide a theoretical guidance for the development of high-performance fluorophores.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|
16
|
Wang Y, Huo F, Yin C. Development of Human Serum Albumin Fluorescent Probes in Detection, Imaging, and Disease Therapy. J Phys Chem B 2024; 128:1121-1138. [PMID: 38266243 DOI: 10.1021/acs.jpcb.3c06915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Human serum albumin (HSA) acts as a repository and transporter of substances in the blood. An abnormal concentration may indicate the occurrence of liver- and kidney-related diseases, which has attracted people to investigate the precise quantification of HSA in body fluids. Fluorescent probes can combine with HSA covalently or noncovalently to quantify HSA in urine and plasma. Moreover, probes combined with HSA can improve its photophysical properties; probe-HSA has been applied in real-time monitoring and photothermal and photodynamic therapy in vivo. This Review will introduce fluorescent probes for quantitative HSA according to the three reaction mechanisms of spatial structure, enzymatic reaction, and self-assembly and systematically introduce the application of probes combined with HSA in disease imaging and phototherapy. It will help develop multifunctional applications for HSA probes and provide assistance in the early diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
17
|
Brøndsted F, Fang Y, Li L, Zhou X, Grant S, Stains CI. Single Atom Stabilization of Phosphinate Ester-Containing Rhodamines Yields Cell Permeable Probes for Turn-On Photoacoustic Imaging. Chemistry 2024; 30:e202303038. [PMID: 37852935 PMCID: PMC10926271 DOI: 10.1002/chem.202303038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Photoacoustic imaging (PAI) is an emerging imaging technique that uses pulsed laser excitation with near-infrared (NIR) light to elicit local temperature increases through non-radiative relaxation events, ultimately leading to the production of ultrasound waves. The classical xanthene dye scaffold has found numerous applications in fluorescence imaging, however, xanthenes are rarely utilized for PAI since they do not typically display NIR absorbance. Herein, we report the ability of Nebraska Red (NR) xanthene dyes to produce photoacoustic (PA) signal and provide a rational design approach to reduce the hydrolysis rate of ester containing dyes, affording cell permeable probes. To demonstrate the utility of this approach, we construct the first cell permeable rhodamine-based, turn-on PAI imaging probe for hypochlorous acid (HOCl) with maximal absorbance within the range of commercial PA instrumentation. This probe, termed SNR700 -HOCl, is capable of detecting exogenous HOCl in mice. This work provides a new set of rhodamine-based PAI agents as well as a rational design approach to stabilize esterified versions of NR dyes with desirable properties for PAI. In the long term, the reagents described herein could be utilized to enable non-invasive imaging of HOCl in disease-relevant model systems.
Collapse
Affiliation(s)
- Frederik Brøndsted
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
| | - Yuan Fang
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
| | - Lin Li
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, 23298, Richmond, VA, USA
| | - Xinqi Zhou
- Department of Chemistry, University of Nebraska-Lincoln, 68588, Lincoln, NE, USA
- Current Address: Department of Chemistry, University of California, 94720, Berkeley, CA, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, 23298, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University, 23298, Richmond, VA, USA
| | - Cliff I Stains
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
- University of Virginia Cancer Center, University of Virginia, 22908, Charlottesville, VA, USA
- Virginia Drug Discovery Consortium, 24061, Blacksburg, VA, USA
| |
Collapse
|
18
|
Qin X, Liu X, Wang J, Chen H, Shen XC. A NIR ratiometric fluorescent probe for the rapid detection of hydrogen sulfide in living cells and zebrafish. Talanta 2024; 266:125043. [PMID: 37556949 DOI: 10.1016/j.talanta.2023.125043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Hydrogen sulfide (H2S) acts as a gas transporter and cell protector and plays a role in a number of disorders and signaling processes. Given that the half-life of H2S in biological systems is between seconds and minutes, the development of rapid and accurate technologies for reliable monitoring H2S levels and dynamics in organisms is critical. However, it is still difficult to design innovative near-infrared fluorescent probes that can quickly and accurately detect H2S. Here, we constructed a novel NIR ratiometric fluorescent probe based on the "aldehyde group auxiliary strategy", Cy-H2S, for the quantitative detection and precise imaging of H2S in living cells and zebrafish. Cy-H2S responded quickly (150 s) and was highly sensitive (0.179 μM) to H2S donor. Cy-H2S was further successfully employed to track endogenous H2S fluctuation in HCT116 cells and zebrafish and evaluated the release efficiency of the H2S prodrug in a NIR ratiometric imaging way. Cy-H2S has the potential to be used as a reliable indication of H2S levels in living cells and zebrafish, as well as an innovative and practical instrument for furthering the physiological research of H2S, which will encourage the creation of advanced NIR ratiometric probes for a variety of biological applications.
Collapse
Affiliation(s)
- Xue Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Xingyue Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Jing Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China.
| |
Collapse
|
19
|
Deen MC, Gilormini PA, Vocadlo DJ. Strategies for quantifying the enzymatic activities of glycoside hydrolases within cells and in vivo. Curr Opin Chem Biol 2023; 77:102403. [PMID: 37856901 DOI: 10.1016/j.cbpa.2023.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
Within their native milieu of the cell, the activities of enzymes are controlled by a range of factors including protein interactions and post-translational modifications. The involvement of these factors in fundamental cell biology and the etiology of diseases is stimulating interest in monitoring enzyme activities within tissues. The creation of synthetic substrates, and their use with different imaging modalities, to detect and quantify enzyme activities has great potential to propel these areas of research. Here we describe the latest developments relating to the creation of substrates for imaging and quantifying the activities of glycoside hydrolases, focusing on mammalian systems. The limitations of current tools and the difficulties within the field are summarised, as are prospects for overcoming these challenges.
