1
|
Cieślik M, Strobel SD, Bryniarski P, Twardowska H, Chmielowski A, Rudek M, Felkle D, Zięba K, Kaleta K, Jarczyński M, Nowak B, Bryniarski K, Nazimek K. Hypotensive drugs mitigate the high-sodium diet-induced pro-inflammatory activation of mouse macrophages in vivo. Biomed Pharmacother 2024; 175:116648. [PMID: 38677242 DOI: 10.1016/j.biopha.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
Nowadays, there is an increasing emphasis on the need to alleviate the chronic inflammatory response to effectively treat hypertension. However, there are still gaps in our understanding on how to achieve this. Therefore, research on interaction of antihypertensive drugs with the immune system is extremely interesting, since their therapeutic effect could partly result from amelioration of hypertension-related inflammation, in which macrophages seem to play a pivotal role. Thus, current comprehensive studies have investigated the impact of repeatedly administered hypotensive drugs (captopril, olmesartan, propranolol, carvedilol, amlodipine, verapamil) on macrophage functions in the innate and adaptive immunity, as well as if drug-induced effects are affected by a high-sodium diet (HSD), one of the key environmental risk factors of hypertension. Although the assayed medications increased the generation of reactive oxygen and nitrogen intermediates by macrophages from standard fed donors, they reversed HSD-induced enhancing effects on macrophage oxidative burst and secretion of pro-inflammatory cytokines. On the other hand, some drugs increased macrophage phagocytic activity and the expression of surface markers involved in antigen presentation, which translated into enhanced macrophage ability to activate B cells for antibody production. Moreover, the assayed medications augmented macrophage function and the effector phase of contact hypersensitivity reaction, but suppressed the sensitization phase of cell-mediated hypersensitivity under HSD conditions. Our current findings contribute to the recognition of mechanisms, by which excessive sodium intake affects macrophage immune activity in hypertensive individuals, and provide evidence that the assayed medications mitigate most of the HSD-induced adverse effects, suggesting their additional protective therapeutic activity.
Collapse
Affiliation(s)
- Martyna Cieślik
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Spencer D Strobel
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Paweł Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Hanna Twardowska
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Adam Chmielowski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Michał Rudek
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Dominik Felkle
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Katarzyna Zięba
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Konrad Kaleta
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Mateusz Jarczyński
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Bernadeta Nowak
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland.
| |
Collapse
|
2
|
Simula ER, Jasemi S, Cossu D, Manca PC, Sanna D, Scarpa F, Meloni G, Cusano R, Sechi LA. The Genetic Landscape of Systemic Rheumatic Diseases: A Comprehensive Multigene-Panel Study Identifying Key Gene Polymorphisms. Pharmaceuticals (Basel) 2024; 17:438. [PMID: 38675400 PMCID: PMC11054024 DOI: 10.3390/ph17040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Systemic rheumatic diseases, including conditions such as rheumatoid arthritis, Sjögren's syndrome, systemic sclerosis, and systemic lupus erythematosus, represent a complex array of autoimmune disorders characterized by chronic inflammation and diverse clinical manifestations. This study focuses on unraveling the genetic underpinnings of these diseases by examining polymorphisms in key genes related to their pathology. Utilizing a comprehensive genetic analysis, we have documented the involvement of these genetic variations in the pathogenesis of rheumatic diseases. Our study has identified several key polymorphisms with notable implications in rheumatic diseases. Polymorphism at chr11_112020916 within the IL-18 gene was prevalent across various conditions with a potential protective effect. Concurrently, the same IL18R1 gene polymorphism located at chr2_103010912, coding for the IL-18 receptor, was observed in most rheumatic conditions, reinforcing its potential protective role. Additionally, a further polymorphism in IL18R1 at chr2_103013408 seems to have a protective influence against the rheumatic diseases under investigation. In the context of emerging genes involved in rheumatic diseases, like PARK2, a significant polymorphism at chr6_161990516 was consistently identified across different conditions, exhibiting protective characteristics in these pathological contexts. The findings underscore the complexity of the genetic landscape in rheumatic autoimmune disorders and pave the way for a deeper understanding of their etiology and the possible development of more targeted and effective therapeutic strategies.
Collapse
Affiliation(s)
- Elena Rita Simula
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (S.J.); (D.C.); (D.S.); (F.S.)
| | - Seyedesomaye Jasemi
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (S.J.); (D.C.); (D.S.); (F.S.)
| | - Davide Cossu
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (S.J.); (D.C.); (D.S.); (F.S.)
| | - Pietro Carmelo Manca
- S.C. Servizio Immunotrasfusionale, Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy;
| | - Daria Sanna
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (S.J.); (D.C.); (D.S.); (F.S.)
| | - Fabio Scarpa
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (S.J.); (D.C.); (D.S.); (F.S.)
| | - Gianfranco Meloni
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, 07100 Sassari, Italy;
| | - Roberto Cusano
- Centro di Ricerca, Sviluppo, Studi Superiori in Sardegna (CRS4), Pula, 09100 Cagliari, Italy;
| | - Leonardo Antonio Sechi
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (S.J.); (D.C.); (D.S.); (F.S.)
- Struttura Complessa di Microbiologia e Virologia, Azienda Ospedaliera Universitaria, 07100 Sassari, Italy
| |
Collapse
|
3
|
Son SE, Im DS. Therapeutic effects of candesartan in inflammatory skin disorders by suppressing Th17 differentiation. Int Immunopharmacol 2023; 124:110995. [PMID: 37801970 DOI: 10.1016/j.intimp.2023.110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
As angiotensin II is associated with inflammation, type I angiotensin II receptor blockers (ARBs) exibit anti-inflammatory effects in patients with hypertension as well as inflammatory disease animal models including arthritis models. The present study aimed to investigate whether ARBs exert anti-inflammatory effects in vivo in skin disorders. We tested effects of ARBs on 1-chloro-2,4-dinitrobenzene(CDNB)-induced atopic dermatitis-like and imiquimod-induced psoriasis-like skin models. CDNB-induced atopic dermatitis-like skin lesions were suppressed by administration of candesartan or telmisartan. The suppressive effect of telmisartan was blocked by the presence of GW9662, a selective PPARγ inhibitor, but not that of candesartan. Both ARBs suppressed increases in pro-inflammatory cytokine (IL-4, IL-13, IFN-γ, and IL-17A) levels, and GW9662 inhibited telmisartan-induced suppression but not candesartan. Candesartan significantly inhibited in vitro differentiation of naïve T cells into Th17 cells to a greater extent than telmisartan. In the imiquimod-induced psoriasis model, whose primary etiology is activation of IL-23/IL-17 axis, candesartan significantly suppressed psoriasis-like skin lesions and Th17 cell populations in both lymph nodes and spleens to a greater extent than telmisartan. Overall, certain ARBs may have anti-inflammatory effects in skin diseases. Candesartan may have therapeutic implications in inflammatory skin disorders by suppressing Th17 differentiation, while telmisartan might have therapeutic potential by activating PPARγ.
Collapse
Affiliation(s)
- So-Eun Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
4
|
Lee DH, Lee JY, Hong DY, Lee EC, Park SW, Lee YK, Oh JS. Pharmacological Treatment for Neuroinflammation in Stress-Related Disorder. Biomedicines 2022; 10:biomedicines10102518. [PMID: 36289780 PMCID: PMC9599149 DOI: 10.3390/biomedicines10102518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 12/03/2022] Open
Abstract
Stress is an organism’s response to a biological or psychological stressor, a method of responding to threats. The autonomic nervous system and hypothalamic–pituitary–adrenal axis (HPA axis) regulate adaptation to acute stress and secrete hormones and excitatory amino acids. This process can induce excessive inflammatory reactions to the central nervous system (CNS) by HPA axis, glutamate, renin-angiotensin system (RAS) etc., under persistent stress conditions, resulting in neuroinflammation. Therefore, in order to treat stress-related neuroinflammation, the improvement effects of several mechanisms of receptor antagonist and pharmacological anti-inflammation treatment were studied. The N-methyl-D-aspartate (NMDA) receptor antagonist, peroxisome proliferator-activated receptor agonist, angiotensin-converting enzyme inhibitor etc., effectively improved neuroinflammation. The interesting fact is that not only can direct anti-inflammation treatment improve neuroinflammation, but so can stress reduction or pharmacological antidepressants. The antidepressant treatments, including selective serotonin reuptake inhibitors (SSRI), also helped improve stress-related neuroinflammation. It presents the direction of future development of stress-related neuroinflammation drugs. Therefore, in this review, the mechanism of stress-related neuroinflammation and pharmacological treatment candidates for it were reviewed. In addition, treatment candidates that have not yet been verified but indicate possibilities were also reviewed.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Ji-Young Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea
| | - Dong-Yong Hong
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Eun-Chae Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Sang-Won Park
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Yun-Kyung Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
- Correspondence: (Y.-K.L.); (J.-S.O.)
| | - Jae-Sang Oh
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
- Correspondence: (Y.-K.L.); (J.-S.O.)
| |
Collapse
|
5
|
Gao W, Shen L, Long DD, Pan TT, Wang D, Chai XQ, Hu SS. Angiotensin II type 2 receptor pharmacological agonist, C21, reduces the inflammation and pain hypersensitivity in mice with joint inflammatory pain. Int Immunopharmacol 2022; 110:108921. [PMID: 35724606 DOI: 10.1016/j.intimp.2022.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 11/15/2022]
Abstract
Primary and secondary hyperalgesia develop in response to chronic joint inflammation due to peripheral and central mechanisms. Synovial macrophage and spinal microglia are involved in pain sensitization in arthritis. The level of angiotensin II type 2 receptor (AT2R) is related to the severity of arthritis. This study aimed to determine the role of AT2R in primary and secondary hyperalgesia in joint inflammatory pain in mice. After intra-articular CFA injection, primary hyperalgesia in the ipsilateral knee joint was measured by pressure application meter and gait analysis, secondary hypersensitivity in ipsilateral hind-paw was measured by von-Frey and Hargreaves tests following a combination of global AT2R-deficient (Agtr2-/-) mice and AT2R pharmacological agonist C21. Synovial macrophage and spinal microglia were collected for flow cytometry. Morphological reconstruction of microglia was detected by immunostaining. AT2R expression was investigated by quantitative polymerase chain reaction and western blot. Neuronal hyperactivity was evaluated by c-Fos and CGRP immunostaining. We found that pain hypersensitivity and synovial inflammation in Agtr2-/- mice were significantly exacerbated compared with wild-type mice; conversely, systemically administrated C21 attenuated both of the symptoms. Additionally, spinal microglia were activated, and an abundant increase of spinal AT2R was expressed on activated microglia in response to peripheral joint inflammation. Intrathecally-administrated C21 reversed the secondary hypersensitivity, accompanied by alleviation of spinal microglial activation, spinal neuronal hyperactivity, and calcitonin gene-related peptide content. These findings revealed a beneficial role of AT2R activating stimulation against pain hypersensitivity in joint inflammatory pain via direct modulation of synovial macrophage and spinal microglial activity.
