1
|
Merlo Pich LM, Ziogas A, Netea MG. Genetic and epigenetic dysregulation of innate immune mechanisms in autoinflammatory diseases. FEBS J 2024; 291:4414-4432. [PMID: 38468589 DOI: 10.1111/febs.17116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Dysregulation and hyperactivation of innate immune responses can lead to the onset of systemic autoinflammatory diseases. Monogenic autoinflammatory diseases are caused by inborn genetic errors and based on molecular mechanisms at play, can be divided into inflammasomopathies, interferonopathies, relopathies, protein misfolding, and endogenous antagonist deficiencies. On the other hand, more common autoinflammatory diseases are multifactorial, with both genetic and non-genetic factors playing an important role. During the last decade, long-term memory characteristics of innate immune responses have been described (also called trained immunity) that in physiological conditions provide enhanced host protection from pathogenic re-infection. However, if dysregulated, induction of trained immunity can become maladaptive, perpetuating chronic inflammatory activation. Here, we describe the mechanisms of genetic and epigenetic dysregulation of the innate immune system and maladaptive trained immunity that leads to the onset and perpetuation of the most common and recently described systemic autoinflammatory diseases.
Collapse
Affiliation(s)
- Laura M Merlo Pich
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany
| |
Collapse
|
2
|
Raulien N, Friedrich K, Strobel S, Raps S, Hecker F, Pierer M, Schilling E, Lainka E, Kallinich T, Baumann S, Fritz-Wallace K, Rolle-Kampczyk U, von Bergen M, Aigner A, Ewe A, Schett G, Cross M, Rossol M, Wagner U. Glucose-oxygen deprivation constrains HMGCR function and Rac1 prenylation and activates the NLRP3 inflammasome in human monocytes. Sci Signal 2024; 17:eadd8913. [PMID: 39012939 DOI: 10.1126/scisignal.add8913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/03/2023] [Accepted: 06/26/2024] [Indexed: 07/18/2024]
Abstract
Hypoxia and low glucose abundance often occur simultaneously at sites of inflammation. In monocytes and macrophages, glucose-oxygen deprivation stimulates the assembly of the NLRP3 inflammasome to generate the proinflammatory cytokine IL-1β. We found that concomitant glucose deprivation and hypoxia activated the NLRP3 inflammasome by constraining the function of HMG-CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate kinase pathway. HMGCR is involved in the synthesis of geranylgeranyl pyrophosphate (GGPP), which is required for the prenylation and lipid membrane integration of proteins. Under glucose-oxygen deprivation, GGPP synthesis was decreased, leading to reduced prenylation of the small GTPase Rac1, increased binding of nonprenylated Rac1 to the scaffolding protein IQGAP1, and enhanced activation of the NLRP3 inflammasome. In response to restricted oxygen and glucose supply, patient monocytes with a compromised mevalonate pathway due to mevalonate kinase deficiency or Muckle-Wells syndrome released more IL-1β than did control monocytes. Thus, reduced GGPP synthesis due to inhibition of HMGCR under glucose-oxygen deprivation results in proinflammatory innate responses, which are normally kept in check by the prenylation of Rac1. We suggest that this mechanism is also active in inflammatory autoimmune conditions.
Collapse
Affiliation(s)
- Nora Raulien
- Division of Rheumatology, Department of Endocrinology, Nephrology, Rheumatology, Leipzig University, Leipzig, Germany
- Institute of Anatomy, University Leipzig, Leipzig, Germany
| | - Kathleen Friedrich
- Division of Rheumatology, Department of Endocrinology, Nephrology, Rheumatology, Leipzig University, Leipzig, Germany
| | - Sarah Strobel
- Division of Rheumatology, Department of Endocrinology, Nephrology, Rheumatology, Leipzig University, Leipzig, Germany
| | - Stefanie Raps
- Division of Rheumatology, Department of Endocrinology, Nephrology, Rheumatology, Leipzig University, Leipzig, Germany
| | - Friederike Hecker
- Division of Rheumatology, Department of Endocrinology, Nephrology, Rheumatology, Leipzig University, Leipzig, Germany
| | - Matthias Pierer
- Division of Rheumatology, Department of Endocrinology, Nephrology, Rheumatology, Leipzig University, Leipzig, Germany
| | - Erik Schilling
- Division of Rheumatology, Department of Endocrinology, Nephrology, Rheumatology, Leipzig University, Leipzig, Germany
| | - Elke Lainka
- Department of Pediatric Gastroenterology, Hepatology and Liver Transplantation, University Children's Hospital Essen, Essen, Germany
| | - Tilmann Kallinich
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Baumann
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
| | - Katarina Fritz-Wallace
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
- Institute for Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Cross
- Leipzig Medical Center, Clinic for Hematology and Cell Therapy, University Clinic Leipzig, Leipzig, Germany
| | - Manuela Rossol
- Division of Rheumatology, Department of Endocrinology, Nephrology, Rheumatology, Leipzig University, Leipzig, Germany
- Molecular Immunology, Faculty of Health Sciences, Brandenburg Technische Universität Cottbus-Senftenberg, Senftenberg, Germany
| | - Ulf Wagner
- Division of Rheumatology, Department of Endocrinology, Nephrology, Rheumatology, Leipzig University, Leipzig, Germany
| |
Collapse
|
3
|
Politiek FA, Turkenburg M, Henneman L, Ofman R, Waterham HR. Molecular and cellular consequences of mevalonate kinase deficiency. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167177. [PMID: 38636615 DOI: 10.1016/j.bbadis.2024.167177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Mevalonate kinase deficiency (MKD) is an autosomal recessive metabolic disorder associated with recurrent autoinflammatory episodes. The disorder is caused by bi-allelic loss-of-function variants in the MVK gene, which encodes mevalonate kinase (MK), an early enzyme in the isoprenoid biosynthesis pathway. To identify molecular and cellular consequences of MKD, we studied primary fibroblasts from severely affected patients with mevalonic aciduria (MKD-MA) and more mildly affected patients with hyper IgD and periodic fever syndrome (MKD-HIDS). As previous findings indicated that the deficient MK activity in MKD impacts protein prenylation in a temperature-sensitive manner, we compared the subcellular localization and activation of the small Rho GTPases RhoA, Rac1 and Cdc42 in control, MKD-HIDS and MKD-MA fibroblasts cultured at physiological and elevated temperatures. This revealed a temperature-induced altered subcellular localization and activation in the MKD cells. To study if and how the temperature-induced ectopic activation of these signalling proteins affects cellular processes, we performed comparative transcriptome analysis of control and MKD-MA fibroblasts cultured at 37 °C or 40 °C. This identified cell cycle and actin cytoskeleton organization as respectively most down- and upregulated gene clusters. Further studies confirmed that these processes were affected in fibroblasts from both patients with MKD-MA and MKD-HIDS. Finally, we found that, similar to immune cells, the MK deficiency causes metabolic reprogramming in MKD fibroblasts resulting in increased expression of genes involved in glycolysis and the PI3K/Akt/mTOR pathway. We postulate that the ectopic activation of small GTPases causes inappropriate signalling contributing to the molecular and cellular aberrations observed in MKD.
Collapse
Affiliation(s)
- Frouwkje A Politiek
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Marjolein Turkenburg
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands
| | - Linda Henneman
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands; Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rob Ofman
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Montero-Vega MT, Matilla J, Bazán E, Reimers D, De Andrés-Martín A, Gonzalo-Gobernado R, Correa C, Urbano F, Gómez-Coronado D. Fluvastatin Converts Human Macrophages into Foam Cells with Increased Inflammatory Response to Inactivated Mycobacterium tuberculosis H37Ra. Cells 2024; 13:536. [PMID: 38534380 DOI: 10.3390/cells13060536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Cholesterol biosynthesis inhibitors (statins) protect hypercholesterolemic patients against developing active tuberculosis, suggesting that these drugs could help the host to control the pathogen at the initial stages of the disease. This work studies the effect of fluvastatin on the early response of healthy peripheral blood mononuclear cells (PBMCs) to inactivated Mycobacterium tuberculosis (Mtb) H37Ra. We found that in fluvastatin-treated PBMCs, most monocytes/macrophages became foamy cells that overproduced NLRP3 inflammasome components in the absence of immune stimulation, evidencing important cholesterol metabolism/immunity connections. When both fluvastatin-treated and untreated PBMCs were exposed to Mtb H37Ra, a small subset of macrophages captured large amounts of bacilli and died, concentrating the bacteria in necrotic areas. In fluvastatin-untreated cultures, most of the remaining macrophages became epithelioid cells that isolated these areas of cell death in granulomatous structures that barely produced IFNγ. By contrast, in fluvastatin-treated cultures, foamy macrophages surrounded the accumulated bacteria, degraded them, markedly activated caspase-1 and elicited a potent IFNγ/cytotoxic response. In rabbits immunized with the same bacteria, fluvastatin increased the tuberculin test response. We conclude that statins may enhance macrophage efficacy to control Mtb, with the help of adaptive immunity, offering a promising tool in the design of alternative therapies to fight tuberculosis.
Collapse
Affiliation(s)
- María Teresa Montero-Vega
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Joaquín Matilla
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Eulalia Bazán
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Diana Reimers
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Ana De Andrés-Martín
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Rafael Gonzalo-Gobernado
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Carlos Correa
- Unidad de Cirugía Experimental y Animalario, Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Francisco Urbano
- Servicio Interdepartamental de Investigación (SIdI), Facultad de Medicina, Universidad Autónoma, 28029 Madrid, Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
5
|
Politiek FA, Turkenburg M, Ofman R, Waterham HR. Mevalonate kinase-deficient THP-1 cells show a disease-characteristic pro-inflammatory phenotype. Front Immunol 2024; 15:1379220. [PMID: 38550596 PMCID: PMC10972877 DOI: 10.3389/fimmu.2024.1379220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Abstract
Objective Bi-allelic pathogenic variants in the MVK gene, which encodes mevalonate kinase (MK), an essential enzyme in isoprenoid biosynthesis, cause the autoinflammatory metabolic disorder mevalonate kinase deficiency (MKD). We generated and characterized MK-deficient monocytic THP-1 cells to identify molecular and cellular mechanisms that contribute to the pro-inflammatory phenotype of MKD. Methods Using CRISPR/Cas9 genome editing, we generated THP-1 cells with different MK deficiencies mimicking the severe (MKD-MA) and mild end (MKD-HIDS) of the MKD disease spectrum. Following confirmation of previously established disease-specific biochemical hallmarks, we studied the consequences of the different MK deficiencies on LPS-stimulated cytokine release, glycolysis versus oxidative phosphorylation rates, cellular chemotaxis and protein kinase activity. Results Similar to MKD patients' cells, MK deficiency in the THP-1 cells caused a pro-inflammatory phenotype with a severity correlating with the residual MK protein levels. In the MKD-MA THP-1 cells, MK protein levels were barely detectable, which affected protein prenylation and was accompanied by a profound pro-inflammatory phenotype. This included a markedly increased LPS-stimulated release of pro-inflammatory cytokines and a metabolic switch from oxidative phosphorylation towards glycolysis. We also observed increased activity of protein kinases that are involved in cell migration and proliferation, and in innate and adaptive immune responses. The MKD-HIDS THP-1 cells had approximately 20% residual MK activity and showed a milder phenotype, which manifested mainly upon LPS stimulation or exposure to elevated temperatures. Conclusion MK-deficient THP-1 cells show the biochemical and pro-inflammatory phenotype of MKD and are a good model to study underlying disease mechanisms and therapeutic options of this autoinflammatory disorder.
