1
|
Wang M, Chen S, Cheng S, Nederstigt TAP, Poelmann RE, DeRuiter MC, Lamers GEM, Willemse JJ, Mascitelli C, Vijver MG, Richardson MK. The biodistribution of polystyrene nanoparticles administered intravenously in the chicken embryo. ENVIRONMENT INTERNATIONAL 2024; 188:108723. [PMID: 38744045 DOI: 10.1016/j.envint.2024.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Nanoplastics can cause severe malformations in chicken embryos. To improve our understanding of the toxicity of nanoplastics to embryos, we have studied their biodistribution in living chicken embryos. We injected the embryos in the vitelline vein at stages 18-19. We injected polystyrene nanoparticles (PS-NPs) tagged with europium- or fluorescence. Their biodistribution was tracked using inductively-coupled plasma mass spectrometry on tissue lysates, paraffin histology, and vibratome sections analysed by machine learning algorithms. PS-NPs were found at high levels in the heart, liver and kidneys. Furthermore, PS-NPs crossed the endocardium of the heart at sites of epithelial-mesenchymal transformation; they also crossed the liver endothelium. Finally, we detected PS-NPs in the allantoic fluid, consistent with their being excreted by the kidneys. Our study shows the power of the chicken embryo model for analysing the biodistribution of nanoplastics in embryos. Such experiments are difficult or impossible in mammalian embryos. These findings are a major advance in our understanding of the biodistribution and tissue-specific accumulation of PS-NPs in developing animals.
Collapse
Affiliation(s)
- Meiru Wang
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Shuhao Chen
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Shixiong Cheng
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Tom A P Nederstigt
- Centrum voor Milieuwetenschappen Leiden (CML), Van Steenis Building, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Robert E Poelmann
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, LUMC Onderzoeksgebouw, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Gerda E M Lamers
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Joost J Willemse
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Chiara Mascitelli
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Martina G Vijver
- Centrum voor Milieuwetenschappen Leiden (CML), Van Steenis Building, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Michael K Richardson
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
2
|
Abstract
Aortic stenosis (AS) remains one of the most common forms of valve disease, with significant impact on patient survival. The disease is characterized by left ventricular outflow obstruction and encompasses a series of stenotic lesions starting from the left ventricular outflow tract to the descending aorta. Obstructions may be subvalvar, valvar, or supravalvar and can be present at birth (congenital) or acquired later in life. Bicuspid aortic valve, whereby the aortic valve forms with two instead of three cusps, is the most common cause of AS in younger patients due to primary anatomic narrowing of the valve. In addition, the secondary onset of premature calcification, likely induced by altered hemodynamics, further obstructs left ventricular outflow in bicuspid aortic valve patients. In adults, degenerative AS involves progressive calcification of an anatomically normal, tricuspid aortic valve and is attributed to lifelong exposure to multifactoral risk factors and physiological wear-and-tear that negatively impacts valve structure-function relationships. AS continues to be the most frequent valvular disease that requires intervention, and aortic valve replacement is the standard treatment for patients with severe or symptomatic AS. While the positive impacts of surgical interventions are well documented, the financial burden, the potential need for repeated procedures, and operative risks are substantial. In addition, the clinical management of asymptomatic patients remains controversial. Therefore, there is a critical need to develop alternative approaches to prevent the progression of left ventricular outflow obstruction, especially in valvar lesions. This review summarizes our current understandings of AS cause; beginning with developmental origins of congenital valve disease, and leading into the multifactorial nature of AS in the adult population.
Collapse
Affiliation(s)
- Punashi Dutta
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| | - Jeanne F James
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| | - Hail Kazik
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Biomedical Engineering, Marquette University & Medical College of Wisconsin, Milwaukee (H.K.)
| | - Joy Lincoln
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| |
Collapse
|
3
|
Wittig JG, Münsterberg A. The Chicken as a Model Organism to Study Heart Development. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037218. [PMID: 31767650 DOI: 10.1101/cshperspect.a037218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heart development is a complex process and begins with the long-range migration of cardiac progenitor cells during gastrulation. This culminates in the formation of a simple contractile tube with multiple layers, which undergoes remodeling into a four-chambered heart. During this morphogenesis, additional cell populations become incorporated. It is important to unravel the underlying genetic and cellular mechanisms to be able to identify the embryonic origin of diseases, including congenital malformations, which impair cardiac function and may affect life expectancy or quality. Owing to the evolutionary conservation of development, observations made in nonamniote and amniote vertebrate species allow us to extrapolate to human. This review will focus on the contributions made to a better understanding of heart development through studying avian embryos-mainly the chicken but also quail embryos. We will illustrate the classic and recent approaches used in the avian system, give an overview of the important discoveries made, and summarize the early stages of cardiac development up to the establishment of the four-chambered heart.
Collapse
Affiliation(s)
- Johannes G Wittig
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
4
|
Vilches-Moure JG. Embryonic Chicken ( Gallus gallus domesticus) as a Model of Cardiac Biology and Development. Comp Med 2019; 69:184-203. [PMID: 31182184 PMCID: PMC6591676 DOI: 10.30802/aalas-cm-18-000061] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/06/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease remains one of the top contributors to morbidity and mortality in the United States. Increasing evidence suggests that many processes, pathways, and programs observed during development and organogenesis are recapitulated in adults in the face of disease. Therefore, a heightened understanding of cardiac development and organogenesis will help increase our understanding of developmental defects and cardiovascular diseases in adults. Chicks have long served as a model system in which to study developmental problems. Detailed descriptions of morphogenesis, low cost, accessibility, ease of manipulation, and the optimization of genetic engineering techniques have made chicks a robust model for studying development and make it a powerful platform for cardiovascular research. This review summarizes the cardiac developmental milestones of embryonic chickens, practical considerations when working with chicken embryos, and techniques available for use in chicks (including tissue chimeras, genetic manipulations, and live imaging). In addition, this article highlights examples that accentuate the utility of the embryonic chicken as model system in which to study cardiac development, particularly epicardial development, and that underscore the importance of how studying development informs our understanding of disease.
Collapse
Affiliation(s)
- José G Vilches-Moure
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California,
| |
Collapse
|
5
|
Ho S, Chan WX, Rajesh S, Phan-Thien N, Yap CH. Fluid dynamics and forces in the HH25 avian embryonic outflow tract. Biomech Model Mechanobiol 2019; 18:1123-1137. [PMID: 30810888 DOI: 10.1007/s10237-019-01132-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
Abstract
The embryonic outflow tract (OFT) eventually undergoes aorticopulmonary septation to form the aorta and pulmonary artery, and it is hypothesized that blood flow mechanical forces guide this process. We performed detailed studies of the geometry, wall motions, and fluid dynamics of the HH25 chick embryonic OFT just before septation, using noninvasive 4D high-frequency ultrasound and computational flow simulations. The OFT exhibited expansion and contraction waves propagating from proximal to distal end, with periods of luminal collapse at locations of the two endocardial cushions. This, combined with periods of reversed flow, resulted in the OFT cushions experiencing wall shear stresses (WSS or flow drag forces) with elevated oscillatory characteristics, which could be important to signal for further development of cushions into valves and septum. Furthermore, the OFT exhibits interesting double-helical flow during systole, where a pair of helical flow structures twisted about each other from the proximal to distal end. This coincided with the location of the future aorticopulmonary septum, which also twisted from the proximal to distal end, suggesting that this flow pattern may be guiding OFT septation.