Collapse
Affiliation(s)
- Wei Gao
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Liang Shen
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Dan-Dan Long
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Ting-Ting Pan
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Di Wang
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Xiao-Qing Chai
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Shan-Shan Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
6
|
Zhao Y, Tan DC, Peng B, Yang L, Zhang SY, Shi RP, Chong CM, Zhong ZF, Wang SP, Liang QL, Wang YT. Neuroendocrine-Immune Regulatory Network of Eucommia ulmoides Oliver. Molecules 2022; 27:molecules27123697. [PMID: 35744822 PMCID: PMC9229650 DOI: 10.3390/molecules27123697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Eucommia ulmoides Oliver (E. ulmoides) is a popular medicinal herb and health supplement in China, Japan, and Korea, and has a variety of pharmaceutical properties. The neuroendocrine-immune (NEI) network is crucial in maintaining homeostasis and physical or psychological functions at a holistic level, consistent with the regulatory theory of natural medicine. This review aims to systematically summarize the chemical compositions, biological roles, and pharmacological properties of E. ulmoides to build a bridge between it and NEI-associated diseases and to provide a perspective for the development of its new clinical applications. After a review of the literature, we found that E. ulmoides has effects on NEI-related diseases including cancer, neurodegenerative disease, hyperlipidemia, osteoporosis, insomnia, hypertension, diabetes mellitus, and obesity. However, clinical studies on E. ulmoides were scarce. In addition, E. ulmoides derivatives are diverse in China, and they are mainly used to enhance immunity, improve hepatic damage, strengthen bones, and lower blood pressure. Through network pharmacological analysis, we uncovered the possibility that E. ulmoides is involved in functional interactions with cancer development, insulin resistance, NAFLD, and various inflammatory pathways associated with NEI diseases. Overall, this review suggests that E. ulmoides has a wide range of applications for NEI-related diseases and provides a direction for its future research and development.
Collapse
Affiliation(s)
- Yi Zhao
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - De-Chao Tan
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Bo Peng
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Lin Yang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Si-Yuan Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Rui-Peng Shi
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Cheong-Meng Chong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Zhang-Feng Zhong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Sheng-Peng Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Qiong-Lin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
- Correspondence: (Q.-L.L.); (Y.-T.W.); Tel.: +86-010-6277-2263 (Q.-L.L.); +853-8822-4691 (Y.-T.W.); Fax: +86-010-6277-2263 (Q.-L.L.); +853-2884-1358 (Y.-T.W.)
| | - Yi-Tao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
- Correspondence: (Q.-L.L.); (Y.-T.W.); Tel.: +86-010-6277-2263 (Q.-L.L.); +853-8822-4691 (Y.-T.W.); Fax: +86-010-6277-2263 (Q.-L.L.); +853-2884-1358 (Y.-T.W.)
| |
Collapse
|
7
|
Immunomodulatory Activity of the Most Commonly Used Antihypertensive Drugs-Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers. Int J Mol Sci 2022; 23:ijms23031772. [PMID: 35163696 PMCID: PMC8836033 DOI: 10.3390/ijms23031772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
This review article is focused on antihypertensive drugs, namely angiotensin converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB), and their immunomodulatory properties reported in hypertensive patients as well as in experimental settings involving studies on animal models and cell lines. The immune regulatory action of ACEI and ARB is mainly connected with the inhibition of proinflammatory cytokine secretion, diminished expression of adhesion molecules, and normalization of CRP concentration in the blood plasma. The topic has significant importance in future medical practice in the therapy of patients with comorbidities with underlying chronic inflammatory responses. Thus, this additional effect of immune regulatory action of ACEI and ARB may also benefit the treatment of patients with metabolic syndrome, allergies, or autoimmune disorders.
Collapse
|
8
|
Moreira FRC, de Oliveira TA, Ramos NE, Abreu MAD, Simões E Silva AC. The role of renin angiotensin system in the pathophysiology of rheumatoid arthritis. Mol Biol Rep 2021; 48:6619-6629. [PMID: 34417705 DOI: 10.1007/s11033-021-06672-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND In rheumatoid arthritis (RA) and osteoarthritis (OA), chronic inflammatory processes lead to progresive joint destruction. The renin-angiotensin system (RAS) is involved in the pathogenesis of RA and OA. The aim of this mini-review article is to summarize evidence on the role of RAS in RA and OA. METHODS A non-systematic search in Pubmed included terms as "rheumatoid arthritis", "renin angiotensin system", "osteopenia", "RANKL", "DKK-1", "MMP", "inflammation", "angiogenesis", "local renin-angiotensin system", "angiotensin converting enzyme", "AT2 receptor", "Ang-(1-7)", "VEGF", "angiotensine receptor blocker", "angiotensin converting enzyme inhibitors", "renin inhibitors". RESULTS Both RAS axes, the classical one, formed by angiotensin converting enzyme (ACE), angiotensin (Ang) II and AT1 receptor (AT1R) and the counter-regulatory one, composed by ACE2, Ang-(1-7) and the Mas receptor, modulate inflammation and tissue damage. Ang II activates pro-inflammatory mediators and oxidative stress. Conversely, Ang-(1-7) exerts anti-inflammatory actions, decreasing cytokine release, leukocyte attraction, density of vessels, tissue damage and fibrosis. Angiogenesis facilitates inflammatory cells invasion, while osteopenia causes joint dysfunction. Up-regulated osteoclastogenisis and down-regulated osteoblastogeneses were associaed with the activation of the classical RAS axis. Three different pathways, RANKL, DKK-1 and MMPs are enhanced by classical RAS activation. The treatment of RA included methotrexate and corticosteroids, which can cause side effects. Studies with angiotensin receptor blockers (ARBs), angiotensin converting enzyme inhibitors (ACEi) and renin inhibitors have been conducted in experimental and clinical RA with promising results. CONCLUSION The classical RAS activation is an important mechanism in RA pathogenesis and the benefit of ARB and ACEi administration should be further investigated.
Collapse
Affiliation(s)
- Fernanda Rocha Chaves Moreira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, room #281, Belo Horizonte, MG, 30130-100, Brazil
| | - Tiago Almeida de Oliveira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, room #281, Belo Horizonte, MG, 30130-100, Brazil
| | - Nádia Eliza Ramos
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, room #281, Belo Horizonte, MG, 30130-100, Brazil
| | - Maria Augusta Duarte Abreu
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, room #281, Belo Horizonte, MG, 30130-100, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, room #281, Belo Horizonte, MG, 30130-100, Brazil.
- Department of Pediatrics, Faculty of Medicine, UFMG, Belo Horizonte, Brazil.
| |
Collapse
|
9
|
Gordeev AV, Galushko EA, Savushkina NM. The role of the angiotensins in the pathogenesis of inflammatory joint disease. TERAPEVT ARKH 2021; 93:635-639. [DOI: 10.26442/00403660.2021.05.200796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 11/22/2022]
Abstract
The significant humoral effect of the renin-angiotensin-aldosterone system on the regulation of the cardiovascular system and blood pressure has long been widely known. However, the identification and interpretation of new components of renin-angiotensin-aldosterone system in recent years can significantly expand the range of its potential effects on the body. The anti-inflammatory effect of drugs that block angiotensin II and its receptors, including in rheumatic diseases, can become practically significant for General therapists by their effect on reducing the concentration of inflammatory mediators and angiogenesis processes. The organoprotective and anti-inflammatory potentials of drugs that reduce the production of at demonstrated in vitro and in vivo experiments allow us to consider them as first-line angiotropic agents in patients with rheumatoid arthritis, especially in the presence of pathology of the cardiovascular system and kidneys.
Collapse
|
10
|
Sluijsmans DMCF, Rohrich DC, Popa CD, van den Bemt BJF. Angiotensin-Inhibiting Drugs Do Not Impact Disease Activity in Patients with Rheumatoid Arthritis: A Retrospective Cross-Sectional Study. J Clin Med 2021; 10:jcm10091985. [PMID: 34063142 PMCID: PMC8124323 DOI: 10.3390/jcm10091985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Besides their proven effectivity in decreasing the risk of cardiovascular events, angiotensin-converting enzyme inhibitors (ACEi) and angiotensin II type 1 receptor blockers (ARBs) are likely to possess anti-inflammatory properties as well. This study aims to investigate whether the use of ACEi and ARBs additionally lowers disease activity in patients with rheumatoid arthritis (RA). METHODS In this cross-sectional study, we used ARBs or ACEi to study RA patients who had at least one DAS28-CRP measurement during a one-year period. A control group of RA patients without ACEi/ARBs was randomly selected. The primary outcome was the difference between the DAS28-CRP scores of ACEi/ARBs users and controls. The secondary outcomes were the differences between administered dosages of csDMARDs and bDMARDs for users and controls, respectively; these were expressed in defined daily dose (DDD). Confounders were included in the multiple regression analyses. RESULTS A total of 584 ACEi/ARBs users and 552 controls were finally examined. Multiple linear regression analyses showed no association between the use of ACEi or ARBs and the DAS28-CRP scores (ACEi factor 1.00, 95% CI 0.94-1.06; ARBs 1.02, 95% CI 0.96-1.09), nor with the dosage of csDMARDs (ACEi 0.97, 95% CI 0.89-1.07; ARBs 0.99, 95% CI 0.90-1.10). Furthermore, the use of ACEi was not associated with reduced dosages of bDMARDs (OR 1.14, 95% CI 0.79-1.64), whereas ARBs users tended to use less bDMARDs (1.46, 95% CI 0.98-2.18, p = 0.06). CONCLUSION In this study, the use of either ACEi or ARBs in RA patients had no impact on disease activity as measured by the DAS28-CRP. A trend towards lower bDMARD dosages was observed in ARBs users, but the significance of this finding is still unclear.