Collapse
Affiliation(s)
- Matthew C Deen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Pierre-André Gilormini
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
20
|
Yu Z, Moshood Y, Wozniak MK, Patel S, Terpstra K, Llano DA, Dobrucki LW, Mirica LM. Amphiphilic Molecules Exhibiting Zwitterionic Excited-State Intramolecular Proton Transfer and Near-Infrared Emission for the Detection of Amyloid β Aggregates in Alzheimer's Disease. Chemistry 2023; 29:e202302408. [PMID: 37616059 PMCID: PMC10840928 DOI: 10.1002/chem.202302408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Chromophores with zwitterionic excited-state intramolecular proton transfer (ESIPT) have been shown to have larger Stock shifts and red-shifted emission wavelengths compared to the conventional π-delocalized ESIPT molecules. However, there is still a dearth of design strategies to expand the current library of zwitterionic ESIPT compounds. Herein, a novel zwitterionic excited-state intramolecular proton transfer system is reported, enabled by addition of 1,4,7-triazacyclononane (TACN) fragments on a dicyanomethylene-4H-pyran (DCM) scaffold. The solvent-dependent steady-state photophysical studies, pKa measurements, and computational analysis strongly support that the ESIPT process is more efficient with two TACN groups attached to the DCM scaffold and not affected by polar protic solvents. Impressively, compound DCM-OH-2-DT exhibits a near-infrared (NIR) emission at 740 nm along with an uncommonly large Stokes shift. Moreover, DCM-OH-2-DT shows high affinity towards soluble amyloid β (Aβ) oligomers in vitro and in 5xFAD mouse brain sections, and we have successfully applied DCM-OH-2-DT for the in vivo imaging of Aβ aggregates and demonstrated its potential use as an early diagnostic agent for AD. Overall, this study can provide a general molecular design strategy for developing new zwitterionic ESIPT compounds with NIR emission in vivo imaging applications.
Collapse
Affiliation(s)
- Zhengxin Yu
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yusuff Moshood
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Marcin K. Wozniak
- Beckman Institute for Advanced Science and Technology, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana IL 61801, United States
| | - Shrey Patel
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Karna Terpstra
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Daniel A. Llano
- Beckman Institute for Advanced Science and Technology, Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana IL 61801, United States
| | - Lawrence W. Dobrucki
- Beckman Institute for Advanced Science and Technology, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana IL 61801, United States
| | - Liviu M. Mirica
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, United States
| |
Collapse
|
21
|
Feng B, Chu F, Bi A, Huang X, Fang Y, Liu M, Chen F, Li Y, Zeng W. Fidelity-oriented fluorescence imaging probes for beta-galactosidase: From accurate diagnosis to precise treatment. Biotechnol Adv 2023; 68:108244. [PMID: 37652143 DOI: 10.1016/j.biotechadv.2023.108244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Beta-galactosidase (β-gal), a typical glycosidase catalyzing the hydrolysis of glycosidic bonds, is regarded as a vital biomarker for cell senescence and cancer occurrence. Given the advantages of high spatiotemporal resolution, high sensitivity, non-invasiveness, and being free of ionizing radiations, fluorescent imaging technology provides an excellent choice for in vivo imaging of β-gal. In this review, we detail the representative biotech advances of fluorescence imaging probes for β-gal bearing diverse fidelity-oriented improvements to elucidate their future potential in preclinical research and clinical application. Next, we propose the comprehensive design strategies of imaging probes for β-gal with respect of high fidelity. Considering the systematic implementation approaches, a range of high-fidelity imaging-guided theragnostic are adopted for the individual β-gal-associated biological scenarios. Finally, current challenges and future trends are proposed to promote the next development of imaging agents for individual and specific application scenarios.
Collapse
Affiliation(s)
- Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Feiyi Chu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Anyao Bi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China; Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410078, China
| | - Xueyan Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Yanpeng Fang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Meihui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Yanbing Li
- Department of Clinical Laboratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China.
| |
Collapse
|
22
|
Ma Y, Sun W, Ye Z, Liu L, Li M, Shang J, Xu X, Cao H, Xu L, Liu Y, Kong X, Song G, Zhang XB. Oxidative stress biomarker triggered multiplexed tool for auxiliary diagnosis of atherosclerosis. SCIENCE ADVANCES 2023; 9:eadh1037. [PMID: 37831761 PMCID: PMC10575586 DOI: 10.1126/sciadv.adh1037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
Oxidative stress is integral in the development of atherosclerosis, but knowledge of how oxidative stress affects atherosclerosis remains insufficient. Here, we design a multiplexed diagnostic tool that includes two functions (photoacoustic imaging and urinalysis), for assessing intraplaque and urinary malondialdehyde (MDA), a well-recognized end-product of oxidative stress. Molecular design is conducted to develop the first near-infrared MDA-responsive molecule (MRM). Acid-unlocked ratiometric photoacoustic nanoprobe is designed to report intraplaque MDA, enabling it to reflect plaque burden. Furthermore, MRM is tailored for urinary MDA detection with excellent specificity in a blind study. Moreover, we found a significant difference in urinary MDA between healthy adults and atherosclerotic patients (more than 600 participants). Combining these two functions, such a multiplexed diagnostic tool can dynamically report intraplaque and systemic oxidative stress levels during atherosclerosis progression, pneumonia infection, and drug treatment in atherosclerotic mice, which is promising for the auxiliary diagnosis of atherosclerosis.
Collapse
Affiliation(s)
- Yuan Ma
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Zhifei Ye
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Liuhui Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Menghuan Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jinhui Shang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinyu Xu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hui Cao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Li Xu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongchao Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiangqing Kong
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Guosheng Song
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
23
|
Ji Z, Zheng J, Ma Y, Lei H, Lin W, Huang J, Yang H, Zhang G, Li B, Shu B, Du X, Zhang J, Lin H, Liao Y. Emergency Treatment and Photoacoustic Assessment of Spinal Cord Injury Using Reversible Dual-Signal Transform-Based Selenium Antioxidant. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207888. [PMID: 37127878 DOI: 10.1002/smll.202207888] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Spinal cord injury (SCI), following explosive oxidative stress, causes an abrupt and irreversible pathological deterioration of the central nervous system. Thus, preventing secondary injuries caused by reactive oxygen species (ROS), as well as monitoring and assessing the recovery from SCI are critical for the emergency treatment of SCI. Herein, an emergency treatment strategy is developed for SCI based on the selenium (Se) matrix antioxidant system to effectively inhibit oxidative stress-induced damage and simultaneously real-time evaluate the severity of SCI using a reversible dual-photoacoustic signal (680 and 750 nm). Within the emergency treatment and photoacoustic severity assessment (ETPSA) strategy, the designed Se loaded boron dipyrromethene dye with a double hydroxyl group (Se@BDP-DOH) is simultaneously used as a sensitive reporter group and an excellent antioxidant for effectively eliminating explosive oxidative stress. Se@BDP-DOH is found to promote the recovery of both spinal cord tissue and locomotor function in mice with SCI. Furthermore, ETPSA strategy synergistically enhanced ROS consumption via the caveolin 1 (Cav 1)-related pathways, as confirmed upon treatment with Cav 1 siRNA. Therefore, the ETPSA strategy is a potential tool for improving emergency treatment and photoacoustic assessment of SCI.
