1
|
Uttam V, Vohra V, Chhotaray S, Santhosh A, Diwakar V, Patel V, Gahlyan RK. Exome-wide comparative analyses revealed differentiating genomic regions for performance traits in Indian native buffaloes. Anim Biotechnol 2024; 35:2277376. [PMID: 37934017 DOI: 10.1080/10495398.2023.2277376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
In India, 20 breeds of buffalo have been identified and registered, yet limited studies have been conducted to explore the performance potential of these breeds, especially in the Indian native breeds. This study is a maiden attempt to delineate the important variants and unique genes through exome sequencing for milk yield, milk composition, fertility, and adaptation traits in Indian local breeds of buffalo. In the present study, whole exome sequencing was performed on Chhattisgarhi (n = 3), Chilika (n = 4), Gojri (n = 3), and Murrah (n = 4) buffalo breeds and after stringent quality control, 4333, 6829, 4130, and 4854 InDels were revealed, respectively. Exome-wide FST along 100-kb sliding windows detected 27, 98, 38, and 35 outlier windows in Chhattisgarhi, Chilika, Gojri, and Murrah, respectively. The comparative exome analysis of InDels and subsequent gene ontology revealed unique breed specific genes for milk yield (CAMSAP3), milk composition (CLCN1, NUDT3), fertility (PTGER3) and adaptation (KCNA3, TH) traits. Study provides insight into mechanism of how these breeds have evolved under natural selection, the impact of these events on their respective genomes, and their importance in maintaining purity of these breeds for the traits under study. Additionally, this result will underwrite to the genetic acquaintance of these breeds for breeding application, and in understanding of evolution of these Indian local breeds.
Collapse
Affiliation(s)
- Vishakha Uttam
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikas Vohra
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Supriya Chhotaray
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Ameya Santhosh
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikas Diwakar
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vaibhav Patel
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Rajesh Kumar Gahlyan
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
2
|
Garcia SJ, Mike EV, Zhang J, Cuda CM, Putterman C. Lipocalin-2 drives neuropsychiatric and cutaneous disease in MRL/lpr mice. Front Immunol 2024; 15:1466868. [PMID: 39399497 PMCID: PMC11466786 DOI: 10.3389/fimmu.2024.1466868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Approximately 20-40% of patients with systemic lupus erythematosus (SLE) experience neuropsychiatric SLE (NPSLE), which often manifests as cognitive dysfunction and depression. Currently, there are no approved treatments for NPSLE because its underlying mechanisms are unclear. Identifying relevant mediators and understanding their contribution to pathogenesis are crucial for developing targeted treatment options. Lipocalin 2 (LCN2) is a multifunctional acute-phase protein that plays important roles in immune cell differentiation, migration, and function. LCN2 has been implicated in models of neuroinflammatory disease. Methods We generated an LCN2-deficient MRL/lpr mouse to evaluate the effects of LCN2 on this classic NPSLE model. To evaluate the effects of LCN2 deficiency on behavior, the mice underwent a battery of behavioral tests evaluating depression, memory, and anxiety. Flow cytometry was used to quantify immune cell populations in the brain, blood, and secondary lymphoid organs. Cutaneous disease was quantified by scoring lesional skin, and skin infiltrates were quantified through immunofluorescent staining. Systemic disease was evaluated through measuring anti-nuclear antibodies by ELISA. Results In this study, we found that LCN2 deficiency significantly attenuates neuropsychiatric and cutaneous disease in MRL/lpr lupus prone mice, likely by decreasing local infiltration of immune cells into the brain and skin and reducing astrocyte activation in the hippocampus. Anti-nuclear antibodies and kidney disease were not affected by LCN2. Discussion As there was no effect on systemic disease, our results suggest that the inflammatory effects of LCN2 were localized to the skin and brain in this model. This study further establishes LCN2 as a potential target to ameliorate organ injury in SLE, including neuropsychiatric and cutaneous disease.
Collapse
Affiliation(s)
- Sayra J. Garcia
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Elise V. Mike
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Carla M. Cuda
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Azrieli Faculty of Medicine, Bar Ilan University, Zefat, Israel
| |
Collapse
|
3
|
Gumpper-Fedus K, Chasser K, Pita-Grisanti V, Torok M, Pfau T, Mace TA, Cole RM, Belury MA, Culp S, Hart PA, Krishna SG, Lara LF, Ramsey ML, Fisher W, Fogel EL, Forsmark CE, Li L, Pandol S, Park WG, Serrano J, Van Den Eeden SK, Vege SS, Yadav D, Conwell DL, Cruz-Monserrate Z. Systemic Neutrophil Gelatinase-Associated Lipocalin Alterations in Chronic Pancreatitis: A Multicenter, Cross-Sectional Study. Clin Transl Gastroenterol 2024; 15:e00686. [PMID: 38284831 PMCID: PMC11042777 DOI: 10.14309/ctg.0000000000000686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Abstract
INTRODUCTION Chronic pancreatitis (CP) is a progressive fibroinflammatory disorder lacking therapies and biomarkers. Neutrophil gelatinase-associated lipocalin (NGAL) is a proinflammatory cytokine elevated during inflammation that binds fatty acids (FAs) such as linoleic acid. We hypothesized that systemic NGAL could serve as a biomarker for CP and, with FAs, provide insights into inflammatory and metabolic alterations. METHODS NGAL was measured by immunoassay, and FA composition was measured by gas chromatography in plasma (n = 171) from a multicenter study, including controls (n = 50), acute and recurrent acute pancreatitis (AP/RAP) (n = 71), and CP (n = 50). Peripheral blood mononuclear cells (PBMCs) from controls (n = 16), AP/RAP (n = 17), and CP (n = 15) were measured by cytometry by time-of-flight. RESULTS Plasma NGAL was elevated in subjects with CP compared with controls (area under the curve [AUC] = 0.777) or AP/RAP (AUC = 0.754) in univariate and multivariate analyses with sex, age, body mass index, and smoking (control AUC = 0.874; AP/RAP AUC = 0.819). NGAL was elevated in CP and diabetes compared with CP without diabetes ( P < 0.001). NGAL + PBMC populations distinguished CP from controls (AUC = 0.950) or AP/RAP (AUC = 0.941). Linoleic acid was lower, whereas dihomo-γ-linolenic and adrenic acids were elevated in CP ( P < 0.05). Linoleic acid was elevated in CP with diabetes compared with CP subjects without diabetes ( P = 0.0471). DISCUSSION Elevated plasma NGAL and differences in NGAL + PBMCs indicate an immune response shift that may serve as biomarkers of CP. The potential interaction of FAs and NGAL levels provide insights into the metabolic pathophysiology and improve diagnostic classification of CP.