Collapse
Affiliation(s)
- Sheldon Ho
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Wei Xuan Chan
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Shreyas Rajesh
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Nhan Phan-Thien
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Choon Hwai Yap
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Peterson JC, Chughtai M, Wisse LJ, Gittenberger-de Groot AC, Feng Q, Goumans MJTH, VanMunsteren JC, Jongbloed MRM, DeRuiter MC. Bicuspid aortic valve formation: Nos3 mutation leads to abnormal lineage patterning of neural crest cells and the second heart field. Dis Model Mech 2018; 11:dmm.034637. [PMID: 30242109 PMCID: PMC6215433 DOI: 10.1242/dmm.034637] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
Abstract
The bicuspid aortic valve (BAV), a valve with two instead of three aortic leaflets, belongs to the most prevalent congenital heart diseases in the world, occurring in 0.5-2% of the general population. We aimed to understand how changes in early cellular contributions result in BAV formation and impact cardiovascular outflow tract development. Detailed 3D reconstructions, immunohistochemistry and morphometrics determined that, during valvulogenesis, the non-coronary leaflet separates from the parietal outflow tract cushion instead of originating from an intercalated cushion. Nos3-/- mice develop a BAV without a raphe as a result of incomplete separation of the parietal outflow tract cushion into the right and non-coronary leaflet. Genetic lineage tracing of endothelial, second heart field and neural crest cells revealed altered deposition of neural crest cells and second heart field cells within the parietal outflow tract cushion of Nos3-/- embryos. The abnormal cell lineage distributions also affected the positioning of the aortic and pulmonary valves at the orifice level. The results demonstrate that the development of the right and non-coronary leaflets are closely related. A small deviation in the distribution of neural crest and second heart field populations affects normal valve formation and results in the predominant right-non-type BAV in Nos3-/- mice.
Collapse
Affiliation(s)
- Joshua C Peterson
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Mary Chughtai
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Lambertus J Wisse
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | - Qingping Feng
- Dept. Physiology and Pharmacology, Schulich Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Marie-José T H Goumans
- Dept. Molecular Cell Biology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - J Conny VanMunsteren
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Monique R M Jongbloed
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.,Dept. Cardiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Marco C DeRuiter
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
7
|
Richardson R, Eley L, Donald-Wilson C, Davis J, Curley N, Alqahtani A, Murphy L, Anderson RH, Henderson DJ, Chaudhry B. Development and maturation of the fibrous components of the arterial roots in the mouse heart. J Anat 2017; 232:554-567. [PMID: 29034473 PMCID: PMC5835783 DOI: 10.1111/joa.12713] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 12/22/2022] Open
Abstract
The arterial roots are important transitional regions of the heart, connecting the intrapericardial components of the aortic and pulmonary trunks with their ventricular outlets. They house the arterial (semilunar) valves and, in the case of the aorta, are the points of coronary arterial attachment. Moreover, because of the semilunar attachments of the valve leaflets, the arterial roots span the anatomic ventriculo-arterial junction. By virtue of this arrangement, the interleaflet triangles, despite being fibrous, are found on the ventricular aspect of the root and located within the left ventricular cavity. Malformations and diseases of the aortic root are common and serious. Despite the mouse being the animal model of choice for studying cardiac development, few studies have examined the structure of their arterial roots. As a consequence, our understanding of their formation and maturation is incomplete. We set out to clarify the anatomical and histological features of the mouse arterial roots, particularly focusing on their walls and the points of attachment of the valve leaflets. We then sought to determine the embryonic lineage relationships between these tissues, as a forerunner to understanding how they form and mature over time. Using histological stains and immunohistochemistry, we show that the walls of the mouse arterial roots show a gradual transition, with smooth muscle cells (SMC) forming the bulk of wall at the most distal points of attachments of the valve leaflets, while being entirely fibrous at their base. Although the interleaflet triangles lie within the ventricular chambers, we show that they are histologically indistinguishable from the arterial sinus walls until the end of gestation. Differences become apparent after birth, and are only completed by postnatal day 21. Using Cre-lox-based lineage tracing technology to label progenitor populations, we show that the SMC and fibrous tissue within the walls of the mature arterial roots share a common origin from the second heart field (SHF) and exclude trans-differentiation of myocardium as a source for the interleaflet triangle fibrous tissues. Moreover, we show that the attachment points of the leaflets to the walls, like the leaflets themselves, are derived from the outflow cushions, having contributions from both SHF-derived endothelial cells and neural crest cells. Our data thus show that the arterial roots in the mouse heart are similar to the features described in the human heart. They provide a framework for understanding complex lesions and diseases affecting the aortic root.
Collapse
Affiliation(s)
- Rachel Richardson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Lorraine Eley
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Charlotte Donald-Wilson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathon Davis
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Natasha Curley
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ahlam Alqahtani
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Lindsay Murphy
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Robert H Anderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Deborah J Henderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Bill Chaudhry
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Cook AC, Tran VH, Spicer DE, Rob JMH, Sridharan S, Taylor A, Anderson RH, Jensen B. Sequential segmental analysis of the crocodilian heart. J Anat 2017; 231:484-499. [PMID: 28766716 DOI: 10.1111/joa.12661] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2017] [Indexed: 11/27/2022] Open
Abstract
Differences between hearts of crocodilians and those of mammals and birds are only partly understood because there is no standardised approach and terminology for describing cardiac structure. Whereas most reptiles have an undivided ventricle, crocodilians have a fully septated ventricle. Their hearts, therefore, are more readily comparable with the hearts of mammals and birds. Here, we describe the heart of a crocodile (Crocodylus noliticus). We use the versatile sequential segmental approach to analysis, juxtaposing several key views of the crocodilian heart to the comparable views of human hearts. In crocodiles, the atrial and ventricular septums are complete but, unlike in placental mammals, the atrial septum is without an oval fossa. The myocardial component of the crocodilian ventricular septum dominates, but the membranous septum likely makes up a greater proportion than in any mammal. In the crocodile, the aortic trunk takes its origin from the left ventricle and is not wedged between the atrioventricular junctions. Consequently, there is a common atrioventricular junction, albeit with separate right and left atrioventricular valvar orifices. As in mammals, nonetheless, the crocodilian left atrioventricular valvar orifice is cranial to the right atrioventricular valvar orifice. By applying a method of analysis and terminology usually restricted to the human heart, we build from the considerable existing literature to show neglected and overlooked shared features, such as the offset between the left and right atrioventricular valvar orifices. Such commonalities are surprising given the substantial evolutionary divergence of the archosaur and synapsid lineages, and likely reflect evolutionarily shared morphogenetic programmes.
Collapse
Affiliation(s)
| | - Vi-Hue Tran
- UCL Institute of Cardiovascular Science, London, UK
| | - Diane E Spicer
- Division of Pediatric Cardiology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Jafrin M H Rob
- Department of Obstetric & Gynaecology, Whipps Cross Hospital, London, UK.,Cardiac Unit, Great Ormond Street Hospital, London, UK
| | | | - Andrew Taylor
- UCL Institute of Cardiovascular Science, London, UK.,Cardiac Unit, Great Ormond Street Hospital, London, UK
| | - Robert H Anderson
- UCL Institute of Cardiovascular Science, London, UK.,Cardiac Unit, Great Ormond Street Hospital, London, UK.,Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Bjarke Jensen
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Wu B, Wang Y, Xiao F, Butcher JT, Yutzey KE, Zhou B. Developmental Mechanisms of Aortic Valve Malformation and Disease. Annu Rev Physiol 2017; 79:21-41. [DOI: 10.1146/annurev-physiol-022516-034001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bingruo Wu
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
| | - Yidong Wang
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
| | - Feng Xiao
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 China
| | - Jonathan T. Butcher
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853;
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio 45229;
| | - Bin Zhou
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 China
| |
Collapse
|
10
|
Kowalski WJ, Teslovich NC, Menon PG, Tinney JP, Keller BB, Pekkan K. Left atrial ligation alters intracardiac flow patterns and the biomechanical landscape in the chick embryo. Dev Dyn 2014; 243:652-62. [PMID: 24868595 DOI: 10.1002/dvdy.24107] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypoplastic left heart syndrome (HLHS) is a major human congenital heart defect that results in single ventricle physiology and high mortality. Clinical data indicate that intracardiac blood flow patterns during cardiac morphogenesis are a significant etiology. We used the left atrial ligation (LAL) model in the chick embryo to test the hypothesis that LAL immediately alters intracardiac flow streams and the biomechanical environment, preceding morphologic and structural defects observed in HLHS. RESULTS Using fluorescent dye injections, we found that intracardiac flow patterns from the right common cardinal vein, right vitelline vein, and left vitelline vein were altered immediately following LAL. Furthermore, we quantified a significant ventral shift of the right common cardinal and right vitelline vein flow streams. We developed an in silico model of LAL, which revealed that wall shear stress was reduced at the left atrioventricular canal and left side of the common ventricle. CONCLUSIONS Our results demonstrate that intracardiac flow patterns change immediately following LAL, supporting the role of hemodynamics in the progression of HLHS. Sites of reduced WSS revealed by computational modeling are commonly affected in HLHS, suggesting that changes in the biomechanical environment may lead to abnormal growth and remodeling of left heart structures.