Collapse
Affiliation(s)
- Frouwkje A. Politiek
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
| | - Marjolein Turkenburg
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
| | - Rob Ofman
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
| | - Hans R. Waterham
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
- Amsterdam Reproduction & Development, Amsterdam, Netherlands
| |
Collapse
|
6
|
Politiek FA, Turkenburg M, Koster J, Ofman R, Waterham HR. Identification of FDA-approved drugs that increase mevalonate kinase in hyper IgD syndrome. J Inherit Metab Dis 2024; 47:302-316. [PMID: 38131282 DOI: 10.1002/jimd.12698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Mevalonate kinase deficiency (MKD) is an autoinflammatory metabolic disorder caused by bi-allelic loss-of-function variants in the MVK gene, resulting in decreased activity of the encoded mevalonate kinase (MK). Clinical presentation ranges from the severe early-lethal mevalonic aciduria to the milder hyper-IgD syndrome (MKD-HIDS), and is in the majority of patients associated with recurrent inflammatory episodes with often unclear cause. Previous studies with MKD-HIDS patient cells indicated that increased temperature, as caused by fever during an inflammatory episode, lowers the residual MK activity, which causes a temporary shortage of non-sterol isoprenoids that promotes the further development of inflammation. Because an increase of the residual MK activity is expected to make MKD-HIDS patients less sensitive to developing inflammatory episodes, we established a cell-based screen that can be used to identify compounds and/or therapeutic targets that promote this increase. Using a reporter HeLa cell line that stably expresses the most common MKD-HIDS variant, MK-V377I, C-terminally tagged with bioluminescent NanoLuc luciferase (nLuc), we screened the Prestwick Chemical Library®, which includes 1280 FDA-approved compounds. Multiple compounds increased MK-V377I-nLuc bioluminescence, including steroids (i.e., glucocorticoids, estrogens, and progestogens), statins and antineoplastic drugs. The glucocorticoids increased MK-V377I-nLuc bioluminescence through glucocorticoid receptor signaling. Subsequent studies in MKD-HIDS patient cells showed that the potent glucocorticoid clobetasol propionate increases gene transcription of MVK and other genes regulated by the transcription factor sterol regulatory element-binding protein 2 (SREBP-2). Our results suggest that increasing the flux through the isoprenoid biosynthesis pathway by targeting the glucocorticoid receptor or SREBP-2 could be a potential therapeutic strategy in MKD-HIDS.
Collapse
Affiliation(s)
- Frouwkje A Politiek
- Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Marjolein Turkenburg
- Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Janet Koster
- Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Rob Ofman
- Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Hans R Waterham
- Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| |
Collapse
|
7
|
La Bella S, Di Ludovico A, Di Donato G, Basaran O, Ozen S, Gattorno M, Chiarelli F, Breda L. The pyrin inflammasome, a leading actor in pediatric autoinflammatory diseases. Front Immunol 2024; 14:1341680. [PMID: 38250061 PMCID: PMC10796709 DOI: 10.3389/fimmu.2023.1341680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
The activation of the pyrin inflammasome represents a highly intriguing mechanism employed by the innate immune system to effectively counteract pathogenic agents. Despite its key role in innate immunity, pyrin has also garnered significant attention due to its association with a range of autoinflammatory diseases (AIDs) including familial Mediterranean fever caused by disruption of the MEFV gene, or in other genes involved in its complex regulation mechanisms. Pyrin activation is strictly dependent on homeostasis-altering molecular processes, mostly consisting of the disruption of the small Ras Homolog Family Member A (RhoA) GTPases by pathogen toxins. The downstream pathways are regulated by the phosphorylation of specific pyrin residues by the kinases PKN1/2 and the binding of the chaperone 14-3-3. Furthermore, a key role in pyrin activation is played by the cytoskeleton and gasdermin D, which is responsible for membrane pores in the context of pyroptosis. In addition, recent evidence has highlighted the role of steroid hormone catabolites and alarmins S100A8/A9 and S100A12 in pyrin-dependent inflammation. The aim of this article is to offer a comprehensive overview of the most recent evidence on the pyrin inflammasome and its molecular pathways to better understand the pathogenesis behind the significant group of pyrin-related AIDs.
Collapse
Affiliation(s)
- Saverio La Bella
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Armando Di Ludovico
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Giulia Di Donato
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Ozge Basaran
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Seza Ozen
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Marco Gattorno
- UOC Rheumatology and Autoinflammatory Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Luciana Breda
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| |
Collapse
|
8
|
Mertz P, Hentgen V, Boursier G, Delon J, Georgin-Lavialle S. [Monogenic auto-inflammatory diseases associated with actinopathies: A review of the literature]. Rev Med Interne 2023; 44:585-593. [PMID: 37596178 DOI: 10.1016/j.revmed.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/06/2023] [Indexed: 08/20/2023]
Abstract
Auto-inflammatory diseases (AIDs) are diseases resulting from an inappropriate activation of innate immunity in the absence of any infection. The field of monogenic AIDs is constantly expanding, with the discovery of new pathologies and pathophysiological mechanisms thanks to pangenomic sequencing. Actinopathies with auto-inflammatory manifestations are a new emerging group of AIDs, linked to defects in the regulation of the actin cytoskeleton dynamics. These diseases most often begin in the neonatal period and combine to varying degrees a more or less severe primary immune deficiency, cytopenias (especially thrombocytopenia), auto-inflammatory manifestations (especially cutaneous and digestive), atopic and auto-immune manifestations. The diagnosis is to be evoked essentially in front of a cutaneous-digestive auto-inflammation picture of early onset, associated with a primary immune deficiency and thrombocytopenia or a tendency to bleed. Some of these diseases have specificities, including a risk of macrophagic activation syndrome or a tendency to atopy or lymphoproliferation. We propose here a review of the literature on these new diseases, with a proposal for a practical approach according to the main associated biological abnormalities and some clinical particularities. However, the diagnosis remains genetic, and several differential diagnoses must be considered. The pathophysiology of these diseases is not yet fully elucidated, and studies are needed to better clarify the inherent mechanisms that can guide the choice of therapies. In most cases, the severity of the picture indicates allogeneic marrow transplantation.
Collapse
Affiliation(s)
- P Mertz
- Service de rhumatologie, hôpitaux universitaires de Strasbourg, centre national de référence RESO, 67000 Strasbourg, France
| | - V Hentgen
- Service de pédiatrie, centre hospitalier de Versailles, centre de référence des maladies auto-inflammatoires et de l'amylose (CEREMAIA), 78150 Le Chesnay, France
| | - G Boursier
- Service de génétique moléculaire et cytogénomique, laboratoire de référence des maladies rares et auto-inflammatoires, CEREMAIA, IRMB, Inserm, CHU de Montpellier, université de Montpellier, Montpellier, France
| | - J Delon
- Université Paris Cité, institut Cochin, Inserm, CNRS, 75014 Paris, France
| | - S Georgin-Lavialle
- Service de médecine interne, DHU32D, département hospitalo-universitaire Inflammation, immunopathologie, biothérapie, hôpital Tenon, université Paris, Sorbonne université, Assistance publique-Hôpitaux de Paris (AP-HP), 4, rue de la Chine, 75020 Paris, France; CHU de Tenon, centre de référence des maladies auto-inflammatoires rares et de l'amylose inflammatoire (CEREMAIA), 75020 Paris, France.
| |
Collapse
|
9
|
La Bella S, Di Ludovico A, Di Donato G, Scorrano G, Chiarelli F, Vivarelli M, Breda L. Renal involvement in monogenic autoinflammatory diseases: A narrative review. Nephrology (Carlton) 2023. [PMID: 37142240 DOI: 10.1111/nep.14166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
Autoinflammatory diseases (AIDs) are mostly caused by dysfunctions in single genes encoding for proteins with a prominent role in the regulation of innate immunity, such as complement factors, inflammasome components, tumour necrosis factor (TNF)-α, and proteins belonging to type I-interferon (IFN) signalling pathways. Due to the deposition of amyloid A (AA) fibrils in the glomeruli, unprovoked inflammation in AIDs frequently affects renal health. In fact, secondary AA amyloidosis is the most common form of amyloidosis in children. It is caused by the extracellular deposition of fibrillar low-molecular weight protein subunits resulting from the degradation and accumulation of serum amyloid A (SAA) in numerous tissues and organs, primarily the kidneys. The molecular mechanisms underlying AA amyloidosis in AIDs are the elevated levels of SAA, produced by the liver in response to pro-inflammatory cytokines, and a genetic predisposition due to specific SAA isoforms. Despite the prevalence of amyloid kidney disease, non-amyloid kidney diseases may also be responsible for chronic renal damage in children with AIDs, albeit with distinct characteristics. Glomerular damage can result in various forms of glomerulonephritis with distinct histologic characteristics and a different underlying pathophysiology. This review aims to describe the potential renal implications in patients with inflammasomopathies, type-I interferonopathies, and other rare AIDs in an effort to improve the clinical course and quality of life in paediatric patients with renal involvement.
Collapse
Affiliation(s)
- Saverio La Bella
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Armando Di Ludovico
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Giulia Di Donato
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Marina Vivarelli
- Division of Nephrology, Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Luciana Breda
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| |
Collapse
|
10
|
Munoz MA, Skinner OP, Masle-Farquhar E, Jurczyluk J, Xiao Y, Fletcher EK, Kristianto E, Hodson MP, O'Donoghue SI, Kaur S, Brink R, Zahra DG, Deenick EK, Perry KA, Robertson AA, Mehr S, Hissaria P, Mulders-Manders CM, Simon A, Rogers MJ. Increased core body temperature exacerbates defective protein prenylation in mouse models of mevalonate kinase deficiency. J Clin Invest 2022; 132:160929. [PMID: 36189795 PMCID: PMC9525117 DOI: 10.1172/jci160929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Mevalonate kinase deficiency (MKD) is characterized by recurrent fevers and flares of systemic inflammation, caused by biallelic loss-of-function mutations in MVK. The underlying disease mechanisms and triggers of inflammatory flares are poorly understood because of the lack of in vivo models. We describe genetically modified mice bearing the hypomorphic mutation p.Val377Ile (the commonest variant in patients with MKD) and amorphic, frameshift mutations in Mvk. Compound heterozygous mice recapitulated the characteristic biochemical phenotype of MKD, with increased plasma mevalonic acid and clear buildup of unprenylated GTPases in PBMCs, splenocytes, and bone marrow. The inflammatory response to LPS was enhanced in compound heterozygous mice and treatment with the NLRP3 inflammasome inhibitor MCC950 prevented the elevation of circulating IL-1β, thus identifying a potential inflammasome target for future therapeutic approaches. Furthermore, lines of mice with a range of deficiencies in mevalonate kinase and abnormal prenylation mirrored the genotype-phenotype relationship in human MKD. Importantly, these mice allowed the determination of a threshold level of residual enzyme activity, below which protein prenylation is impaired. Elevated temperature dramatically but reversibly exacerbated the deficit in the mevalonate pathway and the defective prenylation in vitro and in vivo, highlighting increased body temperature as a likely trigger of inflammatory flares.
Collapse
Affiliation(s)
- Marcia A Munoz
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Oliver P Skinner
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Etienne Masle-Farquhar
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Julie Jurczyluk
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ya Xiao
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Emma K Fletcher
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Esther Kristianto
- Victor Chang Cardiac Innovation Centre, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Mark P Hodson
- School of Pharmacy, University of Queensland, Woolloongabba, Queensland, Australia
| | - Seán I O'Donoghue
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Sandeep Kaur
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Robert Brink
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - David G Zahra
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Elissa K Deenick
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Kristen A Perry
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Avril Ab Robertson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Sam Mehr
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Pravin Hissaria
- Royal Adelaide Hospital, SA Pathology and University of Adelaide, Adelaide, South Australia, Australia
| | - Catharina M Mulders-Manders
- Department of Internal Medicine, Radboudumc Expertise Centre for Immunodeficiency and Autoinflammation, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Anna Simon
- Department of Internal Medicine, Radboudumc Expertise Centre for Immunodeficiency and Autoinflammation, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Michael J Rogers
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Lemus R, Milks K, Stilphen C, Barson W, Sivaraman V. When All Is Not as It Seems: Recurrent Fever and New-onset Joint Pain in a 17-Month-old Girl. Pediatr Infect Dis J 2022; 41:681-682. [PMID: 38285981 DOI: 10.1097/inf.0000000000003348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
| | | | | | | | - Vidya Sivaraman
- Division of Rheumatology, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio
| |
Collapse
|
12
|
The efficacy and safety of allogeneic stem cell transplantation in Mevalonate Kinase Deficiency. Pediatr Rheumatol Online J 2022; 20:56. [PMID: 35906690 PMCID: PMC9338460 DOI: 10.1186/s12969-022-00716-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/16/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Mevalonate kinase deficiency (MKD) is a rare autoinflammatory syndrome. Several reports have described allogeneic hematopoietic stem cell transplantation in severely affected patients, sometimes with promising results. In view of the scarcity of data, this study aims to analyse the efficacy and safety of allogeneic hematopoietic stem cell transplantation (HSCT) to give a more complete overview of this treatment. METHODS This multicentre retrospective study on behalf of the European Society for Blood and Marrow Transplantation aimed to include all MKD patients who had undergone allogeneic HSCT. All centres related to EMBT and centres that have reported cases of allogeneic HSCT in the literature were contacted via the EBMT data office. RESULTS We analyzed 9 patients (5 male). Treosulfan based conditioning was the most frequently used conditioning regimen. Engraftment occurred in all but one patient. Source of stem cells was cord blood (n = 2), peripheral blood stem cells (n = 4) and bone marrow (n = 5). Two patients needed a second transplantation due to an incomplete response or primary graft failure. Seven patients went into complete remission after stem cell transplantation. At final follow-up these patients reported no symptoms of MKD. Four patients suffered from grade II-IV acute graft-versus-host disease (GvHD). During follow-up two patients died due to transplantation related complications. CONCLUSION In conclusion, allogeneic stem cell transplantation represents an effective treatment for the most severely affected MKD patients. However, treatment-related morbidity and mortality are significant. Transplantation may be justified in patients with a severe disease course on conservative therapy.