Collapse
Affiliation(s)
- Kristyn Gumpper-Fedus
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kaylin Chasser
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Valentina Pita-Grisanti
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The Ohio State University Interdisciplinary Nutrition Program, The Ohio State University, Columbus, Ohio, USA
| | - Molly Torok
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Timothy Pfau
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Thomas A. Mace
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Rachel M. Cole
- Department of Food Science and Technology, College of Food, Agriculture, and Environmental Sciences, The Ohio State University Columbus, Ohio, USA
| | - Martha A. Belury
- Department of Food Science and Technology, College of Food, Agriculture, and Environmental Sciences, The Ohio State University Columbus, Ohio, USA
| | - Stacey Culp
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Phil A. Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Luis F. Lara
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mitchell L. Ramsey
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - William Fisher
- Division of General Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Evan L. Fogel
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Chris E. Forsmark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida, USA
| | - Liang Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Walter G. Park
- Division of Gastroenterology & Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Jose Serrano
- Division of Digestive Diseases and Nutrition, National Institutes of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | | | - Santhi Swaroop Vege
- Department of Gastroenterology and Hepatology, The Mayo Clinic, Rochester, Minnesota, USA
| | - Dhiraj Yadav
- Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Darwin L. Conwell
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
4
|
Qin Y, Jin J, Zhang J, Wang H, Liu L, Zhang Y, Ling S, Hu J, Li N, Wang J, Lv C, Yang X. A fully human monoclonal antibody targeting Semaphorin 5A alleviates the progression of rheumatoid arthritis. Biomed Pharmacother 2023; 168:115666. [PMID: 37832409 DOI: 10.1016/j.biopha.2023.115666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is the most common chronic autoimmune disease worldwide. Although progress has been made in RA treatment in recent decades, remission cannot be effectively achieved for a considerable proportion of RA patients. Thus, novel potential targets for therapeutic strategies are needed. Semaphorin 5A (SEMA5A) plays a pivotal role in RA progression by facilitating pannus formation, and it is a promising therapeutic target. In this study, we sought to develop an antibody treatment strategy targeting SEMA5A and evaluate its therapeutic effect using a collagen-induced arthritis (CIA) model. We generated SYD12-12, a fully human SEMA5A blocking antibody, through phage display technology. SYD12-12 intervention effectively inhibited angiogenesis and aggressive phenotypes of RA synoviocytes in vitro and dose-dependently inhibited synovial hyperplasia, pannus formation, bone destruction in CIA mice. Notably, SYD12-12 also improved the Treg/Th17 imbalance in CIA mice. We confirmed through immunofluorescence and molecular docking that SYD12-12 integrated with the unique TSP-1 domain of SEMA5A. In conclusion, we developed and characterized a fully human SEMA5A-blocking antibody for the first time. SYD12-12 effectively alleviated disease progression in CIA mice by inhibiting pannus formation and improving the Treg/Th17 imbalance, demonstrating its potential for the RA treatment.
Collapse
Affiliation(s)
- Yang Qin
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiayi Jin
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiani Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Wang
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanwen Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sunwang Ling
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jinzhu Hu
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Nuan Li
- Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianguang Wang
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Chen Lv
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
5
|
Akter S, Emon FA, Nahar Z, Shalahuddin Qusar M, Islam SMA, Shahriar M, Bhuiyan MA, Islam MR. Altered IL-3 and lipocalin-2 levels are associated with the pathophysiology of major depressive disorder: a case-control study. BMC Psychiatry 2023; 23:830. [PMID: 37957650 PMCID: PMC10644478 DOI: 10.1186/s12888-023-05354-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Major Depressive Disorder (MDD) is a common mental ailment and is the primary reason for disability. It manifests a severe impact on moods, thoughts, and physical health. At present, this disorder has become a concern in the field of public health. Alteration of neurochemicals is thought to be involved in the pathogenesis of many psychiatric disorders. Therefore, we aimed to evaluate serum IL-3 and lipocalin-2 in MDD patients and healthy controls (HCs). METHOD We included a total of 376 participants in this study. Among them, 196 were MDD patients, and 180 were age-sex-matched HCs. MDD patients were recruited from the Psychiatry Department of Bangabandhu Sheikh Mujib Medical University (BSMMU), but the controls were from different parts of Dhaka. All study participants were evaluated by a psychiatrist using the DSM-5 criteria. To assess the severity of the depression, we used the Hamilton depression (Ham-D) rating scale. Serum IL-3 and lipocalin-2 levels were measured using commercially available enzyme-linked immune-sorbent assay kits (ELISA kits). RESULTS According to this study, we observed elevated serum levels of IL-3 (1,024.73 ± 29.84 pg/mL) and reduced levels of serum lipocalin-2 (29.019 ± 2.073 ng/mL) in MDD patients compared to HCs (911.11 ± 20.55 pg/mL and 48.065 ± 3.583 ng/mL, respectively). No associations between serum levels of IL-3 and lipocalin-2 and depression severity were observed in patients. CONCLUSIONS According to the present findings, alterations of serum IL-3 and lipocalin might be associated with the pathogenesis of MDD. These results support that altered serum neurochemicals can serve as early risk assessment markers for depression. Further interventional studies are recommended for a better understanding of the role of IL-3 and lipocalin-2 in the pathophysiology of depression.
Collapse
Affiliation(s)
- Sarmin Akter
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - Faisal Abdullah Emon
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - Zabun Nahar
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - Mma Shalahuddin Qusar
- Department of Psychiatry, Bangabandhu Sheikh Mujib Medical University, Shahabagh, Dhaka, 1000, Bangladesh
| | | | - Mohammad Shahriar
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - Mohiuddin Ahmed Bhuiyan
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - Md Rabiul Islam
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
6
|
Song XJ, Yang CL, Chen D, Yang Y, Mao Y, Cao P, Jiang A, Wang W, Zhang Z, Tao W. Up-regulation of LCN2 in the anterior cingulate cortex contributes to neural injury-induced chronic pain. Front Cell Neurosci 2023; 17:1140769. [PMID: 37362002 PMCID: PMC10285483 DOI: 10.3389/fncel.2023.1140769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
Chronic pain caused by disease or injury affects more than 30% of the general population. The molecular and cellular mechanisms underpinning the development of chronic pain remain unclear, resulting in scant effective treatments. Here, we combined electrophysiological recording, in vivo two-photon (2P) calcium imaging, fiber photometry, Western blotting, and chemogenetic methods to define a role for the secreted pro-inflammatory factor, Lipocalin-2 (LCN2), in chronic pain development in mice with spared nerve injury (SNI). We found that LCN2 expression was upregulated in the anterior cingulate cortex (ACC) at 14 days after SNI, resulting in hyperactivity of ACC glutamatergic neurons (ACCGlu) and pain sensitization. By contrast, suppressing LCN2 protein levels in the ACC with viral constructs or exogenous application of neutralizing antibodies leads to significant attenuation of chronic pain by preventing ACCGlu neuronal hyperactivity in SNI 2W mice. In addition, administering purified recombinant LCN2 protein in the ACC could induce pain sensitization by inducing ACCGlu neuronal hyperactivity in naïve mice. This study provides a mechanism by which LCN2-mediated hyperactivity of ACCGlu neurons contributes to pain sensitization, and reveals a new potential target for treating chronic pain.
Collapse
Affiliation(s)
- Xiang-Jie Song
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen-Ling Yang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Danyang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yumeng Yang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yu Mao
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peng Cao
- Department of Neurology, Stroke Center, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Aijun Jiang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenjuan Tao
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Ma J, Song R, Liu C, Cao G, Zhang G, Wu Z, Zhang H, Sun R, Chen A, Wang Y, Yin S. Single-cell RNA-Seq analysis of diabetic wound macrophages in STZ-induced mice. J Cell Commun Signal 2023; 17:103-120. [PMID: 36445632 PMCID: PMC10030741 DOI: 10.1007/s12079-022-00707-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/15/2022] [Indexed: 12/03/2022] Open
Abstract
The crucial role of macrophages in the healing of chronic diabetic wounds is widely known, but previous in vitro classification and marker genes of macrophages may not be fully applicable to cells in the microenvironment of chronic wounds. The heterogeneity of macrophages was studied and classified at the single-cell level in a chronic wound model. We performed single-cell sequencing of CD45 + immune cells within the wound edge and obtained 17 clusters of cells, including 4 clusters of macrophages. One of these clusters is a previously undescribed population of macrophages possessing osteoclast gene expression, for which analysis of differential genes revealed possible functions. We also analysed the differences in gene expression between groups of macrophages in the control and diabetic wound groups at different sampling times. We described the differentiation profile of mononuclear macrophages, which has provided an important reference for the study of immune-related mechanisms in diabetic chronic wounds.