Collapse
|
11
|
Review of Molecular and Mechanical Interactions in the Aortic Valve and Aorta: Implications for the Shared Pathogenesis of Aortic Valve Disease and Aortopathy. J Cardiovasc Transl Res 2014; 7:823-46. [DOI: 10.1007/s12265-014-9602-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/30/2014] [Indexed: 01/08/2023]
|
12
|
Sherif HM. Heterogeneity in the Segmental Development of the Aortic Tree: Impact on Management of Genetically Triggered Aortic Aneurysms. AORTA (STAMFORD, CONN.) 2014; 2:186-95. [PMID: 26798739 PMCID: PMC4686358 DOI: 10.12945/j.aorta.2014.14-032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022]
Abstract
An extensive search of the medical literature examining the development of the thoracic aortic tree reveals that the thoracic aorta does not develop as one unit or in one stage: the oldest part of the thoracic aorta is the descending aorta with the aortic arch being the second oldest, developing under influence from the neural crest cell. Following in chronological order are the proximal ascending aorta and aortic root, which develop from a conotruncal origin. Different areas of the thoracic aorta develop under the influence of different gene sets. These parts develop from different cell lineages: the aortic root (the conotruncus), developing from the mesoderm; the ascending aorta and aortic arch, developing from the neural crest cells; and the descending aorta from the mesoderm. Findings illustrate that the thoracic aorta is not a single entity, in developmental terms. It develops from three or four distinct areas, at different stages of embryonic life, and under different sets of genes and signaling pathways. Genetically triggered thoracic aortic aneurysms are not a monolithic group but rather share a multi-genetic origin. Identification of therapeutic targets should be based on the predilection of certain genes to cause aneurysmal disease in specific aortic segments.
Collapse
Affiliation(s)
- Hisham M.F. Sherif
- Department of Cardiac Surgery, Christiana Hospital, Christiana Care Health System, Newark, Delaware, USA
| |
Collapse
|
13
|
Embryonic Development of Heart in Indian Buffalo (Bubalus bubalis). INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:293675. [PMID: 27355030 PMCID: PMC4897456 DOI: 10.1155/2014/293675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/04/2014] [Accepted: 07/09/2014] [Indexed: 11/17/2022]
Abstract
The present study was conducted on 35 buffalo foetuses from 0.9 cm CVRL (32 days) to 99.5 cm CVRL (298 days) to observe the morphogenesis and histogenesis of heart. The study revealed that, in 0.9 cm CVRL buffalo foetus, heart was unseptated and tubular which was clearly divided into common atrial chamber dorsally, primitive ventricles ventrally, primitive outflow tract with bulbous cordis region proximally, and aortic sac distally at 1.2 cm CVRL. Septum primum appeared at 1.9 cm CVRL whereas the truncal swellings and fold of interventricular septum appeared at 2.5 cm CVRL foetus. At 3.0 cm CVRL septum primum, endocardial cushions, septum secundum, and foramen ovale were observed. At 7.6 cm CVRL the endocardial cushions fused to form right and left atrioventricular openings and ventricular apex became pointed. Interventricular canal was obliterated and four-chambered heart was recognised along with atrioventricular valve, chordae tendineae, and papillary muscles in 8.7 cm CVRL (66 days) buffalo foetus. The endocardium as well as epicardium of the atria was thicker as compared to ventricle, whereas the myocardium of atria was thin as compared to ventricles in all the age groups. All the internal structures of heart were well differentiated from 50 cm CVRL onwards. The detailed structural components of buffalo heart during prenatal period have been discussed in the present paper.
Collapse
|
14
|
Lindsey SE, Butcher JT, Yalcin HC. Mechanical regulation of cardiac development. Front Physiol 2014; 5:318. [PMID: 25191277 DOI: 10.3389/fphys.2014.00318/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/03/2014] [Indexed: 05/25/2023] Open
Abstract
Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development.
Collapse
Affiliation(s)
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | - Huseyin C Yalcin
- Department of Mechanical Engineering, Dogus University Istanbul, Turkey
| |
Collapse
|
15
|
Lindsey SE, Butcher JT, Yalcin HC. Mechanical regulation of cardiac development. Front Physiol 2014; 5:318. [PMID: 25191277 PMCID: PMC4140306 DOI: 10.3389/fphys.2014.00318] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/03/2014] [Indexed: 12/21/2022] Open
Abstract
Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development.
Collapse
Affiliation(s)
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | - Huseyin C Yalcin
- Department of Mechanical Engineering, Dogus University Istanbul, Turkey
| |
Collapse
|
16
|
Chester AH, El-Hamamsy I, Butcher JT, Latif N, Bertazzo S, Yacoub MH. The living aortic valve: From molecules to function. Glob Cardiol Sci Pract 2014; 2014:52-77. [PMID: 25054122 PMCID: PMC4104380 DOI: 10.5339/gcsp.2014.11] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022] Open
Abstract
The aortic valve lies in a unique hemodynamic environment, one characterized by a range of stresses (shear stress, bending forces, loading forces and strain) that vary in intensity and direction throughout the cardiac cycle. Yet, despite its changing environment, the aortic valve opens and closes over 100,000 times a day and, in the majority of human beings, will function normally over a lifespan of 70–90 years. Until relatively recently heart valves were considered passive structures that play no active role in the functioning of a valve, or in the maintenance of its integrity and durability. However, through clinical experience and basic research the aortic valve can now be characterized as a living, dynamic organ with the capacity to adapt to its complex mechanical and biomechanical environment through active and passive communication between its constituent parts. The clinical relevance of a living valve substitute in patients requiring aortic valve replacement has been confirmed. This highlights the importance of using tissue engineering to develop heart valve substitutes containing living cells which have the ability to assume the complex functioning of the native valve.
Collapse
|
17
|
Blech-Hermoni Y, Ladd AN. RNA binding proteins in the regulation of heart development. Int J Biochem Cell Biol 2013; 45:2467-78. [PMID: 23973289 DOI: 10.1016/j.biocel.2013.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/09/2013] [Accepted: 08/13/2013] [Indexed: 11/28/2022]
Abstract
In vivo, RNA molecules are constantly accompanied by RNA binding proteins (RBPs), which are intimately involved in every step of RNA biology, including transcription, editing, splicing, transport and localization, stability, and translation. RBPs therefore have opportunities to shape gene expression at multiple levels. This capacity is particularly important during development, when dynamic chemical and physical changes give rise to complex organs and tissues. This review discusses RBPs in the context of heart development. Since the targets and functions of most RBPs--in the heart and at large--are not fully understood, this review focuses on the expression and roles of RBPs that have been implicated in specific stages of heart development or developmental pathology. RBPs are involved in nearly every stage of cardiogenesis, including the formation, morphogenesis, and maturation of the heart. A fuller understanding of the roles and substrates of these proteins could ultimately provide attractive targets for the design of therapies for congenital heart defects, cardiovascular disease, or cardiac tissue repair.