Collapse
|
13
|
Nanda SK, Vollmer S, Perez-Oliva AB. Posttranslational Regulation of Inflammasomes, Its Potential as Biomarkers and in the Identification of Novel Drugs Targets. Front Cell Dev Biol 2022; 10:887533. [PMID: 35800898 PMCID: PMC9253692 DOI: 10.3389/fcell.2022.887533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, we have summarized classical post-translational modifications (PTMs) such as phosphorylation, ubiquitylation, and SUMOylation of the different components of one of the most studied NLRP3, and other emerging inflammasomes. We will highlight how the discovery of these modifications have provided mechanistic insight into the biology, function, and regulation of these multiprotein complexes not only in the context of the innate immune system but also in adaptive immunity, hematopoiesis, bone marrow transplantation, as well and their role in human diseases. We have also collected available information concerning less-studied modifications such as acetylation, ADP-ribosylation, nitrosylation, prenylation, citrullination, and emphasized their relevance in the regulation of inflammasome complex formation. We have described disease-associated mutations affecting PTMs of inflammasome components. Finally, we have discussed how a deeper understanding of different PTMs can help the development of biomarkers and identification of novel drug targets to treat diseases caused by the malfunctioning of inflammasomes.
Collapse
Affiliation(s)
- Sambit K. Nanda
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology (R&I), Gaithersburg, MD, United States
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| | - Stefan Vollmer
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology (R&I), Gothenburg, Sweden
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| | - Ana B. Perez-Oliva
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| |
Collapse
|
14
|
A Pro-Inflammatory Signature Constitutively Activated in Monogenic Autoinflammatory Diseases. Int J Mol Sci 2022; 23:ijms23031828. [PMID: 35163749 PMCID: PMC8836675 DOI: 10.3390/ijms23031828] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/03/2022] Open
Abstract
Autoinflammatory diseases (AIDs) are disorders characterised by recurrent inflammatory episodes in charge of different organs with no apparent involvement of autoantibodies or antigen-specific T lymphocytes. Few common clinical features have been identified among all monogenic AIDs (mAIDs), while the search for a common molecular pattern is still ongoing. The aim of this study was to increase knowledge on the inflammatory pathways in the development of mAIDs in order to identify possible predictive or diagnostic biomarkers for each disease and to develop future preventive and therapeutic strategies. Using protein array-based systems, we evaluated two signalling pathways known to be involved in inflammation and a wide range of inflammatory mediators (pro-inflammatory cytokines and chemokines) in a cohort of 23 patients affected by different mAIDs, as FMF, TRAPS, MKD, Blau syndrome (BS), and NLRP12D. Overall, we observed upregulation of multiple signalling pathway intermediates at protein levels in mAIDs patients’ PBMCs, compared with healthy controls, with significant differences also between patients. FMF, TRAPS, and BS presented also peculiar activations of inflammatory pathways that can distinguish them. MAPK pathway activation, however, seems to be a common feature. The serum level of cytokines and chemokines produced clear differences between patients with distinct diseases, which can help distinguish each autoinflammatory disease. The FMF cytokine production profile appears broader than that of TRAPS, which, in turn, has higher cytokine levels than BS. Our findings suggest an ongoing subclinical inflammation related to the abnormal and constitutive signalling pathways and define an elevated inflammatory cytokine signature. Moreover, the upregulation of Th17-related cytokines emphasises the important role for Th17 and/or Th17-like cells also in monogenic AIDs.
Collapse
|
15
|
Kul Cinar O, Putland A, Wynne K, Eleftheriou D, Brogan PA. Hereditary Systemic Autoinflammatory Diseases: Therapeutic Stratification. Front Pediatr 2022; 10:867679. [PMID: 35573950 PMCID: PMC9096795 DOI: 10.3389/fped.2022.867679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
Hereditary systemic autoinflammatory diseases (SAIDs) are rare, often severe conditions characterised by mutations in the key regulators of innate immune responses. Dramatic advances in the molecular genetics and next-generation sequencing in the past decade enabled identification of novel mutations that play a pivotal role in the mechanistic pathways of inflammation. Although genetic testing may not always provide straightforward guidance in diagnosis and clinical decision making, through translational research, it sheds light into molecular immunopathogenesis, particularly in IL-1 inflammasome and cytokine signalling pathways. These remarkable insights provided a better understanding of autoinflammatory conditions and their association with the innate and adaptive immune systems, as well as leading to development of cytokine-targetted biologic treatments. Use of targetted therapeutics not only helps control disease flares, reduce acute-phase responses and prevent devastating complications such as amyloidosis, but also improves health-related quality of lives and support patients to pursue almost a normal life. Herein, we discuss the commonest monogenic SAIDs, describe their immunopathology, and summarise the approaches in the management and targetted treatment of these conditions, including presentation of novel data based on a cohort of children with these rare diseases from a single quaternary referral centre in London.
Collapse
Affiliation(s)
- Ovgu Kul Cinar
- Department of Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Division of Medicine, National Amyloidosis Centre and Centre for Acute Phase Proteins, University College London, Royal Free Campus, London, United Kingdom
| | - Amber Putland
- Department of Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Karen Wynne
- Department of Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Despina Eleftheriou
- Department of Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Section of Infection, Immunity and Inflammation, Institute of Child Health, University College London Great Ormond Street, London, United Kingdom.,Paediatric Rheumatology, ARUK Centre for Adolescent Rheumatology, Institute of Child Health, University College London (UCL) Great Ormond Street Hospital, London, United Kingdom
| | - Paul A Brogan
- Department of Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Section of Infection, Immunity and Inflammation, Institute of Child Health, University College London Great Ormond Street, London, United Kingdom
| |
Collapse
|
16
|
Pinzon Grimaldos A, Bini S, Pacella I, Rossi A, Di Costanzo A, Minicocci I, D’Erasmo L, Arca M, Piconese S. The role of lipid metabolism in shaping the expansion and the function of regulatory T cells. Clin Exp Immunol 2021; 208:181-192. [PMID: 35020862 PMCID: PMC9188345 DOI: 10.1093/cei/uxab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic inflammation, defined as a chronic low-grade inflammation, is implicated in numerous metabolic diseases. In recent years, the role of regulatory T cells (Tregs) as key controllers of metabolic inflammation has emerged, but our comprehension on how different metabolic pathways influence Treg functions needs a deeper understanding. Here we focus on how circulating and intracellular lipid metabolism, in particular cholesterol metabolism, regulates Treg homeostasis, expansion, and functions. Cholesterol is carried through the bloodstream by circulating lipoproteins (chylomicrons, very low-density lipoproteins, low-density lipoproteins). Tregs are equipped with a wide array of metabolic sensors able to perceive and respond to changes in the lipid environment through the activation of different intracellular pathways thus conferring to these cells a crucial metabolic and functional plasticity. Nevertheless, altered cholesterol transport, as observed in genetic dyslipidemias and atherosclerosis, impairs Treg proliferation and function through defective cellular metabolism. The intracellular pathway devoted to the cholesterol synthesis is the mevalonate pathway and several studies have shown that this pathway is essential for Treg stability and suppressive activity. High cholesterol concentrations in the extracellular environment may induce massive accumulation of cholesterol inside the cell thus impairing nutrients sensors and inhibiting the mevalonate pathway. This review summarizes the current knowledge regarding the role of circulating and cellular cholesterol metabolism in the regulation of Treg metabolism and functions. In particular, we will discuss how different pathological conditions affecting cholesterol transport may affect cellular metabolism in Tregs.
Collapse
Affiliation(s)
| | | | - Ilenia Pacella
- Department of Internal Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessandra Rossi
- Department of Internal Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Ilenia Minicocci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Laura D’Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Silvia Piconese
- Correspondence: Silvia Piconese, Department of Internal Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
17
|
Masumoto J, Zhou W, Morikawa S, Hosokawa S, Taguchi H, Yamamoto T, Kurata M, Kaneko N. Molecular biology of autoinflammatory diseases. Inflamm Regen 2021; 41:33. [PMID: 34635190 PMCID: PMC8507398 DOI: 10.1186/s41232-021-00181-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
The long battle between humans and various physical, chemical, and biological insults that cause cell injury (e.g., products of tissue damage, metabolites, and/or infections) have led to the evolution of various adaptive responses. These responses are triggered by recognition of damage-associated molecular patterns (DAMPs) and/or pathogen-associated molecular patterns (PAMPs), usually by cells of the innate immune system. DAMPs and PAMPs are recognized by pattern recognition receptors (PRRs) expressed by innate immune cells; this recognition triggers inflammation. Autoinflammatory diseases are strongly associated with dysregulation of PRR interactomes, which include inflammasomes, NF-κB-activating signalosomes, type I interferon-inducing signalosomes, and immuno-proteasome; disruptions of regulation of these interactomes leads to inflammasomopathies, relopathies, interferonopathies, and proteasome-associated autoinflammatory syndromes, respectively. In this review, we discuss the currently accepted molecular mechanisms underlying several autoinflammatory diseases.
Collapse
Affiliation(s)
- Junya Masumoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan.
| | - Wei Zhou
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Shinnosuke Morikawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Sho Hosokawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Haruka Taguchi
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Toshihiro Yamamoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Mie Kurata
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Naoe Kaneko
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
18
|
Politiek FA, Waterham HR. Compromised Protein Prenylation as Pathogenic Mechanism in Mevalonate Kinase Deficiency. Front Immunol 2021; 12:724991. [PMID: 34539662 PMCID: PMC8446354 DOI: 10.3389/fimmu.2021.724991] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Mevalonate kinase deficiency (MKD) is an autoinflammatory metabolic disorder characterized by life-long recurring episodes of fever and inflammation, often without clear cause. MKD is caused by bi-allelic pathogenic variants in the MVK gene, resulting in a decreased activity of the encoded enzyme mevalonate kinase (MK). MK is an essential enzyme in the isoprenoid biosynthesis pathway, which generates both non-sterol and sterol isoprenoids. The inflammatory symptoms of patients with MKD point to a major role for isoprenoids in the regulation of the innate immune system. In particular a temporary shortage of the non-sterol isoprenoid geranylgeranyl pyrophosphate (GGPP) is increasingly linked with inflammation in MKD. The shortage of GGPP compromises protein prenylation, which is thought to be one of the main causes leading to the inflammatory episodes in MKD. In this review, we discuss current views and the state of knowledge of the pathogenetic mechanisms in MKD, with particular focus on the role of compromised protein prenylation.
Collapse
Affiliation(s)
- Frouwkje A Politiek
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Brennenstuhl H, Nashawi M, Schröter J, Baronio F, Beedgen L, Gleich F, Jeltsch K, von Landenberg C, Martini S, Simon A, Thiel C, Tsiakas K, Opladen T, Kölker S, Hoffmann GF, Haas D. Phenotypic diversity, disease progression, and pathogenicity of MVK missense variants in mevalonic aciduria. J Inherit Metab Dis 2021; 44:1272-1287. [PMID: 34145613 DOI: 10.1002/jimd.12412] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 01/05/2023]
Abstract
Mevalonic aciduria (MVA) and hyperimmunoglobulinemia D syndrome (MKD/HIDS) are disorders of cholesterol biosynthesis caused by variants in the MVK gene and characterized by increased urinary excretion of mevalonic acid. So far, 30 MVA patients have been reported, suffering from recurrent febrile crises and neurologic impairment. Here, we present an in-depth analysis of the phenotypic spectrum of MVA and provide an in-silico pathogenicity model analysis of MVK missense variants. The phenotypic spectrum of 11 MVA patients (age range 0-51 years) registered in the Unified European Registry for Inherited Metabolic Disorders database was systematically analyzed using terms of the Human Phenotype Ontology. Biochemical, radiological as well as genetic characteristics were investigated. Six of eleven patients have reached adulthood and four have reached adolescence. One of the adolescent patients died at the age of 16 years and one patient died shortly after birth. Symptoms started within the first year of life, including episodic fever, developmental delay, ataxia, and ocular involvement. We also describe a case with absence of symptoms despite massive excretion of mevalonic acid. Pathogenic variants causing MVA cluster within highly conserved regions, which are involved in mevalonate and ATP binding. The phenotype of adult and adolescent MVA patients is more heterogeneous than previously assumed. Outcome varies from an asymptomatic course to early death. MVK variants cluster in functionally important and highly conserved protein domains and show high concordance regarding their expected pathogenicity.