Collapse
Affiliation(s)
- Jiaxu Ma
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Ru Song
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Chunyan Liu
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Guoqi Cao
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Guang Zhang
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Zhenjie Wu
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Huayu Zhang
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Rui Sun
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Aoyu Chen
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Yibing Wang
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China.
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P. R. China.
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China.
| | - Siyuan Yin
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| |
Collapse
|
8
|
Miller JE, Lingegowda H, Sisnett DJ, Metz CN, Gregersen PK, Koti M, Tayade C. T helper 17 axis and endometrial macrophage disruption in menstrual effluent provides potential insights into the pathogenesis of endometriosis. F&S SCIENCE 2022; 3:279-287. [PMID: 35697654 DOI: 10.1016/j.xfss.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To identify immune cells, cytokines, and immune cell transcriptome in the menstrual effluent (ME) of women with endometriosis compared with that of healthy donors. DESIGN Live immune cells were isolated from human ME samples and were analyzed by flow cytometry to identify various immune cell populations. Selected cytokines from the same patients were evaluated using multiplex cytokine analyses. The transcriptome of the immune cell population was subsequently profiled using NanoString nCounter's PanCancer Immune panel. SETTING Academic institution. PATIENT(S) Surgically confirmed endometriosis patients (n = 14) and healthy fertile donors (n = 19). INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) In-depth immune cell profiling of ME obtained from women with endometriosis compared with that of healthy donors. RESULT(S) ME analysis revealed that the number of T helper 17 (TH17) cells was significantly lower in patients with endometriosis compared with that of healthy donors; the number of macrophages was also lower (P=.06) in the former. Multiplex cytokine analysis revealed significantly lower transforming growth factor α in the ME "serum" of patients with endometriosis. Transcriptomic analysis of CD45+ cells revealed 47 differentially expressed genes, mainly associated with the TH17 axis (IL10, IL23A, and IL6), as well as genes associated with macrophage signaling/activation (CD74, CD83, CXCL16, and CCL3). CONCLUSION(S) We demonstrate for the first time that the levels of TH17 axis, macrophages, and transforming growth factor α were altered in the ME of women with endometriosis compared with that of healthy donors. These findings shed light on the potential immune pathways that could partly explain the pathogenesis and progression of endometriosis. Future large-scale studies on ME samples are warranted to exploit the use of these markers to study the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Jessica E Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - Danielle J Sisnett
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Christine N Metz
- The Feinstein Institutes for Medical Research, Institute of Molecular Medicine, Northwell Health, Manhasset, New York
| | - Peter K Gregersen
- The Feinstein Institutes for Medical Research, Institute of Molecular Medicine, Northwell Health, Manhasset, New York
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Department of Obstetrics and Gynecology, Kingston General Hospital, Kingston, Ontario, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
9
|
Lipocalin 2 as a Putative Modulator of Local Inflammatory Processes in the Spinal Cord and Component of Organ Cross talk After Spinal Cord Injury. Mol Neurobiol 2021; 58:5907-5919. [PMID: 34417948 DOI: 10.1007/s12035-021-02530-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Lipocalin 2 (LCN2), an immunomodulator, regulates various cellular processes such as iron transport and defense against bacterial infection. Under pathological conditions, LCN2 promotes neuroinflammation via the recruitment and activation of immune cells and glia, particularly microglia and astrocytes. Although it seems to have a negative influence on the functional outcome in spinal cord injury (SCI), the extent of its involvement in SCI and the underlying mechanisms are not yet fully known. In this study, using a SCI contusion mouse model, we first investigated the expression pattern of Lcn2 in different parts of the CNS (spinal cord and brain) and in the liver and its concentration in blood serum. Interestingly, we could note a significant increase in LCN2 throughout the whole spinal cord, in the brain, liver, and blood serum. This demonstrates the diversity of its possible sites of action in SCI. Furthermore, genetic deficiency of Lcn2 (Lcn2-/-) significantly reduced certain aspects of gliosis in the SCI-mice. Taken together, our studies provide first valuable hints, suggesting that LCN2 is involved in the local and systemic effects post SCI, and might modulate the impairment of different peripheral organs after injury.
Collapse
|
10
|
Frydendal C, Nielsen KB, Berg LC, van Galen G, Adler DMT, Andreassen SM, Jacobsen S. Influence of clinical and experimental intra-articular inflammation on neutrophil gelatinase-associated lipocalin concentrations in horses. Vet Surg 2021; 50:641-649. [PMID: 33522003 PMCID: PMC8048826 DOI: 10.1111/vsu.13582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/09/2020] [Accepted: 12/17/2020] [Indexed: 01/26/2023]
Abstract
Objective To investigate neutrophil gelatinase‐associated lipocalin (NGAL) concentrations in serum and synovial fluid (SF) from horses with joint inflammation. Study design Experimental studies and retrospective clinical study. Sample population Serum and SF samples were available from healthy horses (n = 19), clinical cases, and horses with experimental joint inflammation. Clinical cases included horses with (n = 10) or without (n = 10) septic arthritis. Experimental intra‐articular inflammation was induced by lipopolysaccharide (LPS; n = 7, severe inflammation), lidocaine (n = 6, moderate inflammation), or mepivacaine (n = 6, mild inflammation). Methods Availability of samples was based on approval from the local ethical committee and from the Danish Animal Experiments Inspectorate. Neutrophil gelatinase‐associated lipocalin was measured with a previously validated enzyme‐linked immunosorbent assay. Repeated‐measurements one‐ and two‐way analysis of variance and correlation analysis were used to analyze NGAL concentrations and white blood cell counts (WBC). Results After injection of LPS or lidocaine, SF NGAL concentrations increased 343‐ (P = .0035) and 60‐fold (P = .0038) relative to baseline, respectively. Serum NGAL also increased in both groups (P < .05) but to lower concentrations than in SF. Concentrations were higher after injection of lidocaine SF NGAL than after injection of mepivacaine (P < .05) at 6 and 12 hours. Synovial fluid concentrations of NGAL were higher in horses with septic arthritis than in the nonseptic group (P = .0070) and in healthy controls (P = .0071). Concentrations of NGAL correlated with WBC in SF (P < .0001, R2 = 0.49) and in blood (P = .0051, R2 = 0.27). Conclusion Neutrophil gelatinase‐associated lipocalin concentrations increased in SF in response to experimentally induced and naturally occurring joint inflammation. Synovial fluid NGAL concentration correlated with WBC and, thus, seems to reflect intensity of joint inflammation. Clinical significance Neutrophil gelatinase‐associated lipocalin may prove to be a useful biomarker of joint inflammation and infection in horses.