Collapse
Affiliation(s)
- Yotam Blech-Hermoni
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Program in Cell Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
18
|
Chen CM, Bentham J, Cosgrove C, Braganca J, Cuenda A, Bamforth SD, Schneider JE, Watkins H, Keavney B, Davies B, Bhattacharya S. Functional significance of SRJ domain mutations in CITED2. PLoS One 2012; 7:e46256. [PMID: 23082118 PMCID: PMC3474824 DOI: 10.1371/journal.pone.0046256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 08/31/2012] [Indexed: 02/07/2023] Open
Abstract
CITED2 is a transcriptional co-activator with 3 conserved domains shared with other CITED family members and a unique Serine-Glycine Rich Junction (SRJ) that is highly conserved in placental mammals. Loss of Cited2 in mice results in cardiac and aortic arch malformations, adrenal agenesis, neural tube and placental defects, and partially penetrant defects in left-right patterning. By screening 1126 sporadic congenital heart disease (CHD) cases and 1227 controls, we identified 19 variants, including 5 unique non-synonymous sequence variations (N62S, R92G, T166N, G180-A187del and A187T) in patients. Many of the CHD-specific variants identified in this and previous studies cluster in the SRJ domain. Transient transfection experiments show that T166N mutation impairs TFAP2 co-activation function and ES cell proliferation. We find that CITED2 is phosphorylated by MAPK1 in vitro at T166, and that MAPK1 activation enhances the coactivation function of CITED2 but not of CITED2-T166N. In order to investigate the functional significance in vivo, we generated a T166N mutation of mouse Cited2. We also used PhiC31 integrase-mediated cassette exchange to generate a Cited2 knock-in allele replacing the mouse Cited2 coding sequence with human CITED2 and with a mutant form deleting the entire SRJ domain. Mouse embryos expressing only CITED2-T166N or CITED2-SRJ-deleted alleles surprisingly show no morphological abnormalities, and mice are viable and fertile. These results indicate that the SRJ domain is dispensable for these functions of CITED2 in mice and that mutations clustering in the SRJ region are unlikely to be the sole cause of the malformations observed in patients with sporadic CHD. Our results also suggest that coding sequence mutations observed in case-control studies need validation using in vivo models and that predictions based on structural conservation and in vitro functional assays, or even in vivo global loss of function models, may be insufficient.
Collapse
Affiliation(s)
- Chiann-mun Chen
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu A, Yin X, Shi L, Li P, Thornburg KL, Wang R, Rugonyi S. Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling. PLoS One 2012; 7:e40869. [PMID: 22844414 PMCID: PMC3402486 DOI: 10.1371/journal.pone.0040869] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 06/18/2012] [Indexed: 11/28/2022] Open
Abstract
During developmental stages, biomechanical stimuli on cardiac cells modulate genetic programs, and deviations from normal stimuli can lead to cardiac defects. Therefore, it is important to characterize normal cardiac biomechanical stimuli during early developmental stages. Using the chicken embryo model of cardiac development, we focused on characterizing biomechanical stimuli on the Hamburger–Hamilton (HH) 18 chick cardiac outflow tract (OFT), the distal portion of the heart from which a large portion of defects observed in humans originate. To characterize biomechanical stimuli in the OFT, we used a combination of in vivo optical coherence tomography (OCT) imaging, physiological measurements and computational fluid dynamics (CFD) modeling. We found that, at HH18, the proximal portion of the OFT wall undergoes larger circumferential strains than its distal portion, while the distal portion of the OFT wall undergoes larger wall stresses. Maximal wall shear stresses were generally found on the surface of endocardial cushions, which are protrusions of extracellular matrix onto the OFT lumen that later during development give rise to cardiac septa and valves. The non-uniform spatial and temporal distributions of stresses and strains in the OFT walls provide biomechanical cues to cardiac cells that likely aid in the extensive differential growth and remodeling patterns observed during normal development.
Collapse
Affiliation(s)
- Aiping Liu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xin Yin
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Liang Shi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Peng Li
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Kent L. Thornburg
- Heart Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Ruikang Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
20
|
Marcela SG, Cristina RMM, Angel PGM, Manuel AM, Sofía DC, Patricia DLRS, Bladimir RR, Concepción SG. Chronological and morphological study of heart development in the rat. Anat Rec (Hoboken) 2012; 295:1267-90. [PMID: 22715162 DOI: 10.1002/ar.22508] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/04/2012] [Accepted: 04/21/2012] [Indexed: 11/08/2022]
Abstract
Adult and embryonic laboratory rats have been used as a mammalian model organism in biomedical research, descriptive and experimental cardiac embryology, and experimental teratology. There have been, however, considerable variations and discrepancies concerning the developmental staging of the rat embryo in the reported literature, which have resulted in several controversies and inconsistencies. Therefore, we carried out a careful anatomical and histological study of rat cardiac morphogenesis from the premorphogenetic period to the mature heart in a newborn pup. A correlation between the chronology and morphological features of the heart and embryo or newborn was made. We provide a simple and comprehensive guide relating the developmental timing and fate of the embryonic components of the heart and their morphological changes in the rat based on in vivo labeling studies in the chick. We also compare the timing of heart development in rats, humans, and mice.
Collapse
Affiliation(s)
- Salazar García Marcela
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, México
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Bharadwaj KN, Spitz C, Shekhar A, Yalcin HC, Butcher JT. Computational fluid dynamics of developing avian outflow tract heart valves. Ann Biomed Eng 2012; 40:2212-27. [PMID: 22535311 DOI: 10.1007/s10439-012-0574-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/11/2012] [Indexed: 11/28/2022]
Abstract
Hemodynamic forces play an important role in sculpting the embryonic heart and its valves. Alteration of blood flow patterns through the hearts of embryonic animal models lead to malformations that resemble some clinical congenital heart defects, but the precise mechanisms are poorly understood. Quantitative understanding of the local fluid forces acting in the heart has been elusive because of the extremely small and rapidly changing anatomy. In this study, we combine multiple imaging modalities with computational simulation to rigorously quantify the hemodynamic environment within the developing outflow tract (OFT) and its eventual aortic and pulmonary valves. In vivo Doppler ultrasound generated velocity profiles were applied to Micro-Computed Tomography generated 3D OFT lumen geometries from Hamburger-Hamilton (HH) stage 16-30 chick embryos. Computational fluid dynamics simulation initial conditions were iterated until local flow profiles converged with in vivo Doppler flow measurements. Results suggested that flow in the early tubular OFT (HH16 and HH23) was best approximated by Poiseuille flow, while later embryonic OFT septation (HH27, HH30) was mimicked by plug flow conditions. Peak wall shear stress (WSS) values increased from 18.16 dynes/cm(2) at HH16 to 671.24 dynes/cm(2) at HH30. Spatiotemporally averaged WSS values also showed a monotonic increase from 3.03 dynes/cm(2) at HH16 to 136.50 dynes/cm(2) at HH30. Simulated velocity streamlines in the early heart suggest a lack of mixing, which differed from classical ink injections. Changes in local flow patterns preceded and correlated with key morphogenetic events such as OFT septation and valve formation. This novel method to quantify local dynamic hemodynamics parameters affords insight into sculpting role of blood flow in the embryonic heart and provides a quantitative baseline dataset for future research.
Collapse
Affiliation(s)
- Koonal N Bharadwaj
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853-7501, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Abstract
The formation and remodeling of the embryonic valves is a complex and dynamic process that occurs within a constantly changing hemodynamic environment. Defects in embryonic and fetal valve remodeling are the leading cause of congenital heart defects, yet very little is known about how fibrous leaflet tissue is created from amorphous gelatinous masses called cushions. Microenvironmental cues such as mechanical forces and extracellular matrix composition play major roles in cell differentiation, but almost all research efforts in valvulogenesis center around genetics and molecular approaches. This review summarizes what is known about the dynamic mechanical and extracellular matrix microenvironment of the atrioventricular and semilunar valves during embryonic development and their possible guidance roles. A variety of new computational tools and sophisticated experimental techniques are progressing that enable precise microenvironmental alterations that are critical to complement genetic gain and loss of function approaches. Studies at the interface of mechanical and genetic signaling in embryonic valvulogenesis will likely pay significant dividends, not only in terms of increasing our mechanistic understanding, but also lead to the development of novel therapeutic strategies for patients with congenital valve abnormalities.
