1
|
Yang Y, Liu X, Xu Y, Xing F, Yuan Z, Chen Y, Wu X, Wang C, Liang G. Coumarin Excimer Nanotube for Long-Time Lysosome Tracking. NANO LETTERS 2025. [PMID: 40033666 DOI: 10.1021/acs.nanolett.5c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Lysosome abnormality closely relates to a variety of diseases; thus, its long-time tracking could benefit accurate disease diagnosis. Current long-time lysosome imaging probes are not biocompatible enough, while compatible peptide-based probes are easily degraded by the abundant proteinases in lysosome. Herein, we rationally design a d-amino acid-containing peptide Cys(StBu)-d-Glu-Lys(coumarin)-d-Glu-CBT (Cou-D/L-CBT) which is subjected to intracellular GSH-initiated CBT-Cys click reaction and assembles into nanotubes in acidic lysosome. In vitro experiments showed that, under reduction environment and at pH 4.8, Cou-D/L-CBT assembled into nanotubes with an outer diameter of 156 nm, accompanied by "turn-on" coumarin excimer fluorescence at 550 nm. Cell experiments indicated that while Cou-D/L-CBT provided 29 h of lysosome fluorescence imaging, control probe Cou-L-CBT sustained only 6 h. We expect that our Cou-D/L-CBT could be applied for in vitro sensitive diagnosis of lysosome-related diseases in the clinic in the near future.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China
| | - Ying Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China
| | - Fan Xing
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China
| | - Zihan Yuan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China
| | - Yuxuan Chen
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China
| | - Xiaofeng Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China
| | - Cailian Wang
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China
| |
Collapse
|
2
|
Mao GJ, Yang TT, Gong Y, Ma N, Wang P, Li CY, Wang K, Zhang G. Hypochlorous Acid-Activatable NIR Fluorescence/Photoacoustic Dual-Modal Probe with High Signal-to-Background Ratios for Imaging of Liver Injury and Plasma Diagnosis of Sepsis. ACS Sens 2025; 10:1032-1042. [PMID: 39813236 DOI: 10.1021/acssensors.4c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Hypochlorous acid can be employed as a biomarker for blood infection (such as sepsis) and tissue damage (such as drug-induced liver injury, DILI), and the diagnosis of tissue damage or blood infection can be achieved through the detection of hypochlorous acid in relevant biological samples. Considering the complex environment and the diverse interferences in living organisms and blood plasma, developing new detection methods for HClO with high signal-to-background ratios is particularly important, and it can improve the accuracy of detection and quality of imaging based on a higher contrast, which makes the detection of HClO clearer and more accurate. Here, based on the advantages of the NIR fluorescence/photoacoustic dual-modal probe, we reported a hypochlorous acid-activatable NIR fluorescence/photoacoustic dual-modal probe (NIRF-PA-HClO) based on the spirolactam ring-opening strategy in this paper. NIRF-PA-HClO showed excellent NIRF/PA dual-modal responses with high SBRs for HClO in solution, cells, and mice. Moreover, NIRF-PA-HClO was successfully applied for high-contrast imaging of DILI. Finally, NIRF-PA-HClO was employed for the blood plasma diagnosis of sepsis with satisfactory results. In summary, the above results proved that NIRF-PA-HClO would be a potentially useful tool for the study of physiological and pathological roles of HClO, the investigation of the pathology and therapeutic mechanisms of hepatotoxicity, and the diagnosis of blood infection. Also, the development of NIRF-PA-HClO provides new design mentality for constructing other analyte-activatable NIRF/PA dual-modal probes with high SBRs.
Collapse
Affiliation(s)
- Guo-Jiang Mao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tian-Tian Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yijun Gong
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Nana Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Peng Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou, Zhejiang 310022, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Kui Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
3
|
Xu W, Guan G, Yue R, Dong Z, Lei L, Kang H, Song G. Chemical Design of Magnetic Nanomaterials for Imaging and Ferroptosis-Based Cancer Therapy. Chem Rev 2025; 125:1897-1961. [PMID: 39951340 DOI: 10.1021/acs.chemrev.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ferroptosis, an iron-dependent form of regulatory cell death, has garnered significant interest as a therapeutic target in cancer treatment due to its distinct characteristics, including lipid peroxide generation and redox imbalance. However, its clinical application in oncology is currently limited by issues such as suboptimal efficacy and potential off-target effects. The advent of nanotechnology has provided a new way for overcoming these challenges through the development of activatable magnetic nanoparticles (MNPs). These innovative MNPs are designed to improve the specificity and efficacy of ferroptosis induction. This Review delves into the chemical and biological principles guiding the design of MNPs for ferroptosis-based cancer therapies and imaging-guided therapies. It discusses the regulatory mechanisms and biological attributes of ferroptosis, the chemical composition of MNPs, their mechanism of action as ferroptosis inducers, and their integration with advanced imaging techniques for therapeutic monitoring. Additionally, we examine the convergence of ferroptosis with other therapeutic strategies, including chemodynamic therapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, within the context of nanomedicine strategies utilizing MNPs. This Review highlights the potential of these multifunctional MNPs to surpass the limitations of conventional treatments, envisioning a future of drug-resistance-free, precision diagnostics and ferroptosis-based therapies for treating recalcitrant cancers.
Collapse
Affiliation(s)
- Wei Xu
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Guoqiang Guan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lingling Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Heemin Kang
- Department of Materials Science and Engineering and College of Medicine, Korea University, 12 Seoul 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
4
|
Liu J, Cheng P, Xu C, Pu K. Molecular probes for in vivo optical imaging of immune cells. Nat Biomed Eng 2025:10.1038/s41551-024-01275-7. [PMID: 39984703 DOI: 10.1038/s41551-024-01275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/23/2024] [Indexed: 02/23/2025]
Abstract
Advancing the understanding of the various roles and components of the immune system requires sophisticated methods and technology for the detection of immune cells in their natural states. Recent advancements in the development of molecular probes for optical imaging have paved the way for non-invasive visualization and real-time monitoring of immune responses and functions. Here we discuss recent progress in the development of molecular probes for the selective imaging of specific immune cells. We emphasize the design principles of the probes and their comparative performance when using various optical modalities across disease contexts. We highlight molecular probes for imaging tumour-infiltrating immune cells, and their applications in drug screening and in the prediction of therapeutic outcomes of cancer immunotherapies. We also discuss the use of these probes in visualizing immune cells in atherosclerosis, lung inflammation, allograft rejection and other immune-related conditions, and the translational opportunities and challenges of using optical molecular probes for further understanding of the immune system and disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
5
|
Liu Y, Li Y, Sun W, Sun Z, Wang Y, Lei S, Huang P, Lin J. pH-Activatable NIR Hemicyanine for Mitochondria-Targeted Cancer Phototheranostics. Anal Chem 2025; 97:3310-3318. [PMID: 39918538 DOI: 10.1021/acs.analchem.4c05056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Photodynamic therapy (PDT) has garnered significant attention for cancer treatment due to its noninvasive nature, reduced drug resistance, and spatiotemporal controllability. However, traditional photosensitizers (PSs) face limitations such as severe systemic phototoxicity and shallow tissue penetration, which hinder the widespread clinical application of PDT. Capitalizing on the strong near-infrared (NIR) absorption and ease of structural modification of hemicyanine, we have designed a pH-activatable NIR hemicyanine PS (LET-15). It is specifically activated in the acid tumor microenvironment, subsequently targeting mitochondria and generating cytotoxic singlet oxygen under 660 nm laser irradiation, which selectively destroys tumor tissues while minimizing damage to healthy tissues. Additionally, it offers activatable fluorescence (FL) imaging with a high signal-to-noise ratio, enabling FL imaging-assisted tumor photoeradication. This study provides valuable guidance for designing tumor-specifically activated NIR PSs for precision PDT.
Collapse
Affiliation(s)
- Yurong Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yue Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Wei Sun
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Zelin Sun
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yaru Wang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
6
|
Liu Y, Yao Y, Sha J, Liang G, Sun X. Dual-Locked Enzyme-Activatable Fluorescence Probes for Precise Bioimaging. ACS Biomater Sci Eng 2025; 11:730-741. [PMID: 39841057 DOI: 10.1021/acsbiomaterials.4c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Real-time visualization of endogenous enzymes not only helps reveal the underlying biological principles but also provides pathological information for cancer/disease diagnosis and even treatment guidance. To this end, enzyme-activatable fluorescence probes are frequently fabricated that turn their fluorescence signals "on" exclusively at the enzyme-rich region, thus enabling noninvasive and real-time imaging of enzymes of interest at the molecular level with superior sensitivity and selectivity. However, in a complex biological context, commonly used single enzyme-activatable (i.e., single-locked) probes may suffer from "false positive" signals at healthy tissues and be insufficient to accurately indicate the occurrence of certain diseases. Therefore, dual-locked fluorescence probes have been promoted to address these issues. Using dual enzymes (or an enzyme with another stimulus) as "keys", they permit simultaneous detection of distinct biomarkers, offering significantly enhanced imaging precision toward certain biological events. Considering that recent reviews on these probes remain scarce, we thus provide this review. We summarize the recent progress, particularly highlighting the breakthroughs in the last three years, and discuss the challenges in this field.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Yuchen Yao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Junhui Sha
- School of Life Science and Technology, Southeast University, Nanjing 211189, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
- Handan Norman Technology Company, Limited, Guantao 057750, China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
7
|
Wang F, Lv P, Xiao G, Zou B. Abnormal Blueshift of Mn d-d Emission Unlocked by Decreasing Phonon Coupling under High Pressure. Angew Chem Int Ed Engl 2025:e202500318. [PMID: 39898516 DOI: 10.1002/anie.202500318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/04/2025]
Abstract
Mn d-d emission has been a star transition-metal activated phosphors that were extensively used in optoelectronic devices. However, due to the complex and elusive luminescence mechanism, the full potential of this material remains largely untapped. Here, we designed a core-shell structure of MnS@CdS quantum dots (QDs) to investigate the effect of the internal strain on the Mn emission. Upon pressure processing, an unexpected blueshift of Mn emission was achieved. When the pressure reached a pressure of 2.1 GPa, the conventional redshift of Mn emission reappeared. Remarkable color transition from red to orange and then back to red was observed during pressure treatment. Further analysis revealed that the application of external pressure facilitated the diffusion of Mn atoms into the CdS shell, strengthened host-dopant coupling and mitigated the lattice mismatch rate within the MnS@CdS QDs. These factors resulted in a reduction in phonon coupling strength and an increase in energy transfer efficiency from the exciton of the CdS host lattice to the Mn dopants, thus ultimately accounting for the abnormal blueshift of Mn d-d emission. Our findings represent a significant breakthrough in the quest for precise control and regulation of Mn-related emission, offering insights into the underlying luminescence mechanism of Mn emission.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of High Pressure and Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Pengfei Lv
- State Key Laboratory of High Pressure and Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Guanjun Xiao
- State Key Laboratory of High Pressure and Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Bo Zou
- State Key Laboratory of High Pressure and Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| |
Collapse
|
8
|
Chen Z, Zhou Y, Li L, Ma W, Li Y, Yang Z. Activatable Molecular Probes With Clinical Promise for NIR-II Fluorescent Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411787. [PMID: 39707663 DOI: 10.1002/smll.202411787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/09/2024] [Indexed: 12/23/2024]
Abstract
The second near-infrared window (NIR-II) fluorescence imaging has been widely adopted in basic scientific research and preclinical applications due to its exceptional spatiotemporal resolution and deep tissue penetration. Among the various fluorescent agents, organic small-molecule fluorophores are considered the most promising candidates for clinical translation, owing to their well-defined chemical structures, tunable optical properties, and excellent biocompatibility. However, many currently available NIR-II fluorophores exhibit an "always-on" fluorescence signal, which leads to background noise and compromises diagnostic accuracy during disease detection. Developing NIR-II activatable organic small-molecule fluorescent probes (AOSFPs) for accurately reporting pathological changes is key to advancing NIR-II fluorescence imaging toward clinical application. This review summarizes the rational design strategies for NIR-II AOSFPs based on four core structures (cyanine, hemicyanine, xanthene, and BODIPY). These NIR-II AOSFPs hold substantial potential for clinical translation. Furthermore, the recent advances in NIR-II AOSFPs for NIR-II bioimaging are comprehensively reviewed, offering clear guidance and direction for their further development. Finally, the prospective efforts to advance NIR-II AOSFPs for clinical applications are outlined.