Collapse
Affiliation(s)
- Zhisheng Ji
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, P. R. China
| | - Judun Zheng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, P. R. China
| | - Yanming Ma
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, P. R. China
| | - Hongyi Lei
- Department of Anesthesiology, Longgang District Central Hospital of Shenzhen, Shenzhen, 518100, P. R. China
| | - Weiqiang Lin
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, P. R. China
| | - Jialin Huang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, P. R. China
| | - Hua Yang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, P. R. China
| | - Guowei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, P. R. China
| | - Bin Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, P. R. China
| | - Bowen Shu
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, P. R. China
| | - Xianjin Du
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Jian Zhang
- Department of Biomedical Engineering, School of Basic Medical Science, Guang-zhou Medical University, Guangzhou, 511436, P. R. China
| | - Hongsheng Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, P. R. China
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, P. R. China
- Department of Anesthesiology, Longgang District Central Hospital of Shenzhen, Shenzhen, 518100, P. R. China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, P. R. China
| |
Collapse
|
24
|
Lee M, Landers K, Chan J. Activity-Based Photoacoustic Probes for Detection of Disease Biomarkers beyond Oncology. ACS BIO & MED CHEM AU 2023; 3:223-232. [PMID: 37363076 PMCID: PMC10288495 DOI: 10.1021/acsbiomedchemau.3c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/28/2023]
Abstract
The earliest activity-based photoacoustic (PA) probes were developed as diagnostic agents for cancer. Since this seminal work over a decade ago that specifically targeted matrix metalloproteinase-2, PA instrumentation, dye platforms, and probe designs have advanced considerably, allowing for the detection of an impressive list of cancer types. However, beyond imaging for oncology purposes, the ability to selectively visualize a given disease biomarker, which can range from aberrant enzymatic activity to the overproduction of reactive small molecules, is also being exploited to study a myriad of noncancerous disease states. In this review, we have assembled a collection of recent papers to highlight the design principles that enable activity-based sensing via PA imaging with respect to biomarker identification and strategies to trigger probe activation under specific conditions.
Collapse
Affiliation(s)
- Michael
C. Lee
- Department of Chemistry,
Beckman Institute for Advanced Science and Technology, and Cancer
Center at Illinois, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United
States
| | - Kayla Landers
- Department of Chemistry,
Beckman Institute for Advanced Science and Technology, and Cancer
Center at Illinois, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United
States
| | - Jefferson Chan
- Department of Chemistry,
Beckman Institute for Advanced Science and Technology, and Cancer
Center at Illinois, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United
States
| |
Collapse
|
25
|
Zhang L, Yan C, Zhang Y, Ma D, Huang J, Zhao Z, Tao Y, Liu C, Li J, Zhu WH, Guo Z. Activatable BODIPY-chromene NIR-II probes with small spectral crosstalk enable high-contrast in vivo bioimaging. Chem Commun (Camb) 2023. [PMID: 37305995 DOI: 10.1039/d3cc01742g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we design a novel "crossbreeding" dye (BC-OH) within the second near-infrared (NIR-II) window based on BODIPY and chromene chromophores. BC-OH can serve as a platform to construct activatable NIR-II probes with small spectral crosstalk, thereby making a breakthrough in imaging in vivo H2O2 fluctuation in an APAP-induced liver injury model with high signal-to-background ratio.
Collapse
Affiliation(s)
- Liao Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Chenxu Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Yutao Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Dun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Jialiang Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Zijun Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Yining Tao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Caiqi Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Juan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
26
|
Xiang MH, Jiang ZY, Zhao WL, Zhang E, Xia L, Kong RM, Zhao Y, Kong W, Liu X, Qu F, Tan W. Activatable Near-Infrared Fluorescent and Photoacoustic Dual-Modal Probe for Highly Sensitive Imaging of Sulfatase In Vivo. ACS Sens 2023; 8:2021-2029. [PMID: 37167101 DOI: 10.1021/acssensors.3c00201] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Sulfatase is an important biomarker closely associated with various diseases. However, the state-of-the-art sulfatase probes are plagued with a short absorption/emission wavelength and limited sensitivity. Developing highly sensitive fluorescent probes for in vivo imaging of sulfatase remains a grand challenge. Herein, for the first time, an activatable near-infrared fluorescence/photoacoustic (NIRF/PA) dual-modal probe (Hcy-SA) for visualizing sulfatase activity in living cells and animals is developed. Hcy-SA is composed of a sulfate ester moiety as the recognition unit and a NIR fluorophore hemicyanine (Hcy-OH) as the NIRF/PA reporter. The designed probe exhibits a rapid response, excellent sensitivity, and high specificity for sulfatase detection in vitro. More importantly, cells and in vivo experiments confirm that Hcy-SA can be successfully applied for PA/NIRF dual-modal imaging of sulfatase activity in living sulfatase-overexpressed tumor cells and tumor-bearing animals. This probe can serve as a promising tool for sulfatase-related pathological research and cancer diagnosis.