Collapse
Affiliation(s)
- Dorien M. C. F. Sluijsmans
- Department of Rheumatology, Sint Maartenskliniek, Hengstdal nr 3, 6574 NA Ubbergen, The Netherlands; (D.M.C.F.S.); (D.C.R.)
- Department of Pharmacy, Sint Maartenskliniek, 6574 NA Ubbergen, The Netherlands;
| | - Daphne C. Rohrich
- Department of Rheumatology, Sint Maartenskliniek, Hengstdal nr 3, 6574 NA Ubbergen, The Netherlands; (D.M.C.F.S.); (D.C.R.)
| | - Calin D. Popa
- Department of Rheumatology, Sint Maartenskliniek, Hengstdal nr 3, 6574 NA Ubbergen, The Netherlands; (D.M.C.F.S.); (D.C.R.)
- Department of Rheumatology, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands
- Correspondence: ; Tel.: +31-24-3652761
| | - Bart J. F. van den Bemt
- Department of Pharmacy, Sint Maartenskliniek, 6574 NA Ubbergen, The Netherlands;
- Department of Pharmacy, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
11
|
Zhao Z, Zhang Y, Wang C, Wang X, Wang Y, Zhang H. Angiotensin II upregulates RANKL/NFATC1 expression in synovial cells from patients with rheumatoid arthritis through the ERK1/2 and JNK pathways. J Orthop Surg Res 2021; 16:297. [PMID: 33952303 PMCID: PMC8097914 DOI: 10.1186/s13018-021-02451-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/27/2021] [Indexed: 02/03/2023] Open
Abstract
Background Angiotensin II (Ang II) is associated with rheumatoid arthritis (RA) development. The present study investigated the impact of Ang II on the expression of receptor activator of nuclear factor-κB ligand (RANKL), as well as of nuclear factor of activated T cells cytoplasmic 1 (NFATC1) in RA synovial cells, and explored the underlying mechanism. Methods The expression levels of RANKL, NFATC1, and Ang II type 1 receptor (AT1R) were analyzed by RT PCR, western-blot, and/or immunohistochemistry. Western blot was also used to analyze the p38MAPK, JNK, and ERK1/2 pathways. Results The expressions of RANKL and NFATC1 increased in synovial tissues of RA compared to osteoarthritis (OA) synovial tissues. The expression of RANKL was upregulated by Ang II, and this effect was mitigated by an AT1R blocker but not by an AT2R blocker. Furthermore, Ang II activated the ERK1/2, JNK, and p38MAPK pathways, and this effect was blocked by the AT1R blocker. However, ERK1/2 and JNK inhibitors, but not a p38MAPK inhibitor, blocked Ang II-induced RANKL expression. Ang II also increased the level of NFATC1, and this upregulation was attenuated by AT1R blockade, ERK1/2 and JNK inhibition, and siRNA-mediated RANKL silencing, but not by AT2R blockade or p38MAPK inhibition. Conclusion Our results indicated that Ang II activated the ERK1/2 and JNK pathways via AT1R, thus upregulating RANKL and NFATC1 expressions in RA synovial cells.
Collapse
Affiliation(s)
- Zhiping Zhao
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yongtao Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Changyao Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiangyu Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yingzhen Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Haining Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China. .,Department of Orthopedics, The Affiliated Hospital of Qingdao University, 59 Hai Er Road, Qingdao, Shandong, 266061, P.R. China.
| |
Collapse
|
12
|
The Tissue Renin-Angiotensin System and Its Role in the Pathogenesis of Major Human Diseases: Quo Vadis? Cells 2021; 10:cells10030650. [PMID: 33804069 PMCID: PMC7999456 DOI: 10.3390/cells10030650] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 01/18/2023] Open
Abstract
Evidence has arisen in recent years suggesting that a tissue renin-angiotensin system (tRAS) is involved in the progression of various human diseases. This system contains two regulatory pathways: a pathological pro-inflammatory pathway containing the Angiotensin Converting Enzyme (ACE)/Angiotensin II (AngII)/Angiotensin II receptor type 1 (AGTR1) axis and a protective anti-inflammatory pathway involving the Angiotensin II receptor type 2 (AGTR2)/ACE2/Ang1–7/MasReceptor axis. Numerous studies reported the positive effects of pathologic tRAS pathway inhibition and protective tRAS pathway stimulation on the treatment of cardiovascular, inflammatory, and autoimmune disease and the progression of neuropathic pain. Cell senescence and aging are known to be related to RAS pathways. Further, this system directly interacts with SARS-CoV 2 and seems to be an important target of interest in the COVID-19 pandemic. This review focuses on the involvement of tRAS in the progression of the mentioned diseases from an interdisciplinary clinical perspective and highlights therapeutic strategies that might be of major clinical importance in the future.
Collapse
|
13
|
Hegazy N, Rezq S, Fahmy A. Mechanisms Involved in Superiority of Angiotensin Receptor Blockade over ACE Inhibition in Attenuating Neuropathic Pain Induced in Rats. Neurotherapeutics 2020; 17:1031-1047. [PMID: 32804335 PMCID: PMC7609714 DOI: 10.1007/s13311-020-00912-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although previous reports described the beneficial role of angiotensin-converting enzyme inhibitors (ACE-Is) or AT1 receptor blockers (ARBs) in attenuating neuropathic pain (NP), no study has yet explored the exact underlying mechanisms, as well as the superiority of using centrally versus peripherally acting renin-angiotensin-aldosterone system (RAAS) drugs in NP. We investigated the effects of 14 days of treatment with centrally (telmisartan and ramipril) or peripherally (losartan and enalapril) acting ARBs and ACE-Is, respectively, in attenuating peripheral NP induced by sciatic nerve chronic constriction injury (CCI) in rats. We also compared these with the effects of pregabalin, the standard treatment for NP. Behavioral changes, inflammatory markers (NFкB, TNF-α, COX-2, PGE2, and bradykinin), oxidative stress markers (NADPH oxidase and catalase), STAT3 activation, levels of phosphorylated P38-MAPK, ACE, AT1 receptor (AT1R), and AT2 receptor (AT2R), as well as histopathological features, were assessed in the brainstem and sciatic nerve. CCI resulted in clear pain-related behavior along with increased levels of inflammatory and oxidative stress markers, and STAT3 activity, as well as increased levels of phosphorylated P38-MAPK, ACE, AT1R, and AT2R, along with worsened histopathological findings in both the brainstem and sciatic nerve. ARBs improved both animal behavior and all measured parameters in CCI rats and were more effective than ACE-Is. At the tested doses, centrally acting ARBs or ACE-Is were not superior to the peripherally acting drugs of the same category. These findings suggest that ARBs (centrally or peripherally acting) are an effective treatment modality for NP.
Collapse
Affiliation(s)
- Nora Hegazy
- Department of Pharmacology and Toxicology, School of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Samar Rezq
- Department of Pharmacology and Toxicology, School of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, 39216, MS, USA.
| | - Ahmed Fahmy
- Department of Pharmacology and Toxicology, School of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
14
|
吴 元, 曾 羿, 李 明, 刘 渊, 杨 静, 沈 彬. [Expressions of Renin, angiotensin converting enzyme, angiotensin receptor 1, and angiotensin receptor 2 in synovial tissue of osteoarthritis at different stages]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:362-366. [PMID: 32174084 PMCID: PMC8171654 DOI: 10.7507/1002-1892.201904065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 01/02/2020] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To study the expressions of Renin, angiotensin converting enzyme (ACE), angiotensin receptor 1 (AT1R), and AT2R in synovial tissue of osteoarthritis (OA) at different stages. METHODS The patients who were treated with upper knee amputation because of trauma or total knee arthroplasty for OA between January 2018 and December 2018 were enrolled. Among them, 32 patients who met the selection criteria were included in the study. According to the Kellgren-Lawrence (K-L) X-ray classification, they were allocated to normal synovial group (group A, n=9), moderate OA synovial group (group B, n=11, K-L level 3), and advanced OA synovial group (group C, n=12, K-L level 4). The relative expressions of Renin, ACE, AT1R, and AT2R mRNAs and proteins were detected by real-time fluorescence quantitative PCR (qRT-PCR) and Western blot. RESULTS The relative expressions of Renin, ACE, and AT1R mRNAs and proteins were significantly higher in group B and group C than in group A ( P<0.05). The relative expressions of ACE and AT1R mRNAs and proteins and Renin protein were significantly higher in group C than in group B ( P<0.05). However, the relative expressions of AT2R mRNA and protein were lower in group B and group C than in group A ( P<0.05), and in group C than in group B ( P<0.05). CONCLUSION The expressions of Renin, ACE, and AT1R in synovial tissue of osteoarthritis significantly increase as the K-L level increased, and the expression of AT2R decreases. Renin, ACE, AT1R, and AT2R have a certain degree of correlation with the development of OA.
Collapse
Affiliation(s)
- 元刚 吴
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 羿 曾
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 明阳 李
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 渊 刘
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 静 杨
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 彬 沈
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
15
|
Zhang Y, Ding H, Song Q, Wang Z, Yuan W, Ren Y, Zhao Z, Wang C. Angiotensin II inhibits osteogenic differentiation of isolated synoviocytes by increasing DKK-1 expression. Int J Biochem Cell Biol 2020; 121:105703. [PMID: 32014499 DOI: 10.1016/j.biocel.2020.105703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/27/2022]
Abstract
The renin-angiotensin system contributes to the pathogenesis of rheumatoid arthritis, but that the mechanism is unclear. This study aims to investigate the effect of angiotensin II (Ang II) on osteogenic differentiation of synoviocytes and the underlying mechanism. Ang II was showed to inhibite osteogenic differentiation of synoviocytes, which was mitigated by a Dickkopf-1 (DKK-1) inhibitor. DKK-1 was upregulated by Ang II, which was weakened by the Ang II type 1 receptor (AT1R) blocker, reactive oxygen species (ROS) scavenger, and p38 inhibitor. Ang II increased the levels of AT1R, ROS, and NADPH oxidase (NOX), and the upregulations were mitigated by the AT1R blocker or NOX inhibitor. Furthermore, Ang II activated the p38 pathway, which was blocked by the AT1R blocker, ROS scavenger, or siRNA-MKK3. In brief, these results indicate that Ang II upregulates NOX expression and ROS production via AT1R, activates the MKK3/p38 signaling, and in turn upregulates DKK-1 expression, participating in the inhibition of osteogenic differentiation of synoviocytes.