Collapse
Affiliation(s)
- Zikang Chen
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Yongjie Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
9
|
Jiang S, Li W, Li B, Chen S, Lei S, Liu Y, Lin J, Huang P. Albumin-Energized NIR-II Cyanine Dye for Fluorescence/Photoacoustic/Photothermal Multi-Modality Imaging-Guided Tumor Homologous Targeting Photothermal Therapy. J Med Chem 2025. [PMID: 39878298 DOI: 10.1021/acs.jmedchem.4c02369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Endowing cyanine dyes with hydrophilicity, long blood circulation, tumor targeting, and robust therapeutic efficacy in the second near-infrared (NIR-II) window is challenging for cancer treatment. Herein, we develop cancer cell membrane-coated albumin-NIR-II cyanine dye assemblies, denoted as LZ-1105@HAm, to optimize the photophysical properties of cyanine dyes in aqueous solution for NIR-II fluorescence (FL)/photoacoustic (PA)/photothermal (PT) multimodality imaging-guided tumor homologous targeting photothermal therapy. LZ-1105@HAm exhibits good hydrophilicity, extends the half-life of blood circulation from 0.634 ± 0.058 to 1.919 ± 0.107 h, enhances NIR-II FL/PA/PT imaging capabilities in vitro and in vivo, and improves photothermal conversion efficiency from 34.6% to 45.4%. Additionally, the cell membrane coating confers the assemblies with tumor-specific targeting capability, increasing tumor accumulation and enabling efficient photothermal tumor ablation. Upon 1064 nm laser irradiation, LZ-1105@HAm demonstrates significantly improved therapeutic efficacy. This research provides a strategy for constructing cyanine dye-based nanotheranostics with potential clinical application prospects.
Collapse
Affiliation(s)
- Shanshan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Wanyu Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Benhao Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Shuai Chen
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yurong Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
10
|
Wu X, Deng Y, Wang R, Kim H, Kim G, Xu Y, Hong KT, Lee JS, Hu JJ, Liang G, Yoon J. Rational Design of an Activatable Near-Infrared Fluorogenic Platform for In Vivo Orthotopic Tumor Imaging and Resection. Angew Chem Int Ed Engl 2025; 64:e202416877. [PMID: 39449191 DOI: 10.1002/anie.202416877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
Rational and effective design of a universal near-infrared (NIR) light-absorbed platform employed to prepare diverse activatable NIR fluorogenic probes for in vivo imaging and the imaging-guided tumor resection remains less exploited but highly meaningful. Herein, mandelic acid with a core structure of 4-hydroxylbenzyl alcohol to link recognition unit, a fluorophore and a quencher was employed to prepare activatable probes. We exemplified ester as carboxylesterase (CE)-recognized unit, ferrocene as quencher and phenothiazinium as NIR fluorophore to afford fluorogenic probes termed NBS-Fe-CE and NBS-C-Fe-CE. These probes enabled the conversion toward CE with significant fluorescence increases and successfully discriminate CE activity in cells. NIR light enhances the tumor penetration and enable imaging-guided orthotopic tumor resection. This specific case demonstrated that this platform can be effectively used to construct diverse NIR probes for imaging analytes in biological systems.
Collapse
Affiliation(s)
- Xiaofeng Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Deng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Ying Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Kyung Tae Hong
- Bio-Med Program, KIST-School UST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Korea
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| |
Collapse
|
11
|
Olowolagba AM, Aworinde OR, Dwivedi SK, Idowu MO, Arachchige DL, Wang C, Graham OR, Peters J, Rickauer G, Werner T, Ata A, Luck RL, Liu H. Near-Infrared Probes Designed with Hemicyanine Fluorophores Featuring Rhodamine and 1,8-Naphthalic Derivatives for Viscosity and HSA Detection in Live Cells. ACS APPLIED BIO MATERIALS 2025; 8:879-892. [PMID: 39757836 DOI: 10.1021/acsabm.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
This paper presents the development of near-infrared (NIR) fluorescent probes, A and B, engineered from hemicyanine dyes with 1,8-naphthalic and rhodamine derivatives for optimized photophysical properties and precise mitochondrial targeting. Probes A and B exhibit absorption peaks at 737 nm and low fluorescence in phosphate-buffered saline (PBS) buffer. Notably, their fluorescence intensities, peaking at 684 (A) and 702 nm (B), increase significantly with viscosity, as demonstrated through glycerol-to-PBS ratio experiments. This increase is attributed to restricted rotational freedom in the fluorophore and its linkages to rhodamine or 1,8-naphthalic groups. Theoretical modeling suggests nonplanar configurations for both probes, with primary absorptions in the rhodamine and hemicyanine cores (A: 543; B: 536 nm), and additional transitions to 1,8-naphthalic (A: 478 nm) and rhodamine (B: 626 nm) groups. Probe A is also responsive to human serum albumin (HSA), a key biomarker, with fluorescence increasing in HeLa cells as HSA concentrations rise. In contrast, probe B shows no response to HSA, likely due to steric hindrance from its bulky rhodamine group, illustrating a selectivity difference between the probes. Probe B, however, excels in mitochondrial imaging, confirmed through cellular and in vivo studies. In HeLa cells, it tracked viscosity changes following treatment with monensin, nystatin, and lipopolysaccharide (LPS), with fluorescence increasing in a dose-dependent manner. In fruit flies, probe B effectively detected monensin-induced viscosity changes, demonstrating its stability and in vivo applicability. These findings highlight the versatility and sensitivity of probes A and B as tools in biological research, with potential applications in monitoring mitochondrial health, detecting biomarkers like HSA, and investigating mitochondrial dynamics in disease.
Collapse
Affiliation(s)
- Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Omowunmi Rebecca Aworinde
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Micah Olamide Idowu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Crystal Wang
- Houghton High School, Houghton, Michigan 49931, United States
| | - Olivya Rose Graham
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Joseph Peters
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Grace Rickauer
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Athar Ata
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Rudy Lin Luck
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
12
|
Li Y, Qu F, Wan F, Zhong C, Rao J, Liu Y, Li Z, Zhu J, Li Z. Aggregation control of anionic pentamethine cyanine enabling excitation wavelength selective NIR-II fluorescence imaging-guided photodynamic therapy. Nat Commun 2025; 16:762. [PMID: 39824804 PMCID: PMC11748625 DOI: 10.1038/s41467-024-55429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/11/2024] [Indexed: 01/20/2025] Open
Abstract
Near-infrared (NIR)-II fluorescence imaging-guided photodynamic therapy (PDT) has shown great potential for precise diagnosis and treatment of tumors in deep tissues; however, its performance is severely limited by the undesired aggregation of photosensitizers and the competitive relationship between fluorescence emission and reactive oxygen species (ROS) generation. Herein, we report an example of an anionic pentamethine cyanine (C5T) photosensitizer for high-performance NIR-II fluorescence imaging-guided PDT. Through the counterion engineering approach, a triphenylphosphine cation (Pco) modified with oligoethylene glycol chain is synthesized and adopted as the counterion of C5T, which can effectively suppress the excessive and disordered aggregation of the resulting C5T-Pco by optimizing the dye amphipathicity and enhancing the cyanine-counterion interactions. Dynamic tuning of fluorescence characteristics and ROS generation is achieved at the aggregate level, resulting in an impressive type I ROS generation under 760 nm light irradiation, accompanied by efficient NIR-II fluorescence emission excited at 808 nm. As a result, excitation wavelength selective NIR-II fluorescence imaging-guided PDT has been successfully demonstrated for tumor diagnosis and therapeutics of female mice.
Collapse
Affiliation(s)
- Yibin Li
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Fei Qu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Fang Wan
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Cheng Zhong
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, China
| | - Jingyi Rao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, HUST, Wuhan, China
| | - Yijing Liu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, HUST, Wuhan, China.
| | - Zhen Li
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- Hubei Key Laboratory of Material Chemistry and Service Failure, HUST, Wuhan, China
| | - Zhong'an Li
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, HUST, Wuhan, China.
| |
Collapse
|
13
|
Qin W, Li H, Chen J, Qiu Y, Ma L, Nie L. Amphiphilic hemicyanine molecular probes crossing the blood-brain barrier for intracranial optical imaging of glioblastoma. SCIENCE ADVANCES 2025; 11:eadq5816. [PMID: 39813352 PMCID: PMC11734739 DOI: 10.1126/sciadv.adq5816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Intracranial optical imaging of glioblastoma (GBM) is challenging due to the scarcity of effective probes with blood-brain barrier (BBB) permeability and sufficient imaging depth. Herein, we describe a rational strategy for designing optical probes crossing the BBB based on an electron donor-π-acceptor system to adjust the lipid/water partition coefficient and molecular weight of probes. The amphiphilic hemicyanine dye (namely, IVTPO), which exhibits remarkable optical properties and effective BBB permeability, is chosen as an efficient fluorescence/photoacoustic probe for in vivo real-time imaging of orthotopic GBM with high resolution through the intact skull. Abnormal leakage of IVTPO adjacent to the developing tumor is unambiguously observed at an early stage of tumor development prior to impairment of BBB integrity, as assessed by commercial Evans blue (EB). Compared with EB, IVTPO demonstrates enhanced optical imaging capability and improved tumor-targeting efficacy. These results offer encouraging insights into medical diagnosis of intracranial GBM.