Collapse
Affiliation(s)
- Catina Frydendal
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine B Nielsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise C Berg
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gaby van Galen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ditte M T Adler
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine M Andreassen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Pouille CL, Jegou D, Dugardin C, Cudennec B, Ravallec R, Hance P, Rambaud C, Hilbert JL, Lucau-Danila A. Chicory root flour – A functional food with potential multiple health benefits evaluated in a mice model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
12
|
Huang SSY, Makhlouf M, AbouMoussa EH, Ruiz Tejada Segura ML, Mathew LS, Wang K, Leung MC, Chaussabel D, Logan DW, Scialdone A, Garand M, Saraiva LR. Differential regulation of the immune system in a brain-liver-fats organ network during short-term fasting. Mol Metab 2020; 40:101038. [PMID: 32526449 PMCID: PMC7339127 DOI: 10.1016/j.molmet.2020.101038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Fasting regimens can promote health, mitigate chronic immunological disorders, and improve age-related pathophysiological parameters in animals and humans. Several ongoing clinical trials are using fasting as a potential therapy for various conditions. Fasting alters metabolism by acting as a reset for energy homeostasis, but the molecular mechanisms underlying the beneficial effects of short-term fasting (STF) are not well understood, particularly at the systems or multiorgan level. METHODS We performed RNA-sequencing in nine organs from mice fed ad libitum (0 h) or subjected to fasting five times (2-22 h). We applied a combination of multivariate analysis, differential expression analysis, gene ontology, and network analysis for an in-depth understanding of the multiorgan transcriptome. We used literature mining solutions, LitLab™ and Gene Retriever™, to identify the biological and biochemical terms significantly associated with our experimental gene set, which provided additional support and meaning to the experimentally derived gene and inferred protein data. RESULTS We cataloged the transcriptional dynamics within and between organs during STF and discovered differential temporal effects of STF among organs. Using gene ontology enrichment analysis, we identified an organ network sharing 37 common biological pathways perturbed by STF. This network incorporates the brain, liver, interscapular brown adipose tissue, and posterior-subcutaneous white adipose tissue; hence, we named it the brain-liver-fats organ network. Using Reactome pathways analysis, we identified the immune system, dominated by T cell regulation processes, as a central and prominent target of systemic modulations during STF in this organ network. The changes we identified in specific immune components point to the priming of adaptive immunity and parallel the fine-tuning of innate immune signaling. CONCLUSIONS Our study provides a comprehensive multiorgan transcriptomic profiling of mice subjected to multiple periods of STF and provides new insights into the molecular modulators involved in the systemic immunotranscriptomic changes that occur during short-term energy loss.
Collapse
Affiliation(s)
| | | | | | - Mayra L Ruiz Tejada Segura
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Marchioninistraße 25, 81377, München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | | | - Kun Wang
- Sidra Medicine, PO Box 26999, Doha, Qatar.
| | | | | | - Darren W Logan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Marchioninistraße 25, 81377, München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | | | - Luis R Saraiva
- Sidra Medicine, PO Box 26999, Doha, Qatar; Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
McConnel CS, Crisp SA, Biggs TD, Ficklin SP, Parrish LM, Trombetta SC, Sischo WM, Adams-Progar A. A Fixed Cohort Field Study of Gene Expression in Circulating Leukocytes From Dairy Cows With and Without Mastitis. Front Vet Sci 2020; 7:559279. [PMID: 33195534 PMCID: PMC7554338 DOI: 10.3389/fvets.2020.559279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/03/2020] [Indexed: 12/04/2022] Open
Abstract
Specifically designed gene expression studies can be used to prioritize candidate genes and identify novel biomarkers affecting resilience against mastitis and other diseases in dairy cattle. The primary goal of this study was to assess whether specific peripheral leukocyte genes expressed differentially in a previous study of dairy cattle with postpartum disease, also would be expressed differentially in peripheral leukocytes from a diverse set of different dairy cattle with moderate to severe clinical mastitis. Four genes were selected for this study due to their differential expression in a previous transcriptomic analysis of circulating leukocytes from dairy cows with and without evidence of early postpartum disease. An additional 15 genes were included based on their cellular, immunologic, and inflammatory functions associated with resistance and tolerance to mastitis. This fixed cohort study was conducted on a conventional dairy in Washington state. Cows >50 days in milk (DIM) with mastitis (n = 12) were enrolled along with healthy cows (n = 8) selected to match the DIM and lactation numbers of mastitic cows. Blood was collected for a complete blood count (CBC), serum biochemistry, leukocyte isolation, and RNA extraction on the day of enrollment and twice more at 6 to 8-days intervals. Latent class analysis was performed to discriminate healthy vs. mastitic cows and to describe disease resolution. RNA samples were processed by the Primate Diagnostic Services Laboratory (University of Washington, Seattle, WA). Gene expression analysis was performed using the Nanostring System (Nanostring Technologies, Seattle, Washington, USA). Of the four genes (C5AR1, CATHL6, LCN2, and PGLYRP1) with evidence of upregulation in cows with mastitis, three of those genes (CATHL6, LCN2, and PGLYRP1) were investigated due to their previously identified association with postpartum disease. These genes are responsible for immunomodulatory molecules that selectively enhance or alter host innate immune defense mechanisms and modulate pathogen-induced inflammatory responses. Although further research is warranted to explain their functional mechanisms and bioactivity in cattle, our findings suggest that these conserved elements of innate immunity have the potential to bridge disease states and target tissues in diverse dairy populations.
Collapse
Affiliation(s)
- Craig S McConnel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Sierra A Crisp
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Tyler D Biggs
- Department of Horticulture, College of Agriculture, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, United States
| | - Stephen P Ficklin
- Department of Horticulture, College of Agriculture, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, United States
| | - Lindsay M Parrish
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Sophie C Trombetta
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - William M Sischo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Amber Adams-Progar
- Department of Animal Sciences, College of Agriculture, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
14
|
Meyers K, López M, Ho J, Wills S, Rayalam S, Taval S. Lipocalin-2 deficiency may predispose to the progression of spontaneous age-related adiposity in mice. Sci Rep 2020; 10:14589. [PMID: 32883997 PMCID: PMC7471318 DOI: 10.1038/s41598-020-71249-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/13/2020] [Indexed: 01/10/2023] Open
Abstract
Lipocalin-2 (Lcn2) is an innate immune protein elevated by several orders of magnitude in various inflammatory conditions including aging and obesity. Recent studies have shown that Lcn2 is secreted by adipocytes in response to inflammation and is categorized as a new adipokine cross-linking innate immunity and metabolic disorders including obesity. However, the involvement of Lcn2 and its function during the progression of obesity is largely unknown. Recently, browning of white adipose tissue (WAT) has gained attention as a therapeutic strategy to combat obesity. Herein, we have shown that treatment of mature 3T3-L1 adipocytes with recombinant Lcn2 (rec-Lcn2) resulted in the up-regulation of thermogenic and beige/brown markers (UCP1, PRDM16, ZIC-1 and TBX1) and increased mitochondrial activity. Additionally, global Lcn2 genetic knockout (Lcn2KO) mice exhibited accelerated weight gain and visceral fat deposition with age, when compared to wild type (WT) mice. Taken together, both in vitro and in vivo studies suggest that Lcn2 is a naturally occurring adipokine, and may serve as an anti-obesity agent by upregulating the thermogenic markers resulting in the browning of WAT. Therefore, Lcn2 and its downstream signaling pathways could be a potential therapeutic target for obesity.