Collapse
Affiliation(s)
- Yongtao Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Huimin Ding
- Department of Orthopedics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Qichun Song
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Ze Wang
- Department of Emergency Medicine, Qingdao Haici Medical Treatment Group, Qingdao, 266000, Shandong, China
| | - Wanqing Yuan
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yuanzhong Ren
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhiping Zhao
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Changyao Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
16
|
Zhao J, Yang H, Chen B, Zhang R. The skeletal renin-angiotensin system: A potential therapeutic target for the treatment of osteoarticular diseases. Int Immunopharmacol 2019; 72:258-263. [PMID: 31003003 DOI: 10.1016/j.intimp.2019.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023]
Abstract
The classical renin-angiotensin system (RAS) is known to be a key regulator of blood pressure as well as fluid and electrolyte homeostasis. Additionally, it is now evident that components of the RAS are produced and act locally in many tissues, including liver, kidney, heart, lung, eye, bone, reproductive organ, adipose, and adrenal tissue, and these components are collectively known as tissue RAS. Recently, several studies have shown that local bone RAS is directly involved in bone metabolism, and activation of skeletal RAS plays an important role in bone diseases, such as osteoporosis, arthritis, and deterioration as well as in fracture healing. Based on the identification of RAS components in bone, we examined a new therapeutic approach to attenuate bone diseases through RAS inhibitors: renin inhibitor, angiotensin-converting enzyme inhibitors, and angiotensin II receptor blockers. In this paper, we provide a systematic review of the skeletal RAS in the pathophysiology of bone diseases and the beneficial effect of RAS inhibitors on bone tissue.
Collapse
Affiliation(s)
- Jingjing Zhao
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Hao Yang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Bo Chen
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
17
|
Savushkina NM, Galushko EA, Demidova NV, Gordeev AV. Angiotensins and rheumatoid arthritis. RHEUMATOLOGY SCIENCE AND PRACTICE 2019. [DOI: 10.14412/1995-4484-2018-753-759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
At present, the role of the renin-angiotensin system (RAS) in regulating the cardiovascular system and maintaining water and electrolyte homeostasis has been well studied. However, over the past decades, new components of the RAS have been identified, suggesting a wider range of its potential effects on the body. It is of fundamentally importance for rheumatologists to affect inflammation, including rheumatoid inflammation, through blockade of angiotensin (AT) II formation via the effects of AT 1–7 and angiotensin-converting enzyme inhibitors, as well as through suppression of angiogenesis, primarily by reducing the production of endothelial growth factor. The organ-protective and antiinflammatory potential of drugs that reduce the production of AT, which has been proven in in vitro and in vivo experiments, allows us to consider them as first-line angiotropic agents in patients with rheumatoid arthritis, especially in the presence of concomitant hypertension and/or nephropathy.
Collapse
|
18
|
Koch CA, Krabbe S, Hehmke B. Statins, metformin, proprotein-convertase-subtilisin-kexin type-9 (PCSK9) inhibitors and sex hormones: Immunomodulatory properties? Rev Endocr Metab Disord 2018; 19:363-395. [PMID: 30673921 DOI: 10.1007/s11154-018-9478-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The immune system is closely intertwined with the endocrine system. Many effects of medications used for various clinical endocrine conditions such as the metabolic syndrome, hypercholesterolemia, diabetes mellitus, hypertension, Graves' disease and others also have an impact on the immune system. Some drugs including statins, metformin, angiotensin converting enzyme and proprotein-convertase-subtilisin-kexin type-9 (PCSK9) inhibitors and sex hormones are known to have immunomodulatory properties. We here review the literature on this topic and provide some clinical examples including the use of statins in Graves' orbitopathy, rheumatoid arthritis, multiple sclerosis, and adult-onset Still's disease. In that context, we introduce a special immunodiagnostics method developed at the Institute of Diabetes "Gerhardt Katsch" in Karlsburg, Germany, to not only measure but also monitor immune disease activity.
Collapse
Affiliation(s)
- Christian A Koch
- Medicover GmbH Berlin, Berlin, Germany.
- Carl von Ossietzky University, Oldenburg, Germany.
- Technical University of Dresden, Dresden, Germany.
- University of Louisville, Louisville, KY, USA.
- University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Siegfried Krabbe
- Medicover GmbH Berlin, Berlin, Germany
- Carl von Ossietzky University, Oldenburg, Germany
- University of Greifswald, Greifswald, Germany
| | - Bernd Hehmke
- Institute of Diabetes ''Gerhardt Katsch'', Karlsburg, Germany.
| |
Collapse
|
19
|
Losartan suppresses the inflammatory response in collagen-induced arthritis by inhibiting the MAPK and NF-κB pathways in B and T cells. Inflammopharmacology 2018; 27:487-502. [PMID: 30426454 DOI: 10.1007/s10787-018-0545-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Abstract
The angiotensin II type 1 receptor (AT1R) antagonist losartan has been confirmed to have a moderate anti-inflammatory effect in vitro and in vivo. However, how it affects immune cells in Rheumatoid Arthritis (RA) is still unknown. We found that in human synovial tissues, AT1R is significantly expressed on T cells and B cells. Treatment with losartan (15 mg/kg) alone and in combination with a low dose of methotrexate (MTX 0.25 mg/kg/3 days) significantly suppressed the progression of CIA. Secondary paw swelling, joint destruction and the presence of pro-inflammatory cytokines (TNF-α and IFN-γ) in the serum were alleviated after treatment. The therapeutic effects of losartan were based on reduced T-cell and B-cell activation, specifically by decreased cell vitality and pro-inflammatory cytokine production. In addition, losartan combined with a low dose of MTX achieved a similar therapeutic effect, while protecting liver and kidney from MTX damage. Mechanistically, losartan inhibits the production of pro-inflammatory mediators, reduces the phosphorylation of p38, ERK, and p65, p50 nuclear transposition in T cells and B cells. Phosphorylation of JNK is not affected by losartan in the CIA rat model. losartan can be used as an effective RA treatment, which exhibits anti-arthritic effects potentially through down-regulating the phosphorylation of p38, ERK and signaling through NF-κB. While achieving similar anti-rheumatic effects, a combination therapy of losartan with a low dose of MTX, can protect from liver and renal damage caused by giving a high dose of MTX.
Collapse
|
20
|
Wang Y, Kou J, Zhang H, Wang C, Li H, Ren Y, Zhang Y. The renin-angiotensin system in the synovium promotes periarticular osteopenia in a rat model of collagen-induced arthritis. Int Immunopharmacol 2018; 65:550-558. [PMID: 30412852 DOI: 10.1016/j.intimp.2018.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 01/01/2023]
Abstract
Periarticular osteopenia is the most specific hallmark of rheumatoid arthritis (RA). The renin-angiotensin system (RAS) in the synovium has been found to participate in the pathogenic process of RA. This study examined whether and how RAS regulates periarticular osteopenia in RA. The synovial tissues from patients with RA and osteoarthritis (OA) were prepared. Female Sprague-Dawley rats were treated with either saline, bovine type II collagen (CII) to induce arthritis (CIA), or CII combined with perindopril, an inhibitor of angiotensin-converting enzyme (ACE). Expressions of RAS components, including AT1R, AT2R and ACE, in human and rat synovial tissues were detected. Bone mass of rat joints was examined. Levels of RANKL, OPG and DKK-1 in rat synovium and expressions of TRAF6 and β-catenin in rat bone were examined. The results showed that AT1R, AT2R and ACE in human and rat synovium were up-regulated, but the increased ACE in rat synovial tissues was abrogated by perindopril. While CIA rats displayed increased bone resorption and decreased bone formation, perindopril treatment almost completely abrogated the RAS-mediated osteopenia, indicating that inhibition of ACE reduced the joint damages in rats. The expressions of RANKL and DKK-1 increased in CIA rats as compared with those in the control; TRAF6 was up-regulated and β-catenin was down-regulated in the bone tissues of CIA rats. The changes were then reversed by the use of perindopril. Our findings demonstrate that RAS in the synovium promotes periarticular osteopenia by increasing bone resorption and decreasing bone formation through modulating the RANKL/RANK/TRAF6 and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Yingzhen Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, PR China
| | - Jianqiang Kou
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, PR China
| | - Haining Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, PR China
| | - Changyao Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, PR China
| | - Haiyan Li
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, PR China
| | - Yuanzhong Ren
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, PR China
| | - Yongtao Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, PR China.
| |
Collapse
|
21
|
Ranjbar R, Shafiee M, Hesari A, Ferns GA, Ghasemi F, Avan A. The potential therapeutic use of renin-angiotensin system inhibitors in the treatment of inflammatory diseases. J Cell Physiol 2018; 234:2277-2295. [PMID: 30191985 DOI: 10.1002/jcp.27205] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/16/2018] [Indexed: 01/18/2023]
Abstract
Inflammation is a normal part of the immune response to injury or infection but its dysregulation promotes the development of inflammatory diseases, which cause considerable human suffering. Nonsteroidal anti-inflammatory agents are the most commonly prescribed agents for the treatment of inflammatory diseases, but they are accompanied by a broad range of side effects, including gastrointestinal and cardiovascular events. The renin-angiotensin system (RAS) is traditionally known for its role in blood pressure regulation. However, there is increasing evidence that RAS signaling is also involved in the inflammatory response associated with several disease states. Angiotensin II increases blood pressure by binding to angiotensin type 1 (AT1 ) receptor, and direct renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors and AT1 receptor blockers (ARBs) are clinically used as antihypertensive agents. Recent data suggest that these drugs also have anti-inflammatory effects. Therefore, this review summarizes these recent findings for the efficacy of two of the most widely used antihypertensive drug classes, ACE inhibitors and ARBs, to reduce or treat inflammatory diseases such as atherosclerosis, arthritis, steatohepatitis, colitis, pancreatitis, and nephritis.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mojtaba Shafiee
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - AmirReza Hesari
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Sussex, UK
| | - Faezeh Ghasemi
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Azilsartan as "Add-On" Treatment with Methotrexate Improves the Disease Activity of Rheumatoid Arthritis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7164291. [PMID: 29888275 PMCID: PMC5977001 DOI: 10.1155/2018/7164291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 11/18/2022]
Abstract
Objective The present study aimed to evaluate the efficacy and safety of azilsartan (Azil) as “add-on” treatment with methotrexate (MTX) in patients with active rheumatoid arthritis (RA). Methods This single center, randomized, placebo-controlled, double-blind, pilot study included 64 patients with active RA. Patients received either placebo or Azil in addition to their currently used MTX doses for 90 days. The primary outcomes were DAS-28, SDAI, HAQ-DI, CDAI, EGA, and swollen and tender joints count. The secondary outcomes were the changes in the pain visual analogue scale (VAS-100), serum levels of TNF-α, IL-1β, IL-6, and anti-CCP, the lipid profile, and the markers of kidney and liver functions in the two groups at baseline and after 90 days. Results After 90 days, most clinical scores were significantly better in the Azil-treated group than in the placebo group. All inflammatory biomarkers were significantly improved after treatment with MTX + Azil compared to baseline and placebo group. No safety concerns were reported during the study period. Conclusions Azilsartan improved the effects of methotrexate on the clinical scores and certain inflammatory biomarkers of patients with active RA. Trial Registration The protocol was registered under the number 507/SA/1024 at the local clinical studies database, College of Medicine, Sulaimani University.