Collapse
Affiliation(s)
- Mei-Hao Xiang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Zhi-Yuan Jiang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Wen-Long Zhao
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Ensheng Zhang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Lian Xia
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Rong-Mei Kong
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Weiheng Kong
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Xianjun Liu
- College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
- Cancer Hospital of Zhejiang Province, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Weihong Tan
- Cancer Hospital of Zhejiang Province, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| |
Collapse
|
27
|
Zhang L, Jiao Y, Yang H, Jia X, Li H, He C, Si W, Duan C. Supramolecular Host-Guest Strategy for the Accelerating Detection of Nitroreductase. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21198-21209. [PMID: 37070853 DOI: 10.1021/acsami.2c22851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Identifying nitroreductase (NTR) with fluorescent techniques has become a research hotspot, due to its good sensitivity and selectivity toward the early-stage cancer diagnosis and monitoring. Herein, a host-guest reporter (NAQA⊂Zn-MPPB) is successfully achieved by encapsulating the NTR probe NAQA into a new NADH-functioned metal-organic cage Zn-MPPB, which makes the reporter for ultrafast detection of NTR within dozens of seconds in solution. The host-guest strategy fuses the Zn-MPPB and NAQA to form a pseudomolecule material, which changes the reaction process of NTR and NAQA from a double substrates mechanism to a single substrate one, and accelerates the reduction efficiency of NAQA. This advantage make the new host-guest reporter exhibit a linear relationship between emission changes and NTR concentration, and it shows better sensitively toward NTR than that of NAQA. Additionally, the positively charged water-soluble metal-organic cage can encapsulate NAQA in the cavity, promote it to dissolve in an aqueous environment, and facilitate their accumulation into tumor cells. As expected, such host-guest reporter displays a fast and high efficiently imaging capability toward NTR in tumor cells and tumor-bearing mice, and flow cytometry assay is conducted to corroborate the capability as well, implying the considerably potential of host-guest strategy for early tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Lei Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yang Jiao
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Hui Yang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Xianchao Jia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Huiyang Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Wen Si
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
28
|
Fang M, Zhou X, Wang S, Yang Y, Cheng Y, Wang B, Rong X, Zhang X, Xu K, Zhang Y, Zheng S. A novel near-infrared fluorescent probe with hemicyanine scaffold for sensitive mitochondrial pH detection and mitophagy study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 298:122791. [PMID: 37141839 DOI: 10.1016/j.saa.2023.122791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Mitochondria, as an energy-producing powerhouse in live cells, is considered to be directly linked to cellular health. However, dysfunctional mitochondria and abnormal mitochondria pH would possibly activate mitophagy, cell apoptosis and intercellular acidification process. In this work, we synthesized a novel near infrared fluorescent probe (FNIR-pH) for measurement of mitochondrial pH based on the hemicyanine skeleton as a fluorophore. The FNIR-pH probe functioned as a mitochondrial pH substrate and exhibited quick and sensitive turn-on fluorescence responses to mitochondrial pH in basic solution due to the deprotonation of hydroxy group in the structure. From pH 3.0 to 10.0, the FNIR-pH exhibited almost 100-fold increase in fluorescence intensity at 766 nm wavelength. The FNIR-pH also displayed superior selectivity to various metal ions, excellent photostability, and low cytotoxicity, which facilitated further biological application. Owing to the proper pKa value of 7.2, the FNIR-pH paved the way for real-time monitoring of mitochondria pH changes in live cells and sensitive sensing of mitophagy. Moreover, the FNIR-pH probe was also implemented for fluorescent imaging of tumor-bearing mice to validate its potential application for in vivo imaging of bioanalytes and biomarkers.
Collapse
Affiliation(s)
- Mingxi Fang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoyu Zhou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China
| | - Shaocai Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China
| | - Yinshuang Yang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China
| | - Yueting Cheng
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, PR China
| | - Boling Wang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, PR China
| | - Xiaoqian Rong
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, PR China
| | - Xiuli Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China.
| | - Yibin Zhang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, PR China.
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China.
| |
Collapse
|
29
|
East AK, Lee MC, Jiang C, Sikander Q, Chan J. Biomimetic Approach to Promote Cellular Uptake and Enhance Photoacoustic Properties of Tumor-Seeking Dyes. J Am Chem Soc 2023; 145:7313-7322. [PMID: 36973171 PMCID: PMC10120057 DOI: 10.1021/jacs.2c13489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The attachment of glucose to drugs and imaging agents enables cancer cell targeting via interactions with GLUT1 overexpressed on the cell surface. While an added benefit of this modification is the solubilizing effect of carbohydrates, in the context of imaging agents, aqueous solubility does not guarantee decreased π-stacking or aggregation. The resulting broadening of the absorbance spectrum is a detriment to photoacoustic (PA) imaging since the signal intensity, accuracy, and image quality all rely on reliable spectral unmixing. To address this major limitation and further enhance the tumor-targeting ability of imaging agents, we have taken a biomimetic approach to design a multivalent glucose moiety (mvGlu). We showcase the utility of this new group by developing aza-BODIPY-based contrast agents boasting a significant PA signal enhancement greater than 11-fold after spectral unmixing. Moreover, when applied to targeting cancer cells, effective staining could be achieved with ultra-low dye concentrations (50 nM) and compared to a non-targeted analogue, the signal intensity was >1000-fold higher. Lastly, we employed the mvGlu technology to develop a logic-gated acoustogenic probe to detect intratumoral copper (i.e., Cu(I)), which is an emerging cancer biomarker, in a murine model of breast cancer. This exciting application was not possible using other acoustogenic probes previously developed for copper sensing.
Collapse
Affiliation(s)
- Amanda K East
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael C Lee
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chang Jiang
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Qasim Sikander
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
30
|
Yao S, Chen Y, Ding W, Xu F, Liu Z, Li Y, Wu Y, Li S, He W, Guo Z. Single-atom engineering of hemicyanine and its amphiphilic derivative for optimized near infrared phototheranostics. Chem Sci 2023; 14:1234-1243. [PMID: 36756327 PMCID: PMC9891367 DOI: 10.1039/d2sc05982g] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Near-infrared (NIR) dyes are widely used in the field of in vivo phototheranostics. Hemicyanine dyes (HDs) have recently received tremendous attention due to their easy synthesis and excellent NIR features. However, HDs can easily form non-fluorescent aggregates and their potential for phototherapy still needs further exploration due to their poor ability to generate reactive oxygen species (ROS). Herein, a series of hemicyanine dyes with different chalcogen atom (O, S, Se) substitutions were constructed to achieve optimized potential for phototheranostics. By replacing O with the heavy atom Se in the xanthene skeleton, CySe-NEt2 showed much more favourable features such as extended NIR absorption/emission wavelength, boosted 1O2 generation rate and higher photothermal effect. In addition, a poly(ethylene glycol) (PEG) group was introduced into the scaffold and yielded a nanotheranostic agent CySe-mPEG5K, which easily formed nanoparticles with appealing features such as excellent photostability, effective prevention of unpleasant H-aggregation, fast/selective tumor accumulation and minimum dark toxicity. Solid tumor growth was significantly suppressed through combined photodynamic therapy (PDT) and photothermal therapy (PTT) guided by NIR fluorescence (NIRF) and photoacoustic (PA) imaging. This study not only presents the first example of selenium-substituted hemicyanine dyes, but also offers a reliable design strategy for the development of potent NIR phototheranostic agents with multi-mode imaging-guided combination therapeutic ability.