Collapse
Affiliation(s)
- Keya Meyers
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine - Georgia Campus, 625 Old Peachtree Road, Suwanee, GA, 30024, USA
| | - María López
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine - Georgia Campus, 625 Old Peachtree Road, Suwanee, GA, 30024, USA
| | - Joanna Ho
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine - Georgia Campus, 625 Old Peachtree Road, Suwanee, GA, 30024, USA
| | - Savannah Wills
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine - Georgia Campus, 625 Old Peachtree Road, Suwanee, GA, 30024, USA
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine - Georgia Campus, 625 Old Peachtree Road, Suwanee, GA, 30024, USA. .,Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Room 3040, 625 Old Peachtree Road, Suwanee, GA, 30024, USA.
| | - Shashidharamurthy Taval
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine - Georgia Campus, 625 Old Peachtree Road, Suwanee, GA, 30024, USA. .,Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Room 3031, 625 Old Peachtree Road, Suwanee, GA, 30024, USA.
| |
Collapse
|
15
|
Chen W, Li W, Zhang Z, Tang X, Wu S, Yao G, Li K, Wang D, Xu Y, Feng R, Duan X, Fan X, Lu L, Chen W, Li C, Sun L. Lipocalin-2 Exacerbates Lupus Nephritis by Promoting Th1 Cell Differentiation. J Am Soc Nephrol 2020; 31:2263-2277. [PMID: 32646856 DOI: 10.1681/asn.2019090937] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/24/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lipocalin-2 (LCN2) is an indicator of the severity of lupus nephritis (LN) and plays a pivotal role in immune responses, but it is not known if its effect on LN pathogenesis derives from regulating the immune imbalance of T lymphocyte subsets. METHODS The expression of LCN2 in T cells and kidneys was assessed in renal biopsies from patients with LN. We investigated the relationship between LCN2 levels and development of LN and systemic illness by injecting anti-LCN2 antibodies into MRL/lpr mice and analyzing pristane-treated LCN2 -/- mice. RESULTS LCN2 is highly expressed in CD4+ T cells and in renal tissues, and is associated with severe renal damage in patients with LN and in mice with experimental lupus. LCN2 promotes IFN-γ overexpression in CD4+ T cells through the IL-12/STAT4 pathway in an autocrine or paracrine manner. Both neutralization of LCN2 in MRL/lpr mice and genetic depletion of LCN2 in pristane-induced lupus mice greatly ameliorate nephritis. The frequency and number of splenic and renal Th1 cells decrease in proportion to LN disease activity. Conversely, administration of LCN2 exacerbates the disease with significantly higher renal activity scores and increased numbers of Th1 cells. CONCLUSIONS LCN2 plays a crucial role in Th1 cell differentiation, and may present a potential therapeutic target for LN.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Wenchao Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Zhuoya Zhang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Shufang Wu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Kang Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Yuemei Xu
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ruihai Feng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Xiaoxiao Duan
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Xiangshan Fan
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Liwei Lu
- Department of Pathology, Center of Infection and Immunology, University of Hong Kong, Hong Kong, China
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Chaojun Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, China .,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, China .,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Ghosh S, Stepicheva N, Yazdankhah M, Shang P, Watson AM, Hose S, Liu H, Weiss J, Zigler JS, Valapala M, Watkins SC, Sinha D. The role of lipocalin-2 in age-related macular degeneration (AMD). Cell Mol Life Sci 2020; 77:835-851. [PMID: 31901947 PMCID: PMC7079812 DOI: 10.1007/s00018-019-03423-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022]
Abstract
Lipocalins are a family of secreted adipokines which play important roles in various biological processes. Lipocalin-2 (LCN-2) has been shown to be involved in acute and chronic inflammation. This particular protein is critical in the pathogenesis of several diseases including cancer, diabetes, obesity, and multiple sclerosis. Herein, we discuss the general molecular basis for the involvement of LCN-2 in acute infections and chronic disease progression and also ascertain the probable role of LCN-2 in ocular diseases, particularly in age-related macular degeneration (AMD). We elaborate on the signaling cascades which trigger LCN-2 upregulation in AMD and suggest therapeutic strategies for targeting such pathways.
Collapse
Affiliation(s)
- Sayan Ghosh
- Department of Ophthalmology, Children's Hospital of University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| | - Nadezda Stepicheva
- Department of Ophthalmology, Children's Hospital of University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Meysam Yazdankhah
- Department of Ophthalmology, Children's Hospital of University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Peng Shang
- Department of Ophthalmology, Children's Hospital of University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Alan M Watson
- Center for Biologic Imaging and Department of Cellular Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacey Hose
- Department of Ophthalmology, Children's Hospital of University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Haitao Liu
- Department of Ophthalmology, Children's Hospital of University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Joseph Weiss
- Department of Ophthalmology, Children's Hospital of University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - J Samuel Zigler
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Simon C Watkins
- Center for Biologic Imaging and Department of Cellular Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Debasish Sinha
- Department of Ophthalmology, Children's Hospital of University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Cell Biology and Developmental Biology, Children's Hospital of University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
17
|
Pokorska J, Kułaj D, Ochrem A. Impact of bovine lipocalin-2 haplotype on milk composition, somatic cell score and incidence of mastitis in Polish Holstein-Friesian cattle. JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1726354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Joanna Pokorska
- Department of Cattle Breeding, Institute of Animal Science, University of Agriculture in Krakow, Krakow, Poland
| | - Dominika Kułaj
- Department of Cattle Breeding, Institute of Animal Science, University of Agriculture in Krakow, Krakow, Poland
| | - Andrzej Ochrem
- Department of Cattle Breeding, Institute of Animal Science, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
18
|
Li D, Yan Sun W, Fu B, Xu A, Wang Y. Lipocalin-2-The myth of its expression and function. Basic Clin Pharmacol Toxicol 2019; 127:142-151. [PMID: 31597008 DOI: 10.1111/bcpt.13332] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/19/2019] [Indexed: 01/01/2023]
Abstract
Lipocalin-2 is a functional biomarker for acute and chronic kidney diseases, heart failure and obesity-related medical complications. It is rapidly induced in epithelial cells under stress conditions, but constitutively produced from pre-adipocytes and mature adipocytes. Measuring the lipocalin-2 levels represents an effective approach for risk prediction, patient stratification and disease management. Nevertheless, due to ligand-binding, post-translational modification and protein-protein interaction, lipocalin-2 exists as multiple variants that elicit different pathophysiological functions. To characterize the specific structure-functional relationships of lipocalin-2 variants is critical for the development of biomarker assays with sufficient precision and reliability. Moreover, identifying the pathological forms of lipocalin-2 will provide new therapeutic targets and treatment approaches for obesity-related complications.