Collapse
Affiliation(s)
- Wei Qin
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Honghui Li
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Jiali Chen
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yang Qiu
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Limin Ma
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Cardiovascular Institute, Guangzhou 510080, China
| |
Collapse
|
14
|
Xu W, Yi S, Liu J, Jiang Y, Huang J. Nitrile-aminothiol bioorthogonal near-infrared fluorogenic probes for ultrasensitive in vivo imaging. Nat Commun 2025; 16:8. [PMID: 39747031 PMCID: PMC11695607 DOI: 10.1038/s41467-024-55452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Bioorthogonal chemistry-mediated self-assembly holds great promise for dynamic molecular imaging in living organisms. However, existing approaches are limited to nanoaggregates with 'always-on' signals, suffering from high signal-to-background ratio (SBR) and compromised detection sensitivity. Herein we report a nitrile-aminothiol (NAT) bioorthogonal fluorogenic probe (CyNAP-SS-FK) for ultrasensitive diagnosis of orthotopic hepatocellular carcinoma. This probe comprises a nitrile-substituted hemicyanine scaffold with a cysteine tail dually locked with biomarker-responsive moieties. Upon dual cleavage by tumor-specific cathepsin B and biothiols, the 1,2-aminothiol residue is exposed and spontaneously reacts with nitrile group for in situ intramolecular macrocyclization, enabling near-infrared fluorescence (NIRF) turn-on as well as self-assembly. In living male mice, such 'cleavage-click-assembly' regimen allows for real-time and ultrasensitive detection of small cancerous lesions (~2 mm in diameter) with improved SBR (~5) and extended detection window (~36 h), outperforming conventional clinical assays. This study not only presents NAT click reaction-based fluorogenic probes but also highlights a generic dual-locked design of these probes.
Collapse
Affiliation(s)
- Weiping Xu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Shujuan Yi
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Jie Liu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, P. R. China
| | - Yuyan Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiaguo Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
- Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
Shi Y, Yu J, Song Y, Fan J, Wang X, Li S, Li H. Multifunctional near-infrared fluorescent probe for sensing of lysine and Cu 2+/Fe 3+ and relay detection of biothiols. Talanta 2025; 281:126944. [PMID: 39332045 DOI: 10.1016/j.talanta.2024.126944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Lysine (Lys), Cu2+ and Fe3+ ions and biothiols are essential to a myriad of biological and pathological pathways, and their dysregulation is implicated in a variety of diseases. Development of fluorescent probes capable of detecting multiple analytes may be of great significance for early and accurate diagnosis of diseases and remains a huge challenge. In this context, a novel coumarin-dicyanoisophorone-based probe, engineered for the concurrent sensing of Lys, Cu2+, Fe3+ and biothiols was developed. The probe exhibited turn-on response to Lys, colorimetric and turn-off response to Cu2+ by formation of the probe-Cu2+ complex, and ratiometric sensing of Fe3+. In addition, the probe-Cu2+ complex served colorimetric and fluorescence turn-on sensor for biothiols. The limit of detection (LOD) values for the analytes were in the range of 0.30-4.40 μM. Sensing mechanisms based on intramolecular charge transfer (ICT) and iron-mediated hydrolysis of Schiff base were proposed and substantiated through density functional theory (DFT) calculations. Application of the probe for living cell bioimaging was demonstrated.
Collapse
Affiliation(s)
- Yu Shi
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Jirui Yu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Yanxi Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ji Fan
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Xiwen Wang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Shiji Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Hongqi Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
16
|
Zhao C, Sun W, Zhu Y, Huang X, Sun Y, Wang HY, Pan Y, Liu Y. An Activatable Heavy-Atom-Free Upconversion Photosensitizer for Targeted Imaging and Treatment of Tumors. J Med Chem 2024; 67:22322-22331. [PMID: 39635996 DOI: 10.1021/acs.jmedchem.4c02679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Photodynamic therapy (PDT) is an innovative and promising method for treating tumors that has attracted significant interest but still faces several challenges, such as a lack of selectivity, deep penetration of light, and efficient ROS generation. To address these challenges, we optimized and synthesized a series of photosensitizers and successfully developed a heavy-atom-free near-infrared FUCL photosensitizer NFh-NMe-2. This photosensitizer can generate singlet oxygen (1O2) and induce cellular apoptosis under 808 nm light. For the safe ablation of microtumors in vivo, an activatable FUCL photosensitizer NFh-NTR was developed based on the overexpression of nitroreductase (NTR). NFh-NTR could be activated by NTR, leading to the release of the photosensitizer NFh-NMe-2, restoring the fluorescence signal, and effectively killing tumor cells under 808 nm light irradiation. This work opens new possibilities in the chemical design of an FUCL photosensitizer for cancer treatment.
Collapse
Affiliation(s)
- Chao Zhao
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Wanlu Sun
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yanyan Zhu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoyan Huang
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ye Sun
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Hai-Yan Wang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Yi Pan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
17
|
Xuan J, Yu J, Huang C. Research Progress of Cyanine-Based Near-Infrared Fluorescent Probes for Biological Application. Chembiochem 2024; 25:e202400467. [PMID: 39039605 DOI: 10.1002/cbic.202400467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Cyanine-based near-infrared (NIR) fluorescent probes have played vital roles in biological application due to their low interference from background fluorescence, deep tissue penetration, high sensitivity, and minimal photodamage to biological samples. They are widely utilized in molecular recognition, medical diagnosis, biomolecular detection, and biological imaging. Herein, we provide a review of recent advancements in cyanine-based NIR fluorescent probes for the detection of pH, cells, tumor as well as their application in photothermal therapy (PTT) and photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Jigao Xuan
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jiajun Yu
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| |
Collapse
|
18
|
Dai J, Wu Y, Deng X, Zhou HB, Dong C. An estrogen receptor β-targeted near-infrared probe for theranostic imaging of prostate cancer. RSC Med Chem 2024:d4md00767k. [PMID: 39867587 PMCID: PMC11758099 DOI: 10.1039/d4md00767k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/05/2024] [Indexed: 01/28/2025] Open
Abstract
Estrogen receptor β (ERβ) is aberrantly expressed in castration-resistant prostate cancer (CRPC). Therefore, a diagnostic and therapeutic ERβ probe not only helps to reveal the complex role of ERβ in prostate cancer (PCa), but also promotes ERβ-targeted PCa therapy. Herein, we reported a novel ERβ-targeted near-infrared fluorescent probe D3 with both imaging and therapeutic functions, which had the advantages of high ERβ selectivity, good optical performance, and strong anti-interference ability. In addition, it displayed excellent antiproliferative activity in CRPC cells. Finally, D3 was also successfully applied to the in vivo imaging of ERβ in the prostate cancer mouse model. Thus, this ERβ-targeted near-infrared fluorescent probe can be used as a potential tool for the study of ERβ-targeted diagnostic and therapeutic PCa.
Collapse
Affiliation(s)
- Junhong Dai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
| | - Yihe Wu
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
| | - Xiaofei Deng
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
| | - Hai-Bing Zhou
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University Wuhan 430071 China
| | - Chune Dong
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University Wuhan 430071 China
| |
Collapse
|
19
|
Huang J, Liu J, Wu J, Xu M, Lin Y, Pu K. Near-Infrared Chemiluminophore Switches Photodynamic Processes via Protein Complexation for Biomarker-Activatable Cancer Therapy. Angew Chem Int Ed Engl 2024:e202421962. [PMID: 39587712 DOI: 10.1002/anie.202421962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
Despite the potential in cancer therapy, phototheranostic agents often face two challenges: limited diagnostic sensitivity due to tissue autofluorescence and suboptimal therapeutic efficacy due to the Type-II photodynamic process with the heavy oxygen reliance. In contrast, chemiluminescent theranostic agents without the requirement of real-time light excitation can address the issue of tissue autofluorescence, which however have been rarely reported for photodynamic therapy (PDT), not to mention less oxygen-dependent Type-I PDT. In this work, we synthesize near-infrared (NIR) chemiluminophores with the specific binding towards human serum albumin (HSA) to form chemiluminophore-protein complex for cancer detection and photodynamic therapy. Interestingly, after the complexation with HSA, the chemiluminescence (CL) intensities of chemiluminophores are enhanced by over 10-fold; meanwhile, the photodynamic process switches from Type-II (singlet-oxygen-generation dominated) to Type-I (superoxide anion and hydroxyl radical dominated), while the previously reported activated chemiluminophore with non-specific HSA binding can't switch photodynamic process. Based on the optimal chemiluminophore, a nitroreductase-activatable CL probe-protein complex is synthesized, which specially turns on its CL and Type-I PDT in hypoxic tumors for precision therapy. Thus, this study provides a complexation strategy to improve phototheranostic performance of chemiluminophores.
Collapse
Affiliation(s)
- Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | | | - Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Youshi Lin
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Singapore, 636921, Singapore
| |
Collapse
|
20
|
Shen R, Chen YX, Chen Y, Sayed ZN, Yi M, Sun C, Zhang B, Fang J. An activatable red emitting fluorescent probe for monitoring vicinal dithiol protein fluctuations in a stroke model. Chem Commun (Camb) 2024; 60:13774-13777. [PMID: 39499213 DOI: 10.1039/d4cc04971c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Vicinal dithiol proteins (VDPs) facilitate cellular redox homeostasis, modulate protein synthesis and participate in post-translational modifications through the dynamic equilibrium of dithiol and disulfide bonds. Herein, an activatable red emitting fluorescent probe, VDP-red, is developed for detecting VDPs. With the aid of this probe, we have discovered for the first time a reduction in the levels of reduced VDPs in a stroke mouse model. This work provides a fresh viewpoint for understanding stroke mechanisms.