Collapse
|
23
|
Abstract
Angiotensin-converting enzyme (ACE) - a zinc-dependent dicarboxypeptidase with two catalytic domains - plays a major part in blood pressure regulation by converting angiotensin I to angiotensin II. However, ACE cleaves many peptides besides angiotensin I and thereby affects diverse physiological functions, including renal development and male reproduction. In addition, ACE has a role in both innate and adaptive responses by modulating macrophage and neutrophil function - effects that are magnified when these cells overexpress ACE. Macrophages that overexpress ACE are more effective against tumours and infections. Neutrophils that overexpress ACE have an increased production of superoxide, which increases their ability to kill bacteria. These effects are due to increased ACE activity but are independent of angiotensin II. ACE also affects the display of major histocompatibility complex (MHC) class I and MHC class II peptides, potentially by enzymatically trimming these peptides. Understanding how ACE expression and activity affect myeloid cells may hold great promise for therapeutic manipulation, including the treatment of both infection and malignancy.
Collapse
|
24
|
Bernstein KE, Khan Z, Giani JF, Cao DY, Bernstein EA, Shen XZ. Angiotensin-converting enzyme in innate and adaptive immunity. Nat Rev Nephrol 2018; 14:325-336. [PMID: 29578208 DOI: 10.1038/nrneph.2018.15] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Angiotensin-converting enzyme (ACE) - a zinc-dependent dicarboxypeptidase with two catalytic domains - plays a major part in blood pressure regulation by converting angiotensin I to angiotensin II. However, ACE cleaves many peptides besides angiotensin I and thereby affects diverse physiological functions, including renal development and male reproduction. In addition, ACE has a role in both innate and adaptive responses by modulating macrophage and neutrophil function - effects that are magnified when these cells overexpress ACE. Macrophages that overexpress ACE are more effective against tumours and infections. Neutrophils that overexpress ACE have an increased production of superoxide, which increases their ability to kill bacteria. These effects are due to increased ACE activity but are independent of angiotensin II. ACE also affects the display of major histocompatibility complex (MHC) class I and MHC class II peptides, potentially by enzymatically trimming these peptides. Understanding how ACE expression and activity affect myeloid cells may hold great promise for therapeutic manipulation, including the treatment of both infection and malignancy.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zakir Khan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center
| | - Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center
| | | | - Xiao Z Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Endothelium-derived contraction in a model of rheumatoid arthritis is mediated via angiotensin II type 1 receptors. Vascul Pharmacol 2018; 100:51-57. [DOI: 10.1016/j.vph.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 01/16/2023]
|
26
|
Hammer A, Stegbauer J, Linker RA. Macrophages in neuroinflammation: role of the renin-angiotensin-system. Pflugers Arch 2017; 469:431-444. [PMID: 28190090 DOI: 10.1007/s00424-017-1942-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Macrophages are essential players of the innate immune system which are involved in the initiation and progression of various inflammatory and autoimmune diseases including neuroinflammation. In the past few years, it has become increasingly clear that the regulation of macrophage responses by the local tissue milieu is also influenced by mediators which were first discovered as regulators in the nervous or also cardiovascular system. Here, the renin-angiotensin system (RAS) is a major focus of current research. Besides its classical role in blood pressure control, body fluid, and electrolyte homeostasis, the RAS may influence (auto)immune responses, modulate T cells, and particularly act on macrophages via different signaling pathways. Activation of classical RAS pathways including angiotensin (Ang) II and AngII type 1 (AT1R) receptors may drive pro-inflammatory macrophage responses in neuroinflammation via regulation of chemokines. More recently, alternative RAS pathways were described, such as binding of Ang-(1-7) to its receptor Mas. Signaling via Mas pathways may counteract some of the AngII/AT1R-mediated effects. In macrophages, the Ang-(1-7)/Mas exerts beneficial effects on neuroinflammation via modulating macrophage polarization, migration, and T cell activation in vitro and in vivo. These data delineate a pivotal role of the RAS in inflammation of the nervous system and identify RAS modulation as a potential new target for immunotherapy with a special focus on macrophages.
Collapse
Affiliation(s)
- Anna Hammer
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Johannes Stegbauer
- Department of Nephrology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ralf A Linker
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
27
|
Guerra GCB, de Menezes MSS, de Araújo AA, de Araújo Júnior RF, de Medeiros CACX. Olmesartan Prevented Intra-articular Inflammation Induced by Zymosan in Rats. Biol Pharm Bull 2017; 39:1793-1801. [PMID: 27803450 DOI: 10.1248/bpb.b16-00296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to study the effect of olmesartan medoxomil (OLM), an antihypertensive drug, on intra-articular inflammation induced by zymosan (Zy) in Wistar rats. Intra-articular inflammation was induced in the right knees of rats by 1 mg Zy dissolved in saline. The animals were divided into the following groups: saline only (oral saline and intra-articular saline); Zy only (intra-articular Zy and oral saline), and intra-articular Zy and oral OLM (5, 15, or 30 mg/kg) or diclofenac sodium (SD; 100 mg/kg). Twenty-four hours after Zy injection, synovial fluid was collected for total leukocyte counts, blood was collected for biochemical measurements, and synovial tissue was collected for histopathology, immunohistochemistry, immunofluorescence and myeloperoxidase (MPO), malonaldehyde (MDA), and non-protein sulphydryl (NPSH) assays. OLM doses of 15 and 30 mg/kg had protective effects, as evidenced by improved histopathological parameters of synovium, reduced total leukocyte counts, reduced MPO and MDA levels, and increased NPSH group levels compared with the Zy group. OLM reduced immunostaining for cyclooxygenase 2, tumour necrosis factor and interleukin 17 and increased immunostaining for superoxide dismutase and glutathione peroxidase. SD produced similar results. The drugs studied caused no change in biochemical parameters of the animals. OLM showed protective effects in this model of Zy-induced intra-articular inflammation.
Collapse
Affiliation(s)
- Gerlane Coelho Bernardo Guerra
- Post Graduation Program in Biological Sciences/Federal University of Rio Grande do Norte, Department Biophysical and Pharmacology, Federal University of Rio Grande do Norte
| | | | | | | | | |
Collapse
|
28
|
Nadalin S, Buretić-Tomljanović A, Lavtar P, Starčević Čizmarević N, Hodžić A, Sepčić J, Kapović M, Peterlin B, Ristić S. The lack of association between angiotensin-converting enzyme gene insertion/deletion polymorphism and nicotine dependence in multiple sclerosis. Brain Behav 2017; 7:e00600. [PMID: 28127518 PMCID: PMC5256183 DOI: 10.1002/brb3.600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/14/2016] [Accepted: 10/03/2016] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Blood-borne angiotensin II is generated from angiotensinogen via cleavage by renin and angiotensin-converting enzyme (ACE), an enzymatic cascade known as the renin-angiotensin system (RAS). Several lines of evidence indicate that ACE, beyond its classical role of mediating blood pressure regulation, might contribute to the etiology of substance addictions by influencing dopaminergic signaling. A functional insertion/deletion (I/D) polymorphism of the ACE gene was associated with risk for being a smoker among individuals with depression and with smoking severity in studies comprising patients with depression and healthy controls. Several reports have described significantly increased ACE activity in cerebrospinal fluid and serum among MS patients. Furthermore, in our previous work with MS patients from Croatian and Slovenian populations, we demonstrated that the ACE-I/D polymorphism contributes to an elevated MS risk among male patients. Here we investigated whether the ACE-I/D polymorphism might influence smoking behavior among patients with MS. PATIENTS AND METHODS Genotyping was performed in 521 patients (males/females: 139/382) using polymerase chain reaction. RESULTS We revealed no significant differences in ACE genotype and allele frequencies between smokers and nonsmokers and no significant association between the ACE-I/D polymorphism and either pack-year smoking history or number of cigarettes smoked daily (p > .05, respectively). CONCLUSION The ACE-I/D polymorphism does not contribute either to risk for nicotine dependence or to smoking severity among MS patients. In the context of reports on the ACE-I/D polymorphism and nicotine dependence among healthy controls and patients with depression, we may speculate that the mechanism by which this polymorphism influences nicotine dependence risk differs in MS compared to depression, although not compared to a healthy population. In addition to angiotensin II, other potential ACE substrates, such as substance P and neurotensin, which also influence dopaminergic neurotransmission (and are proposed to be associated with MS), may deserve study in future.