Collapse
Affiliation(s)
- Dahui Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Wai Yan Sun
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Bowen Fu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Meyerhoff N, Rohn K, Carlson R, Tipold A. Measurement of Neutrophil Gelatinase-Associated Lipocalin Concentration in Canine Cerebrospinal Fluid and Serum and Its Involvement in Neuroinflammation. Front Vet Sci 2019; 6:315. [PMID: 31620456 PMCID: PMC6759468 DOI: 10.3389/fvets.2019.00315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/04/2019] [Indexed: 11/28/2022] Open
Abstract
Neutrophil gelatinase-associated Lipocalin (NGAL) is a glycoprotein involved in inflammation acting as an acute phase protein and chemokine as well as a regulator of iron homeostasis. NGAL has been shown to be upregulated in experimental autoimmune encephalomyelitis (EAE) in mice. Increased NGAL concentration in cerebrospinal fluid (CSF) and expression in central nervous system (CNS) has been described in human neuroinflammatory disease such as multiple sclerosis and neuropsychiatric lupus as well as in bacterial meningitis. We aimed to investigate involvement of NGAL in spontaneous canine neuroinflammation as a potential large animal model for immune- mediated neurological disorders. A commercially available Enzyme-linked Immunosorbent Assay (ELISA) for detection of canine NGAL was validated for use in canine CSF. Concentration in CSF and serum of canine patients suffering from steroid- responsive meningitis- arteriitis (SRMA), Meningoencephalitis of unknown origin (MUO), different non- inflammatory CNS disease and control dogs were compared. Relationship between NGAL concentration in CSF and serum and inflammatory parameters in CSF and blood (IgA concentration, total nucleated cell count (TNCC), protein content) as well as association with erythrocytes in CSF, duration of illness, plasma creatinine and urinary leucocytes were evaluated. In dogs with SRMA and MUO, CSF concentration of NGAL was significantly higher than in dogs with idiopathic epilepsy, compressive myelopathy, intracranial neoplasia and SRMA in remission (p < 0.0001). Patients with acute SRMA had significantly higher levels of NGAL in CSF than neurologically normal controls (p < 0.0001). Serum NGAL concentrations were significantly higher in dogs with SRMA than in patients with myelopathy and intracranial neoplasia (p < 0.0001). NGAL levels in CSF were strongly positively associated with IgA concentration (rSpear= 0.60116, p < 0.0001), TNCC (rSpear= 0.65746, p < 0.0001) and protein content (rSpear= 0.73353, p < 0.0001) in CSF. It can be measured in CSF of healthy and diseased dogs. Higher concentrations in canine patients with SRMA as well as positive association with TNCC in CSF suggest an involvement in pro-inflammatory pathways and chemotaxis in SRMA. High serum levels of NGAL in serum of SRMA patients in different stages of disease might reflect the systemic character of the disease.
Collapse
Affiliation(s)
- Nina Meyerhoff
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine, Hanover, Germany
| | - Regina Carlson
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
20
|
Ondee T, Gillen J, Visitchanakun P, Somparn P, Issara-Amphorn J, Dang Phi C, Chancharoenthana W, Gurusamy D, Nita-Lazar A, Leelahavanichkul A. Lipocalin-2 (Lcn-2) Attenuates Polymicrobial Sepsis with LPS Preconditioning (LPS Tolerance) in FcGRIIb Deficient Lupus Mice. Cells 2019; 8:cells8091064. [PMID: 31514375 PMCID: PMC6769833 DOI: 10.3390/cells8091064] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 02/08/2023] Open
Abstract
In patients with active lupus, spontaneous endotoxemia and possibly tolerance to lipopolysaccharide (LPS) is a potentially adverse complication. Similarly, previous reports have demonstrated that FcGRIIb deficient mice (FcGRIIb-/-; a lupus mouse model) are susceptible to LPS tolerance-induced decreased cytokine responses that inadequate for the organismal control. Thus, understanding the relationship between FcGRIIb and LPS tolerance could improve the therapeutic strategy for lupus. LPS tolerance can be induced through sequential LPS stimulations in either cells or a model organism. In RAW264.7 (a mouse macrophage cell-line), sequential LPS stimulation induced the secretion of Lipocalin-2 (Lcn-2) despite reduced cytokine secretion and severe energy depletion, as measured by the extracellular flux analysis, typical of LPS tolerance. In contrast, treatment with recombinant Lcn-2 (rLcn-2) attenuated LPS tolerance, as shown by an increase in secreted cytokines and altered macrophage polarization toward M1 (increased iNOS and TNF-α) in RAW264.7 cells. These results suggest a role of Lcn-2 in LPS tolerance attenuation. In bone marrow derived macrophages, Lcn-2 level was similar in LPS tolerant FcGRIIb-/- and wild-type (WT) cells despite the increased LPS tolerance of FcGRIIb-/- cells, suggesting relatively low basal levels of Lcn-2 produced in FcGRIIb-/- cells. In addition, attenuation of LPS tolerance effectuated by granulocyte-monocyte colony stimulating factor (GM-CSF) reduced Lcn-2 in both cell types, implying an inverse correlation between Lcn-2 and the severity of LPS tolerance. Consequently, rLcn-2 improved LPS tolerance only in FcGRIIb-/- macrophages and attenuated disease severity of cecal ligation and puncture (CLP) sepsis pre-conditioning with sequential LPS injection (LPS-CLP model) only in FcGRIIb-/- mice, but not in WT mice. To summarize, inadequate Lcn-2 production in FcGRIIb-/- macrophage might, at least in part, be responsible for the inordinate LPS tolerance compared with WT cells. Additionally, supplementation of rLcn-2 attenuates LPS tolerance in FcGRIIb-/- macrophages in vitro, and in FcGRIIb-/- mice with LPS-CLP sepsis in vivo. In conclusion, Lcn-2 secreted by macrophages is possibly an autocrine signal to counter the reduced cytokine secretion in LPS tolerance.
Collapse
Affiliation(s)
- Thunnicha Ondee
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Joseph Gillen
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Research affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiraphorn Issara-Amphorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Cong Dang Phi
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wiwat Chancharoenthana
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Devikala Gurusamy
- Surgery Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | - Asada Leelahavanichkul
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
21
|
Polymorphism of bovine lipocalin-2 gene and its impact on milk production traits and mastitis in Holstein Friesian cattle. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
22
|
Bhusal A, Rahman MH, Lee IK, Suk K. Role of Hippocampal Lipocalin-2 in Experimental Diabetic Encephalopathy. Front Endocrinol (Lausanne) 2019; 10:25. [PMID: 30761088 PMCID: PMC6363678 DOI: 10.3389/fendo.2019.00025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/15/2019] [Indexed: 01/04/2023] Open
Abstract
Diabetic encephalopathy is a severe diabetes-related complication in the central nervous system (CNS) that is characterized by degenerative neurochemical and structural changes leading to impaired cognitive function. While the exact pathophysiology of diabetic encephalopathy is not well-understood, it is likely that neuroinflammation is one of the key pathogenic mechanisms that cause this complication. Lipocalin-2 (LCN2) is an acute phase protein known to promote neuroinflammation via the recruitment and activation of immune cells and glia, particularly microglia and astrocytes, thereby inducing proinflammatory mediators in a range of neurological disorders. In this study, we investigated the role of LCN2 in multiple aspects of diabetic encephalopathy in mouse models of diabetes. Here, we show that induction of diabetes increased the expression of both Lcn2 mRNA and protein in the hippocampus. Genetic deficiency of Lcn2 significantly reduced gliosis, recruitment of macrophages, and production of inflammatory cytokines in the diabetic mice. Further, diabetes-induced hippocampal toxicity and cognitive decline were both lower in Lcn2 knockout mice than in the wild-type animals. Taken together, our findings highlight the critical role of LCN2 in the pathogenesis of diabetic encephalopathy.