Collapse
Affiliation(s)
- Heiko Brennenstuhl
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Mohammed Nashawi
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Julian Schröter
- Division of Pediatric Epileptology, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Federico Baronio
- Paediatric Unit, Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Lars Beedgen
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Florian Gleich
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Kathrin Jeltsch
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Silvia Martini
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Anna Simon
- Department of Internal Medicine, Radboudumc Expertise Centre for Immunodeficiency and Autoinflammation (REIA), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Thiel
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Konstantinos Tsiakas
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Opladen
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Dorothea Haas
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Monogenic Autoinflammatory Diseases: State of the Art and Future Perspectives. Int J Mol Sci 2021; 22:ijms22126360. [PMID: 34198614 PMCID: PMC8232320 DOI: 10.3390/ijms22126360] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic autoinflammatory diseases are a heterogeneous family of disorders characterized by a dysregulation of the innate immune system, in which sterile inflammation primarily develops through antigen-independent hyperactivation of immune pathways. In most cases, they have a strong genetic background, with mutations in single genes involved in inflammation. Therefore, they can derive from different pathogenic mechanisms at any level, such as dysregulated inflammasome-mediated production of cytokines, intracellular stress, defective regulatory pathways, altered protein folding, enhanced NF-kappaB signalling, ubiquitination disorders, interferon pathway upregulation and complement activation. Since the discover of pathogenic mutations of the pyrin-encoding gene MEFV in Familial Mediterranean Fever, more than 50 monogenic autoinflammatory diseases have been discovered thanks to the advances in genetic sequencing: the advent of new genetic analysis techniques and the discovery of genes involved in autoinflammatory diseases have allowed a better understanding of the underlying innate immunologic pathways and pathogenetic mechanisms, thus opening new perspectives in targeted therapies. Moreover, this field of research has become of great interest, since more than a hundred clinical trials for autoinflammatory diseases are currently active or recently concluded, allowing us to hope for considerable acquisitions for the next few years. General paediatricians need to be aware of the importance of this group of diseases and they should consider autoinflammatory diseases in patients with clinical hallmarks, in order to guide further examinations and refer the patient to a specialist rheumatologist. Here we resume the pathogenesis, clinical aspects and diagnosis of the most important autoinflammatory diseases in children.
Collapse
|
21
|
Welzel T, Benseler SM, Kuemmerle-Deschner JB. Management of Monogenic IL-1 Mediated Autoinflammatory Diseases in Childhood. Front Immunol 2021; 12:516427. [PMID: 33868220 PMCID: PMC8044959 DOI: 10.3389/fimmu.2021.516427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
Monogenic Interleukin 1 (IL-1) mediated autoinflammatory diseases (AID) are rare, often severe illnesses of the innate immune system associated with constitutively increased secretion of pro-inflammatory cytokines. Clinical characteristics include recurrent fevers, inflammation of joints, skin, and serous membranes. CNS and eye inflammation can be seen. Characteristically, clinical symptoms are coupled with elevated inflammatory markers, such as C-reactive protein (CRP) and serum amyloid A (SAA). Typically, AID affect infants and children, but late-onset and atypical phenotypes are described. An in-depth understanding of autoinflammatory pathways and progress in molecular genetics has expanded the spectrum of AID. Increasing numbers of genetic variants with undetermined pathogenicity, somatic mosaicisms and phenotype variability make the diagnosis of AID challenging. AID should be diagnosed as early as possible to prevent organ damage. The diagnostic approach includes patient/family history, ethnicity, physical examination, specific functional testing and inflammatory markers (SAA, CRP) during, and in between flares. Genetic testing should be performed, when an AID is suspected. The selection of genetic tests is guided by clinical findings. Targeted and rapid treatment is crucial to reduce morbidity, mortality and psychosocial burden after an AID diagnosis. Management includes effective treat-to-target therapy and standardized, partnered monitoring of disease activity (e.g., AIDAI), organ damage (e.g., ADDI), patient/physician global assessment and health related quality of life. Optimal AID care in childhood mandates an interdisciplinary team approach. This review will summarize the current evidence of diagnosing and managing children with common monogenic IL-1 mediated AID.
Collapse
Affiliation(s)
- Tatjana Welzel
- Autoinflammation Reference Center Tuebingen (arcT) and Division of Pediatric Rheumatology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany.,Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University Basel, Basel, Switzerland
| | - Susanne M Benseler
- Rheumatology, Department of Pediatrics, Alberta Children's Hospital (ACH), ACH Research Institute, University of Calgary, Calgary, AB, Canada
| | - Jasmin B Kuemmerle-Deschner
- Autoinflammation Reference Center Tuebingen (arcT) and Division of Pediatric Rheumatology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
22
|
Van Gorp H, Huang L, Saavedra P, Vuylsteke M, Asaoka T, Prencipe G, Insalaco A, Ogunjimi B, Jeyaratnam J, Cataldo I, Jacques P, Vermaelen K, Dullaers M, Joos R, Sabato V, Stella A, Frenkel J, De Benedetti F, Dehoorne J, Haerynck F, Calamita G, Portincasa P, Lamkanfi M. Blood-based test for diagnosis and functional subtyping of familial Mediterranean fever. Ann Rheum Dis 2020; 79:960-968. [PMID: 32312770 PMCID: PMC7307214 DOI: 10.1136/annrheumdis-2019-216701] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Familial Mediterranean fever (FMF) is the most common monogenic autoinflammatory disease (AID) worldwide. The disease is caused by mutations in the MEFV gene encoding the inflammasome sensor Pyrin. Clinical diagnosis of FMF is complicated by overlap in symptoms with other diseases, and interpretation of genetic testing is confounded by the lack of a clear genotype-phenotype association for most of the 340 reported MEFV variants. In this study, the authors designed a functional assay and evaluated its potential in supporting FMF diagnosis. METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from patients with Pyrin-associated autoinflammation with an FMF phenotype (n=43) or with autoinflammatory features not compatible with FMF (n=8), 10 asymptomatic carriers and 48 healthy donors. Sera were obtained from patients with distinct AIDs (n=10), and whole blood from a subset of patients and controls. The clinical, demographic, molecular genetic factors and other characteristics of the patient population were assessed for their impact on the diagnostic test read-out. Interleukin (IL)-1β and IL-18 levels were measured by Luminex assay. RESULTS The ex vivo colchicine assay may be performed on whole blood or PBMC. The functional assay robustly segregated patients with FMF from healthy controls and patients with related clinical disorders. The diagnostic test distinguished patients with classical FMF mutations (M694V, M694I, M680I, R761H) from patients with other MEFV mutations and variants (K695R, P369S, R202Q, E148Q) that are considered benign or of uncertain clinical significance. CONCLUSION The ex vivo colchicine assay may support diagnosis of FMF and functional subtyping of Pyrin-associated autoinflammation.
Collapse
Affiliation(s)
- Hanne Van Gorp
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Gent, Belgium
| | - Linyan Huang
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Gent, Belgium
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pedro Saavedra
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Gent, Belgium
| | | | - Tomoko Asaoka
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Gent, Belgium
| | - Giusi Prencipe
- Rheumatology Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Benson Ogunjimi
- Department of Paediatrics, Antwerp University Hospital, Edegem, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
- Department of Paediatric Rheumatology, Antwerp Hospital Network, Berchem, Belgium
- Department of Paediatrics, University Hospital Brussel, Jette, Belgium
- Antwerp centre for paediatric rheumatology and auto-inflammatory diseases, Antwerp Hospital Network and Antwerp University Hospital, Antwerp, Belgium
| | - Jerold Jeyaratnam
- Department of Pediatric Rheumatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ilaria Cataldo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Peggy Jacques
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Paediatric Rheumatology, Ghent University, Gent, Belgium
| | - Karim Vermaelen
- Department of Internal Medicine and Paediatrics, Ghent University, Gent, Belgium
- Tumor Immunology Laboratory, Department of Pulmonary Medicine, Ghent University Hospital, Gent, Belgium
| | - Melissa Dullaers
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Clinical Immunology Research Lab, Centre for Primary Immunodeficiency Ghent, Ghent University Hospital, Gent, Belgium
| | - Rik Joos
- Antwerp centre for paediatric rheumatology and auto-inflammatory diseases, Antwerp Hospital Network and Antwerp University Hospital, Antwerp, Belgium
- Department of Pediatric Rheumatology, Ghent University Hospital, Gent, Belgium
| | - Vito Sabato
- Antwerp centre for paediatric rheumatology and auto-inflammatory diseases, Antwerp Hospital Network and Antwerp University Hospital, Antwerp, Belgium
- Immunology-Allergology-Rheumatology, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Alessandro Stella
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Joost Frenkel
- Department of Pediatric Rheumatology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Joke Dehoorne
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Paediatric Rheumatology, Ghent University, Gent, Belgium
| | - Filomeen Haerynck
- Clinical Immunology Research Lab, Centre for Primary Immunodeficiency Ghent, Ghent University Hospital, Gent, Belgium
- Department of Paediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Gent, Belgium
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Piero Portincasa
- Division of Internal Medicine, Department of Biomedical Sciences and Human Oncology, Clinica Medica "A Murri", University of Bari "Aldo Moro", Bari, Italy
| | - Mohamed Lamkanfi
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Gent, Belgium
| |
Collapse
|
23
|
Jeyaratnam J, Frenkel J. Management of Mevalonate Kinase Deficiency: A Pediatric Perspective. Front Immunol 2020; 11:1150. [PMID: 32582214 PMCID: PMC7289972 DOI: 10.3389/fimmu.2020.01150] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 05/11/2020] [Indexed: 01/22/2023] Open
Abstract
Background: Mevalonate kinase deficiency (MKD) is an inborn error of metabolism leading to a syndrome characterized by recurrent inflammation. This clinically manifests itself as fever and can be accompanied by gastrointestinal symptoms, oral ulcers, cervical lymphadenopathy, and skin rash. Methods: We searched Pubmed, Embase, Cochrane, and CINAHL for relevant articles. All articles were screened by both authors. Relevant articles were included in this review. Results: The interleukin-1 antagonist canakinumab is the only well-studied and effective treatment for MKD patients with 35% of patients reaching complete remission in a large randomized controlled trial. Other therapeutic options include glucocorticoids and the IL-1 antagonist anakinra, although the level of evidence for these treatments is weaker. If patients fail to these treatments, the biologicals etanercept or tocilizumab can be used. Mildly affected patients might benefit from cheaper, less invasive treatments such as paracetamol and NSAIDs. Conclusion: Canakinumab is the only evidence-based treatment for mevalonate kinase deficiency. However, the costs limit availability for many patients. Cheaper and more readily available options include glucocorticoids, anakinra, etanercept, and tocilizumab, although there is limited evidence supporting these treatments.
Collapse
Affiliation(s)
- Jerold Jeyaratnam
- Department of Obstetrics and Gynaecology, St. Antonius Hospital, Nieuwegein, Netherlands
| | - Joost Frenkel
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
24
|
Endo Y, Funayama H, Yamaguchi K, Monma Y, Yu Z, Deng X, Oizumi T, Shikama Y, Tanaka Y, Okada S, Kim S, Kiyama T, Bando K, Shima K, Suzuki H, Takahashi T. [Basic Studies on the Mechanism, Prevention, and Treatment of Osteonecrosis of the Jaw Induced by Bisphosphonates]. YAKUGAKU ZASSHI 2020; 140:63-79. [PMID: 31902887 DOI: 10.1248/yakushi.19-00125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the first report in 2003, bisphosphonate-related osteonecrosis of the jaw (BRONJ) has been increasing, without effective clinical strategies. Osteoporosis is common in elderly women, and bisphosphonates (BPs) are typical and widely used anti-osteoporotic or anti-bone-resorptive drugs. BRONJ is now a serious concern in dentistry. As BPs are pyrophosphate analogues and bind strongly to bone hydroxyapatite, and the P-C-P structure of BPs is non-hydrolysable, they accumulate in bones upon repeated administration. During bone-resorption, BPs are taken into osteoclasts and exhibit cytotoxicity, producing a long-lasting anti-bone-resorptive effect. BPs are divided into nitrogen-containing BPs (N-BPs) and non-nitrogen-containing BPs (non-N-BPs). N-BPs have far stronger anti-bone-resorptive effects than non-N-BPs, and BRONJ is caused by N-BPs. Our murine experiments have revealed the following. N-BPs, but not non-N-BPs, exhibit direct and potent inflammatory/necrotic effects on soft-tissues. These effects are augmented by lipopolysaccharide (the inflammatory component of bacterial cell-walls) and the accumulation of N-BPs in jawbones is augmented by inflammation. N-BPs are taken into soft-tissue cells via phosphate-transporters, while the non-N-BPs etidronate and clodronate inhibit this transportation. Etidronate, but not clodronate, has the effect of expelling N-BPs that have accumulated in bones. Moreover, etidronate and clodronate each have an analgesic effect, while clodronate has an anti-inflammatory effect via inhibition of phosphate-transporters. These findings suggest that BRONJ may be induced by phosphate-transporter-mediated and infection-promoted mechanisms, and that etidronate and clodronate may be useful for preventing and treating BRONJ. Our clinical trials support etidronate being useful for treating BRONJ, although additional clinical trials of etidronate and clodronate are needed.