Collapse
Affiliation(s)
- Ruipeng Shen
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Ya-Xiong Chen
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Yating Chen
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zahid Nasim Sayed
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Meirong Yi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Chunlin Sun
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
21
|
Cao H, Yu F, Dou K, Wang R, Xing Y, Luo X, Yu F. Dual-Response Functionalized Mitochondrial Fluorescent Probe for a Double Whammy Monitoring of Hypochlorite and Sulfur Dioxide in Heat Shock via Time Scales. Anal Chem 2024; 96:18574-18583. [PMID: 39503335 DOI: 10.1021/acs.analchem.4c05488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Heat shock seriously affects the normal functioning of an organism and can lead to damage and even death in severe cases. To prevent or treat heat shock-related diseases, we require a better understanding of the mechanism of thermocytotoxicity. Here, we designed a functionalized dual-response fluorescent probe (HCy-SO2-HClO) that could individually or simultaneously detect hypochlorous acid (HClO) and sulfur dioxide (SO2) without interfering with each other and achieved the simultaneous tracing of both during the heat shock process for the first time. The introduction of the sulfonate group greatly increased the water solubility of the probe. Furthermore, the probe could effectively accumulate in the mitochondrial region. HCy-SO2-HClO could respond to HClO and SO2 within 10 s and 20 min, respectively, realizing a double whammy detection of both on the time scale. HCy-SO2-HClO exhibited high specificity and sensitivity for HClO and SO2. The highly biocompatible probe HCy-SO2-HClO successfully achieved the detection of endogenous and exogenous SO2 and HClO in living cells and in zebrafish. Moreover, the simultaneous detection of HClO and SO2 in heat shock cells and mouse intestines was realized for the first time. This probe has achieved the detection of dual markers, which enhanced the accuracy and precision of disease detection and could serve as an effective research tool to prevent heat stroke-related diseases.
Collapse
Affiliation(s)
- Hongshuai Cao
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, College of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, China
| | - Feifei Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, College of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, China
| | - Kun Dou
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, College of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, China
| | - Rui Wang
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, College of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yanlong Xing
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, College of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, China
| | - Xianzhu Luo
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, College of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, China
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, College of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, China
| |
Collapse
|
22
|
Yang G, Deng R, Chang Y, Li H. Polydopamine-based surface coating fabrication on titanium implant by combining a photothermal agent and TiO 2 nanosheets for efficient photothermal antibacterial therapy and promoted osteogenic activity. Int J Biol Macromol 2024; 281:136481. [PMID: 39393735 DOI: 10.1016/j.ijbiomac.2024.136481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Developing titanium-based dental implants with both excellent antibacterial properties and good osseointegration is crucial for the success of the implant operation and the long-term durability of the implant. In this study, a polydopamine-based coating was created by attaching TiO2 nanosheets-cyanine composites onto the titanium surface, enabling the integration of effective photothermal antibacterial therapy with osseointegration. The exceptional dual-photothermal conversion abilities of polydopamine and cyanine in the coating resulted in outstanding photothermal antibacterial and antibiofilm therapy against four types of bacteria. Furthermore, TiO2 nanosheets promoted the adhesion, proliferation and early osteogenic differentiation of osteoblasts. In an infected dental implant model in rats, the developed coating exhibited potent antibacterial activity and remarkable osteogenic differentiation in the bone, leading to increased bone formation around the implants. This innovative approach, combining photothermal therapy with osteogenic two-dimensional nanomaterials, presents a novel method for surface functionalization of implants to achieve effective antibacterial and osseointegration capabilities.
Collapse
Affiliation(s)
- Gang Yang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, China
| | - Rongrong Deng
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Chemical Resource Engineering, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yincheng Chang
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Chemical Resource Engineering, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hongbo Li
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
23
|
Wan Y, Guo Z, Wu Z, Liang T, Li Z. Visualization of Diabetes Progression by an Activatable NIR-IIb Luminescent Probe. Anal Chem 2024; 96:14843-14852. [PMID: 39239835 DOI: 10.1021/acs.analchem.4c02629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Developing NIR-IIb luminescence probes with rapid visualization and a high penetration depth is essential for diabetes research. Combining a sensitizing switch with lanthanide-doped nanoparticles (LnNPs) has been employed to fabricate the NIR-IIb probes. However, these probes mainly adopt heptamethine cyanine dye as the antenna, and the NIR-IIb signal is activated by inhibiting the photoinduced electron transfer (PET) of the dye. Due to limited recognition units, this strategy makes many biomolecules undetectable, such as cysteine (Cys), which is closely related to diabetes. Herein, in this article, hemicyanine dye, NFL-OH, was verified as a new antenna to sensitize NIR-IIb emission from LnNPs. Unlike traditional cyanine dyes, hemicyanine's fluorescence intensity can also be modulated by intramolecular charge transfer (ICT), thereby expanding the range of detectable targets for NIR-IIb probes based on sensitization mechanism. Through switching the hemicyanine-sensitized NIR-IIb emission, we successfully fabricated an NFL-Cys-LnNPs' nanoprobe, which can effectively monitor Cys concentration in the liver of diabetic mice during diabetes progression and evaluate the efficacy of diabetic drugs. Our work not only presents an excellent tool for Cys imaging but also introduces new concepts for designing NIR-IIb probes.
Collapse
Affiliation(s)
- Yong Wan
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhi Guo
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhengjun Wu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Tao Liang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhen Li
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
24
|
Luo W, Diao Q, Lv L, Li T, Ma P, Song D. A novel NIR fluorescent probe for enhanced β-galactosidase detection and tumor imaging in ovarian cancer models. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124411. [PMID: 38728851 DOI: 10.1016/j.saa.2024.124411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
The advancement of biological imaging techniques critically depends on the development of novel near-infrared (NIR) fluorescent probes. In this study, we introduce a designed NIR fluorescent probe, NRO-βgal, which exhibits a unique off-on response mechanism to β-galactosidase (β-gal). Emitting a fluorescence peak at a wavelength of 670 nm, NRO-βgal showcases a significant Stokes shift of 85 nm, which is indicative of its efficient energy transfer and minimized background interference. The probe achieves a remarkably low in vitro detection limit of 0.2 U/L and demonstrates a rapid response within 10 min, thereby underscoring its exceptional sensitivity, selectivity, and operational swiftness. Such superior analytical performance broadens the horizon for its application in intricate biological imaging studies. To validate the practical utility of NRO-βgal in bio-imaging, we employed ovarian cancer cell and mouse models, where the probe's efficacy in accurately delineating tumor cells was examined. The results affirm NRO-βgal's capability to provide sharp, high-contrast images of tumor regions, thereby significantly enhancing the precision of surgical tumor resection. Furthermore, the probe's potential for real-time monitoring of enzymatic activity in living tissues underscores its utility as a powerful tool for diagnostics in oncology and beyond.
Collapse
Affiliation(s)
- Weiwei Luo
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China
| | - Quanping Diao
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China.
| | - Linlin Lv
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China
| | - Tiechun Li
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| |
Collapse
|
25
|
Chi J, Xue Y, Zhou Y, Han T, Ning B, Cheng L, Xie H, Wang H, Wang W, Meng Q, Fan K, Gong F, Fan J, Jiang N, Liu Z, Pan K, Sun H, Zhang J, Zheng Q, Wang J, Su M, Song Y. Perovskite Probe-Based Machine Learning Imaging Model for Rapid Pathologic Diagnosis of Cancers. ACS NANO 2024; 18:24295-24305. [PMID: 39164203 DOI: 10.1021/acsnano.4c06351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Accurately distinguishing tumor cells from normal cells is a key issue in tumor diagnosis, evaluation, and treatment. Fluorescence-based immunohistochemistry as the standard method faces the inherent challenges of the heterogeneity of tumor cells and the lack of big data analysis of probing images. Here, we have demonstrated a machine learning-driven imaging method for rapid pathological diagnosis of five types of cancers (breast, colon, liver, lung, and stomach) using a perovskite nanocrystal probe. After conducting the bioanalysis of survivin expression in five different cancers, high-efficiency perovskite nanocrystal probes modified with the survivin antibody can recognize the cancer tissue section at the single cell level. The tumor to normal (T/N) ratio is 10.3-fold higher than that of a conventional fluorescent probe, which can successfully differentiate between tumors and adjacent normal tissues within 10 min. The features of the fluorescence intensity and pathological texture morphology have been extracted and analyzed from 1000 fluorescence images by machine learning. The final integrated decision model makes the area under the receiver operating characteristic curve (area under the curve) value of machine learning classification of breast, colon, liver, lung, and stomach above 90% while predicting the tumor organ of 92% of positive patients. This method demonstrates a high T/N ratio probe in the precise diagnosis of multiple cancers, which will be good for improving the accuracy of surgical resection and reducing cancer mortality.
Collapse
Affiliation(s)
- Jimei Chi
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yonggan Xue
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yinying Zhou
- School of Software, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Teng Han
- Institute of Software, Chinese Academy of Sciences, Beijing, 100191, China
| | - Bobin Ning
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lijun Cheng
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongfei Xie
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huadong Wang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenchen Wang
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qingyu Meng
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Kaijie Fan
- Department of Thoracic Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fangming Gong
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Junzhen Fan
- Department of Pathology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China
| | - Nan Jiang
- Faculty of Hepatopancreatobiliary Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zheng Liu
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Ke Pan
- Institute of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hongyu Sun
- Department of Gastroenterology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiajin Zhang
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qian Zheng
- Department of Thoracic Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiandong Wang
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
26
|
Zhai S, Hu W, Liu Z, Liu Y. A "dual-key-and-lock" platform for distinguishing autophagy during neuroinflammation. Biosens Bioelectron 2024; 258:116344. [PMID: 38696967 DOI: 10.1016/j.bios.2024.116344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Autophagy is an essential degradative process that governs the renewal of organelle and maintains the homeostasis of cellular microenvironment. Its dysregulation has been demonstrated to be an indicator for neuroinflammation. To elucidate the interrelationship between neuroinflammation and autophagy, optical probes are ideal tools as they offer a number of advantages such as high spatiotemporal resolution and non-invasive sensing, which help to visualize the physiological and pathological functions of interested analytes. However, single autophagy parameter-response probes may generate false-positive results since they cannot distinguish between neuroinflammation and other autophagic stimuli. In contrast, chemosensors that respond to two (or more) targets can improve selectivity by qualifying response conditions. Herein, a "dual-key-and-lock" strategy was applied to construct probe (Vis-NO) to selectively recognize autophagy under inflammation out of other stimuli. The red fluorescence of Vis-NO was lit up only in the simultaneously presence of high viscosity and nitric oxide (NO) in lysosome. Due to the characteristics of high viscosity and overexpressed NO within lysosomes, Vis-NO could be used to selectively identify autophagy during neuroinflammation, providing expanding insights into the interrelationship between autophagy, neuroinflammation and stroke in pathology, and informing about the mechanisms through which autophagy regulates inflammation.