Collapse
Affiliation(s)
- Shankun Yao
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 P. R. China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 P. R. China.,Nanchuang (Jiangsu) Institute of Chemistry and Health Nanjing 210000 Jiangsu P. R. China
| | - Weizhong Ding
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Fengwu Xu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zhipeng Liu
- College of Materials Science and Engineering, Nanjing Forestry UniversityNanjing210037P. R. China
| | - Yaheng Li
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Yanping Wu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Shumeng Li
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 P. R. China.,Nanchuang (Jiangsu) Institute of Chemistry and Health Nanjing 210000 Jiangsu P. R. China
| |
Collapse
|
31
|
Zhang Y, Li W, Chen X, Xiong S, Bian Y, Yuan L, Gao X, Su D. Liver-Targeted Near-Infrared Fluorescence/Photoacoustic Dual-Modal Probe for Real-Time Imaging of In Situ Hepatic Inflammation. Anal Chem 2023; 95:2579-2587. [PMID: 36642958 DOI: 10.1021/acs.analchem.2c05476] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Early diagnosis of hepatic inflammation is the key to timely treatment and avoid the worsening of liver inflammation. Near-infrared fluorescence (NIRF) probes have high sensitivity but low spatial resolution in lesion imaging, while photoacoustic (PA) imaging has good spatial location information. Therefore, the development of a NIRF/PA dual-modal probe integrated with high sensitivity and spatial location feedback can achieve an accurate early diagnosis of hepatic inflammation. Here, we report an activatable NIRF/PA dual-modal probe (hCy-Tf-CA) for the detection of the superoxide anion (O2·-) in early hepatic inflammation. hCy-Tf-CA showed high selectivity and sensitivity for detecting O2·- fluctuation in vitro. More importantly, by introducing hepatocyte-targeting cholic acid (CA), the probe successfully achieved accurate in situ imaging of acute inflammatory liver injury (AILI) and autoimmune hepatitis (AIH) in vivo. The introduced CA not only promotes the hepatic targeting accumulation of probes but also improves the performance of low background dual-modal imaging in vivo. Therefore, hCy-Tf-CA provides an effective strategy for significantly improving in situ imaging performance and holds great potential for early, sensitive, and accurate diagnosis of hepatic inflammation.
Collapse
Affiliation(s)
- Yong Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xueqian Chen
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Shaoqing Xiong
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Yongning Bian
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| |
Collapse
|
32
|
Yadav AK, Zhao Z, Weng Y, Gardner SH, Brady CJ, Pichardo Peguero OD, Chan J. Hydrolysis-Resistant Ester-Based Linkers for Development of Activity-Based NIR Bioluminescence Probes. J Am Chem Soc 2023; 145:1460-1469. [PMID: 36603103 PMCID: PMC10120059 DOI: 10.1021/jacs.2c12984] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Activity-based sensing (ABS) probes equipped with a NIR bioluminescence readout are promising chemical tools to study cancer biomarkers owing to their high sensitivity and deep tissue compatibility. Despite the demand, there is a dearth of such probes because NIR substrates (e.g., BL660 (a NIR luciferin analog)) are not equipped with an appropriate attachment site for ABS trigger installation. For instance, our attempts to mask the carboxylic acid moiety with standard self-immolative benzyl linkers resulted in significant background signals owing to undesirable ester hydrolysis. In this study, we overcame this longstanding challenge by rationally designing a new hydrolysis-resistant ester-based linker featuring an isopropyl shielding arm. Compared to the parent, the new design is 140.5-fold and 67.8-fold more resistant toward spontaneous and esterase-mediated hydrolysis, respectively. Likewise, we observed minimal cleavage of the ester moiety when incubated with a panel of enzymes possessing ester-hydrolyzing activity. These impressive in vitro results were corroborated through a series of key experiments in live cells. Further, we showcased the utility of this technology by developing the first NIR bioluminescent probe for nitroreductase (NTR) activity and applied it to visualize elevated NTR expression in oxygen deficient lung cancer cells and in a murine model of non-small cell lung cancer. The ability to monitor the activity of this key biomarker in a deep tissue context is critical because it is associated with tumor hypoxia, which in turn is linked to drug resistance and aggressive cancer phenotypes.
Collapse
Affiliation(s)
- Anuj K Yadav
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenxiang Zhao
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yourong Weng
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sarah H Gardner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Catharine J Brady
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Oliver D Pichardo Peguero
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
33
|
Zuo S, Jiang G, Zheng Y, Zhang X, Qin Z, Chen L, Ren T, Zhang XB, Yuan L. Family of hNQO1 Activatable Near-Infrared Fluoro-Photoacoustic Probes for Diagnosis of Wound Infection and Ulcerative Colitis. Anal Chem 2023; 95:898-906. [PMID: 36604944 DOI: 10.1021/acs.analchem.2c03436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial infections can easily occur when patients mishandle wounds or eat moldy food. The prompt diagnosis of a bacterial infection could effectively reduce the risk of possible anatomical damage. However, non-invasive early detection of bacterial infections is difficult to achieve due to the lack of favorable tools. Here, we designed two hNQO1 fluorescent probes (RX2 and RX3) to visualize bacterial infection after deep learning on the pathogenesis of bacterial infection. RX2 and RX3 enable early detection of bacterial infection and are verified to be, respectively, suitable for fluorescence imaging (FLI) and photoacoustic imaging (PAI) by comparing the signal-to-background ratio of both probes in a mouse model of myositis caused by Escherichia coli infection. In view of the difference in penetration depth between the two imaging modalities, we further applied RX2 for FLI of E. coli-infected wounds and RX3 for PAI of E. coli-infected inflammatory bowel disease, suggesting the great potential of both probes for early diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Shan Zuo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Yingxin Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xingxing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Zuojia Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Tianbing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
34
|
Mariewskaya KA, Krasilnikov MS, Korshun VA, Ustinov AV, Alferova VA. Near-Infrared Dyes: Towards Broad-Spectrum Antivirals. Int J Mol Sci 2022; 24:ijms24010188. [PMID: 36613629 PMCID: PMC9820607 DOI: 10.3390/ijms24010188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Broad antiviral activity in vitro is known for many organic photosensitizers generating reactive oxygen species under irradiation with visible light. Low tissue penetration of visible light prevents further development of antiviral therapeutics based on these compounds. One possible solution to this problem is the development of photosensitizers with near-infrared absorption (NIR dyes). These compounds found diverse applications in the photodynamic therapy of tumors and bacterial infections, but they are scarcely mentioned as antivirals. In this account, we aimed to evaluate the therapeutic prospects of various NIR-absorbing and singlet oxygen-generating chromophores for the development of broad-spectrum photosensitizing antivirals.