Collapse
Affiliation(s)
- Sergej Nadalin
- Department of Biology and Medical Genetics School of Medicine University of Rijeka Rijeka Croatia
| | | | - Polona Lavtar
- Clinical Institute of Medical Genetics University Medical Centre Ljubljana Slovenia
| | | | - Alenka Hodžić
- Clinical Institute of Medical Genetics University Medical Centre Ljubljana Slovenia
| | - Juraj Sepčić
- Postgraduate Studies School of Medicine University of Rijeka Rijeka Croatia
| | - Miljenko Kapović
- Department of Biology and Medical Genetics School of Medicine University of Rijeka Rijeka Croatia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics University Medical Centre Ljubljana Slovenia
| | - Smiljana Ristić
- Department of Biology and Medical Genetics School of Medicine University of Rijeka Rijeka Croatia
| |
Collapse
|
29
|
AAV8-Mediated Angiotensin-Converting Enzyme 2 Gene Delivery Prevents Experimental Autoimmune Uveitis by Regulating MAPK, NF-κB and STAT3 Pathways. Sci Rep 2016; 6:31912. [PMID: 27558087 PMCID: PMC4997264 DOI: 10.1038/srep31912] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/26/2016] [Indexed: 12/27/2022] Open
Abstract
Renin angiotensin system (RAS) is a key hormonal system which regulates the cardiovascular function and is implicated in several autoimmune diseases. With the discovery of the angiotensin-converting enzyme 2 (ACE2), a protective axis of RAS namely ACE2/Ang-(1-7)/Mas that counteracts the deleterious ACE/AngII/AT1R axis has been established. This axis is emerging as a novel target to attenuate ocular inflammation. However, the underlying molecular mechanisms remain unclear. We investigated the hypothesis that enhancing the activity of the protective axis of RAS by subretinal delivery of an AAV8 (Y733F)-ACE2 vector would protect against the ocular inflammation in experimental autoimmune uveitis (EAU) mice through regulating the local immune responses. Our studies demonstrated that increased ACE2 expression exerts protective effects on inflammation in EAU mouse by modulating ocular immune responses, including the differentiation of Th1/Th17 cells and the polarization of M1/M2 macrophages; whereas the systemic immune responses appeared not affected. These effects were mediated by activating the Ang-(1-7)/Mas and inhibiting the MAPK, NF-κB and STAT3 signaling pathways. This proof-of-concept study suggests that activation of ocular ACE2/Ang-(1-7)/Mas axis with AAV gene transfer modulates local immune responses and may be a promising, long-lasting therapeutic strategy for refractory and recurrent uveitis, as well as other inflammatory eye diseases.
Collapse
|
30
|
Bernstein KE, Khan Z, Giani JF, Zhao T, Eriguchi M, Bernstein EA, Gonzalez-Villalobos RA, Shen XZ. Overexpression of angiotensin-converting enzyme in myelomonocytic cells enhances the immune response. F1000Res 2016; 5. [PMID: 27018193 PMCID: PMC4806706 DOI: 10.12688/f1000research.7508.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2016] [Indexed: 12/13/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) converts angiotensin I to the vasoconstrictor angiotensin II and thereby plays an important role in blood pressure control. However, ACE is relatively non-specific in its substrate specificity and cleaves many other peptides. Recent analysis of mice overexpressing ACE in monocytes, macrophages, and other myelomonocytic cells shows that these animals have a marked increase in resistance to experimental melanoma and to infection by Listeria monocytogenes or methicillin-resistant Staphylococcus aureus (MRSA). Several other measures of immune responsiveness, including antibody production, are enhanced in these animals. These studies complement a variety of studies indicating an important role of ACE in the immune response.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Department of Biomedical Sciences and the Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zakir Khan
- Department of Biomedical Sciences and the Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jorge F Giani
- Department of Biomedical Sciences and the Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tuantuan Zhao
- Department of Biomedical Sciences and the Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Masahiro Eriguchi
- Department of Biomedical Sciences and the Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences and the Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Romer A Gonzalez-Villalobos
- Department of Biomedical Sciences and the Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiao Z Shen
- Department of Biomedical Sciences and the Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
31
|
Boron Induces Lymphocyte Proliferation and Modulates the Priming Effects of Lipopolysaccharide on Macrophages. PLoS One 2016; 11:e0150607. [PMID: 26934748 PMCID: PMC4774930 DOI: 10.1371/journal.pone.0150607] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 02/17/2016] [Indexed: 12/26/2022] Open
Abstract
Chemical mediators of inflammation (CMI) are important in host defense against infection. The reduced capacity of host to induce the secretion of these mediators following infection is one of the factors in host susceptibility to infection. Boron, which has been suggested for its role in infection, is reported in this study to increase lymphocyte proliferation and the secretion of CMI by the lipopolysaccharide (LPS)-stimulated peritoneal macrophages in BALB/c mice. Boron was administered to mice orally as borax at different doses for 10 consecutive days, followed by the stimulation of animals with ovalbumin and isolation of splenocytes for proliferation assay. The lymphocyte subsets were determined by flow cytometry in spleen cell suspension. The mediators of inflammation, TNF-α, IL-6, IL-1β and nitric oxide (NO), were measured in culture supernatant of LPS-primed macrophages isolated from borax treated mice. TNF and ILs were measured by ELISA. NO was determined by Griess test. The expression of inducible nitric oxide synthase (iNOS) in macrophages was studied by confocal microscopy. Results showed a significant increase in T and B cell populations, as indicated by an increase in CD4 and CD19, but not CD8, cells. Boron further stimulated the secretion of TNF-α, IL-6, IL-1β, NO and the expression of iNOS by the LPS-primed macrophages. The effect was dose dependent and most significant at a dose level of 4.6 mg/kg b. wt. Taken together, the study concludes that boron at physiological concentration induces lymphocyte proliferation and increases the synthesis and secretion of pro-inflammatory mediators by the LPS-primed macrophages, more specifically the M1 macrophages, possibly acting through Toll-like receptor. The study implicates boron as a regulator of the immune and inflammatory reactions and macrophage polarization, thus playing an important role in augmenting host defense against infection, with possible role in cancer and other diseases.
Collapse
|
32
|
Abdel-Fattah MM, Salama AA, Shehata BA, Ismaiel IE. The potential effect of the angiotensin II receptor blocker telmisartan in regulating OVA-induced airway remodeling in experimental rats. Pharmacol Rep 2015. [DOI: 10.10.1016/j.pharep.2015.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Correale J, Farez MF. Smoking worsens multiple sclerosis prognosis: Two different pathways are involved. J Neuroimmunol 2015; 281:23-34. [DOI: 10.1016/j.jneuroim.2015.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 12/13/2022]
|
34
|
Abdel-Fattah MM, Salama AAA, Shehata BA, Ismaiel IE. The potential effect of the angiotensin II receptor blocker telmisartan in regulating OVA-induced airway remodeling in experimental rats. Pharmacol Rep 2015; 67:943-51. [PMID: 26398389 DOI: 10.1016/j.pharep.2015.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/12/2015] [Accepted: 02/23/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Bronchial asthma is a true ascending clinical problem. Angiotensin II is now accused to be potentially implicated in its pathogenesis, being a potent pro-inflammatory mediator with remodeling effects. OBJECTIVE This study aims to evaluate the possible protective effect of telmisartan, an angiotensin II receptor blocker, on experimentally-induced bronchial asthma. METHODS Animals were divided into 5 groups; a normal control group, an asthma control group, a reference treatment group, receiving dexamethasone, and two treatment groups, receiving telmisartan in two dose levels. Bronchial asthma was induced by intraperitoneal sensitization followed by intranasal challenge with ovalbumin (OVA). Test agents were administered prior to each intranasal OVA challenge. Lung function tests, namely tidal volume (TV) and peak expiratory flow rate (PEF) were assessed 1h after the last challenge. One day after the last challenge, absolute eosinophil counts (AEC) in blood and bronchoalveolar lavage fluids (BALF) were assessed. Serum immunoglobulin E (IgE) as well as BALF total nitrate/nitrite (NOx) were assessed. Oxidative and inflammatory biomarkers, namely lung tissue superoxide dismutase (SOD), glutathione reduced (GSH), tumor necrosis factor-alpha (TNF-α) and interleukin-5 (IL-5), were also assessed, in addition to histopathological study. RESULTS Telmisartan administration in both doses significantly improved TV, PEF, AEC, IgE, NOx, GSH, SOD, TNF-α and IL-5 values compared to asthma control values. Histopathological study strongly supported the results of biochemical estimations, particularly regarding airway remodeling. CONCLUSION These results suggest that telmisartan may have potential protecting effects against experimental bronchial asthma, probably due to its bronchodilator, antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Abeer A A Salama
- Department of Pharmacology, National Research Center, Giza, Egypt
| | - Basim A Shehata
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | |
Collapse
|
35
|
Chang Y, Wei W. Angiotensin II in inflammation, immunity and rheumatoid arthritis. Clin Exp Immunol 2015; 179:137-45. [PMID: 25302847 DOI: 10.1111/cei.12467] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2014] [Indexed: 12/22/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that is characterized by increased cardiovascular morbidity and mortality, independent of the traditional risk factors for cardiovascular disease. Although classically known for its role in the regulation of circulatory homeostasis, angiotensin II (Ang II) is recognized to act as a powerful proinflammatory mediator. Some research has showed that Ang II plays important roles in autoimmune diseases, including RA, systemic lupus erythematosus and multiple sclerosis. Ang II blockers prove effective in reducing inflammation and autoimmunity in rheumatic diseases and their relative safety, together with their effects for reducing the cardiovascular disease risk, suggest that Ang II blockers may at least act as effective adjunctive therapy for disease control in patients with RA. The present review focuses systematically on the potential impact of Ang II and its receptors on inflammation and immunomodulation in patients with RA.
Collapse
Affiliation(s)
- Y Chang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | | |
Collapse
|
36
|
Continuous infusion of angiotensin II modulates hypertrophic differentiation and apoptosis of chondrocytes in cartilage formation in a fracture model mouse. Hypertens Res 2015; 38:382-93. [PMID: 25693858 DOI: 10.1038/hr.2015.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 12/16/2022]
Abstract
Although components of the renin-angiotensin system (RAS) are reported to be expressed in cultured chondrocytes and cartilage, little is known about the precise function of Angiotensin II (Ang II) in chondrocytes. In this study, we employed a rib fracture model mouse to investigate the effect of Ang II on chondrocytes. Ang II type 1 receptor (AT1R) was expressed in chondrocytes in the growth plate of mouse tibia. Continuous infusion of Ang II to rib-fractured mice resulted in a significant increase in the volume of cartilage, suggesting Ang II-induced hypertrophic differentiation of chondrocytes. It was also confirmed by a significant increase in the mRNA expression of Sox9 and runt-related transcription factor 2 (Runx2), which are genes related to chondrocyte differentiation, and type X collagen, matrix metalloproteinase (MMP)-13 and Indian hedgehog (Ihh), which are hypertrophic chondrocyte-specific molecular markers. Chondrocyte hypertrophy with upregulation of these genes was attenuated by administration of olmesartan, an AT1R blocker, but not by hydralazine. Moreover, Ang II infusion significantly suppressed apoptosis of chondrocytes, accompanied by significant induction of mRNA expression of bcl-2 and bcl-xL. Olmesartan, but not hydralazine, significantly attenuated the reduction of apoptotic cells and the increase in anti-apoptotic genes induced by Ang II infusion. Overall, the present study demonstrated that Ang II promoted hypertrophic differentiation of chondrocytes and reduced apoptosis of hypertrophic chondrocytes independently of high blood pressure. The present data indicate the role of Ang II in cartilage, and might provide a new concept for treatment of cartilage diseases.