Collapse
Affiliation(s)
- Shuyang Zhai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wei Hu
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, China; Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Zhihong Liu
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
27
|
Xiang K, Pan J, Yu J, Xiao L, Sun SK, Cheng R. A hemicyanine-based near-infrared fluorescent probe with large Stokes shift for non-invasive bioimaging of brown adipose tissue. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5272-5279. [PMID: 39016035 DOI: 10.1039/d4ay00658e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Brown adipose tissue (BAT), characterized by the presence of numerous mitochondria, plays a key role in metabolism and energy expenditure. Accurately reporting the presence and activation of BAT is beneficial to study obesity, diabetes, and other metabolic disorders. Near-infrared (NIR) fluorescence imaging has the advantages of high sensitivity, non-radioactivity, and simple operation. However, most NIR probes for BAT imaging exhibit small Stokes shifts, which may lead to self-quenching, reducing the signal-to-noise ratio, and introducing cross-talk. Herein, we rationally designed and synthesized a series of hemicyanine-based NIR fluorescent probes HCYBAT-1-3. Among them, HCYBAT-1 demonstrated favorable properties such as near-infrared emission (776 nm), large Stokes shift (139 nm), good biocompatibility and specific mitochondrial targeting (Pearson's colocalization coefficient of 0.87). Meanwhile, HCYBAT-1 was successfully employed to differentiate BAT from white adipose tissue (WAT). Quantitative analysis of NIR fluorescent images showed that HCYBAT-1 could be used for real-time monitoring of BAT activation in mice stimulated by norepinephrine (NE) and cold exposure. Overall, probe HCYBAT-1 showcased its efficacy in non-invasive evaluation of BAT metabolism in vivo with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Ke Xiang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China.
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jiaojiao Yu
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China.
| | - Lehui Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China.
| | - Ran Cheng
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
28
|
Cheng Z, Benson S, Mendive-Tapia L, Nestoros E, Lochenie C, Seah D, Chang KY, Feng Y, Vendrell M. Enzyme-Activatable Near-Infrared Hemicyanines as Modular Scaffolds for in vivo Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202404587. [PMID: 38717316 DOI: 10.1002/anie.202404587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Indexed: 06/21/2024]
Abstract
Photodynamic therapy is an anti-cancer treatment that requires illumination of photosensitizers to induce local cell death. Current near-infrared organic photosensitizers are built from large and non-modular structures that cannot be tuned to improve safety and minimize off-target toxicity. This work describes a novel chemical platform to generate enzyme-activatable near-infrared photosensitizers. We optimized the Se-bridged hemicyanine scaffold to include caging groups and biocompatible moieties, and generated cathepsin-triggered photosensitizers for effective ablation of human glioblastoma cells. Furthermore, we demonstrated that enzyme-activatable Se-bridged hemicyanines are effective photosensitizers for the safe ablation of microtumors in vivo, creating new avenues in the chemical design of targeted anti-cancer photodynamic therapy agents.
Collapse
Affiliation(s)
- Zhiming Cheng
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Sam Benson
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Eleni Nestoros
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Charles Lochenie
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Deborah Seah
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Kai Yee Chang
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Yi Feng
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, EH4 2XR, Edinburgh, UK
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| |
Collapse
|
29
|
Miki K, Oe M, Suzuki K, Miki K, Mu H, Kato Y, Iwatake M, Yukawa H, Baba Y, Ueda Y, Mori Y, Ohe K. Dual-responsive near-infrared turn-on fluorescent probe for cancer stem cell-specific visualization. J Mater Chem B 2024; 12:6959-6967. [PMID: 38913327 DOI: 10.1039/d4tb00897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Aldehyde dehydrogenase 1A1 (ALDH1A1) stands out as one of the most reliable intracellular biomarkers for stem cells because it is expressed in both cancer stem cells (CSCs) and normal somatic stem cells (NSCs). Although several turn-on fluorescent probes for ALDH1A1 have been developed to visualize CSCs in cancer cells, the discrimination of CSCs from NSCs is difficult. We here report an AND-type dual-responsive fluorescent probe, CHO_βgal, the near-infrared fluorescence of which can be turned on after responding to both ALDH1A1 and β-galactosidase. The AND-type dual responsiveness enables CSCs to be clearly visualized, whereas NSCs are non-emissive in microscopy. CSC-positive metastasis model lungs were successfully discriminated from normal lungs in ex vivo staining experiments using CHO_βgal, whereas the single-input ALDH1A1-responsive probe failed to achieve this discrimination owing to pronounced false-positive fluorescence output from lung NSCs. In tissue slice staining experiments, even in the presence of adjacent normal tissues, the peripheral region-specific localization of CSCs was clear. The versatility of CHO_βgal holds promise not only as a fundamental in vitro research tool for visualizing CSCs but also as a valuable asset in practical tissue staining diagnosis, significantly contributing to the assessment of cancer malignancy.
Collapse
Affiliation(s)
- Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Masahiro Oe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Kanae Suzuki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Koki Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Huiying Mu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Yoshimi Kato
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mayumi Iwatake
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroshi Yukawa
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba 265-8522, Japan
| | - Yoshinobu Baba
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Yoshifumi Ueda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
30
|
Wang C, Yuan R, Ma S, Miao Q, Zhao X, Liu Y, Bi S, Chen G. Developing NIR xanthene-chalcone fluorophores with large Stokes shifts for fluorescence imaging. Analyst 2024; 149:3372-3379. [PMID: 38712551 DOI: 10.1039/d4an00339j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A series of novel near-infrared (NIR) xanthene-chalcone fluorophores were constructed through a modular synthesis with the electron-donating xanthene moiety and the electron-withdrawing chalcone moiety. These fluorophores are convenient for fluorescence imaging in living cells, benefiting from their NIR emissions (650-710 nm), large Stokes shifts (>100 nm), moderate quantum yields and low cytotoxicity. The substituted hydroxyl group of the xanthene-chalcone fluorophore HCA-E facilitates the development of multifunctional fluorescent probes. As an example, a highly sensitive and selective probe N-HCA-E for glutathione (GSH) detection was developed based on the fluorophore HCA-E. A 4-nitrobenzenesulfonyl (4-Ns) group was introduced to cage the hydroxyl group of HCA-E, which was used as a selective recognition site for the thiol of GSH and an effective fluorescence quencher. Probe N-HCA-E revealed NIR "turn-on" fluorescence (709 nm) for endogenous and exogenous GSH detection in lysosomes with a large Stokes shift (129 nm) and high anti-interference ability.
Collapse
Affiliation(s)
- Chao Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Rongrong Yuan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Siyue Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Qing Miao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Xufang Zhao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Yuxia Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Guang Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| |
Collapse
|
31
|
He X, Yu J, Yin R, Huang Y, Zhang P, Xiao C, Chen X. An AIEgen and Iodine Double-Ornamented Platinum(II) Complex for Bimodal Imaging-Guided Chemo-Photodynamic Combination Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309894. [PMID: 38308168 DOI: 10.1002/smll.202309894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 02/04/2024]
Abstract
Real-time biodistribution monitoring and enhancing the therapeutic efficacy of platinum(II)-based anticancer drugs are urgently required to elevate their clinical performance. Herein, a tetraphenylethene derivative (TP) with aggregation-induced emission (AIE) properties and an iodine atom are selected as ligands to endow platinum (II) complex TP-Pt-I with real-time in vivo self-tracking ability by fluorescence (FL) and computerized tomography (CT) imaging, and improved anticancer efficacy by the combination of chemotherapy and photodynamic therapy. Especially, benefiting from the formation of a donor-acceptor-donor structure between the AIE photosensitizer TP and Pt-I moiety, the heavy atom effects of Pt and I, and the presence of I, TP-Pt-I displayed red-shifted absorption and emission wavelengths, enhanced ROS generation efficiency, and improved CT imaging capacity compared with the pristine TP and the control agent TP-Pt-Cl. As a result, the enhanced intratumoral accumulation of TP-Pt-I loaded nanoparticles is readily revealed by dual-modal FL and CT imaging with high contrast. Meanwhile, the TP-Pt-I nanoparticles show significantly improved tumor growth-inhibiting effects on an MCF-7 xenograft murine model by combining the chemotherapeutic effects of platinum(II) and the photodynamic effects of TP. This self-tracking therapeutic complex thus provides a new strategy for improving the therapeutic outcomes of platinum(II)-based anticancer drugs.
Collapse
Affiliation(s)
- Xidong He
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jie Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Renyong Yin
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
32
|
Bertolini M, Mendive-Tapia L, Ghashghaei O, Reese A, Lochenie C, Schoepf AM, Sintes M, Tokarczyk K, Nare Z, Scott AD, Knight SR, Aithal AR, Sachdeva A, Lavilla R, Vendrell M. Nonperturbative Fluorogenic Labeling of Immunophilins Enables the Wash-free Detection of Immunosuppressants. ACS CENTRAL SCIENCE 2024; 10:969-977. [PMID: 38799658 PMCID: PMC11117681 DOI: 10.1021/acscentsci.3c01590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 05/29/2024]
Abstract
Immunosuppressants are clinically approved drugs to treat the potential rejection of transplanted organs and require frequent monitoring due to their narrow therapeutic window. Immunophilins are small proteins that bind immunosuppressants with high affinity, yet there are no examples of fluorogenic immunophilins and their potential application as optical biosensors for immunosuppressive drugs in clinical biosamples. In the present work, we designed novel diazonium BODIPY salts for the site-specific labeling of tyrosine residues in peptides via solid-phase synthesis as well as for late-stage functionalization of whole recombinant proteins. After the optimization of a straightforward one-step labeling procedure for immunophilins PPIA and FKBP12, we demonstrated the application of a fluorogenic analogue of FKBP12 for the selective detection of the immunosuppressant drug tacrolimus, including experiments in urine samples from patients with functioning renal transplants. This chemical methodology opens new avenues to rationally design wash-free immunophilin-based biosensors for rapid therapeutic drug monitoring.