Collapse
Affiliation(s)
- Yasuo Endo
- Divisions of Pharmacology, Graduate School of Dentistry, Tohoku University.,Divisions of Molecular Regulation, Graduate School of Dentistry, Tohoku University.,Divisions of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University
| | - Hiromi Funayama
- Divisions of Pediatric Dentistry, Graduate School of Dentistry, Tohoku University.,Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine
| | - Kouji Yamaguchi
- Divisions of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University
| | - Yuko Monma
- Divisions of Pediatric Dentistry, Graduate School of Dentistry, Tohoku University
| | - Zhiqian Yu
- Divisions of Oral Diagnosis, Graduate School of Dentistry, Tohoku University
| | - Xue Deng
- Divisions of Oral Diagnosis, Graduate School of Dentistry, Tohoku University
| | - Takefumi Oizumi
- Divisions of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University
| | - Yosuke Shikama
- Divisions of Periodontology and Endodontology, Graduate School of Dentistry, Tohoku University
| | - Yukinori Tanaka
- Divisions of Molecular Regulation, Graduate School of Dentistry, Tohoku University
| | - Satoshi Okada
- Divisions of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University
| | - Siyoung Kim
- Divisions of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University
| | - Tomomi Kiyama
- Divisions of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University
| | - Kanan Bando
- Divisions of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University
| | - Kazuhiro Shima
- Divisions of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University
| | - Hikari Suzuki
- Divisions of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University
| | - Tetsu Takahashi
- Divisions of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University
| |
Collapse
|
25
|
Fu H, Alabdullah M, Großmann J, Spieler F, Abdosh R, Lutz V, Kalies K, Knöpp K, Rieckmann M, Koch S, Noutsias M, Pilowski C, Dutzmann J, Sedding D, Hüttelmaier S, Umezawa K, Werdan K, Loppnow H. The differential statin effect on cytokine production of monocytes or macrophages is mediated by differential geranylgeranylation-dependent Rac1 activation. Cell Death Dis 2019; 10:880. [PMID: 31754207 PMCID: PMC6872739 DOI: 10.1038/s41419-019-2109-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Abstract
Monocytes and macrophages contribute to pathogenesis of various inflammatory diseases, including auto-inflammatory diseases, cancer, sepsis, or atherosclerosis. They do so by production of cytokines, the central regulators of inflammation. Isoprenylation of small G-proteins is involved in regulation of production of some cytokines. Statins possibly affect isoprenylation-dependent cytokine production of monocytes and macrophages differentially. Thus, we compared statin-dependent cytokine production of lipopolysaccharide (LPS)-stimulated freshly isolated human monocytes and macrophages derived from monocytes by overnight differentiation. Stimulated monocytes readily produced tumor necrosis factor-α, interleukin-6, and interleukin-1β. Statins did not alter cytokine production of LPS-stimulated monocytes. In contrast, monocyte-derived macrophages prepared in the absence of statin lost the capacity to produce cytokines, whereas macrophages prepared in the presence of statin still produced cytokines. The cells expressed indistinguishable nuclear factor-kB activity, suggesting involvement of separate, statin-dependent regulation pathways. The presence of statin was necessary during the differentiation phase of the macrophages, indicating that retainment-of-function rather than costimulation was involved. Reconstitution with mevalonic acid, farnesyl pyrophosphate, or geranylgeranyl pyrophosphate blocked the retainment effect, whereas reconstitution of cholesterol synthesis by squalene did not. Inhibition of geranylgeranylation by GGTI-298, but not inhibition of farnesylation or cholesterol synthesis, mimicked the retainment effect of the statin. Inhibition of Rac1 activation by the Rac1/TIAM1-inhibitor NSC23766 or by Rac1-siRNA (small interfering RNA) blocked the retainment effect. Consistent with this finding, macrophages differentiated in the presence of statin expressed enhanced Rac1-GTP-levels. In line with the above hypothesis that monocytes and macrophages are differentially regulated by statins, the CD14/CD16-, merTK-, CX3CR1-, or CD163-expression (M2-macrophage-related) correlated inversely to the cytokine production. Thus, monocytes and macrophages display differential Rac1-geranylgeranylation-dependent functional capacities, that is, statins sway monocytes and macrophages differentially.
Collapse
Affiliation(s)
- Hang Fu
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany.,Pädiatrische Immunologie, Otto-von-Guericke-Universität Magdeburg, Universitätsklinikum Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Mohamad Alabdullah
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany.,Institut für Molekulare und Klinische Immunologie, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Julia Großmann
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Florian Spieler
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Reem Abdosh
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Veronika Lutz
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany.,Zentrum für Tumor- und Immunbiologie (ZTI), Forschungsbereich Gastroenterologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 3, 35043, Marburg, Germany
| | - Katrin Kalies
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Kai Knöpp
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Max Rieckmann
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Susanne Koch
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Michel Noutsias
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Claudia Pilowski
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jochen Dutzmann
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Daniel Sedding
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Stefan Hüttelmaier
- Institut für Molekulare Medizin, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University School of Medicine, 480-1195, Nagakute, Aichi, Japan
| | - Karl Werdan
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Harald Loppnow
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
26
|
Munoz MA, Jurczyluk J, Simon A, Hissaria P, Arts RJW, Coman D, Boros C, Mehr S, Rogers MJ. Defective Protein Prenylation in a Spectrum of Patients With Mevalonate Kinase Deficiency. Front Immunol 2019; 10:1900. [PMID: 31474985 PMCID: PMC6702261 DOI: 10.3389/fimmu.2019.01900] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
The rare autoinflammatory disease mevalonate kinase deficiency (MKD, which includes HIDS and mevalonic aciduria) is caused by recessive, pathogenic variants in the MVK gene encoding mevalonate kinase. Deficiency of this enzyme decreases the synthesis of isoprenoid lipids and thus prevents the normal post-translational prenylation of small GTPase proteins, which then accumulate in their unprenylated form. We recently optimized a sensitive assay capable of detecting unprenylated Rab GTPase proteins in peripheral blood mononuclear cells (PBMCs) and showed that this assay distinguished MKD from other autoinflammatory diseases. We have now analyzed PBMCs from an additional six patients with genetically-confirmed MKD (with different compound heterozygous MVK genotypes), and compared these with PBMCs from three healthy volunteers and four unaffected control individuals heterozygous for the commonest pathogenic variant, MVKV377I. We detected a clear accumulation of unprenylated Rab proteins, as well as unprenylated Rap1A by western blotting, in all six genetically-confirmed MKD patients compared to heterozygous controls and healthy volunteers. Furthermore, in the three subjects for whom measurements of residual mevalonate kinase activity was available, enzymatic activity inversely correlated with the extent of the defect in protein prenylation. Finally, a heterozygous MVKV377I patient presenting with autoinflammatory symptoms did not have defective prenylation, indicating a different cause of disease. These findings support the notion that the extent of loss of enzyme function caused by biallelic MVK variants determines the severity of defective protein prenylation, and the accumulation of unprenylated proteins in PBMCs may be a sensitive and consistent biomarker that could be used to aid, or help rule out, diagnosis of MKD.
Collapse
Affiliation(s)
- Marcia A Munoz
- Bone Biology, Garvan Institute of Medical Research, Sydney & St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Julie Jurczyluk
- Bone Biology, Garvan Institute of Medical Research, Sydney & St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Anna Simon
- Department of Internal Medicine, Radboudumc Expertise Centre for Immunodeficiency and Autoinflammation, Radboud University Medical Centre, Nijmegen, Netherlands
| | | | - Rob J W Arts
- Department of Internal Medicine, Radboudumc Expertise Centre for Immunodeficiency and Autoinflammation, Radboud University Medical Centre, Nijmegen, Netherlands
| | - David Coman
- Queensland Children's Hospital, Brisbane, QLD, Australia.,School of Medicine, University of Queensland, Brisbane, QLD, Australia.,School of Medicine, Griffith University, Brisbane, QLD, Australia
| | - Christina Boros
- Department of Rheumatology, Women's and Children's Hospital, University of Adelaide Discipline of Paediatrics, Adelaide, SA, Australia
| | - Sam Mehr
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Michael J Rogers
- Bone Biology, Garvan Institute of Medical Research, Sydney & St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
27
|
Schnappauf O, Chae JJ, Kastner DL, Aksentijevich I. The Pyrin Inflammasome in Health and Disease. Front Immunol 2019; 10:1745. [PMID: 31456795 PMCID: PMC6698799 DOI: 10.3389/fimmu.2019.01745] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022] Open
Abstract
The pyrin inflammasome has evolved as an innate immune sensor to detect bacterial toxin-induced Rho guanosine triphosphatase (Rho GTPase)-inactivation, a process that is similar to the “guard” mechanism in plants. Rho GTPases act as molecular switches to regulate a variety of signal transduction pathways including cytoskeletal organization. Pathogens can modulate Rho GTPase activity to suppress host immune responses such as phagocytosis. Pyrin is encoded by MEFV, the gene that is mutated in patients with familial Mediterranean fever (FMF). FMF is the prototypic autoinflammatory disease characterized by recurring short episodes of systemic inflammation and is a common disorder in many populations in the Mediterranean basin. Pyrin specifically senses modifications in the activity of the small GTPase RhoA, which binds to many effector proteins including the serine/threonine-protein kinases PKN1 and PKN2 and actin-binding proteins. RhoA activation leads to PKN-mediated phosphorylation-dependent pyrin inhibition. Conversely, pathogen virulence factors downregulate RhoA activity in a variety of ways, and these changes are detected by the pyrin inflammasome irrespective of the type of modifications. MEFV pathogenic variants favor the active state of pyrin and elicit proinflammatory cytokine release and pyroptosis. They can be inherited either as a dominant or recessive trait depending on the variant's location and effect on the protein function. Mutations in the C-terminal B30.2 domain are usually considered recessive, although heterozygotes may manifest a biochemical or even a clinical phenotype. These variants are hypomorphic in regard to their effect on intramolecular interactions, but ultimately accentuate pyrin activity. Heterozygous mutations in other domains of pyrin affect residues critical for inhibition or protein oligomerization, and lead to constitutively active inflammasome. In healthy carriers of FMF mutations who have the subclinical inflammatory phenotype, the increased activity of pyrin might have been protective against endemic infections over human history. This finding is supported by the observation of high carrier frequencies of FMF-mutations in multiple populations. The pyrin inflammasome also plays a role in mediating inflammation in other autoinflammatory diseases linked to dysregulation in the actin polymerization pathway. Therefore, the assembly of the pyrin inflammasome is initiated in response to fluctuations in cytoplasmic homeostasis and perturbations in cytoskeletal dynamics.
Collapse
Affiliation(s)
- Oskar Schnappauf
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jae Jin Chae
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Daniel L Kastner
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ivona Aksentijevich
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
28
|
Abstract
The autoinflammatory diseases comprise a broad spectrum of disorders characterized by unchecked activation of the innate immune system. Whereas aberrations in adaptive immunity have long been identified in 'autoimmune' disorders, the concept of 'autoinflammation' emerged relatively recently, first describing a group of clinical disorders characterized by spontaneous episodes of systemic inflammation without manifestations typical of autoimmune disorders. Improved knowledge of innate immune mechanisms, coupled with remarkable progress in genomics and an expanding number of clinical cases, has since led to an increasing number of disorders classified as autoinflammatory or containing an autoinflammatory component. Biologic therapies targeting specific components of the innate immune system have provided immense clinical benefit, and have further elucidated the role of innate immunity in autoinflammatory disorders. This article reviews the basic mechanisms of autoinflammation, followed by an update on the pathophysiology and treatment of the monogenic and multifactorial autoinflammatory diseases, and the common dermatologic conditions in which autoinflammation plays a major role.