Collapse
Affiliation(s)
- Kseniya A. Mariewskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maxim S. Krasilnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-4957246715
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
35
|
A “crossbreeding” dyad strategy for bright and small-molecular weight near-infrared fluorogens: From the structural design to boost aggregation-induced emission. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Li M, Xu Y, Peng X, Kim JS. From Low to No O 2-Dependent Hypoxia Photodynamic Therapy (hPDT): A New Perspective. Acc Chem Res 2022; 55:3253-3264. [PMID: 36323625 DOI: 10.1021/acs.accounts.2c00531] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The advent of photochemical techniques has revolutionized the landscape of biology and medical sciences. Especially appealing in this context is photodynamic therapy (PDT), which is a photon-initiated treatment modality that uses cytotoxic reactive oxygen species (ROS) to kill malignant cells. In the past decade, PDT has risen to the forefront of cancer therapy. Its optical control enables noninvasive and spatiotemporal manipulation of the treatment process, and its photoactive nature allows unique patterns to avoid drug resistance to conventional chemotherapeutics. However, despite the impressive advances in this field, achieving widespread clinical adoption of PDT remains difficult. A major concern is that in the hostile tumor microenvironment, tumor cells are hypoxic, which hinders ROS generation during PDT action. To overcome this "Achilles' heel", current strategies focus primarily on the improvement of the intratumoral O2 perfusion, while clinical trials suggest that O2 enrichment may promote cancer cell proliferation and metastasis, thereby making FDA approval and clinical transformation of these paradigms challenging.In an effort to improve hypoxia photodynamic therapy (hPDT) in the clinic, we have explored "low to no O2-dependent" photochemical approaches over the years to combat hypoxia-induced resistance. In this Account, we present our contributions to this theme during the past 5 years, beginning with low O2-dependent approaches (e.g., type I superoxide radical (O2•-) generator, photodynamic O2-economizer, mitochondrial respiration inhibition, cellular self-protective pathway modulation, etc.) and progressing to O2-independent strategies (e.g., autoadaptive PDT/PTT complementary therapy, O2-independent artificial photoredox catalysis in cells). These studies have attracted tremendous attention. Particularly in the pioneering work of 2018, we presented the first demonstration that the O2•--mediated partial O2-recyclability mechanism can overcome PDT resistance ( J. Am. Chem. Soc. 2018, 140, 14851-14859). This launched an era of renewed interest in type I PDT, resulting in a plethora of new O2•- photogenerators developed by many groups around the world. Moreover, with the discovery of O2-independent photoredox reactions in living cells, artificial photoredox catalysis has emerged as a new field connecting photochemistry and biomedicine, stimulating the development of next-generation phototherapeutic tools ( J. Am. Chem. Soc. 2022, 144, 163-173). Our recent work also disclosed that "photoredox catalysis in cells" might be a general mechanism of action of PDT ( Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e2210504119). These emergent concepts, molecular designs, photochemical mechanisms, and applications in cancer diagnosis and therapeutics, as well as pros and cons, are discussed in depth in this Account. It is expected that our contributions to date will be of general use to researchers and inspire future efforts to identify more promising hPDT approaches that better meet the clinical needs of cancer therapy.
Collapse
Affiliation(s)
- Mingle Li
- Department of Chemistry, Korea University, Seoul 02841, Korea.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yunjie Xu
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
37
|
East AK, Lee MC, Smaga LP, Jiang C, Mallojjala SC, Hirschi JS, Chan J. Synthesis of Silicon-Substituted Hemicyanines for Multimodal SWIR Imaging. Org Lett 2022; 24:8509-8513. [PMID: 36374323 PMCID: PMC10112353 DOI: 10.1021/acs.orglett.2c03382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SWIR dyes offer many advantages over their more common NIR congeners; however, the available options are limited. New SWIR imaging agents can be accessed by remodeling existing NIR molecules (i.e., hemicyanines (HDs)). In this study, we synthesized SWIR-HD, a modified HD featuring dimethylsilicon and benzo[cd]indolium groups that are designed to red-shift the absorbance and emission to 988 and 1126 nm, respectively. SWIR-HD was employed to visualize the liver and tumors via multimodal SWIR imaging.
Collapse
Affiliation(s)
- Amanda K. East
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael C. Lee
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Lukas P. Smaga
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chang Jiang
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sharath C. Mallojjala
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Jennifer S. Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
38
|
Lucero MY, Gardner SH, Yadav AK, Borri A, Zhao Z, Chan J. Activity-based Photoacoustic Probes Reveal Elevated Intestinal MGL and FAAH Activity in a Murine Model of Obesity. Angew Chem Int Ed Engl 2022; 61:e202211774. [PMID: 36083191 PMCID: PMC9613605 DOI: 10.1002/anie.202211774] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 01/12/2023]
Abstract
Obesity is a chronic health condition characterized by the accumulation of excessive body fat which can lead to and exacerbate cardiovascular disease, type-II diabetes, high blood pressure, and cancer through systemic inflammation. Unfortunately, visualizing key mediators of the inflammatory response, such as monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH), in a selective manner is a profound challenge owing to an overlapping substrate scope that involves arachidonic acid (AA). Specifically, these enzymes work in concert to generate AA, which in the context of obesity, has been implicated to control appetite and energy metabolism. In this study, we developed the first selective activity-based sensing probes to detect MGL (PA-HD-MGL) and FAAH (PA-HD-FAAH) activity via photoacoustic imaging. Activation of PA-HD-MGL and PA-HD-FAAH by their target enzymes resulted in 1.74-fold and 1.59-fold signal enhancements, respectively. Due to their exceptional selectivity profiles and deep-tissue photoacoustic imaging capabilities, these probes were employed to measure MGL and FAAH activity in a murine model of obesity. Contrary to conflicting reports suggesting levels of MGL can be attenuated or elevated, our results support the latter. Indeed, we discovered a marked increase of both targets in the gastrointestinal tract. These key findings set the stage to uncover the role of the endocannabinoid pathway in obesity-mediated inflammation.