Collapse
Affiliation(s)
- Marco Bertolini
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Lorena Mendive-Tapia
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Ouldouz Ghashghaei
- Laboratory
of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and
Institute of Biomedicine UB (IBUB), University
of Barcelona, Catalunya, Spain 08007
| | - Abigail Reese
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Charles Lochenie
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Anna M. Schoepf
- Laboratory
of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and
Institute of Biomedicine UB (IBUB), University
of Barcelona, Catalunya, Spain 08007
| | - Miquel Sintes
- Laboratory
of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and
Institute of Biomedicine UB (IBUB), University
of Barcelona, Catalunya, Spain 08007
| | - Karolina Tokarczyk
- Concept
Life Sciences Ltd, Edinburgh Bioquarter, Edinburgh EH16 4UX, U.K.
| | - Zandile Nare
- Concept
Life Sciences Ltd, Edinburgh Bioquarter, Edinburgh EH16 4UX, U.K.
| | - Andrew D. Scott
- Concept
Life Sciences Ltd, Edinburgh Bioquarter, Edinburgh EH16 4UX, U.K.
| | - Stephen R. Knight
- Renal
Transplant Unit, Queen Elizabeth Hospital, 1345 Govan Road, Glasgow G51 4TF, U.K.
| | - Advait R. Aithal
- School of
Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| | - Amit Sachdeva
- School of
Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| | - Rodolfo Lavilla
- Laboratory
of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and
Institute of Biomedicine UB (IBUB), University
of Barcelona, Catalunya, Spain 08007
| | - Marc Vendrell
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| |
Collapse
|
33
|
Feng Y, Yan H, Mou X, Yang Z, Qiao C, Jia Q, Zhang R, Wang Z. A Dual-Cascade Activatable Near-Infrared Fluorescent Probe for Precise Intraoperative Imaging of Tumor. NANO LETTERS 2024; 24:6131-6138. [PMID: 38727077 DOI: 10.1021/acs.nanolett.4c01364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Accurate intraoperative tumor delineation is critical to achieving successful surgical outcomes. However, conventional techniques typically suffer from poor specificity and low sensitivity and are time-consuming, which greatly affects intraoperative decision-making. Here, we report a cascade activatable near-infrared fluorescent (NIRF) probe IR780SS@CaP that can sequentially respond to tumor acidity and elevated glutathione levels for accurate intraoperative tumor localization. Compared with nonactivatable and single-factor activatable probes, IR780SS@CaP with a cascade strategy can minimize nonspecific activation and false positive signals in a complicated biological environment, affording a superior tumor-to-normal tissue ratio to facilitate the delineation of abdominal metastases. Small metastatic lesions that were less than 1 mm in diameter can be precisely identified by IR780SS@CaP and completely excised under NIRF imaging guidance. This study could benefit tumor diagnosis and image-guided tumor surgery by providing real-time information and reliable decision support, thus reducing the risk of both recurrence and complications to improve patient outcomes.
Collapse
Affiliation(s)
- Yanbin Feng
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi 710126, China
| | - Haohao Yan
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi 710126, China
| | - Xiaocheng Mou
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi 710126, China
| | - Zuo Yang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi 710126, China
| | - Chaoqiang Qiao
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi 710126, China
| | - Qian Jia
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi 710126, China
| | - Ruili Zhang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi 710126, China
| | - Zhongliang Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi 710126, China
| |
Collapse
|
34
|
Li Y, Cao J, Wu X, Kou J, Feng T, Zhang R, Xu C, Kong F, Tang B. A Sequentially Activated Probe for Imaging of Superoxide Anion and Peroxynitrite in PC12 Cells under Oxidative Stress. Anal Chem 2024; 96:7138-7144. [PMID: 38676633 DOI: 10.1021/acs.analchem.4c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Superoxide anion (O2·-) and peroxynitrite (ONOO-), two important oxidants under oxidative stress, coexist in complex cell and organism systems, playing crucial roles in various physiological and pathological processes, particularly in neurodegenerative diseases. Despite the absence of robust molecular tools capable of simultaneously visualizing O2·- and ONOO- in biosystems, the relationship between these two species remains understudied. Herein, we present sequentially activated fluorescent probe, DHX-SP, which exhibits exceptional selectivity and sensitivity toward O2·- and ONOO-. This probe enables precise imaging of these species in living PC12 cells under oxidative stress conditions using distinct fluorescence signal combinations. Furthermore, the probe DHX-SP has the ability to visualize changes in O2·- and ONOO- levels during ferroptosis of PC12 cells and in the Parkinson's disease model. These findings establish a connection between the crosstalk of the phosphorus group of O2·- and ONOO- in PC12 cells under oxidative stress.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Jing Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xue Wu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Junjie Kou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Tingting Feng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ruixin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Chang Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Fanpeng Kong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
- Laoshan Laboratory, Qingdao 266237, Shandong, People's Republic of China
| |
Collapse
|
35
|
Bai C, Yao J, Meng Q, Dong Y, Chen M, Liu X, Wang X, Qiao R, Huang H, Wei B, Qu C, Miao H. A near-infrared fluorescent ratiometric probe with large Stokes shift for multi-mode sensing of Pb 2+ and bioimaging. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133968. [PMID: 38452682 DOI: 10.1016/j.jhazmat.2024.133968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Pb2+ is a heavy metal ion pollutant that poses a serious threat to human health and ecosystems. The conventional methods for detecting Pb2+ have several limitations. In this study, we introduce a novel fluorescent probe that enables the detection of Pb2+ in the near-infrared region, free from interference from other common ions. A unique characteristic of this probe is its ability to rapidly and accurately identify Pb2+ through ratiometric measurements accompanied by a large Stokes shift of 201 nm. The limit of detection achieved by probe was remarkably low, surpassing the standards set by the World Health Organization, and outperforming previously reported probes. To the best of our knowledge, this is the first organic small-molecule fluorescent probe with both near-infrared emission and ratiometric properties for the detection of Pb2+. We present a triple-mode sensing platform constructed using a probe that allows for the sensitive and selective recognition of Pb2+ in common food items. Furthermore, we successfully conducted high-quality fluorescence imaging of Pb2+ in various samples from common edible plants, HeLa cells, Caenorhabditis elegans, and mice. Importantly, the probe-Pb2+ complex exhibited tumour-targeting capabilities. Overall, this study presents a novel approach for the development of fluorescent probes for Pb2+ detection.
Collapse
Affiliation(s)
- Cuibing Bai
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Junxiong Yao
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Qian Meng
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Yajie Dong
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Mengyu Chen
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Xinyi Liu
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Xinyu Wang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Rui Qiao
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China.
| | - Huanan Huang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Xinghuo Organosilicon Industry Research Center, Jiujiang University, Jiujiang 332005, PR China.
| | - Biao Wei
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Changqing Qu
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang, Anhui 236037, PR China
| | - Hui Miao
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China.
| |
Collapse
|
36
|
Xu C, Cui K, Ye Z, Feng Y, Wang H, Liu HW. Recent Advances of Aminopeptidases-Responsive Small-Molecular Probes for Bioimaging. Chem Asian J 2024; 19:e202400052. [PMID: 38436107 DOI: 10.1002/asia.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
Aminopeptidases, enzymes with critical roles in human body, are emerging as vital biomarkers for metabolic processes and diseases. Aberrant aminopeptidase levels are often associated with diseases, particularly cancer. Small-molecule probes, such as fluorescent, fluorescent/photoacoustics, bioluminescent, and chemiluminescent probes, are essential tools in the study of aminopeptidases-related diseases. The fluorescent probes provide real-time insights into protein activities, offering high sensitivity in specific locations, and precise spatiotemporal results. Additionally, photoacoustic probes offer signals that are able to penetrate deeper tissues. Bioluminescent and chemiluminescent probes can enhance in vivo imaging abilities by reducing the background. This comprehensive review is focused on small-molecule probes that respond to four key aminopeptidases: aminopeptidase N, leucine aminopeptidase, Pyroglutamate aminopeptidase 1, and Prolyl Aminopeptidase, and their utilization in imaging tumors and afflicted regions. In this review, the design strategy of small-molecule probes, the variety of designs from previous studies, and the opportunities of future bioimaging applications are discussed, serving as a roadmap for future research, sparking innovations in aminopeptidase-responsive probe development, and enhancing our understanding of these enzymes in disease diagnostics and treatment.
Collapse
Affiliation(s)
- Chengyan Xu
- Department of Medicine, Shizhen College of Guizhou University of Traditional Chinese Medicine, Guiyang, 550200, China
| | - Kaixi Cui
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106, United States
| | - Zhifei Ye
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yurong Feng
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huabin Wang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hong-Wen Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
37
|
Zhao J, Li X, Ma T, Chang B, Zhang B, Fang J. Glutathione-triggered prodrugs: Design strategies, potential applications, and perspectives. Med Res Rev 2024; 44:1013-1054. [PMID: 38140851 DOI: 10.1002/med.22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
The burgeoning prodrug strategy offers a promising avenue toward improving the efficacy and specificity of cytotoxic drugs. Elevated intracellular levels of glutathione (GSH) have been regarded as a hallmark of tumor cells and characteristic feature of the tumor microenvironment. Considering the pivotal involvement of elevated GSH in the tumorigenic process, a diverse repertoire of GSH-triggered prodrugs has been developed for cancer therapy, facilitating the attenuation of deleterious side effects associated with conventional chemotherapeutic agents and/or the attainment of more efficacious therapeutic outcomes. These prodrug formulations encompass a spectrum of architectures, spanning from small molecules to polymer-based and organic-inorganic nanomaterial constructs. Although the GSH-triggered prodrugs have been gaining increasing interests, a comprehensive review of the advancements made in the field is still lacking. To fill the existing lacuna, this review undertakes a retrospective analysis of noteworthy research endeavors, based on a categorization of these molecules by their diverse recognition units (i.e., disulfides, diselenides, Michael acceptors, and sulfonamides/sulfonates). This review also focuses on explaining the distinct benefits of employing various chemical architecture strategies in the design of these prodrug agents. Furthermore, we highlight the potential for synergistic functionality by incorporating multiple-targeting conjugates, theranostic entities, and combinational treatment modalities, all of which rely on the GSH-triggering. Overall, an extensive overview of the emerging field is presented in this review, highlighting the obstacles and opportunities that lie ahead. Our overarching goal is to furnish methodological guidance for the development of more efficacious GSH-triggered prodrugs in the future. By assessing the pros and cons of current GSH-triggered prodrugs, we expect that this review will be a handful reference for prodrug design, and would provide a guidance for improving the properties of prodrugs and discovering novel trigger scaffolds for constructing GSH-triggered prodrugs.