Collapse
Affiliation(s)
| | - Jonathan T. Butcher
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
23
|
Takahashi M, Terasako Y, Yanagawa N, Kai M, Yamagishi T, Nakajima Y. Myocardial progenitors in the pharyngeal regions migrate to distinct conotruncal regions. Dev Dyn 2011; 241:284-93. [PMID: 22184055 DOI: 10.1002/dvdy.23714] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2011] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The cardiac progenitor cells for the outflow tract (OFT) reside in the visceral mesoderm and mesodermal core of the pharyngeal region, which are defined as the secondary and anterior heart fields (SHF and AHF), respectively. RESULTS Using chick embryos, we injected fluorescent-dye into the SHF or AHF at stage 14, and the destinations of the labeled cells were examined at stage 31. Labeled cells from the right SHF were found in the myocardium on the left dorsal side of the OFT, and cells from the left SHF were detected on the right ventral side of the OFT. Labeled cells from the right and left AHF migrated to regions of the ventral wall of the OFT close to the aortic and pulmonary valves, respectively. CONCLUSION These observations indicate that myocardial progenitors from the SHF and AHF contribute to distinct conotruncal regions and that cells from the SHF migrate rotationally while cells from the AHF migrate in a non-rotational manner.
Collapse
Affiliation(s)
- Makiko Takahashi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Abenoku, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Liu A, Nickerson A, Troyer A, Yin X, Cary R, Thornburg K, Wang R, Rugonyi S. Quantifying blood flow and wall shear stresses in the outflow tract of chick embryonic hearts. COMPUTERS & STRUCTURES 2011; 89:855-867. [PMID: 21572557 PMCID: PMC3091009 DOI: 10.1016/j.compstruc.2011.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Wall shear stresses (WSS) exerted by blood flow on cardiac tissues modulate growth and development of the heart. To study the role of hemodynamic conditions on cardiac morphogenesis, here, we present a methodology that combines imaging and finite element modeling to quantify the in vivo blood flow dynamics and WSS in the cardiac outflow tract (OFT) of early chicken embryos (day 3 out of 21-day incubation period). We found a distinct blood flow field and heterogeneous distribution of WSS in the chicken embryonic heart OFT, which have physiological implications for OFT morphogenesis.
Collapse
Affiliation(s)
- Aiping Liu
- Division of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lincoln J, Yutzey KE. Molecular and developmental mechanisms of congenital heart valve disease. ACTA ACUST UNITED AC 2011; 91:526-34. [PMID: 21538813 DOI: 10.1002/bdra.20799] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/31/2011] [Accepted: 02/04/2011] [Indexed: 01/26/2023]
Abstract
Congenital heart disease occurs in approximately 1% of all live births and includes structural abnormalities of the heart valves. However, this statistic underestimates congenital valve lesions, such as bicuspic aortic valve (BAV) and mitral valve prolapse (MVP), that typically become apparent later in life as progressive valve dysfunction and disease. At present, the standard treatment for valve disease is replacement, and approximately 95,000 surgical procedures are performed each year in the United States. The most common forms of congenital valve disease include abnormal valve cusp morphogenesis, as in the case of BAV, or defects in extracellular matrix (ECM) organization and homeostasis, as occurs in MVP. The etiology of these common valve diseases is largely unknown. However, the study of murine and avian model systems, along with human genetic linkage studies, have led to the identification of genes and regulatory processes that contribute to valve structural malformations and disease. This review focuses on the current understanding and therapeutic implications of molecular regulatory pathways that control valve development and contribute to valve disease.
Collapse
Affiliation(s)
- Joy Lincoln
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, 1400 Northwest 10th Avenue, Miami, FL, USA
| | | |
Collapse
|
26
|
Bertens LMF, Richardson MK, Verbeek FJ. Analysis of cardiac development in the turtle Emys orbicularis (Testudines: Emidydae) using 3-D computer modeling from histological sections. Anat Rec (Hoboken) 2010; 293:1101-14. [PMID: 20583255 DOI: 10.1002/ar.21162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this article we present a 3-D modeling study of cardiac development in the European pond turtle, Emys orbicularis (of the reptilian order Testudines). The study is aimed at elucidating the embryonic development of the horizontal septum in the ventricle and underscoring the importance of 3-D reconstructions in studying morphogenesis. Turtles possess one common ventricle, partly divided into three cava by a vertical and a horizontal septum, of which the embryonic origins have so far not been described. We used serial sectioning and computerized high-resolution 3-D reconstructions of different developmental stages to create a chronological overview of cardiogenesis, in order to study this process. This has yielded a new understanding of the development of the horizontal septum and (directly related) the looping of the heart tube. This looping is found to be markedly different from that in the human heart, with the turtle having two clear bends in the part of the heart tube leaving the primitive ventricle, as opposed to one in humans. It is this particular looping that is responsible for the formation of the horizontal septum. In addition to our findings on the ventricular septation this study has also yielded new insights into the developmental origins of the pulmonary vein. The 3-D reconstructions were built using our platform TDR-3-D base and enabled us to study the developmental processes in specific parts of the turtle heart separately and in three dimensions, over time. The complete 3-D reconstructions have been made available to the reader via internet using our 3-D model browser application, which allows interactive viewing of the models. The browser application can be found on bio-imaging.liacs.nl/galleries/emysorbicularis/TurtleGallery.html, along with additional images of both models and histological sections and animation sequences of the models. By allowing the reader to view the material in such an interactive way, we hope to make optimal use of the new 3-D reconstruction techniques and to engage the reader in a more direct manner.
Collapse
Affiliation(s)
- Laura M F Bertens
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
| | | | | |
Collapse
|
27
|
Okamoto N, Akimoto N, Hidaka N, Shoji S, Sumida H. Formal genesis of the outflow tracts of the heart revisited: previous works in the light of recent observations. Congenit Anom (Kyoto) 2010; 50:141-58. [PMID: 20608949 DOI: 10.1111/j.1741-4520.2010.00286.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formal genesis of the great arteries continues to be controversial due to the lack of consensus of septation of the developing outflow tract. In order to make it clear how the great arteries are generated, we have re-examined our previous papers which emphasized the formation of the aorta and pulmonary trunk, concept of the aorticopulmonary septum, formation of the leaflets of semilunar valves, morphogenesis of the crista supraventricularis, programmed cell death and rotation of the outflow tract. In the present paper, we compare outcomes gained from the re-examination of our previous papers with prevalent interpretations of the arterial trunk. We obtained conclusions as follows: (i) The elongation of the fourth and sixth aortic arch arteries, which sprout from the wall of the aortic sac at the expense of the distal truncus, contributes to the formation of the aorta and pulmonary trunk; (ii) Smooth muscle cells of the tunica media of the arterial trunks do not arise from the transformation of the myocardial cells of the truncus wall (not 'arterialization'); (iii) Truncus swellings are divided into two parts: distal and proximal. The former contributes to the separation of the orifices of arterial trunks ('aorticopulmonary septum'). The latter contributes to the formation of the leaflets of the semilunar valves of the aorta and pulmonary trunk; (iv) The origin of the myocardial cells of the crista supraventricularis is a wall of the conus originated from secondary/anterior heart fields; and (v) There has been no acceptable proof that rotation and counterclockwise rotation are involved.
Collapse
Affiliation(s)
- Naomasa Okamoto
- Hiroshima University and Miyazaki University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
28
|
Bicuspid Aortic Valves With Different Spatial Orientations of the Leaflets Are Distinct Etiological Entities. J Am Coll Cardiol 2009; 54:2312-8. [PMID: 19958967 DOI: 10.1016/j.jacc.2009.07.044] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 06/24/2009] [Accepted: 07/06/2009] [Indexed: 11/20/2022]
|
29
|
Abstract
In recent years, significant advances have been made in the definition of regulatory pathways that control normal and abnormal cardiac valve development. Here, we review the cellular and molecular mechanisms underlying the early development of valve progenitors and establishment of normal valve structure and function. Regulatory hierarchies consisting of a variety of signaling pathways, transcription factors, and downstream structural genes are conserved during vertebrate valvulogenesis. Complex intersecting regulatory pathways are required for endocardial cushion formation, valve progenitor cell proliferation, valve cell lineage development, and establishment of extracellular matrix compartments in the stratified valve leaflets. There is increasing evidence that the regulatory mechanisms governing normal valve development also contribute to human valve pathology. In addition, congenital valve malformations are predominant among diseased valves replaced late in life. The understanding of valve developmental mechanisms has important implications in the diagnosis and management of congenital and adult valve disease.