Collapse
|
29
|
Henriksbo BD, Tamrakar AK, Xu J, Duggan BM, Cavallari JF, Phulka J, Stampfli MR, Ashkar AA, Schertzer JD. Statins Promote Interleukin-1β-Dependent Adipocyte Insulin Resistance Through Lower Prenylation, Not Cholesterol. Diabetes 2019; 68:1441-1448. [PMID: 31010959 DOI: 10.2337/db18-0999] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 04/16/2019] [Indexed: 11/13/2022]
Abstract
Statins lower cholesterol and adverse cardiovascular outcomes, but this drug class increases diabetes risk. Statins are generally anti-inflammatory. However, statins can promote inflammasome-mediated adipose tissue inflammation and insulin resistance through an unidentified immune effector. Statins lower mevalonate pathway intermediates beyond cholesterol, but it is unknown whether lower cholesterol underpins statin-mediated insulin resistance. We sought to define the mevalonate pathway metabolites and immune effectors that propagate statin-induced adipose insulin resistance. We found that LDL cholesterol lowering was dispensable, but statin-induced lowering of isoprenoids required for protein prenylation triggered NLRP3/caspase-1 inflammasome activation and interleukin-1β (IL-1β)-dependent insulin resistance in adipose tissue. Multiple statins impaired insulin action at the level of Akt/protein kinase B signaling in mouse adipose tissue. Providing geranylgeranyl isoprenoids or inhibiting caspase-1 prevented statin-induced defects in insulin signaling. Atorvastatin (Lipitor) impaired insulin signaling in adipose tissue from wild-type and IL-18-/- mice, but not IL-1β-/- mice. Atorvastatin decreased cell-autonomous insulin-stimulated lipogenesis but did not alter lipolysis or glucose uptake in 3T3-L1 adipocytes. Our results show that statin lowering of prenylation isoprenoids activates caspase-1/IL-1β inflammasome responses that impair endocrine control of adipocyte lipogenesis. This may allow the targeting of cholesterol-independent statin side effects on adipose lipid handling without compromising the blood lipid/cholesterol-lowering effects of statins.
Collapse
Affiliation(s)
- Brandyn D Henriksbo
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | | | - Joshua Xu
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Brittany M Duggan
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Joseph F Cavallari
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jobanjit Phulka
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Martin R Stampfli
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Ali A Ashkar
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Funayama H, Tashima I, Okada S, Ogawa T, Yagi H, Tada H, Wakita R, Asada Y, Endo Y. Effects of Zoledronate on Local and Systemic Production of IL-1β, IL-18, and TNF-α in Mice and Augmentation by Lipopolysaccharide. Biol Pharm Bull 2019; 42:929-936. [DOI: 10.1248/bpb.b18-00923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiromi Funayama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine
| | - Itaru Tashima
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine
| | - Satoru Okada
- Division of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University
| | - Takuya Ogawa
- Division of Cell Biology, Department of Pharmaceutical Sciences, School of Pharmacy, International University of Health and Welfare
| | - Hideki Yagi
- Division of Immunobiology, Department of Pharmaceutical Sciences, School of Pharmacy, International University of Health and Welfare
| | - Hiroyuki Tada
- Division of Oral Molecular Regulation, Graduate School of Dentistry, Tohoku University
| | - Ryo Wakita
- Section of Anesthesiology and Clinical Physiology, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School, Tokyo Medical and Dental University
| | - Yoshinobu Asada
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine
| | - Yasuo Endo
- Division of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University
| |
Collapse
|
31
|
Frey T, Swade K, Zwecker L, Llewellyn T, Vogt E, Monteferante K, English H. Monocyte Production of IFN-γ Is Interleukin-12 Dependent in a Model of Mevalonate Kinase Deficiency. J Interferon Cytokine Res 2019; 39:364-374. [PMID: 31013450 DOI: 10.1089/jir.2018.0126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mevalonate Kinase Deficiency (MKD) is an autoinflammatory disease caused by mutations in the mevalonate kinase gene, which produces an enzyme responsible for the production of isoprenoids in the mevalonate pathway. Patient data indicate that MKD is a multicytokine disease with increased plasma levels of cytokines such as tumor necrosis factor-α, interleukin (IL)-6, and interferon (IFN)-γ. To study the mechanisms responsible for these changes, the mevalonate pathway was inhibited with lovastatin in peripheral blood mononuclear cells (PBMCs) and monocytes isolated from the blood of healthy donors followed by stimulation with lipopolysaccharide (LPS) to induce an inflammatory response. Lovastatin treatment resulted in increased levels of IL-6, IL-12p40, and IFN-γ mRNA in both PBMCs and monocytes following LPS stimulation compared with control cells. An IL-12 neutralizing antibody blocked the increased levels of IFN-γ mRNA following lovastatin treatment in PBMCs indicating that this effect is dependent on IL-12. Flow cytometry experiments indicated that monocytes, not lymphocytes or granulocytes, are the source of increased IFN-γ and that both classical and nonclassical/intermediate monocytes express IFN-γ. These results indicate that blocking IL-12 or IFN- γ may be therapeutic options for MKD patients.
Collapse
Affiliation(s)
- Tiffany Frey
- Department of Biology, Dickinson College, Carlisle, Pennsylvania
| | - Katelyn Swade
- Department of Biology, Dickinson College, Carlisle, Pennsylvania
| | - Lindsey Zwecker
- Department of Biology, Dickinson College, Carlisle, Pennsylvania
| | - Tyler Llewellyn
- Department of Biology, Dickinson College, Carlisle, Pennsylvania
| | - Eric Vogt
- Department of Biology, Dickinson College, Carlisle, Pennsylvania
| | - Kim Monteferante
- Department of Biology, Dickinson College, Carlisle, Pennsylvania
| | - Heather English
- Department of Biology, Dickinson College, Carlisle, Pennsylvania
| |
Collapse
|
32
|
Pająk B, Kania E, Gołaszewska A, Orzechowski A. Preliminary Study on Clusterin Protein (sCLU) Expression in PC-12 Cells Overexpressing Wild-Type and Mutated (Swedish) AβPP genes Affected by Non-Steroid Isoprenoids and Water-Soluble Cholesterol. Int J Mol Sci 2019; 20:E1481. [PMID: 30909654 PMCID: PMC6470582 DOI: 10.3390/ijms20061481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
In this study we attempted to verify the hypothesis that the mevalonate pathway affects amyloid beta precursor protein (AβPP) processing and regulates clusterin protein levels. AβPP expression was monitored by green fluorescence (FL) and Western blot (WB). WB showed soluble amyloid protein precursor alpha (sAβPPα) presence in AβPP-wt cells and Aβ expression in AβPP-sw cells. Nerve growth factor (NGF)-differentiated rat neuronal pheochromocytoma PC-12 cells were untreated/treated with statins alone or together with non-sterol isoprenoids. Co-treatment with mevalonate, dolichol, ubiquinol, farnesol, geranylgeraniol, or water-soluble cholesterol demonstrated statin-dependent neurotoxicity resulted from the attenuated activity of mevalonate pathway rather than lower cholesterol level. Atorvastatin (50 μM) or simvastatin (50 μM) as well as cholesterol chelator methyl-β-cyclodextrin (0.2 mM) diminished cell viability (p < 0.05) and clusterin levels. Interestingly, co-treatment with mevalonate, dolichol, ubiquinol, farnesol, geranylgeraniol, or water-soluble cholesterol stimulated (p < 0.05) clusterin expression. Effects of non-sterol isoprenoids, but not water soluble cholesterol (Chol-PEG), were the most significant in mock-transfected cells. Geranylgeraniol (GGOH) overcame atorvastatin (ATR)-dependent cytotoxicity. This effect does not seem to be dependent on clusterin, as its level became lower after GGOH. The novelty of these findings is that they show that the mevalonate (MEV) pathway rather than cholesterol itself plays an important role in clusterin expression levels. In mock-transfected, rather than in AβPP-overexpressing cells, GGOH/farnesol (FOH) exerted a protective effect. Thus, protein prenylation with GGOH/FOH might play substantial role in neuronal cell survival.
Collapse
Affiliation(s)
- Beata Pająk
- Independent Laboratory of Genetics and Molecular Biology, Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland.
| | - Elżbieta Kania
- Tumor Cell Death Laboratory, Cancer Research UK, Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| | - Anita Gołaszewska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences ⁻ SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Arkadiusz Orzechowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences ⁻ SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
33
|
Skinner OP, Jurczyluk J, Baker PJ, Masters SL, Rios Wilks AG, Clearwater MS, Robertson AAB, Schroder K, Mehr S, Munoz MA, Rogers MJ. Lack of protein prenylation promotes NLRP3 inflammasome assembly in human monocytes. J Allergy Clin Immunol 2019; 143:2315-2317.e3. [PMID: 30797829 DOI: 10.1016/j.jaci.2019.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Oliver P Skinner
- Bone Biology, Garvan Institute of Medical Research and St Vincent's Clinical School, UNSW Sydney, Sydney, Australia
| | - Julie Jurczyluk
- Bone Biology, Garvan Institute of Medical Research and St Vincent's Clinical School, UNSW Sydney, Sydney, Australia
| | - Paul J Baker
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Seth L Masters
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Alicia G Rios Wilks
- Bone Biology, Garvan Institute of Medical Research and St Vincent's Clinical School, UNSW Sydney, Sydney, Australia
| | - Misaki S Clearwater
- Bone Biology, Garvan Institute of Medical Research and St Vincent's Clinical School, UNSW Sydney, Sydney, Australia
| | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Sam Mehr
- Department of Allergy/Immunology, Royal Children's Hospital, Melbourne, Australia
| | - Marcia A Munoz
- Bone Biology, Garvan Institute of Medical Research and St Vincent's Clinical School, UNSW Sydney, Sydney, Australia
| | - Michael J Rogers
- Bone Biology, Garvan Institute of Medical Research and St Vincent's Clinical School, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
34
|
Sánchez-Manubens J, Iglesias E, Anton J. Canakinumab for the treatment of hyperimmunoglobulin D syndrome. Expert Rev Clin Immunol 2019; 15:215-220. [PMID: 30652926 DOI: 10.1080/1744666x.2019.1571410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Mevalonate Kinase Deficiency (MKD) is a rare monogenic autoinflammatory disorder (AID) with autosomal recessive inheritance caused by mutations in the MVK gene. It includes hyperimmunoglobulinemia D syndrome (HIDS) and mevalonic aciduria (a severe form). Patients have recurrent inflammatory attacks with high fever, gastrointestinal symptoms, lymphadenopathy, splenomegaly, arthralgia, rash, pharyngitis, aphtosis and constitutional complaints. Heightened understanding of molecular mechanisms in monogenic autoinflammatory disorders has provided tools for targeted treatment. HIDS is an extrinsic inflammasomopathy and is responsive to anti-IL-1 therapies, such as the recombinant IL-1-receptor antagonist anakinra, the monoclonal antibody against IL-1b canakinumab (CAN), and the recombinant IL-1R fusion protein rilonacept. Areas covered: CAN is a human monoclonal anti-IL-1β antibody that binds with high affinity and neutralizes the activity of IL-1 β. Both observational registries and some case reports have seemed promising in the efficacy of CAN in the HIDS treatment. Two clinical trials have corroborated CAN as an effective and safe drug. Expert commentary: CAN is effective and safe for the treatment of HIDS patients. Some data suggest these patients may need higher dosage or shorter dosing interval than other AIDs, to achieve and maintain complete clinical and laboratory response. Reported adverse events were mild, most often non-complicated infections.