Collapse
Affiliation(s)
- Anup Bhusal
- BK21 Plus KNU Biomedical Convergence Program, Departments of Biomedical Science and Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Md Habibur Rahman
- BK21 Plus KNU Biomedical Convergence Program, Departments of Biomedical Science and Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - In-Kyu Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- BK21 Plus KNU Biomedical Convergence Program, Departments of Biomedical Science and Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
23
|
Gorini S, Marzolla V, Mammi C, Armani A, Caprio M. Mineralocorticoid Receptor and Aldosterone-Related Biomarkers of End-Organ Damage in Cardiometabolic Disease. Biomolecules 2018; 8:biom8030096. [PMID: 30231508 PMCID: PMC6165349 DOI: 10.3390/biom8030096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
The mineralocorticoid receptor (MR) was first identified as a blood pressure regulator, modulating renal sodium handling in response to its principal ligand aldosterone. The mineralocorticoid receptor is also expressed in many tissues other than the kidney, such as adipose tissue, heart and vasculature. Recent studies have shown that MR plays a relevant role in the control of cardiovascular and metabolic function, as well as in adipogenesis. Dysregulation of aldosterone/MR signaling represents an important cause of disease as high plasma levels of aldosterone are associated with hypertension, obesity and increased cardiovascular risk. Aldosterone displays powerful vascular effects and acts as a potent pro-fibrotic agent in cardiovascular remodeling. Mineralocorticoid receptor activation regulates genes involved in vascular and cardiac fibrosis, calcification and inflammation. This review focuses on the role of novel potential biomarkers related to aldosterone/MR system that could help identify cardiovascular and metabolic detrimental conditions, as a result of altered MR activation. Specifically, we discuss: (1) how MR signaling regulates the number and function of different subpopulations of circulating and intra-tissue immune cells; (2) the role of aldosterone/MR system in mediating cardiometabolic diseases induced by obesity; and (3) the role of several MR downstream molecules as novel potential biomarkers of cardiometabolic diseases, end-organ damage and rehabilitation outcome.
Collapse
Affiliation(s)
- Stefania Gorini
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Caterina Mammi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy.
| |
Collapse
|
24
|
More than a simple biomarker: the role of NGAL in cardiovascular and renal diseases. Clin Sci (Lond) 2018; 132:909-923. [PMID: 29739822 DOI: 10.1042/cs20171592] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/05/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is a small circulating protein that is highly modulated in a wide variety of pathological situations, making it a useful biomarker of various disease states. It is one of the best markers of acute kidney injury, as it is rapidly released after tubular damage. However, a growing body of evidence highlights an important role for NGAL beyond that of a biomarker of renal dysfunction. Indeed, numerous studies have demonstrated a role for NGAL in both cardiovascular and renal diseases. In the present review, we summarize current knowledge concerning the involvement of NGAL in cardiovascular and renal diseases and discuss the various mechanisms underlying its pathological implications.
Collapse
|
25
|
Parmar T, Parmar VM, Perusek L, Georges A, Takahashi M, Crabb JW, Maeda A. Lipocalin 2 Plays an Important Role in Regulating Inflammation in Retinal Degeneration. THE JOURNAL OF IMMUNOLOGY 2018; 200:3128-3141. [PMID: 29602770 DOI: 10.4049/jimmunol.1701573] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/05/2018] [Indexed: 12/17/2022]
Abstract
It has become increasingly important to understand how retinal inflammation is regulated because inflammation plays a role in retinal degenerative diseases. Lipocalin 2 (LCN2), an acute stress response protein with multiple innate immune functions, is increased in ATP-binding cassette subfamily A member 4 (Abca4) -/- retinol dehydrogenase 8 (Rdh8) -/- double-knockout mice, an animal model for Stargardt disease and age-related macular degeneration (AMD). To examine roles of LCN2 in retinal inflammation and degeneration, Lcn2-/-Abca4-/-Rdh8-/- triple-knockout mice were generated. Exacerbated inflammation following light exposure was observed in Lcn2-/-Abca4-/-Rdh8-/- mice as compared with Abca4-/-Rdh8-/- mice, with upregulation of proinflammatory genes and microglial activation. RNA array analyses revealed an increase in immune response molecules such as Ccl8, Ccl2, and Cxcl10 To further probe a possible regulatory role for LCN2 in retinal inflammation, we examined the in vitro effects of LCN2 on NF-κB signaling in human retinal pigmented epithelial (RPE) cells differentiated from induced pluripotent stem cells derived from healthy donors. We found that LCN2 induced expression of antioxidant enzymes heme oxygenase 1 and superoxide dismutase 2 in these RPE cells and could inhibit the cytotoxic effects of H2O2 and LPS. ELISA revealed increased LCN2 levels in plasma of patients with Stargardt disease, retinitis pigmentosa, and age-related macular degeneration as compared with healthy controls. Finally, overexpression of LCN2 in RPE cells displayed protection from cell death. Overall these results suggest that LCN2 is involved in prosurvival responses during cell stress and plays an important role in regulating inflammation during retinal degeneration.
Collapse
Affiliation(s)
- Tanu Parmar
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Vipul M Parmar
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Lindsay Perusek
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Anouk Georges
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - John W Crabb
- Cole Eye Institute, Cleveland Clinic, OH 44195; and
| | - Akiko Maeda
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106; .,Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
26
|
Kato S, Inui N, Hozumi H, Inoue Y, Yasui H, Karayama M, Kono M, Suzuki Y, Furuhashi K, Enomoto N, Fujisawa T, Nakamura Y, Watanabe H, Suda T. Neutrophil gelatinase-associated lipocalin in patients with sarcoidosis. Respir Med 2018; 138S:S20-S23. [PMID: 29373174 DOI: 10.1016/j.rmed.2018.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/06/2017] [Accepted: 01/08/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Neutrophil gelatinase-associated lipocalin (NGAL) is a glycoprotein that is involved in the innate immune system and increased expression has been detected in diverse diseases. Sarcoidosis is a systemic granulomatous disorder and its clinical course and prognosis are changeable and highly divergent. This study aimed to examine the expression of NGAL in patients with sarcoidosis. In addition, we examined whether NGAL could serve as a marker of disease activity and prognosis. METHODS Ninety-six sarcoidosis patients were studied. Serum samples collected at the time of diagnosis were examined for NGAL by cellular enzyme-linked immunosorbent assay. The level of NGAL was compared with clinical, radiological and laboratory data. RESULTS Patients with sarcoidosis had significantly higher levels of NGAL (the median [interquartile range] was 35.1 ng/mL [23.5-60.8] in sarcoidosis patients versus 17.2 ng/mL [13.0-27.0] in the reference population, p < .0001). NGAL levels were not correlated with markers for disease activity. During the follow-up period, 26 patients (27.1%) deteriorated and received systemic corticosteroid therapy for organ dysfunction. In those patients, NGAL levels were significantly higher than in those who did not receive corticosteroid therapy (56.5 ng/mL [27.3-92.3] versus 34.3 ng/mL [23.0-53.0], p = .0201). Upon multivariate logistic regression analysis, elevated NGAL levels at diagnosis were associated with subsequent use of systemic corticosteroid therapy (hazard ratio, 1.20; 95% confidence interval, 1.09-1.31; p = .0004). CONCLUSION NGAL may be a useful marker to predict the disease course of sarcoidosis.
Collapse
Affiliation(s)
- Shinpei Kato
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan; Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan.