Collapse
Affiliation(s)
- Melissa Y. Lucero
- Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaIL61801USA
- Beckman Institute for Advanced Science and TechnologyUrbanaIL61801USA
| | - Sarah H. Gardner
- Department of BiochemistryUniversity of Illinois at Urbana-ChampaignUrbanaIL61801USA
- Beckman Institute for Advanced Science and TechnologyUrbanaIL61801USA
| | - Anuj K. Yadav
- Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaIL61801USA
- Beckman Institute for Advanced Science and TechnologyUrbanaIL61801USA
| | - Austin Borri
- Department of BiochemistryUniversity of Illinois at Urbana-ChampaignUrbanaIL61801USA
- Beckman Institute for Advanced Science and TechnologyUrbanaIL61801USA
| | - Zhenxiang Zhao
- Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaIL61801USA
- Beckman Institute for Advanced Science and TechnologyUrbanaIL61801USA
| | - Jefferson Chan
- Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaIL61801USA
- Department of BiochemistryUniversity of Illinois at Urbana-ChampaignUrbanaIL61801USA
- Beckman Institute for Advanced Science and TechnologyUrbanaIL61801USA
| |
Collapse
|
39
|
Zhou X, Fang Y, Wimalasiri V, Stains CI, Miller EW. A long-wavelength xanthene dye for photoacoustic imaging. Chem Commun (Camb) 2022; 58:11941-11944. [PMID: 36196957 PMCID: PMC9634815 DOI: 10.1039/d2cc03947h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Photoacoustic (PA) imaging is a powerful biomedical imaging modality. We designed KeTMR and KeJuR, two xanthene-based dyes that were readily obtained through a 2-step synthetic route. KeJuR has low molecular weight, good aqueous solubility, and superior chemical stability compared to KeTMR. KeJuR shows a robust PA signal under 860 nm excitation and can be paired with traditional PA dyes for multiplex imaging in blood samples under a tissue-mimicking environment.
Collapse
Affiliation(s)
- Xinqi Zhou
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
| | - Yuan Fang
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Viranga Wimalasiri
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Cliff I Stains
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
- University of Virgnia Cancer Center, University of Virginia, Charlottesville, VA, 22904, USA
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
40
|
Tapia Hernandez R, Lee MC, Yadav AK, Chan J. Repurposing Cyanine Photoinstability To Develop Near-Infrared Light-Activatable Nanogels for In Vivo Cargo Delivery. J Am Chem Soc 2022; 144:18101-18108. [PMID: 36153991 PMCID: PMC10088867 DOI: 10.1021/jacs.2c08187] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The favorable properties of cyanines (e.g., near-infrared (NIR) absorbance and emission) have made this class of dyes popular for a wide variety of biomedical applications. However, many cyanines are prone to rapid photobleaching when irradiated with light. In this study, we have exploited this undesirable trait to develop NIR-nanogels for NIR light-mediated cargo delivery. NIR-nanogels feature a photolabile cyanine cross-linker (Cy780-Acryl) that can cleave via dioxetane chemistry when irradiated. This photochemical process results in the formation of two carbonyl fragments and concomitant NIR-nanogel degradation to facilitate cargo release. In contrast to studies where cyanines are utilized as photocages, our approach does not require direct chemical attachment to the cargo, thus expanding our ability to deliver molecules that cannot be covalently modified. We showcase this feature by encapsulating a palette of small-molecule chemotherapeutics that feature a structurally diverse chemical architecture. To demonstrate site-selective release in vivo, we generated a murine model of breast cancer. Relative to nonlight irradiated and drug-free controls, treatment with NIR-nanogels loaded with paclitaxel (a potent cytotoxic agent) and NIR light resulted in significant attenuation of tumor growth. Moreover, we show via histological staining of the vital organs that minimal off-target effects are observed.
Collapse
Affiliation(s)
- Rodrigo Tapia Hernandez
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael C Lee
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Anuj K Yadav
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
41
|
Zhang Y, He S, Xu C, Jiang Y, Miao Q, Pu K. An Activatable Polymeric Nanoprobe for Fluorescence and Photoacoustic Imaging of Tumor-Associated Neutrophils in Cancer Immunotherapy. Angew Chem Int Ed Engl 2022; 61:e202203184. [PMID: 35385175 DOI: 10.1002/anie.202203184] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 12/26/2022]
Abstract
Imaging to evaluate tumor-associated neutrophils (TANs) is imperative for cancer immunotherapy but remains challenging. We herein report an activatable semiconducting polymer nanoprobe (SPCy) for near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging of neutrophil elastase (NE), a biomarker of TANs. SPCy comprises a semiconducting polymer conjugated with a hemicyanine (hemi-Cy) dye caged by a NE-cleavable peptide as the side chain. After systemic administration, SPCy passively targets the tumor and reacts with NE to "uncage" the hemi-Cy, leading to enhanced NIRF and PA signals of the hemi-Cy but unchanged signals of the SP. Such NE-activated ratiometric NIRF and enhanced PA signals of SPCy correlate with the intratumoral population of TANs. Thus, this study not only presents the first TAN-specific PA probe, but also provides a general molecular design strategy for PA imaging of other immune-related biomarkers to facilitate screening of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Cheng Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yue Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| |
Collapse
|
42
|
Aminopeptidase N Activatable Nanoprobe for Tracking Lymphatic Metastasis and Guiding Tumor Resection Surgery via Optoacoustic/NIR-II Fluorescence Dual-Mode Imaging. Anal Chem 2022; 94:8449-8457. [DOI: 10.1021/acs.analchem.2c01241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Synthesis and optical properties of linear and branched styrylpyridinium dyes in different environments. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Li W, Li R, Chen R, Ai S, Zhu H, Huang L, Lin W. Activatable Fluorescent-Photoacoustic Integrated Probes with Deep Tissue Penetration for Pathological Diagnosis and Therapeutic Evaluation of Acute Inflammation in Mice. Anal Chem 2022; 94:7996-8004. [PMID: 35604398 DOI: 10.1021/acs.analchem.2c01048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inflammation is associated with many diseases, so the development of an excellent near infrared fluorescent (NIRF) and photoacoustic (PA) dual-modality probe is crucial for the accurate diagnosis and efficacy evaluation of inflammation. However, most of the current NIRF/PA scaffolds are based on repurposing existing fluorescent dye platforms that exhibit non-optimal properties for both NIRF and PA signal outputs. Herein, we developed a novel dye scaffold QL-OH by optimizing the NIRF and PA signal of classical hemicyanine dyes. Based on this optimized dye, we developed the first NIRF/PA dual-mode carbon monoxide (CO) probe QL-CO for noninvasive and sensitive visualization of CO levels in deep inflammatory lesions in vivo. The novel probe QL-CO exhibited rapid and sensitive NIRF775/PA730 dual activation responses toward CO. In addition, the CO-activated probe QL-CO was successfully used for the diagnosis of inflammation and evaluation of anti-inflammation drug efficacy in living mice though the NIRF/PA dual-mode imaging technology for the first time. More importantly, the probe QL-CO could accurately locate the deep inflammatory lesion tissues (≈1 cm) in mice and obtain 3D PA diagnostic images with deep penetration depth and spatial resolution. Therefore, the new NIRF/PA dual-mode probe QL-CO has high potential for deep-tissue diagnosis imaging of CO in vivo. These findings may provide a new tool and approach for future research and diagnosis of CO-associated diseases.