Collapse
Affiliation(s)
- Judith Sánchez-Manubens
- a Pediatric Rheumatology Unit, Pediatrics Department, Hospital Universitari Parc Taulí , Universitat Autònoma de Barcelona , Sabadell (Barcelona) , Spain.,b Pediatric Rheumatology Unit, Pediatrics Department, Hospital Sant Joan de Déu , Universitat de Barcelona , Barcelona , Spain
| | - Estibaliz Iglesias
- b Pediatric Rheumatology Unit, Pediatrics Department, Hospital Sant Joan de Déu , Universitat de Barcelona , Barcelona , Spain
| | - Jordi Anton
- b Pediatric Rheumatology Unit, Pediatrics Department, Hospital Sant Joan de Déu , Universitat de Barcelona , Barcelona , Spain
| |
Collapse
|
35
|
Van Gorp H, Van Opdenbosch N, Lamkanfi M. Inflammasome-Dependent Cytokines at the Crossroads of Health and Autoinflammatory Disease. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a028563. [PMID: 29038114 DOI: 10.1101/cshperspect.a028563] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As key regulators of both innate and adaptive immunity, it is unsurprising that the activity of interleukin (IL)-1 cytokine family members is tightly controlled by decoy receptors, antagonists, and a variety of other mechanisms. Additionally, inflammasome-mediated proteolytic maturation is a prominent and distinguishing feature of two important members of this cytokine family, IL-1β and IL-18, because their full-length gene products are biologically inert. Although vital in antimicrobial host defense, deregulated inflammasome signaling is linked with a growing number of autoimmune and autoinflammatory diseases. Here, we focus on introducing the diverse inflammasome types and discussing their causal roles in periodic fever syndromes. Therapies targeting IL-1 or IL-18 show great efficacy in some of these autoinflammatory diseases, although further understanding of the molecular mechanisms leading to unregulated production of these key cytokines is required to benefit more patients.
Collapse
Affiliation(s)
- Hanne Van Gorp
- Center for Inflammation Research, VIB, Zwijnaarde B-9052, Belgium.,Department of Internal Medicine, Ghent University, Ghent B-9000, Belgium
| | - Nina Van Opdenbosch
- Center for Inflammation Research, VIB, Zwijnaarde B-9052, Belgium.,Department of Internal Medicine, Ghent University, Ghent B-9000, Belgium
| | - Mohamed Lamkanfi
- Center for Inflammation Research, VIB, Zwijnaarde B-9052, Belgium.,Department of Internal Medicine, Ghent University, Ghent B-9000, Belgium
| |
Collapse
|
36
|
Mulders-Manders CM, Hilst JCVD, Meer JWVD, Simon A. Systemic Autoinflammatory Syndromes. Clin Immunol 2019. [DOI: 10.1016/b978-0-7020-6896-6.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Pazmandi J, Kalinichenko A, Ardy RC, Boztug K. Early-onset inflammatory bowel disease as a model disease to identify key regulators of immune homeostasis mechanisms. Immunol Rev 2019; 287:162-185. [PMID: 30565237 PMCID: PMC7379380 DOI: 10.1111/imr.12726] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
Abstract
Rare, monogenetic diseases present unique models to dissect gene functions and biological pathways, concomitantly enhancing our understanding of the etiology of complex (and often more common) traits. Although inflammatory bowel disease (IBD) is a generally prototypic complex disease, it can also manifest in an early-onset, monogenic fashion, often following Mendelian modes of inheritance. Recent advances in genomic technologies have spurred the identification of genetic defects underlying rare, very early-onset IBD (VEO-IBD) as a disease subgroup driven by strong genetic influence, pinpointing key players in the delicate homeostasis of the immune system in the gut and illustrating the intimate relationships between bowel inflammation, systemic immune dysregulation, and primary immunodeficiency with increased susceptibility to infections. As for other human diseases, it is likely that adult-onset diseases may represent complex diseases integrating the effects of host genetic susceptibility and environmental triggers. Comparison of adult-onset IBD and VEO-IBD thus provides beautiful models to investigate the relationship between monogenic and multifactorial/polygenic diseases. This review discusses the present and novel findings regarding monogenic IBD as well as key questions and future directions of IBD research.
Collapse
Affiliation(s)
- Julia Pazmandi
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Artem Kalinichenko
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Rico Chandra Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
- Department of PediatricsSt. Anna Kinderspital and Children's Cancer Research InstituteMedical University of ViennaViennaAustria
| |
Collapse
|
38
|
Genomics, Biology, and Human Illness: Advances in the Monogenic Autoinflammatory Diseases. Rheum Dis Clin North Am 2018; 43:327-345. [PMID: 28711137 DOI: 10.1016/j.rdc.2017.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The monogenic autoinflammatory diseases are a group of illnesses with prominent rheumatic manifestations that are characterized by genetically determined recurrent sterile inflammation and are thus inborn errors of innate immunity. Molecular targeted therapies against inflammatory cytokines, such as interleukin 1 and tumor necrosis factor, and intracellular cytokine signaling pathways have proved effective in many cases. Emerging next-generation sequencing technologies have accelerated the identification of previously unreported genes causing autoinflammatory diseases. This review covers several of the prominent recent advances in the field of autoinflammatory diseases, including gene discoveries, the elucidation of new pathogenic mechanisms, and the development of effective targeted therapies.
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW One purpose of this review was to raise awareness for the new autoinflammatory syndromes. These diseases are increasingly recognized and are in the differential diagnosis of many disease states. We also aimed to review the latest recommendations for the diagnosis, management, and treatment of these patients. RECENT FINDINGS Familial Mediterranean fever (FMF), cryopyrin-associated periodic syndrome (CAPS), tumor necrosis factor receptor-associated periodic fever syndrome (TRAPS), and hyperimmunoglobulinemia D and periodic fever syndrome/mevalonate kinase deficiency (HIDS/MVKD) are the more common autoinflammatory diseases that are characterized by periodic fevers and attacks of inflammation. Recently much collaborative work has been done to understand the characteristics of these patients and to develop recommendations to guide the physicians in the care of these patients. These recent recommendations will be summarized for all four diseases. FMF is the most common periodic fever disease. We need to further understand the pathogenesis and the role of single mutations in the disease. Recently, the management and treatment of the disease have been nicely reviewed. CAPS is another interesting disease associated with severe complications. Anti-interleukin-1 (anti-IL-1) treatment provides cure for these patients. TRAPS is characterized by the longest delay in diagnosis; thus, both pediatricians and internists should be aware of the characteristic features and the follow-up of these patients. HIDS/MVKD is another autoinflammatory diseases characterized with fever attacks. The spectrum of disease manifestation is rather large in this disease, and we need further research on biomarkers for the optimal management of these patients.
Collapse
Affiliation(s)
- Erdal Sag
- Institute of Child Health, Pediatric Autoinflammatory Disease Programme, Hacettepe University, Ankara, Turkey
| | - Yelda Bilginer
- Department of Pediatric Rheumatology, Hacettepe University Ihsan Dogramaci Children's Hospital, 06230, Sihhiye, Ankara, Turkey
| | - Seza Ozen
- Department of Pediatric Rheumatology, Hacettepe University Ihsan Dogramaci Children's Hospital, 06230, Sihhiye, Ankara, Turkey.
| |
Collapse
|
40
|
Galeotti C, Georgin-Lavialle S, Sarrabay G, Touitou I, Koné-Paut I. Le déficit en mévalonate kinase en 2016. Rev Med Interne 2018; 39:265-270. [DOI: 10.1016/j.revmed.2016.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 01/08/2023]
|
41
|
Endo Y, Kumamoto H, Nakamura M, Sugawara S, Takano-Yamamoto T, Sasaki K, Takahashi T. Underlying Mechanisms and Therapeutic Strategies for Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ). Biol Pharm Bull 2018; 40:739-750. [PMID: 28566618 DOI: 10.1248/bpb.b16-01020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bisphosphonates (BPs), with a non-hydrolysable P-C-P structure, are cytotoxic analogues of pyrophosphate, bind strongly to bone, are taken into osteoclasts during bone-resorption and exhibit long-acting anti-bone-resorptive effects. Among the BPs, nitrogen-containing BPs (N-BPs) have far stronger anti-bone-resorptive effects than non-N-BPs. In addition to their pyrogenic and digestive-organ-injuring side effects, BP-related osteonecrosis of jaws (BRONJ), mostly caused by N-BPs, has been a serious concern since 2003. The mechanism underlying BRONJ has proved difficult to unravel, and there are no solid strategies for treating and/or preventing BRONJ. Our mouse experiments have yielded the following results. (a) N-BPs, but not non-N-BPs, exhibit direct inflammatory and/or necrotic effects on soft tissues. (b) These effects are augmented by lipopolysaccharide, a bacterial-cell-wall component. (c) N-BPs are transported into cells via phosphate transporters. (d) The non-N-BPs etidronate (Eti) and clodronate (Clo) competitively inhibit this transportation (potencies, Clo>Eti) and reduce and/or prevent the N-BP-induced inflammation and/or necrosis. (e) Eti, but not Clo, can expel N-BPs that have accumulated within bones. (f) Eti and Clo each have an analgesic effect (potencies, Clo>Eti) via inhibition of phosphate transporters involved in pain transmission. From these findings, we propose that phosphate-transporter-mediated and inflammation/infection-promoted mechanisms underlie BRONJ. To treat and/or prevent BRONJ, we propose (i) Eti as a substitution drug for N-BPs and (ii) Clo as a combination drug with N-BPs while retaining their anti-bone-resorptive effects. Our clinical trials support this role for Eti (we cannot perform such trials using Clo because Clo is not clinically approved in Japan).
Collapse
Affiliation(s)
- Yasuo Endo
- Division of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University
| | - Hiroyuki Kumamoto
- Division of Oral Pathology, Graduate School of Dentistry, Tohoku University
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University
| | - Shunji Sugawara
- Division of Oral Molecular Regulation, Graduate School of Dentistry, Tohoku University
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University
| | - Tetsu Takahashi
- Division of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University
| |
Collapse
|
42
|
Abstract
Interleukin (IL)-1 is a pro-inflammatory cytokine that induces local and systemic inflammation aimed to eliminate microorganisms and tissue damage. However, an increasing number of clinical conditions have been identified in which IL-1 production is considered inappropriate and IL-1 is part of the disease etiology. In autoinflammatory diseases, gout, Schnitzler's syndrome, and adult-onset Still's disease, high levels of inappropriate IL-1 production have been shown to be a key process in the etiology of the disease. In these conditions, blocking IL-1 has proven very effective in clinical studies. In other diseases, IL-1 has shown to be present in disease process but is not the central driving force of inflammation. In these conditions, including type 1 and 2 diabetes mellitus, acute coronary syndrome, amyotrophic lateral sclerosis, and several neoplastic diseases, the benefits of IL-1 blockade are minimal or absent.
Collapse
|
43
|
Tanaka T, Yoshioka K, Nishikomori R, Sakai H, Abe J, Yamashita Y, Hiramoto R, Morimoto A, Ishii E, Arakawa H, Kaneko U, Ohshima Y, Okamoto N, Ohara O, Hata I, Shigematsu Y, Kawai T, Yasumi T, Heike T. National survey of Japanese patients with mevalonate kinase deficiency reveals distinctive genetic and clinical characteristics. Mod Rheumatol 2018; 29:181-187. [PMID: 29451047 DOI: 10.1080/14397595.2018.1442639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Mevalonate kinase deficiency (MKD), a rare autosomal recessive autoinflammatory syndrome, is caused by disease-causing variants of the mevalonate kinase (MVK) gene. A national survey was undertaken to investigate clinical and genetic features of MKD patients in Japan. METHODS The survey identified ten patients with MKD. Clinical information and laboratory data were collected from medical records and by direct interviews with patients, their families, and their attending physicians. Genetic analysis and measurement of MVK activity and urinary excretion of mevalonic acid were performed. RESULTS None of the 10 patients harbored MVK disease-causing variants that are common in European patients. However, overall symptoms were in line with previous European reports. Continuous fever was observed in half of the patients. Elevated transaminase was observed in four of the 10 patients, two of whom fulfilled the diagnostic criteria for hemophagocytic lymphohistiocytosis. About half of the patients responded to temporary administration of glucocorticoids and NSAIDs; the others required biologics such as anti-IL-1 drugs. CONCLUSION This is the first national survey of MKD patients in a non-European country. Although clinical symptoms were similar to those reported in Europe, the incidence of continuous fever and elevated transaminase was higher, probably due to differences in disease-causing variants.