Collapse
Affiliation(s)
- Jintao Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Xinming Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Bingbing Chang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
38
|
Wu S, Zhang W, Li C, Ni Z, Chen W, Gai L, Tian J, Guo Z, Lu H. Rational design of CT-coupled J-aggregation platform based on Aza-BODIPY for highly efficient phototherapy. Chem Sci 2024; 15:5973-5979. [PMID: 38665518 PMCID: PMC11040637 DOI: 10.1039/d3sc06976a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/26/2024] [Indexed: 04/28/2024] Open
Abstract
Supramolecular engineering is exceptionally appealing in the design of functional materials, and J-aggregates resulting from noncovalent interactions offer intriguing features. However, building J-aggregation platforms remains a significant challenge. Herein, we report 3,5-dithienyl Aza-BODIPYs with a donor-acceptor-donor (D-A-D) architecture as the first charge transfer (CT)-coupled J-aggregation BODIPY-type platform. The core acceptor moieties in one molecule interact with donor units in neighboring molecules to generate slip-stacked packing motifs, resulting in CT-coupled J-aggregation with a redshifted wavelength up to 886 nm and an absorption tail over 1100 nm. The J-aggregates show significant photoacoustic signals and high photothermal conversion efficiency of 66%. The results obtained in vivo show that the J-aggregates have the potential to be used for tumor photothermal ablation and photoacoustic imaging. This study not only demonstrates Aza-BODIPY with D-A-D as a novel CT-coupled J-aggregation platform for NIR phototherapy materials but also motivates further study on the design of J-aggregation.
Collapse
Affiliation(s)
- Shengmei Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Wenze Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Chaoran Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Zhigang Ni
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Weifeng Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Lizhi Gai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| |
Collapse
|
39
|
Jiang G, Liu H, Deng G, Liu H, Zhou Z, Ren TB, Wang L, Zhang XB, Yuan L. "Zero" Intrinsic Fluorescence Sensing-Platforms Enable Ultrasensitive Whole Blood Diagnosis and In Vivo Imaging. Angew Chem Int Ed Engl 2024; 63:e202400637. [PMID: 38409519 DOI: 10.1002/anie.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Abnormal physiological processes and diseases can lead to content or activity fluctuations of biocomponents in organelles and whole blood. However, precise monitoring of these abnormalities remains extremely challenging due to the insufficient sensitivity and accuracy of available fluorescence probes, which can be attributed to the background fluorescence arising from two sources, 1) biocomponent autofluorescence (BCAF) and 2) probe intrinsic fluorescence (PIF). To overcome these obstacles, we have re-engineered far-red to NIR II rhodol derivatives that possess weak BCAF interference. And a series of "zero" PIF sensing-platforms were created by systematically regulating the open-loop/spirocyclic forms. Leveraging these advancements, we devised various ultra-sensitive NIR indicators, achieving substantial fluorescence boosts (190 to 1300-fold). Among these indicators, 8-LAP demonstrated accurate tracking and quantifying of leucine aminopeptidase (LAP) in whole blood at various stages of tumor metastasis. Furthermore, coupling 8-LAP with an endoplasmic reticulum-targeting element enabled the detection of ERAP1 activity in HCT116 cells with p53 abnormalities. This delicate design of eliminating PIF provides insights into enhancing the sensitivity and accuracy of existing fluorescence probes toward the detection and imaging of biocomponents in abnormal physiological processes and diseases.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Guohui Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Zhixuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Lu Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
40
|
Wang M, Kitagawa Y, Hasegawa Y. Current Development of Lanthanide Complexes for Biomedical Applications. Chem Asian J 2024; 19:e202400038. [PMID: 38348520 DOI: 10.1002/asia.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Indexed: 03/01/2024]
Abstract
Luminescent molecule-based bioimaging system is widely used for precise localization and distinction of cancer/tumor cells. Luminescent lanthanide (Ln(III)) complexes offer long-lived (sub-millisecond time scale) and sharp (FWHM <10 nm) emission, arising from the forbidden 4f-4f electronic transitions. Luminescent Ln(III) complex-based bioimaging has emerged as a promising option for both in vitro and in vivo visualizations. In this mini-review, the historical development and recent significant progress of luminescent Ln(III) probes for bioapplications are introduced. The recent studies are mainly focused on three points: (i) the structural modifications of Ln(III) complexes in both macrocyclic and small ligands, (ii) the acquirement of high resolution luminescence images of cancer/tumor cells and (iii) the constructions of ratiometric biosensors. Furthermore, our recent study is explained as a new Cancer GPS (cancer grade probing for determining tumor grade through photophysical property analyses of intracellular Eu(III) complex.
Collapse
Affiliation(s)
- Mengfei Wang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Yuichi Kitagawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Yasuchika Hasegawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
41
|
Zhang M, Wang S, Bai Y, Wang D, Fu Y, Su Z, Zhang G, Meng M, Yu F, Wang B, Jin H, Zhao W. A Dual-Function Hemicyanine Material with Highly Efficient Photothermal and Photodynamic Effect Used for Tumor Therapy. Adv Healthc Mater 2024; 13:e2303432. [PMID: 38069831 DOI: 10.1002/adhm.202303432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/25/2023] [Indexed: 12/17/2023]
Abstract
Small molecular organic optical agents with synergistic effects of photothermal therapy (PTT) and photodynamic therapy (PDT), hold credible promise for anti-tumor therapy by overcoming individual drawbacks and enhancing photon utilization efficiency. However, developing effective dual-function PTT-PDT photosensitizers (PSs) for efficient synergistic phototherapy remains challenging. Here, a benz[c,d]indolium-substituted hemicyanine named Rh-BI, which possesses a high photothermal conversion efficiency of 41.67% by exhaustively suppressing fluorescence emission, is presented. Meanwhile, the rotating phenyl group at meso-site induces charge recombination to enhance the molar extinction coefficient up to 13.58 × 104 M-1cm-1, thereby potentiating the photodynamic effect. Under 808 nm irradiation, Rh-BI exhibits significant phototoxicity in several cancer cell types in vitro with IC50 values as low as ≈0.5 µM. Moreover, treatment of 4T1 tumor-bearing mice with Rh-BI under laser irradiation successfully inhibits tumor growth. In a word, an effective strategy is developed to build PTT-PDT dual-functional optical materials based on hemicyanine backbone for tumor therapy by modulating conjugation system interaction to adjust the energy consumption pathway.
Collapse
Affiliation(s)
- Minglu Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Shuo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
| | - Yueping Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
| | - Danyang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
| | - Yu Fu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
| | - Zongyi Su
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoqiang Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
| | - Fan Yu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Bing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongzhen Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
| |
Collapse
|
42
|
Chen H, Fang G, Ren Y, Zou W, Ying K, Yang Z, Chen Q. Super-resolution imaging for in situ monitoring sub-cellular micro-dynamics of small molecule drug. Acta Pharm Sin B 2024; 14:1864-1877. [PMID: 38572114 PMCID: PMC10985125 DOI: 10.1016/j.apsb.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 04/05/2024] Open
Abstract
Small molecule drugs play a pivotal role in the arsenal of anticancer pharmacological agents. Nonetheless, their small size poses a challenge when directly visualizing their localization, distribution, mechanism of action (MOA), and target engagement at the subcellular level in real time. We propose a strategy for developing triple-functioning drug beacons that seamlessly integrate therapeutically relevant bioactivity, precise subcellular localization, and direct visualization capabilities within a single molecular entity. As a proof of concept, we have meticulously designed and constructed a boronic acid fluorescence drug beacon using coumarin-hemicyanine (CHB). Our CHB design includes three pivotal features: a boronic acid moiety that binds both adenosine triphosphate (ATP) and adenosine diphosphate (ADP), thus depleting their levels and disrupting the energy supply within mitochondria; a positively charged component that targets the drug beacon to mitochondria; and a sizeable conjugated luminophore that emits fluorescence, facilitating the application of structured illumination microscopy (SIM). Our study indicates the exceptional responsiveness of our proof-of-concept drug beacon to ADP and ATP, its efficacy in inhibiting tumor growth, and its ability to facilitate the tracking of ADP and ATP distribution around the mitochondrial cristae. Furthermore, our investigation reveals that the micro-dynamics of CHB induce mitochondrial dysfunction by causing damage to the mitochondrial cristae and mitochondrial DNA. Altogether, our findings highlight the potential of SIM in conjunction with visual drug design as a potent tool for monitoring the in situ MOA of small molecule anticancer compounds. This approach represents a crucial advancement in addressing a current challenge within the field of small molecule drug discovery and validation.
Collapse
Affiliation(s)
- Huimin Chen
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Guiqian Fang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Youxiao Ren
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Kang Ying
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qixin Chen
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| |
Collapse
|
43
|
He Q, Li C, Ou Y, Pan Y, Yang X, Wang J, Liao H, Xiong X, Liu L, Sun C. A novel NIR fluorescent probe inhibits melanoma progression through apoptosis and ERK/DRP1-mediated mitochondrial fission. Bioorg Chem 2024; 145:107218. [PMID: 38377820 DOI: 10.1016/j.bioorg.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Melanoma, a highly metastatic malignant tumour, necessitated early detection and intervention. This study focuses on a hemicyanine fluorescent probe activated by near-infrared (NIR) light for bioimaging and targeted mitochondrial action in melanoma cells. IR-418, our newly designed hemicyanine-based NIR fluorescent probe, demonstrated effective targeting of melanoma cell mitochondria for NIR imaging. In vitro and in vivo experiments revealed IR-418's inhibition of melanoma growth through the promotion of mitochondrial apoptosis (Bax/Bcl-2/Cleaved Caspase pathway). Moreover, IR-418 inhibited melanoma metastasis by inhibiting mitochondrial fission through the ERK/DRP1 pathway. Notably, IR-418 mitigated abnormal ATL and ASL elevations caused by tumours without inflicting significant organ damage, indicating its high biocompatibility. In conclusion, IR-418, a novel hemicyanine-based NIR fluorescent probe targeting the mitochondria, exhibits significant fluorescence imaging capability, anti-melanoma proliferation, anti-melanoma lung metastasis activities and high biosafety. Therefore, it has significant potential in the early diagnosis and treatment of melanoma.