Collapse
Affiliation(s)
- Wenxiu Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Rong Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Rui Chen
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Sixin Ai
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Huayong Zhu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
45
|
Zhang Y, He S, Xu C, Jiang Y, Miao Q, Pu K. An Activatable Polymeric Nanoprobe for Fluorescence and Photoacoustic Imaging of Tumor‐Associated Neutrophils in Cancer Immunotherapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yan Zhang
- National Engineering Research Centre for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Shasha He
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Cheng Xu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Yue Jiang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 P. R. China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
- School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore 636921 Singapore
| |
Collapse
|
46
|
Qin Z, Ren TB, Zhou H, Zhang X, He L, Li Z, Zhang XB, Yuan L. NIRII-HDs: A Versatile Platform for Developing Activatable NIR-II Fluorogenic Probes for Reliable In Vivo Analyte Sensing. Angew Chem Int Ed Engl 2022; 61:e202201541. [PMID: 35218130 DOI: 10.1002/anie.202201541] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/13/2022]
Abstract
Small-molecule-based second near-infrared (NIR-II) activatable fluorescent probes can potentially provide a high target-to-background ratio and deep tissue penetration. However, most of the reported NIR-II activatable small-molecule probes exhibit poor versatility owing to the lack of a general and stable optically tunable group. In this study, we designed NIRII-HDs, a novel dye scaffold optimized for NIR-II probe development. In particular, dye NIRII-HD5 showed the best optical properties such as proper pKa value, excellent stability, and high NIR-II brightness, which can be beneficial for in vivo imaging with high contrast. To demonstrate the applicability of the NIRII-HD5 dye, we designed three target-activatable NIR-II probes for ROS, thiols, and enzymes. Using these novel probes, we not only realized reliable NIR-II imaging of different diseases in mouse models but also evaluated the redox potential of liver tissue during a liver injury in vivo with high fidelity.
Collapse
Affiliation(s)
- Zuojia Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Huijie Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xingxing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Long He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhe Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
47
|
Qin Z, Ren TB, Zhou H, Zhang X, He L, Li Z, Zhang XB, Yuan L. NIRII‐HDs: A Versatile Platform for Developing Activatable NIR‐II Fluorogenic Probes for Reliable In Vivo Analyte Sensing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | - Long He
- Hunan University Chemistry CHINA
| | - Zhe Li
- Hunan University Chemistry CHINA
| | | | - Lin Yuan
- Hunan University College of Chemistry and Chemical Engineering NO372, Lushan Rd. Yuelu District. 410082 Changsha CHINA
| |
Collapse
|
48
|
Li H, Kim H, Xu F, Han J, Yao Q, Wang J, Pu K, Peng X, Yoon J. Activity-based NIR fluorescent probes based on the versatile hemicyanine scaffold: design strategy, biomedical applications, and outlook. Chem Soc Rev 2022; 51:1795-1835. [PMID: 35142301 DOI: 10.1039/d1cs00307k] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of a near-infrared (NIR, 650-900 nm) fluorescent chromophore hemicyanine dye with high structural tailorability is of great significance in the field of detection, bioimaging, and medical therapeutic applications. It exhibits many outstanding advantages including absorption and emission in the NIR region, tunable spectral properties, high photostability as well as a large Stokes shift. These properties are superior to those of conventional fluorogens, such as coumarin, fluorescein, naphthalimides, rhodamine, and cyanine. Researchers have made remarkable progress in developing activity-based multifunctional fluorescent probes based on hemicyanine skeletons for monitoring vital biomolecules in living systems through the output of fluorescence/photoacoustic signals, and integration of diagnosis and treatment of diseases using chemotherapy or photothermal/photodynamic therapy or combination therapy. These achievements prompted researchers to develop more smart fluorescent probes using a hemicyanine fluorogen as a template. In this review, we begin by describing the brief history of the discovery of hemicyanine dyes, synthetic approaches, and design strategies for activity-based functional fluorescent probes. Then, many selected hemicyanine-based probes that can detect ions, small biomolecules, overexpressed enzymes and diagnostic reagents for diseases are systematically highlighted. Finally, potential drawbacks and the outlook for future investigation and clinical medicine transformation of hemicyanine-based activatable functional probes are also discussed.
Collapse
Affiliation(s)
- Haidong Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Heejeong Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Feng Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingjing Han
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,Research Institute of Dalian University of Technology in Shenzhen, Nanshan District, Shenzhen 518057, China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
49
|
A General Approach to Design Dual Ratiometric Fluorescent and Photoacoustic Probes for Quantitatively Visualizing Tumor Hypoxia Levels In Vivo. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Zhao Z, Swartchick CB, Chan J. Targeted contrast agents and activatable probes for photoacoustic imaging of cancer. Chem Soc Rev 2022; 51:829-868. [PMID: 35094040 PMCID: PMC9549347 DOI: 10.1039/d0cs00771d] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoacoustic (PA) imaging has emerged as a powerful technique for the high resolution visualization of biological processes within deep tissue. Through the development and application of exogenous targeted contrast agents and activatable probes that can respond to a given cancer biomarker, researchers can image molecular events in vivo during cancer progression. This information can provide valuable details that can facilitate cancer diagnosis and therapy monitoring. In this tutorial review, we provide a step-by-step guide to select a cancer biomarker and subsequent approaches to design imaging agents for in vivo use. We envision this information will be a useful summary to those in the field, new members to the community, and graduate students taking advanced imaging coursework. We also highlight notable examples from the recent literature, with emphasis on the molecular designs and their in vivo PA imaging performance. To conclude, we provide our outlook and future perspective in this exciting field.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Chelsea B Swartchick
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| |
Collapse
|