Collapse
Affiliation(s)
- Takayuki Tanaka
- a Department of Pediatrics , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Kohei Yoshioka
- a Department of Pediatrics , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Ryuta Nishikomori
- a Department of Pediatrics , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Hidemasa Sakai
- a Department of Pediatrics , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Junya Abe
- a Department of Pediatrics , Kyoto University Graduate School of Medicine , Kyoto , Japan.,b Department of Pediatrics , Kitano Hospital, Tazuke Kofukai Medical Research Institute , Osaka , Japan
| | - Yuriko Yamashita
- c Department of Pediatrics , Matsudo City General Hospital Children's Medical Centre , Matsudo , Japan
| | - Ryugo Hiramoto
- c Department of Pediatrics , Matsudo City General Hospital Children's Medical Centre , Matsudo , Japan
| | - Akira Morimoto
- d Department of Pediatrics , Jichi Medical University of School of Medicine , Shimotsuke , Japan
| | - Eiichi Ishii
- e Department of Pediatrics , Ehime University Graduate School of Medicine , Toon , Japan
| | - Hirokazu Arakawa
- f Department of Pediatrics , Gumma University Graduate School of Medicine , Maebashi , Japan
| | - Utako Kaneko
- g Department of Pediatrics , Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Yusei Ohshima
- h Department of Pediatrics, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Nami Okamoto
- i Department of Pediatrics , Osaka Medical College , Takatsuki , Japan
| | - Osamu Ohara
- j Department of Technology, Kazusa DNA Research Institute , Chiba , Japan
| | - Ikue Hata
- h Department of Pediatrics, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Yosuke Shigematsu
- h Department of Pediatrics, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Tomoki Kawai
- a Department of Pediatrics , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Takahiro Yasumi
- a Department of Pediatrics , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Toshio Heike
- a Department of Pediatrics , Kyoto University Graduate School of Medicine , Kyoto , Japan
| |
Collapse
|
44
|
Santos MMS, Elsztein C, De Souza RB, Paiva SDSL, Silva JA, Crovella S, De Morais MA. Respiratory deficiency in yeast mevalonate kinase deficient may explain MKD-associate metabolic disorder in humans. Curr Genet 2018; 64:871-881. [PMID: 29374778 DOI: 10.1007/s00294-018-0803-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 01/28/2023]
Abstract
Mevalonate kinase deficiency (MKD) an orphan drug rare disease affecting humans with different clinical presentations, is still lacking information about its pathogenesis; no animal or cell model mimicking the genetic defect, mutations at MVK gene, and its consequences on the mevalonate pathway is available. Trying to clarify the effects of MVK gene impairment on the mevalonate pathway we used a yeast model, the erg12-d mutant strain Saccharomyces cerevisiae (orthologous of MKV) retaining only 10% of mevalonate kinase (MK) activity, to describe the effects of reduced MK activity on the mevalonate pathway. Since shortage of isoprenoids has been described in MKD, we checked this observation using a physiologic approach: while normally growing on glucose, erg12-d showed growth deficiency in glycerol, a respirable carbon source, that was not rescued by supplementation with non-sterol isoprenoids, such as farnesol, geraniol nor geranylgeraniol, produced by the mevalonate pathway. Erg12-d whole genome expression analysis revealed specific downregulation of RSF2 gene encoding general transcription factor for respiratory genes, explaining the absence of growth on glycerol. Moreover, we observed the upregulation of genes involved in sulphur amino acids biosynthesis that coincided with the increasing in the amount of proteins containing sulfhydryl groups; upregulation of ubiquinone biosynthesis genes was also detected. Our findings demonstrated that the shortage of isoprenoids is not the main mechanism involved in the respiratory deficit and mitochondrial malfunctioning of MK-defective cells, while the scarcity of ubiquinone plays an important role, as already observed in MKD patients.
Collapse
Affiliation(s)
- Manuella Maria Silva Santos
- Interdepartmental Research Group in Metabolic Engineering, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Recife, PE, 50760-901, Brazil
- Department of Genetics, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Cidade Universitária, Recife, PE, 50760-901, Brazil
| | - Carolina Elsztein
- Interdepartmental Research Group in Metabolic Engineering, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Recife, PE, 50760-901, Brazil
- Department of virology/CPqAM, Oswaldo Cruz Fundation, Avenida Moraes Rego, N/S, Recife, PE, 50760-901, Brazil
| | - Rafael Barros De Souza
- Interdepartmental Research Group in Metabolic Engineering, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Recife, PE, 50760-901, Brazil
- Institute for Biologial Sciences, University of Pernambuco, Avenida Agamenon Magalhães, s/n, Recife, PE, 50100-010, Brazil
| | - Sérgio de Sá Leitão Paiva
- Laboratory of Bioinformatics and Evolutionary Biology, Federal Rural University Pernambuco, Rua Dom Manoel de Medeiros, s/n, Recife, PE, 52171-900, Brazil
| | - Jaqueline Azevêdo Silva
- Department of Genetics, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Cidade Universitária, Recife, PE, 50760-901, Brazil
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Recife, PE, 50760-901, Brazil
| | - Sergio Crovella
- Department of Genetics, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Cidade Universitária, Recife, PE, 50760-901, Brazil
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Recife, PE, 50760-901, Brazil
| | - Marcos Antonio De Morais
- Interdepartmental Research Group in Metabolic Engineering, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Recife, PE, 50760-901, Brazil.
- Department of Genetics, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Cidade Universitária, Recife, PE, 50760-901, Brazil.
| |
Collapse
|
45
|
Dorfleutner A, Stehlik C. A dRAStic RHOAdblock of Pyrin inflammasome activation. Nat Immunol 2017; 17:900-2. [PMID: 27434003 DOI: 10.1038/ni.3511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
46
|
Arostegui JI, Anton J, Calvo I, Robles A, Iglesias E, López-Montesinos B, Banchereau R, Hong S, Joubert Y, Junge G, Pascual V, Yagüe J. Open-Label, Phase II Study to Assess the Efficacy and Safety of Canakinumab Treatment in Active Hyperimmunoglobulinemia D With Periodic Fever Syndrome. Arthritis Rheumatol 2017; 69:1679-1688. [DOI: 10.1002/art.40146] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Juan I. Arostegui
- Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer; Barcelona Spain
| | | | | | | | | | | | | | - Seunghee Hong
- Baylor Institute for Immunological Research; Dallas Texas
| | | | | | - Virginia Pascual
- Baylor Institute for Immunological Research and Texas Scottish Rite Hospital for Children; Dallas Texas
| | - Jordi Yagüe
- Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer; Barcelona Spain
| |
Collapse
|
47
|
Marcuzzi A, Piscianz E, Vecchi Brumatti L, Tommasini A. Mevalonate kinase deficiency: therapeutic targets, treatments, and outcomes. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1328308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Annalisa Marcuzzi
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Trieste, Italy
| | - Elisa Piscianz
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Trieste, Italy
| | - Liza Vecchi Brumatti
- Scientific Direction, Institute for Maternal and Child Health – IRCCS ‘Burlo Garofolo,’ Trieste, Italy
| | - Alberto Tommasini
- Department of Pediatrics, Institute for Maternal and Child Health - IRCCS ‘Burlo Garofolo’, Trieste, Italy
| |
Collapse
|
48
|
Fenini G, Contassot E, French LE. Potential of IL-1, IL-18 and Inflammasome Inhibition for the Treatment of Inflammatory Skin Diseases. Front Pharmacol 2017; 8:278. [PMID: 28588486 PMCID: PMC5438978 DOI: 10.3389/fphar.2017.00278] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/02/2017] [Indexed: 11/13/2022] Open
Abstract
In 2002, intracellular protein complexes known as the inflammasomes were discovered and were shown to have a crucial role in the sensing of intracellular pathogen- and danger-associated molecular patterns (PAMPs and DAMPs). Activation of the inflammasomes results in the processing and subsequent secretion of the pro-inflammatory cytokines IL-1β and IL-18. Several autoinflammatory disorders such as cryopyrin-associated periodic syndromes and Familial Mediterranean Fever have been associated with mutations of genes encoding inflammasome components. Moreover, the importance of IL-1 has been reported for an increasing number of autoinflammatory skin diseases including but not limited to deficiency of IL-1 receptor antagonist, mevalonate kinase deficiency and PAPA syndrome. Recent findings have revealed that excessive IL-1 release induced by harmful stimuli likely contributes to the pathogenesis of common dermatological diseases such as acne vulgaris or seborrheic dermatitis. A key pathogenic feature of these diseases is IL-1β-induced neutrophil recruitment to the skin. IL-1β blockade may therefore represent a promising therapeutic approach. Several case reports and clinical trials have demonstrated the efficacy of IL-1 inhibition in the treatment of these skin disorders. Next to the recombinant IL-1 receptor antagonist (IL-1Ra) Anakinra and the soluble decoy Rilonacept, the anti-IL-1α monoclonal antibody MABp1 and anti-IL-1β Canakinumab but also Gevokizumab, LY2189102 and P2D7KK, offer valid alternatives to target IL-1. Although less thoroughly investigated, an involvement of IL-18 in the development of cutaneous inflammatory disorders is also suspected. The present review describes the role of IL-1 in diseases with skin involvement and gives an overview of the relevant studies discussing the therapeutic potential of modulating the secretion and activity of IL-1 and IL-18 in such diseases.
Collapse
Affiliation(s)
- Gabriele Fenini
- Department of Dermatology, University Hospital ZurichZurich, Switzerland
| | - Emmanuel Contassot
- Department of Dermatology, University Hospital ZurichZurich, Switzerland
| | - Lars E French
- Department of Dermatology, University Hospital ZurichZurich, Switzerland
| |
Collapse
|
49
|
Martorana D, Bonatti F, Mozzoni P, Vaglio A, Percesepe A. Monogenic Autoinflammatory Diseases with Mendelian Inheritance: Genes, Mutations, and Genotype/Phenotype Correlations. Front Immunol 2017; 8:344. [PMID: 28421071 PMCID: PMC5376573 DOI: 10.3389/fimmu.2017.00344] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/10/2017] [Indexed: 12/28/2022] Open
Abstract
Autoinflammatory diseases (AIDs) are a genetically heterogeneous group of diseases caused by mutations of genes encoding proteins, which play a pivotal role in the regulation of the inflammatory response. In the pathogenesis of AIDs, the role of the genetic background is triggered by environmental factors through the modulation of the innate immune system. Monogenic AIDs are characterized by Mendelian inheritance and are caused by highly penetrant genetic variants in single genes. During the last years, remarkable progress has been made in the identification of disease-associated genes by using new technologies, such as next-generation sequencing, which has allowed the genetic characterization in undiagnosed patients and in sporadic cases by means of targeted resequencing of a gene panel and whole exome sequencing. In this review, we delineate the genetics of the monogenic AIDs, report the role of the most common gene mutations, and describe the evidences of the most sound genotype/phenotype correlations in AID.
Collapse
Affiliation(s)
- Davide Martorana
- Unit of Medical Genetics, University Hospital of Parma, Parma, Italy
| | - Francesco Bonatti
- Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Paola Mozzoni
- Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Augusto Vaglio
- Unit of Nephrology, University Hospital of Parma, Parma, Italy
| | - Antonio Percesepe
- Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| |
Collapse
|
50
|
Cecatto C, Amaral AU, da Silva JC, Wajner A, Godoy KDS, Ribeiro RT, Gonçalves ADM, Vargas CR, Wajner M. Mevalonolactone disrupts mitochondrial functions and induces permeability transition pore opening in rat brain mitochondria: Implications for the pathogenesis of mevalonic aciduria. Neurochem Int 2017; 108:133-145. [PMID: 28284974 DOI: 10.1016/j.neuint.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/07/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Mevalonic aciduria (MVA) is caused by severe deficiency of mevalonic kinase activity leading to tissue accumulation and high urinary excretion of mevalonic acid (MA) and mevalonolactone (ML). Patients usually present severe neurologic symptoms whose pathophysiology is poorly known. Here, we tested the hypothesis that the major accumulating metabolites are toxic by investigating the in vitro effects of MA and ML on important mitochondrial functions in rat brain and liver mitochondria. ML, but not MA, markedly decreased mitochondrial membrane potential (ΔΨm), NAD(P)H content and the capacity to retain Ca2+ in the brain, besides inducing mitochondrial swelling. These biochemical alterations were totally prevented by the classical inhibitors of mitochondrial permeability transition (MPT) cyclosporine A and ADP, as well as by ruthenium red in Ca2+-loaded mitochondria, indicating the involvement of MPT and an important role for mitochondrial Ca2+ in these effects. ML also induced lipid peroxidation and markedly inhibited aconitase activity, an enzyme that is highly susceptible to free radical attack, in brain mitochondrial fractions, indicating that lipid and protein oxidative damage may underlie some of ML-induced deleterious effects including MTP induction. In contrast, ML and MA did not compromise oxidative phosphorylation in the brain and all mitochondrial functions evaluated in the liver, evidencing a selective toxicity of ML towards the central nervous system. Our present study provides for the first time evidence that ML impairs essential brain mitochondrial functions with the involvement of MPT pore opening. It is therefore presumed that disturbance of brain mitochondrial homeostasis possibly contributes to the neurologic symptoms in MVA.
Collapse
Affiliation(s)
- Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Janaína Camacho da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alessandro Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kálita Dos Santos Godoy
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline de Mello Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carmen Regla Vargas
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|