Collapse
Affiliation(s)
- Michelle D Combs
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center ML7020, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | | |
Collapse
|
30
|
Attaran RR, Habibzadeh MR, Baweja G, Slepian MJ. Quadricuspid aortic valve with ascending aortic aneurysm: report of a case and discussion of embryological mechanisms. Cardiovasc Pathol 2009; 18:49-52. [DOI: 10.1016/j.carpath.2007.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 07/12/2007] [Accepted: 07/24/2007] [Indexed: 11/26/2022] Open
|
31
|
Vincentz JW, Barnes RM, Rodgers R, Firulli BA, Conway SJ, Firulli AB. An absence of Twist1 results in aberrant cardiac neural crest morphogenesis. Dev Biol 2008; 320:131-9. [PMID: 18539270 DOI: 10.1016/j.ydbio.2008.04.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 04/23/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
Abstract
The basic helix-loop-helix transcription factor Twist1 plays an essential role in mesenchymal cell populations during embryonic development and in pathological disease. Remodeling of the cardiac outflow tract (OFT) into the functionally separate aortic arch and pulmonary trunk is dependent upon the dynamic, coordinated contribution of multiple mesenchymal cell populations. Here, we report that Twist1(-/-) mice exhibit OFTs that contain amorphic cellular nodules within their OFT endocardial cushions. The nodular mesenchyme expresses the related bHLH factors Hand1 and Hand2, but reduced levels of the normal cushion marker Periostin. Lineage mapping confirms that nodule cells are exclusively of cardiac neural crest origin (cNCC), and are not ectopic cardiomyocytes or smooth muscle cells. These studies also reveal a delay in cNCC colonization of the OFT cushions. Furthermore, these mapping studies uncover nodules in the pharyngeal arches, and identify Twist1(-/-) neural crest cell defects within the dorsal neural tube, which exhibits an expanded domain of Wnt1-Cre-lineage marked cells. Together, these data support a model where Twist1 is required both for proper cNCC delamination, and for emigration from the dorsal neural tube and along cNCC migration pathways. Within the Twist1(-/-) neural crest cell populations that do emigrate to the OFT, a Hand-expressing subpopulation displays defective maturation, tracking, and, presumably, cell-cell adhesion, further compromising cNCC morphogenesis.
Collapse
Affiliation(s)
- Joshua W Vincentz
- Riley Heart Research Center, Riley Hospital for Children, Department of Pediatrics (Pediatric Cardiology), Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | | | | | | | | | | |
Collapse
|
32
|
Shukunami C, Takimoto A, Miura S, Nishizaki Y, Hiraki Y. Chondromodulin-I and tenomodulin are differentially expressed in the avascular mesenchyme during mouse and chick development. Cell Tissue Res 2008; 332:111-22. [PMID: 18239943 DOI: 10.1007/s00441-007-0570-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
Abstract
Chondromodulin-I (ChM-I) and tenomodulin (TeM) are homologous angiogenesis inhibitors. We have analyzed the spatial relationships between capillary networks and the localization of these molecules during mouse and chick development. ChM-I and TeM proteins have been localized to the PECAM-1-negative avascular region: ChM-I is expressed in the avascular cartilage, whereas TeM is detectable in dense connective tissues, including tendons and ligaments. We have also examined the vasculature of chick embryos by injection with India ink and have performed in situ hybridization of the ChM-I and TeM genes. The onset of ChM-I expression is associated with chondrogenesis during mouse embryonic development. ChM-I expression is also detectable in precartilaginous or noncartilaginous avascular mesenchyme in chick embryos, including the somite, sclerotome, and heart. Hence, the expression domains of ChM-I and TeM during vertebrate development incorporate the typical avascular regions of the mesenchymal tissues.
Collapse
Affiliation(s)
- Chisa Shukunami
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | |
Collapse
|
33
|
Zhao B, Etter L, Hinton RB, Benson DW. BMP and FGF regulatory pathways in semilunar valve precursor cells. Dev Dyn 2007; 236:971-80. [PMID: 17326134 DOI: 10.1002/dvdy.21097] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the developing atrioventricular (AV) valve, limb bud, and somites, cartilage cell lineage differentiation is regulated by bone morphogenetic protein (BMP), while fibroblast growth factor (FGF) controls tendon cell fate. We observed aggrecan and sox9, characteristic of cartilage cell types, and scleraxis and tenascin, characteristic of tendon cell types, in developing avian semilunar valves. Addition of BMP4 to outflow tract (OFT) precursor cells of young (E4.5) but not older (E6) chick embryos activated Smad1/5/8 and induced sox9 and aggrecan expression, while FGF4 treatment increased phosphorylated MAPK (dpERK) signaling and promoted expression of scleraxis and tenascin. These results identify BMP and FGF pathways that promote expression of cartilage- or tendon-like characteristics in semilunar valve precursor cells. In contrast to AV valve precursor cells, which diversify into leaflets (cartilage-like) or chordae tendineae (tendon-like), semilunar valve cells exhibit both cartilage- and tendon-like characteristics in the developing and mature valve cusp.
Collapse
Affiliation(s)
- Bin Zhao
- Division of Cardiology, MLC 7042, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
34
|
Snider P, Olaopa M, Firulli AB, Conway SJ. Cardiovascular development and the colonizing cardiac neural crest lineage. ScientificWorldJournal 2007; 7:1090-113. [PMID: 17619792 PMCID: PMC2613651 DOI: 10.1100/tsw.2007.189] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken and Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway regulators). Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio) can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest secrete factor/s that regulate myocardial proliferation, can signal to the epicardium to subsequently secrete a growth factor/s, or may even contribute directly to the heart. Although there are species differences between mouse, chick, and Xenopus during cardiac neural crest cell morphogenesis, recent data suggest mouse and chick are more similar to each other than to the zebrafish neural crest cell lineage. Several groups have used the genetically defined Pax3 (splotch) mutant mice model to address the role of the cardiac neural crest lineage. Here we review the current literature, the neural crest-related role of the Pax3 transcription factor, and discuss potential function/s of cardiac neural crest-derived cells during cardiovascular developmental remodeling.
Collapse
Affiliation(s)
- Paige Snider
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
| | - Michael Olaopa
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
| | - Anthony B. Firulli
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
| | - Simon J. Conway
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
- *Simon J. Conway:
| |
Collapse
|
35
|
Rana MS, Horsten NCA, Tesink-Taekema S, Lamers WH, Moorman AFM, van den Hoff MJB. Trabeculated right ventricular free wall in the chicken heart forms by ventricularization of the myocardium initially forming the outflow tract. Circ Res 2007; 100:1000-7. [PMID: 17347476 DOI: 10.1161/01.res.0000262688.14288.b8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent molecular lineage analyses in mouse have demonstrated that the right ventricle is recruited from anterior mesoderm in later stages of cardiac development. This is in contrast to current views of development in the chicken heart, which suggest that the initial heart tube contains a subset of right ventricular precursors. We investigated the fate of the outflow tract myocardium using immunofluorescent staining of the myocardium, and lineage tracer, as well as cell death experiments. These analyses showed that the outflow tract is initially myocardial in its entirety, increasing in length up to HH24. The outflow tract myocardium, subsequently, shortens as a result of ventricularization, contributing to the trabeculated free wall, as well as the infundibulum, of the right ventricle. During this shortening, the overall length of the outflow tract is maintained because of the formation of a nonmyocardial portion between the distal myocardial border and the pericardial reflections. Cell death and transdifferentiation were found to play a more limited contribution to the initial shortening than is generally appreciated, if they play any part at all. Cell death, nonetheless, plays an important role in the disappearance of the myocardial collar that continues to invest the aorta and pulmonary trunk around HH30, and in the separation of the intrapericardial arterial vessels. Taken together, we show, as opposed to some current beliefs, the development of the arterial pole is similar in mammals and birds.