Collapse
|
37
|
Angiotensin converting enzyme activity in alopecia areata. Enzyme Res 2014; 2014:694148. [PMID: 25349723 PMCID: PMC4198813 DOI: 10.1155/2014/694148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 12/15/2022] Open
Abstract
Background. Alopecia areata (AA) is a chronic inflammatory disease of the hair follicle. The exact pathogenesis of AA remains unknown, although recent studies support a T-cell mediated autoimmune process. On the other hand, some studies have proposed that the renin-angiotensin-aldosterone system (RAAS) may play a role in autoimmunity. Therefore, we assessed serum activity of angiotensin converting enzyme (ACE), a component of this system, in AA. Methods. ACE activity was measured in the sera of 19 patients with AA and 16 healthy control subjects. In addition, the relationship between severity and duration of the disease and ACE activity was evaluated. Results. Serum ACE activity was higher in the patient group (55.81 U/L) compared to the control group (46.41 U/L), but the difference was not statistically significant (P = 0.085). Also, there was no correlation between ACE activity and severity (P = 0.13) and duration of disease (P = 0.25) in the patient group. Conclusion. The increased serum ACE activity found in this study may demonstrate local involvement of the RAAS in the pathogenesis of AA. Assessment of ACE in a study with a larger sample size as well as in tissue samples is recommended in order to further evaluate the possible role of RAAS in AA.
Collapse
|
38
|
Manzel A, Domenig O, Ambrosius B, Kovacs A, Stegbauer J, Poglitsch M, Mueller DN, Gold R, Linker RA. Angiotensin IV is induced in experimental autoimmune encephalomyelitis but fails to influence the disease. J Neuroimmune Pharmacol 2014; 9:533-43. [PMID: 24854706 DOI: 10.1007/s11481-014-9548-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/12/2014] [Indexed: 12/22/2022]
Abstract
In multiple sclerosis (MS) and its corresponding animal models, over-activity of the renin-angiotensin system (RAS) has been reported and pharmacological RAS blockade exerts beneficial effects. The RAS generates a number of bioactive angiotensins, thereby primarily regulating the body's sodium homeostasis and blood pressure. In this regard, angiotensin IV (AngIV), a metabolite of the RAS has been shown to modulate inflammatory responses. Here we studied potential implications of AngIV signalling in myelin oligodendrocyte glycoprotein (MOG) peptide induced murine experimental autoimmune encephalomyelitis (EAE), a close-to-MS animal model. Mass spectrometry revealed elevated plasma levels of AngIV in EAE. Expression of cognate AT4 receptors was detected in macrophages and T cells as major drivers of pathology in EAE. Yet, AngIV did not modulate macrophage or T cell functions in vitro or displayed detectable effects on neuroantigen specific immune responses in vivo. The data argue against a major contribution of AngIV signalling in the immunopathogenesis of MOG-EAE.
Collapse
Affiliation(s)
- Arndt Manzel
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Straub RH. Interaction of the endocrine system with inflammation: a function of energy and volume regulation. Arthritis Res Ther 2014; 16:203. [PMID: 24524669 PMCID: PMC3978663 DOI: 10.1186/ar4484] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During acute systemic infectious disease, precisely regulated release of energy-rich substrates (glucose, free fatty acids, and amino acids) and auxiliary elements such as calcium/phosphorus from storage sites (fat tissue, muscle, liver, and bone) are highly important because these factors are needed by an energy-consuming immune system in a situation with little or no food/water intake (sickness behavior). This positively selected program for short-lived infectious diseases is similarly applied during chronic inflammatory diseases. This review presents the interaction of hormones and inflammation by focusing on energy storage/expenditure and volume regulation. Energy storage hormones are represented by insulin (glucose/lipid storage and growth-related processes), insulin-like growth factor-1 (IGF-1) (muscle and bone growth), androgens (muscle and bone growth), vitamin D (bone growth), and osteocalcin (bone growth, support of insulin, and testosterone). Energy expenditure hormones are represented by cortisol (breakdown of liver glycogen/adipose tissue triglycerides/muscle protein, and gluconeogenesis; water retention), noradrenaline/adrenaline (breakdown of liver glycogen/adipose tissue triglycerides, and gluconeogenesis; water retention), growth hormone (glucogenic, lipolytic; has also growth-related aspects; water retention), thyroid gland hormones (increase metabolic effects of adrenaline/noradrenaline), and angiotensin II (induce insulin resistance and retain water). In chronic inflammatory diseases, a preponderance of energy expenditure pathways is switched on, leading to typical hormonal changes such as insulin/IGF-1 resistance, hypoandrogenemia, hypovitaminosis D, mild hypercortisolemia, and increased activity of the sympathetic nervous system and the renin-angiotensin-aldosterone system. Though necessary during acute inflammation in the context of systemic infection or trauma, these long-standing changes contribute to increased mortality in chronic inflammatory diseases.
Collapse
|
40
|
Wang L, Leung PS. The role of renin-angiotensin system in cellular differentiation: implications in pancreatic islet cell development and islet transplantation. Mol Cell Endocrinol 2013; 381:261-71. [PMID: 23994025 DOI: 10.1016/j.mce.2013.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 01/02/2023]
Abstract
In addition to the well-characterized circulating renin-angiotensin system (RAS), local RAS has been identified recently in diverse tissues and organs. The presence of key components of the RAS in local tissues is important for our understanding of the patho-physiological mechanism(s) of several metabolic diseases, and may serve as a major therapeutic target for cardiometabolic syndromes. Locally generated and physiologically active RAS components have functions that are distinct from the classical vasoconstriction and fluid homeostasis actions of systemic RAS and cater specifically for local tissues. Local RAS can affect islet-cell function and structure in the adult pancreas as well as proliferation and differentiation of pancreatic stem/progenitor cells during development. Differentiation of stem/progenitor cells into insulin-expressing cells suitable for therapeutic transplantation offers a desperately needed new approach for replacement of glucose-responsive insulin producing cells in diabetic patients. Given that the generation of functional and transplantable islet cells has proven to be difficult, elucidation of RAS involvement in cellular regeneration and differentiation may propel pancreatic stem/progenitor cell development and thus β-cell regeneration forward. This review provides a critical appraisal of current research progress on the role of the RAS, including the newly characterized ACE2/Ang-(1-7)/Mas axis in the proliferation, differentiation, and maturation of pancreatic stem/progenitor cells. It is thus plausible to propose that the AT1 stimulation could be a repair mechanism involving the AT2R as well as the ACE2/Ang-(1-7)/Mas axis in directing β-cell development in diabetic patients using genetic and pharmaceutical manipulation of the RAS.
Collapse
Affiliation(s)
- Lin Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
41
|
Yoshinari O, Shiojima Y, Moriyama H, Shinozaki J, Nakane T, Masuda K, Bagchi M. Water-soluble undenatured type II collagen ameliorates collagen-induced arthritis in mice. J Med Food 2013; 16:1039-45. [PMID: 24175655 DOI: 10.1089/jmf.2013.2911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Earlier studies have reported the efficacy of type II collagen (C II) in treating rheumatoid arthritis (RA). However, a few studies have investigated the ability of the antigenic collagen to induce oral tolerance, which is defined as active nonresponse to an orally administered antigen. We hypothesized that water-soluble undenatured C II had a similar effect as C II in RA. The present study was designed to examine the oral administration of a novel, water-soluble, undenatured C II (commercially known as NEXT-II) on collagen-induced arthritis (CIA) in mice. In addition, the underlying mechanism of NEXT-II was also identified. After a booster dose (collagen-Freund's complete adjuvant), mice were assigned to control CIA group, or NEXT-II treatment group, to which saline and NEXT-II were administered, respectively. The arthritis index in the NEXT-II group was significantly lower compared with the CIA group. Serum IL-6 levels in the NEXT-II group were significantly lower compared with the CIA group, while serum IL-2 level was higher. Furthermore, oral administration of NEXT-II enhanced the proportion of CD4+CD25+T (Treg) cells, and gene expressions of stimulated dendritic cells induced markers for regulatory T cells such as forkhead box p3 (Foxp3), transforming growth factor (TGF)-β1, and CD25. These results demonstrated that orally administered water-soluble undenatured C II (NEXT-II) is highly efficacious in the suppression of CIA by inducing CD4+CD25+ Treg cells.
Collapse
Affiliation(s)
- Orie Yoshinari
- 1 Development Division, Ryusendo Co. Ltd. , Toshimaku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Wang D, Hu S, Zhu J, Yuan J, Wu J, Zhou A, Wu Y, Zhao W, Huang Q, Chang Y, Wang Q, Sun W, Wei W. Angiotensin II type 2 receptor correlates with therapeutic effects of losartan in rats with adjuvant-induced arthritis. J Cell Mol Med 2013; 17:1577-87. [PMID: 24112447 PMCID: PMC3914644 DOI: 10.1111/jcmm.12128] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 08/12/2013] [Indexed: 12/18/2022] Open
Abstract
The angiotensin II type 1 receptor (AT1R) blocker losartan ameliorates rheumatoid arthritis (RA) in an experimental model. In RA, AT2R mainly opposes AT1R, but the mechanism by which this occurs still remains obscure. In the present study, we investigated the role of AT2R in the treatment of rats with adjuvant-induced arthritis (AIA) by losartan. Adjuvant-induced arthritis rats were treated with losartan (5, 10 and 15 mg/kg) and methotrexate (MTX; 0.5 mg/kg) in vivo from day 14 to day 28. Arthritis was evaluated by the arthritis index and histological examination. Angiotensin II, tumour necrosis factor-α, and VEGF levels were examined by ELISA. The expression of AT1R and AT2R was detected by western blot and immunohistochemistry analysis. After stimulation with interleukin-1β in vitro, the effects of the AT2R agonist CGP42112 (10−8–10−5 M) on the chemotaxis of monocytes induced by 10% foetal calf serum (FCS) were analysed by using Transwell assay. Subsequently, the therapeutic effects of CGP42112 (5, 10 and 20 μg/kg) were evaluated in vivo by intra-articular injection in AIA rats. After treatment with losartan, the down-regulation of AT1R expression and up-regulation of AT2R expression in the spleen and synovium of AIA rats correlated positively with reduction in the polyarthritis index. Treatment with CGP42112 inhibited the chemotaxis of AIA monocytes in vitro, possibly because of the up-regulation of AT2R expression. Intra-articular injection with CGP42112 (10 and 20 μg/kg) ameliorated the arthritis index and histological signs of arthritis. In summary, the present study strongly suggests that the up-regulation of AT2R might be an additional mechanism by which losartan exerts its therapeutic effects in AIA rats.