Collapse
Affiliation(s)
- Qingqing He
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Changqiang Li
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yangrulan Ou
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yifan Pan
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xun Yang
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jianv Wang
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hongye Liao
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
44
|
Yan K, Hu Z, Yu P, He Z, Chen Y, Chen J, Sun H, Wang S, Zhang F. Ultra-photostable small-molecule dyes facilitate near-infrared biophotonics. Nat Commun 2024; 15:2593. [PMID: 38519530 PMCID: PMC10960032 DOI: 10.1038/s41467-024-46853-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Long-wavelength, near-infrared small-molecule dyes are attractive in biophotonics. Conventionally, they rely on expanded aromatic structures for redshift, which comes at the cost of application performance such as photostability, cell permeability, and functionality. Here, we report a ground-state antiaromatic strategy and showcase the concise synthesis of 14 cationic aminofluorene dyes with mini structures (molecular weights: 299-504 Da) and distinct spectra covering 700-1600 nm. Aminofluorene dyes are cell-permeable and achieve rapid renal clearance via a simple 44 Da carboxylation. This accelerates optical diagnostics of renal injury by 50 min compared to existing macromolecular approaches. We develop a compact molecular sensing platform for in vivo intracellular sensing, and demonstrate the versatile applications of these dyes in multispectral fluorescence and optoacoustic imaging. We find that aromaticity reversal upon electronic excitation, as indicated by magnetic descriptors, not only reduces the energy bandgap but also induces strong vibronic coupling, resulting in ultrafast excited-state dynamics and unparalleled photostability. These results support the argument for ground-state antiaromaticity as a useful design rule of dye development, enabling performances essential for modern biophotonics.
Collapse
Affiliation(s)
- Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, PR China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, PR China
| | - Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, PR China
| | - Zuyang He
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, PR China
| | - Ying Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, PR China
| | - Jiajian Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, PR China.
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, PR China.
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, PR China.
| |
Collapse
|
45
|
Jiang G, Liu H, Liu H, Ke G, Ren TB, Xiong B, Zhang XB, Yuan L. Chemical Approaches to Optimize the Properties of Organic Fluorophores for Imaging and Sensing. Angew Chem Int Ed Engl 2024; 63:e202315217. [PMID: 38081782 DOI: 10.1002/anie.202315217] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/30/2023]
Abstract
Organic fluorophores are indispensable tools in cells, tissue and in vivo imaging, and have enabled much progress in the wide range of biological and biomedical fields. However, many available dyes suffer from insufficient performances, such as short absorption and emission wavelength, low brightness, poor stability, small Stokes shift, and unsuitable permeability, restricting their application in advanced imaging technology and complex imaging. Over the past two decades, many efforts have been made to improve these performances of fluorophores. Starting with the luminescence principle of fluorophores, this review clarifies the mechanisms of the insufficient performance for traditional fluorophores to a certain extent, systematically summarizes the modified approaches of optimizing properties, highlights the typical applications of the improved fluorophores in imaging and sensing, and indicates existing problems and challenges in this area. This progress not only proves the significance of improving fluorophores properties, but also provide a theoretical guidance for the development of high-performance fluorophores.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|
46
|
Luo X, Shi J, Wang R, Cao L, Gao Y, Wang J, Hong M, Sun X, Zhang Y. Near-Infrared Persistent Luminescence Nanoprobe for Early Detection of Atherosclerotic Plaque. ACS NANO 2024; 18:6500-6512. [PMID: 38348833 DOI: 10.1021/acsnano.3c12136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Atherosclerosis (AS) is a crucial contributor to various cardiovascular diseases (CVDs), which seriously threaten human life and health. Early and accurate recognition of AS plaques is essential for the prevention and treatment of CVD. Herein, we introduce an AS-targeting nanoprobe based on near-infrared (NIR) persistent luminescence nanoparticles (PLNPs), developing a highly sensitive NIR persistent luminescence (PersL) AS plaque imaging technique and successfully realizing early AS plaque detection. The nanoprobe exhibits good monodispersity and regular spherical morphology and also owns exceptional NIR PersL performance upon repetitive irradiation by biological window light. The surface-conjugated antibody (anti-osteopontin) endowed nanoprobe excellent targeting ability to foam cells within plaques. After intravenously injected nanoprobe into AS model mice, the highly sensitive PersL imaging technique can accurately detect AS plaques prior to ultrasonography (US) and magnetic resonance imaging (MRI). Specifically, the NIR PersL imaging reveals AS plaques at the earliest within 2 weeks, with higher signal-to-background ratio (SBR) up to 5.72. Based on this technique, the nanoprobe has great potential for applications in the prevention and treatment of CVD, the study of AS pathogenesis, and the screening of anti-AS drugs.
Collapse
Affiliation(s)
- Xiaofang Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, People's Republic of China
| | - Junpeng Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, People's Republic of China
| | - Ruoping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Longlong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Yan Gao
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, People's Republic of China
| | - Jinyuan Wang
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, People's Republic of China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| |
Collapse
|
47
|
Lu P, Dai SM, Zhou H, Wang F, Dong WR, Jiang JH. Xanthene-based near-infrared chromophores for high-contrast fluorescence and photoacoustic imaging of dipeptidyl peptidase 4. Chem Sci 2024; 15:2221-2228. [PMID: 38332839 PMCID: PMC10848782 DOI: 10.1039/d3sc04947g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
Near-infrared (NIR) chromophores with analyte tunable emission and absorption properties are highly desirable for developing activatable fluorescence and photoacoustic (PA) probes for bioimaging and disease diagnosis. Here we engineer a class of new chromophores by extending the π-conjugation system of a xanthene scaffold at position 7 with different electron withdrawing groups. It is demonstrated that these chromophores exhibit pH-dependent transition from a spirocyclic "closed" form to a xanthene "open" form with remarkable changes in spectral properties. We further develop fluorescence and PA probes by caging the NIR xanthene chromophores with a dipeptidyl peptidase 4 (DPPIV) substrate. In vitro and live cell studies show that these probes allow activatable fluorescence and PA detection and imaging of DPPIV activity with high sensitivity, high specificity and fast response. Moreover, these two probes allow high-contrast and highly specific imaging of DPPIV activity in a tumour-bearing mouse model in vivo via systemic administration. This study highlights the potential of a xanthene scaffold as a versatile platform for developing high-contrast fluorescence and PA molecular probes.
Collapse
Affiliation(s)
- Pei Lu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometric, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Si-Min Dai
- State Key Laboratory of Chemo/Bio-Sensing and Chemometric, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Huihui Zhou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometric, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometric, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Wan-Rong Dong
- State Key Laboratory of Chemo/Bio-Sensing and Chemometric, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometric, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
48
|
Li H, Wang J, Kim H, Peng X, Yoon J. Activatable Near-Infrared Versatile Fluorescent and Chemiluminescent Dyes Based on the Dicyanomethylene-4H-pyran Scaffold: From Design to Imaging and Theranostics. Angew Chem Int Ed Engl 2024; 63:e202311764. [PMID: 37855139 DOI: 10.1002/anie.202311764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Activatable fluorescent and chemiluminescent dyes with near-infrared emission have indispensable roles in the fields of bioimaging, molecular prodrugs, and phototheranostic agents. As one of the most popular fluorophore scaffolds, the dicyanomethylene-4H-pyran scaffold has been applied to fabricate a large number of versatile activatable optical dyes for analytes detection and diseases diagnosis and treatment by virtue of its high photostability, large Stokes shift, considerable two-photon absorption cross-section, and structural modifiability. This review discusses the molecular design strategies, recognition mechanisms, and both in vitro and in vivo bio-applications (especially for diagnosis and therapy of tumors) of activatable dicyanomethylene-4H-pyran dyes. The final section describes the current shortcomings and future development prospects of this topic.
Collapse
Affiliation(s)
- Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|
49
|
Song C, Liao L, Bin Y, He Z, Hua J, Zhao S, Liang H. Visualization diagnosis of acute cerebral ischemia via sulfane sulfur-activated photoacoustic imaging. Chem Commun (Camb) 2024; 60:1112-1115. [PMID: 38180482 DOI: 10.1039/d3cc05794a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A photoacoustic (PA) imaging probe, HCy-SH, was designed and synthesized. This probe can react rapidly and specifically with sulfane sulfur to produce a strong PA signal. This probe also exhibited low cytotoxicity and biotoxicity. Thus, HCy-SH has been used for visual diagnosis of acute cerebral ischemia.
Collapse
Affiliation(s)
- Cheng Song
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
| | - Lejuan Liao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
| | - Yidong Bin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
| | - Zongyi He
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
| | - Jing Hua
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
50
|
Wang M, Kono M, Yamaguchi Y, Islam J, Shoji S, Kitagawa Y, Fushimi K, Watanabe S, Matsuba G, Yamamoto A, Tanaka M, Tsuda M, Tanaka S, Hasegawa Y. Structure-changeable luminescent Eu(III) complex as a human cancer grade probing system for brain tumor diagnosis. Sci Rep 2024; 14:778. [PMID: 38253656 PMCID: PMC10803341 DOI: 10.1038/s41598-023-50138-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Accurate determination of human tumor malignancy is important for choosing efficient and safe therapies. Bioimaging technologies based on luminescent molecules are widely used to localize and distinguish active tumor cells. Here, we report a human cancer grade probing system (GPS) using a water-soluble and structure-changeable Eu(III) complex for the continuous detection of early human brain tumors of different malignancy grades. Time-dependent emission spectra of the Eu(III) complexes in various types of tumor cells were recorded. The radiative rate constants (kr), which depend on the geometry of the Eu(III) complex, were calculated from the emission spectra. The tendency of the kr values to vary depended on the tumor cells at different malignancy grades. Between T = 0 and T = 3 h of invasion, the kr values exhibited an increase of 4% in NHA/TS (benign grade II gliomas), 7% in NHA/TSR (malignant grade III gliomas), and 27% in NHA/TSRA (malignant grade IV gliomas). Tumor cells with high-grade malignancy exhibited a rapid upward trend in kr values. The cancer GPS employs Eu(III) emissions to provide a new diagnostic method for determining human brain tumor malignancy.
Collapse
Affiliation(s)
- Mengfei Wang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan.
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.
| | - Masaya Kono
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Yusaku Yamaguchi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Jahidul Islam
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Sunao Shoji
- Department of Engineering, Nara Women's University, Nara, 630-8506, Japan
| | - Yuichi Kitagawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Koji Fushimi
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Sora Watanabe
- Graduate School of Organic Material Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Go Matsuba
- Graduate School of Organic Material Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Masumi Tsuda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
| | - Shinya Tanaka
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
| | - Yasuchika Hasegawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan.
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.
| |
Collapse
|