Collapse
Affiliation(s)
- M Sameer Rana
- Heart Failure Research Center, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Pérez-Pomares JM, Foty RA. Tissue fusion and cell sorting in embryonic development and disease: biomedical implications. Bioessays 2006; 28:809-21. [PMID: 16927301 DOI: 10.1002/bies.20442] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Throughout embryonic development, segregated epithelial and/or mesenchymal cell populations make contact and fuse to shape new tissue units. This process, known as tissue fusion, is a key event in many essential morphogenetic mechanisms and its disruption can lead to congenital malformations. Another mechanism whereby complex tissues can arise involves a cell sorting process in which originally intermixed cells de-mix to generate distinct phases or layers. Different organisms use a combination of tissue fusion and cell sorting to acquire shape. Although the two processes appear to differ mechanistically, they are intricately linked inasmuch as they both involve the same molecular determinants and contribute to the same body plan. We aim to discuss the role of adhesion molecules and cell dynamics in tissue fusion and cell sorting, providing examples of their impact in embryonic development. Finally, we will advance the concept that malignant invasion may be viewed as cell sorting in reverse. Supplementary material for this article can be found on the BioEssays website (http://www.interscience.wiley.com/jpages/0265-9247/suppmat/index.html).
Collapse
Affiliation(s)
- José M Pérez-Pomares
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.
| | | |
Collapse
|
37
|
Anderson RH, de Leval MR. The morphology of ventricular septal defects as related to the mechanics associated with aortic regurgitation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2006:140-6. [PMID: 16638559 DOI: 10.1053/j.pcsu.2006.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Robert H Anderson
- Cardiac Unit, Institute of Child Health, University College, London, UK
| | | |
Collapse
|
38
|
Abstract
Cardiac progenitors of the splanchnic mesoderm (primary and secondary heart field), cardiac neural crest, and the proepicardium are the major embryonic contributors to chick heart development. Their contribution to cardiac development occurs with precise timing and regulation during such processes as primary heart tube fusion, cardiac looping and accretion, cardiac septation, and the development of the coronary vasculature. Heart development is even more complex if one follows the development of the cardiac innervation, cardiac pacemaking and conduction system, endocardial cushions, valves, and even the importance of apoptosis for proper cardiac formation. This review is meant to provide a reference guide (Table 1) on the developmental timing according to the staging of Hamburger and Hamilton (1951) (HH) of these important topics in heart development for those individuals new to a chick heart research laboratory. Even individuals outside of the heart field, who are working on a gene that is also expressed in the heart, will gain information on what to look for during chick heart development. This reference guide provides complete and easy reference to the stages involved in heart development, as well as a global perspective of how these cardiac developmental events overlap temporally and spatially, making it a good bench top companion to the many recently written in-depth cardiac reviews of the molecular aspects of cardiac development.
Collapse
Affiliation(s)
- Brad J Martinsen
- Department of Pediatrics, Division of Pediatric Cardiology, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA.
| |
Collapse
|
39
|
Sánchez Gómez C, Pliego Pliego L, Contreras Ramos A, Angel Munguía Rosas M, Salazar García M, García Romero HL, González Jiménez MA. Histological study of the proximal and distal segments of the embryonic outflow tract and great arteries. ACTA ACUST UNITED AC 2005; 283:202-11. [PMID: 15627987 DOI: 10.1002/ar.a.20138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The normal development of the ventricular outlets and proximal region of the great arteries is a controversial subject. It is known that the conus, truncus arteriosus (truncus), and aortic sac participate; however, there are some doubts as to the actual prospective fate of the truncus. Some authors propose that it gives origin to the proximal region of the great arteries and that the myocardial cells of its wall become smooth muscle. Nevertheless, others think that the truncus only forms the arterial valve apparatus and that therefore the myocardial cells transform into fibroblasts. As a first approach to beginning to elucidate which process occurs, the aim of this article was to study the histological changes in the wall of these components of the developing heart in chick embryos whose hearts had been labeled at the truncoconal boundary at stage 22HH, tracing the changes up to stage 36HH. Also, the histological constitution of the wall of the pulmonary arterial trunk and its valve apparatus were studied in the posthatching and adult hearts of chickens and rats. The conus and truncus walls were always encircled by a myocardial sleeve from the outset of their development. Between stages 26HH to 28HH, the truncal myocardial cells adjacent to the mesenchymal tissue of the ridges began to lose cell-to-cell contacts and invaded the extracellular matrix. At stage 24HH, the aortic sac began to project into the pericardial cavity and became divided into two channels by the aortic-pulmonary septum at stage 26HH. The wall of the aortic sac is mostly constituted by a compact mesenchymal tissue. Initially, it does not have smooth muscle but this starts to appear at stage 30HH. The insertion ring of the valves, a broad structure, was formed by mesenchymal tissue. Both structures were always covered by a myocardial sleeve. The leaflets developed from the truncal ridges, the segment immediately proximal to the aortic sac. Our results indicate that the proximal region of the pulmonary and aortic arteries do not originate from the truncus arteriosus; rather, we found that they take origin from the aortic sac. Thus, our findings agree with the proposal that the myocardial cells of the external sleeve of the truncus become fibroblastic and suggest that the insertion ring of the arterial valves has a dual origin: fibroblasts produced by truncal myocardial transdiferentiation and the mesenchymal tissue of the proximal region of the truncal ridges, while the leaflets have their origin from the truncal ridges. We discuss the fact that, because the truncus arteriosus does not give origin to the trunks of the aortic and pulmonary arteries, it may be necessary to modify terminology. Based on our results, together with the new findings obtained by in vivo labeling, immunostaining, a chimeric approach, and ultrastructural studies, we propose a developmental model that correlates the fate of the conus, truncus, and aortic sac with the normal morphogenesis of the ventricular outlet tracts and the trunks of the great arteries. (c) 2005 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Concepción Sánchez Gómez
- Departamento Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, México D.F., Mexico.
| | | | | | | | | | | | | |
Collapse
|
40
|
Martinsen BJ, Frasier AJ, Baker CVH, Lohr JL. Cardiac neural crest ablation alters Id2 gene expression in the developing heart. Dev Biol 2004; 272:176-90. [PMID: 15242799 DOI: 10.1016/j.ydbio.2004.04.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Revised: 04/05/2004] [Accepted: 04/12/2004] [Indexed: 11/24/2022]
Abstract
Id proteins are negative regulators of basic helix-loop-helix gene products and participate in many developmental processes. We have evaluated the expression of Id2 in the developing chick heart and found expression in the cardiac neural crest, secondary heart field, outflow tract, inflow tract, and anterior parasympathetic plexus. Cardiac neural crest ablation in the chick embryo, which causes structural defects of the cardiac outflow tract, results in a significant loss of Id2 expression in the outflow tract. Id2 is also expressed in Xenopus neural folds, branchial arches, cardiac outflow tract, inflow tract, and splanchnic mesoderm. Ablation of the premigratory neural crest in Xenopus embryos results in abnormal formation of the heart and a loss of Id2 expression in the heart and splanchnic mesoderm. This data suggests that the presence of neural crest is required for normal Id2 expression in both chick and Xenopus heart development and provides evidence that neural crest is involved in heart development in Xenopus embryos.