Collapse
Affiliation(s)
- Di Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of China Education Ministry, Hefei, Anhui Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Silveira KD, Coelho FM, Vieira AT, Barroso LC, Queiroz-Junior CM, Costa VV, Sousa LFC, Oliveira ML, Bader M, Silva TA, Santos RAS, Silva ACSE, Teixeira MM. Mechanisms of the anti-inflammatory actions of the angiotensin type 1 receptor antagonist losartan in experimental models of arthritis. Peptides 2013; 46:53-63. [PMID: 23727291 DOI: 10.1016/j.peptides.2013.05.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 12/28/2022]
Abstract
Angiotensin (Ang) II and its AT1 receptors have been implicated in the pathogenesis of rheumatoid arthritis. Activation of the counter-regulatory Ang-(1-7)-Mas receptor axis may contribute to some of the effects of AT₁ receptor blockers (ARBs). In this study, we have used losartan, an ARB, to investigate the role of and the mechanisms by which AT₁ receptors participated in two experimental models of arthritis: antigen-induced arthritis (AIA) in mice and adjuvant-induced arthritis (AdIA) in rats. Treatment with losartan decreased neutrophil recruitment, hypernociception and the production of TNF-α, IL-1β and chemokine (C-X-C motif) ligand 1 in mice subjected to AIA. Histopathological analysis showed significant reduction of tissue injury and inflammation and decreased proteoglycan loss. In addition to decreasing cytokine production, losartan directly reduced leukocyte rolling and adhesion. Anti-inflammatory effects of losartan were not associated to Mas receptor activation and/or Ang-(1-7) production. Anti-inflammatory effects were reproduced in rats subjected to AdIA. This study shows that ARBs have potent anti-inflammatory effects in animal models of arthritis. Mechanistically, reduction of leukocyte accumulation and of joint damage was associated with local inhibition of cytokine production and direct inhibition of leukocyte-endothelium interactions. The anti-inflammatory actions of losartan were accompanied by functional improvement of the joint, as seen by reduced joint hypernociception. These findings support the use of ARBs for the treatment of human arthritis and provide potential mechanisms for the anti-inflammatory actions of these compounds.
Collapse
MESH Headings
- Angiotensin I/biosynthesis
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Arthritis, Experimental/drug therapy
- Arthritis, Rheumatoid/drug therapy
- Cell Adhesion/drug effects
- Chemokine CXCL1/biosynthesis
- Disease Models, Animal
- Female
- Hyperalgesia/drug therapy
- Inflammation/drug therapy
- Interleukin-1beta/biosynthesis
- Leukocyte Rolling/drug effects
- Losartan/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Neutrophil Infiltration/drug effects
- Peptide Fragments/biosynthesis
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
Affiliation(s)
- Kátia D Silveira
- Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Expression of Angiotensin II Receptor-1 in Human Articular Chondrocytes. ARTHRITIS 2012; 2012:648537. [PMID: 23346400 PMCID: PMC3546464 DOI: 10.1155/2012/648537] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/21/2012] [Accepted: 12/05/2012] [Indexed: 12/11/2022]
Abstract
Background. Besides its involvement in the cardiovascular system, the renin-angiotensin-aldosterone (RAS) system has also been suggested to play an important role in inflammation. To explore the role of this system in cartilage damage in arthritis, we investigated the expression of angiotensin II receptors in chondrocytes. Methods. Articular cartilage was obtained from patients with osteoarthritis, rheumatoid arthritis, and traumatic fractures who were undergoing arthroplasty. Chondrocytes were isolated and cultured in vitro with or without interleukin (IL-1). The expression of angiotensin II receptor types 1 (AT1R) and 2 (AT2R) mRNA by the chondrocytes was analyzed using reverse transcription-polymerase chain reaction (RT-PCR). AT1R expression in cartilage tissue was analyzed using immunohistochemistry. The effect of IL-1 on AT1R/AT2R expression in the chondrocytes was analyzed by quantitative PCR and flow cytometry. Results. Chondrocytes from all patient types expressed AT1R/AT2R mRNA, though considerable variation was found between samples. Immunohistochemical analysis confirmed AT1R expression at the protein level. Stimulation with IL-1 enhanced the expression of AT1R/AT2R mRNA in OA and RA chondrocytes. Conclusions. Human articular chondrocytes, at least partially, express angiotensin II receptors, and IL-1 stimulation induced AT1R/AT2R mRNA expression significantly.
Collapse
|
45
|
Bernstein KE, Ong FS, Blackwell WLB, Shah KH, Giani JF, Gonzalez-Villalobos RA, Shen XZ, Fuchs S, Touyz RM. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol Rev 2012; 65:1-46. [PMID: 23257181 DOI: 10.1124/pr.112.006809] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response. The defining feature of ACE is that it is composed of two homologous and independently catalytic domains, the result of an ancient gene duplication, and ACE-like genes are widely distributed in nature. The two ACE catalytic domains contribute to the wide substrate diversity of ACE and, by extension, the physiologic impact of the enzyme. Several studies suggest that the two catalytic domains have different biologic functions. Recently, the X-ray crystal structure of ACE has elucidated some of the structural differences between the two ACE domains. This is important now that ACE domain-specific inhibitors have been synthesized and characterized. Once widely available, these reagents will undoubtedly be powerful tools for probing the physiologic actions of each ACE domain. In turn, this knowledge should allow clinicians to envision new therapies for diseases not currently treated with ACE inhibitors.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis 2021, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Harrison DG, Guzik TJ. Studies of the T-cell angiotensin receptor using cre-lox technology: an unan-T-cellpated result. Circ Res 2012; 110:1543-5. [PMID: 22679135 DOI: 10.1161/circresaha.112.271411] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
de Jong HJI, Vandebriel RJ, Saldi SRF, van Dijk L, van Loveren H, Cohen Tervaert JW, Klungel OH. Angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers and the risk of developing rheumatoid arthritis in antihypertensive drug users. Pharmacoepidemiol Drug Saf 2012; 21:835-43. [PMID: 22674737 DOI: 10.1002/pds.3291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/09/2012] [Accepted: 04/12/2012] [Indexed: 12/13/2022]
Abstract
PURPOSE Angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) are effective in the treatment of cardiovascular disease. Next to effects on hypertension and cardiac function, these drugs have anti-inflammatory and immunomodulating properties which may either facilitate or protect against the development of autoimmunity, potentially resulting in autoimmune diseases. Therefore, we determined in the current study the association between ACE inhibitor and ARB use and incident rheumatoid arthritis (RA). METHODS A matched case-control study was conducted among patients treated with antihypertensive drugs using the Netherlands Information Network of General Practice (LINH) database in 2001-2006. Cases were patients with a first-time diagnosis of RA. Each case was matched to five controls for age, sex, and index date, which was selected 1 year before the first diagnosis of RA. ACE inhibitor and ARB exposure was considered to be any prescription issued in the period before index date. Logistic regression analysis was used to estimate odds ratios (ORs) and their 95% confidence intervals (CI). RESULTS Our study included 211 cases and 667 matched controls. After controlling for potential confounders, ever use of ACE inhibitors or ARBs was not associated with incident RA (adjusted ORs [95%CI], 0.99 [0.55-1.79] and 1.02 [0.67-1.56], respectively). The adjusted ORs (95%CI) for current and past use of ACE inhibitors were 1.18 (0.75-1.85) and 0.61 (0.28-1.35). For current and past use of ARBs, these adjusted ORs (95%CI) were 1.40 (0.80-2.45) and 0.29 (0.05-1.67), respectively. No duration and dose-effect relationship was observed. CONCLUSIONS ACE inhibitor or ARB use is not associated with incident RA.
Collapse
Affiliation(s)
- Hilda J I de Jong
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Nakamura S, Tsuruma K, Shimazawa M, Hara H. Candesartan, an angiotensin II type 1 receptor antagonist, inhibits pathological retinal neovascularization by downregulating VEGF receptor-2 expression. Eur J Pharmacol 2012; 685:8-14. [PMID: 22543084 DOI: 10.1016/j.ejphar.2012.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 01/23/2023]
Abstract
Several studies have examined the anti-angiogenic effects of angiotensin II type 1 (AT(1)) receptor antagonists; however, the mechanisms underlying these effects are currently unclear. In the present study, we examined the efficacy and the mechanism of candesartan, an AT(1) receptor antagonist, in suppressing pathological retinal neovascularization. We used an in vivo murine oxygen-induced retinopathy (OIR) model and also studied the in vitro proliferation and migration of human retinal microvascular endothelial cells (HRMECs) induced by vascular endothelial growth factor (VEGF)-A. The regulation of angiogenesis-associated genes such as hypoxia-inducible factor (HIF-1α), VEGF-A, VEGF receptor-1, and VEGF receptor-2 was evaluated with real-time RT-PCR in the OIR model. In the OIR model, candesartan suppressed the pathological neovascularization in a dose-dependent manner, but did not prevent the physiological angiogenesis. However, candesartan did not inhibit VEGF-A-induced proliferation or migration in HRMECs in the in vitro study. When administered interperitoneally in the OIR model, candesartan reduced the upregulation of VEGF receptor-2 in the retina, but had no effects in the other angiogenesis-related genes, such as HIF-1α, VEGF-A, and VEGF receptor-1. These findings indicate that candesartan inhibited the retinal pathological neovascularization, at least in part, by suppressing the expression of VEGF receptor-2, independent of VEGF signaling cascade. Therefore, candesartan may be a useful therapeutic target for the inhibition of retinal neovascularization that has a low risk of serious side effects.
Collapse
Affiliation(s)
- Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | | |
Collapse
|
49
|
Jaggi AS, Singh N. Exploring the potential of telmisartan in chronic constriction injury-induced neuropathic pain in rats. Eur J Pharmacol 2011; 667:215-21. [DOI: 10.1016/j.ejphar.2011.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/05/2011] [Accepted: 06/14/2011] [Indexed: 12/16/2022]
|
50
|
Miyake S. Mind over cytokines: Crosstalk and regulation between the neuroendocrine and immune systems. ACTA ACUST UNITED AC 2011. [DOI: 10.1111/j.1759-1961.2011.00023.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|