Collapse
Affiliation(s)
- Brad J Martinsen
- Department of Pediatrics, Division of Pediatric Cardiology, University of Minnesota School of Medicine, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
41
|
Somi S, Buffing AAM, Moorman AFM, Van Den Hoff MJB. Dynamic patterns of expression of BMP isoforms 2, 4, 5, 6, and 7 during chicken heart development. ACTA ACUST UNITED AC 2004; 279:636-51. [PMID: 15224405 DOI: 10.1002/ar.a.20031] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bone morphogentic proteins (BMPs) play an important role in cardiac development. Using an in vitro explant analysis, we show that BMPs are crucial for myocardium formation. As a first approach to identify which BMP may be involved in myocardium formation in intra- and extracardiac mesenchyme in vivo, a survey of the expression patterns of BMP2, -4, -5, -6, and -7 mRNA is prepared by in situ hybridization in chicken embryonic hearts from HH5 to 44. During recruitment of mesodermal cells to the outflow tract myocardium (HH10-23), BMP2, -4, -5, and -7 mRNA are expressed in the distal myocardial border and the flanking mesenchyme. After completion, BMP2 and -4 mRNA become restricted to the mesenchyme and BMP5 and -7 mRNA to the myocardium. At the venous pole, BMP2, -5, and -7 mRNA are expressed in the distal myocardial border of the caval vein, while BMP2, -5, -6, and -7 mRNA are expressed in the distal myocardium around the pulmonary vein. BMP4 mRNA is expressed in the adjacent mesenchyme at both sides. During muscularization of the atrioventricular cushions and the tricuspid valve, the cardiomyocytes that protrude into the mesenchyme express BMP2, -4, -5, and -7 mRNA, whereas BMP6 mRNA is expressed in the cushion mesenchyme. The myocardial protrusions formed in the mesenchymal proximal outlet septum express BMP4, -5, and -7 mRNA, while BMP2 and -6 mRNA are expressed in the mesenchyme. The spatiotemporal expression patterns of these BMPs in relation to myocardium formation at the distal ends and within the heart suggest a role for BMPs in myocardium formation. During delamination of the valves, BMP4 and -6 mRNA are expressed at the ventricular side of the forming mitral valve, BMP4 mRNA at the ventricular side of the forming tricuspid valve, and BMP2, -4, and -6 mRNA at the vascular side of the forming semilunar valves.
Collapse
Affiliation(s)
- Semir Somi
- Experimental and Molecular Cardiology Group, Cardiovascular Research Institute Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
42
|
Abstract
Because of the increasing availability of tools for genetic manipulation, the mouse has become the most popular animal model for studying normal and abnormal cardiac development. However, despite the enormous advances in mouse genetics, which have led to the production of numerous mutants with cardiac abnormalities resembling those seen in human congenital heart disease, relatively little comparative work has been published to demonstrate the similarities and differences in the developmental cardiac anatomy in both species. In this review we discuss some aspects of the comparative anatomy, with emphasis on the atrial anatomy, the valvuloseptal complex, and ventricular myocardial development. From the data presented it can be concluded that, apart from the obvious differences in size, the mouse and human heart are anatomically remarkably similar throughout development. The partitioning of the cardiac chambers (septation) follows the same sequence of events, while also the maturation of the cardiac valves and myocardium is quite similar in both species. The major anatomical differences are seen in the venous pole of the heart. We conclude that, taking note of the few anatomical “variations,” the use of the mouse as a model system for the human heart is warranted. Thus the analysis of mouse mutants with impaired septation will provide valuable information on cellular mechanisms involved in valvuloseptal morphogenesis (a process often disrupted in congenital heart disease), while the study of embryonic lethal mouse mutants that present with lack of compaction of ventricular trabeculae will ultimately provide clues on the etiology of this abnormality in humans.
Collapse
Affiliation(s)
- Andy Wessels
- Department of Cell Biology and Anatomy, Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | |
Collapse
|
43
|
Martinsen BJ, Groebner NJ, Frasier AJ, Lohr JL. Expression of cardiac neural crest and heart genes isolated by modified differential display. Gene Expr Patterns 2003; 3:407-11. [PMID: 12915302 DOI: 10.1016/s1567-133x(03)00088-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The invasion of the cardiac neural crest (CNC) into the outflow tract (OFT) and subsequent outflow tract septation are critical events during vertebrate heart development. We have performed four modified differential display screens in the chick embryo to identify genes that may be involved in CNC, OFT, secondary heart field, and heart development. The screens included differential display of RNA isolated from three different axial segments containing premigratory cranial neural crest cells; of RNA from distal outflow tract, proximal outflow tract, and atrioventricular tissue of embryonic chick hearts; and of RNA isolated from left and right cranial tissues, including the early heart fields. These screens have resulted in the identification of the five cDNA clones presented here, which are expressed in the cardiac neural crest, outflow tract and developing heart in patterns that are unique in heart development.
Collapse
Affiliation(s)
- Brad J Martinsen
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
44
|
Pérez-Pomares JM, Phelps A, Sedmerova M, Wessels A. Epicardial-like cells on the distal arterial end of the cardiac outflow tract do not derive from the proepicardium but are derivatives of the cephalic pericardium. Dev Dyn 2003; 227:56-68. [PMID: 12701099 DOI: 10.1002/dvdy.10284] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A series of recent studies strongly suggests that the myocardium of the cardiac distal outflow tract (d-OFT) does not derive from the original precardiac mesoderm but, instead, differentiates from a so-called anterior heart field. Similar findings were also reported for the endocardium of the d-OFT. However, very little information is available on the origin of the epicardium of the OFT. To address this issue, we have performed a study in which we have combined experimental in vivo and in vitro techniques (construction of proepicardial chimeras, proepicardial ablation, OFT insertion of eggshell membrane pieces, and culture on collagen gels) with molecular characterization techniques to determine this origin and define the properties of d-OFT epicardium compared with proepicardially derived epicardium. Our results demonstrate that the coelomic/pericardial epithelium in the vicinity of the aortic sac (and not the proepicardium) is the origin of d-OFT epicardium. This "pericardially" derived epicardium and the proepicardially derived epicardial tissues differ in their morphologic appearance, gene-expression profile, and in their ability to undergo epithelial-to-mesenchymal transformation. We conclude that the heterogeneity in the epicardial cell population of the OFT could be a factor in the complex developmental remodeling events at the arterial pole of the heart.
Collapse
Affiliation(s)
- José M Pérez-Pomares
- Department of Cell Biology and Anatomy, Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
45
|
Webb S, Qayyum SR, Anderson RH, Lamers WH, Richardson MK. Septation and separation within the outflow tract of the developing heart. J Anat 2003; 202:327-42. [PMID: 12739611 PMCID: PMC1571094 DOI: 10.1046/j.1469-7580.2003.00168.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The developmental anatomy of the ventricular outlets and intrapericardial arterial trunks is a source of considerable confusion. First, major problems exist because of the multiple names and definitions used to describe this region of the heart as it develops. Second, there is no agreement on the boundaries of the described components, nor on the number of ridges or cushions to be found dividing the outflow tract, and the pattern of their fusion. Evidence is also lacking concerning the role of the fused cushions relative to that of the so-called aortopulmonary septum in separating the intrapericardial components of the great arterial trunks. In this review, we discuss the existing problems, as we see them, in the context of developmental and postnatal morphology. We concentrate, in particular, on the changes in the nature of the wall of the outflow tract, which is initially myocardial throughout its length. Key features that, thus far, do not seem to have received appropriate attention are the origin, and mode of separation, of the intrapericardial portions of the arterial trunks, and the formation of the walls of the aortic and pulmonary valvar sinuses. Also as yet undetermined is the formation of the free-standing muscular subpulmonary infundibulum, the mechanism of its separation from the aortic valvar sinuses, and its differentiation, if any, from the muscular ventricular outlet septum.
Collapse
Affiliation(s)
- Sandra Webb
- Department of Anatomy and Developmental Biology, St George's Hospital Medical School, Cranmer Terrace, London SW17 ORE, UK.
| | | | | | | | | |
Collapse
|
46
|
Rothenberg F, Fisher SA, Watanabe M. Sculpting the cardiac outflow tract. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2003; 69:38-45. [PMID: 12768656 DOI: 10.1002/bdrc.10007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cardiac outflow tract is the site of anomalies that affect a substantial proportion of individuals with congenital heart defects. The morphogenesis of this site is complex, and requires coordinated development of many cell types and tissues. It is therefore not surprising that developmental mistakes arise here, and that the steps and mechanisms of morphogenesis are still controversial and poorly understood, despite advances in molecular techniques. Recent findings have provided new insight into mechanisms of outflow tract morphogenesis, including clarification of its origins and the fate of cardiomyocytes, as well as invading cell populations. Application of new and old techniques and a wide range of approaches to tackle the unanswered questions about the outflow tract calls for collaboration among investigators from different disciplines including anatomists, physiologists, and molecular biologists.
Collapse
Affiliation(s)
- Florence Rothenberg
- Heart and Vascular Department, MetroHealth, Metrohealth Campus, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | | | | |
Collapse
|