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | - Masato Kono
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | - Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | - Hiroshi Watanabe
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| |
Collapse
|
27
|
Neutrophil Gelatinase-Associated Lipocalin from immune cells is mandatory for aldosterone-induced cardiac remodeling and inflammation. J Mol Cell Cardiol 2017; 115:32-38. [PMID: 29289651 DOI: 10.1016/j.yjmcc.2017.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/05/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
Immune system activation is involved in cardiovascular (CV) inflammation and fibrosis, following activation of the mineralocorticoid receptor (MR). We previously showed that Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a novel target of MR signaling in CV tissue and plays a critical role in aldosterone/MR-dependent hypertension and fibrosis. We hypothesized that the production of NGAL by immune cells may play an important part in the mediation of these deleterious mineralocorticoid-induced effects. We analyzed the effect of aldosterone on immune cell recruitment and NGAL expression in vivo. We then studied the role of NGAL produced by immune cells in aldosterone-mediated cardiac inflammation and remodeling using mice depleted for NGAL in their immune cells by bone marrow transplantation and subjected to mineralocorticoid challenge NAS (Nephrectomy, Aldosterone 200μg/kg/day, Salt 1%). NAS treatment induced the recruitment of various immune cell populations to lymph nodes (granulocytes, B lymphocytes, activated CD8+ T lymphocytes) and the induction of NGAL expression in macrophages, dendritic cells, and PBMCs. Mice depleted for NGAL in their immune cells were protected against NAS-induced cardiac remodeling and inflammation. We conclude that NGAL produced by immune cells plays a pivotal role in cardiac damage under mineralocorticoid excess. Our data further stressed a pathogenic role of NGAL in cardiac damages, besides its relevance as a biomarker of renal injury.
Collapse
|
28
|
Nath AP, Ritchie SC, Byars SG, Fearnley LG, Havulinna AS, Joensuu A, Kangas AJ, Soininen P, Wennerström A, Milani L, Metspalu A, Männistö S, Würtz P, Kettunen J, Raitoharju E, Kähönen M, Juonala M, Palotie A, Ala-Korpela M, Ripatti S, Lehtimäki T, Abraham G, Raitakari O, Salomaa V, Perola M, Inouye M. An interaction map of circulating metabolites, immune gene networks, and their genetic regulation. Genome Biol 2017; 18:146. [PMID: 28764798 PMCID: PMC5540552 DOI: 10.1186/s13059-017-1279-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Immunometabolism plays a central role in many cardiometabolic diseases. However, a robust map of immune-related gene networks in circulating human cells, their interactions with metabolites, and their genetic control is still lacking. Here, we integrate blood transcriptomic, metabolomic, and genomic profiles from two population-based cohorts (total N = 2168), including a subset of individuals with matched multi-omic data at 7-year follow-up. RESULTS We identify topologically replicable gene networks enriched for diverse immune functions including cytotoxicity, viral response, B cell, platelet, neutrophil, and mast cell/basophil activity. These immune gene modules show complex patterns of association with 158 circulating metabolites, including lipoprotein subclasses, lipids, fatty acids, amino acids, small molecules, and CRP. Genome-wide scans for module expression quantitative trait loci (mQTLs) reveal five modules with mQTLs that have both cis and trans effects. The strongest mQTL is in ARHGEF3 (rs1354034) and affects a module enriched for platelet function, independent of platelet counts. Modules of mast cell/basophil and neutrophil function show temporally stable metabolite associations over 7-year follow-up, providing evidence that these modules and their constituent gene products may play central roles in metabolic inflammation. Furthermore, the strongest mQTL in ARHGEF3 also displays clear temporal stability, supporting widespread trans effects at this locus. CONCLUSIONS This study provides a detailed map of natural variation at the blood immunometabolic interface and its genetic basis, and may facilitate subsequent studies to explain inter-individual variation in cardiometabolic disease.
Collapse
Affiliation(s)
- Artika P Nath
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, 3010, Victoria, Australia.,Systems Genomics Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Scott C Ritchie
- Systems Genomics Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Sean G Byars
- Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia.,School of BioSciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Liam G Fearnley
- Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia.,School of BioSciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Aki S Havulinna
- National Institute for Health and Welfare, Helsinki, 00271, Finland.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, 00014, Finland
| | - Anni Joensuu
- National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Antti J Kangas
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland
| | - Pasi Soininen
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, 70211, Finland
| | | | - Lili Milani
- University of Tartu, Estonian Genome Center, Tartu, 51010, Estonia
| | - Andres Metspalu
- University of Tartu, Estonian Genome Center, Tartu, 51010, Estonia
| | - Satu Männistö
- National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Peter Würtz
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland.,Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland
| | - Johannes Kettunen
- National Institute for Health and Welfare, Helsinki, 00271, Finland.,Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, 70211, Finland.,Biocenter Oulu, University of Oulu, Oulu, 90014, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, 33014, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, University of Tampere and Tampere University Hospital, FI-33521, Tampere, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku and Division of Medicine, Turku University Hospital, FI-20520, Turku, Finland.,Murdoch Childrens Research Institute, Parkville, 3052, Victoria, Australia
| | - Aarno Palotie
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, 00014, Finland.,Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, 70211, Finland.,Biocenter Oulu, University of Oulu, Oulu, 90014, Finland.,Computational Medicine, School of Social and Community Medicine, University of Bristol, Bristol, BS8 1TH, UK.,Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, 00014, Finland.,Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, 33014, Tampere, Finland
| | - Gad Abraham
- Systems Genomics Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia.,School of BioSciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Olli Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, 20520, Finland.,Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, 20520, Finland
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, 00271, Finland.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, 00014, Finland.,University of Tartu, Estonian Genome Center, Tartu, 51010, Estonia
| | - Michael Inouye
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, 3010, Victoria, Australia. .,Systems Genomics Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia. .,Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia. .,School of BioSciences, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| |
Collapse
|
29
|
Pathogenic Upregulation of Glial Lipocalin-2 in the Parkinsonian Dopaminergic System. J Neurosci 2017; 36:5608-22. [PMID: 27194339 DOI: 10.1523/jneurosci.4261-15.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/13/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Lipocalin-2 (LCN2) is a member of the highly heterogeneous secretory protein family of lipocalins and increases in its levels can contribute to neurodegeneration in the adult brain. However, there are no reports on the role of LCN2 in Parkinson's disease (PD). Here, we report for the first time that LCN2 expression is increased in the substantia nigra (SN) of patients with PD. In mouse brains, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment for a neurotoxin model of PD significantly upregulated LCN2 expression, mainly in reactive astrocytes in both the SN and striatum. The increased LCN2 levels contributed to neurotoxicity and neuroinflammation, resulting in disruption of the nigrostriatal dopaminergic (DA) projection and abnormal locomotor behaviors, which were ameliorated in LCN2-deficient mice. Similar to the effects of MPTP treatment, LCN2-induced neurotoxicity was also observed in the 6-hydroxydopamine (6-OHDA)-treated animal model of PD. Moreover, treatment with the iron donor ferric citrate (FC) and the iron chelator deferoxamine mesylate (DFO) increased and decreased, respectively, the LCN2-induced neurotoxicity in vivo In addition to the in vivo results, 1-methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity in cocultures of mesencephalic neurons and astrocytes was reduced by LCN2 gene deficiency in the astrocytes and conditioned media derived from MPP(+)-treated SH-SY5Y neuronal enhanced glial expression of LCN2 in vitro Therefore, our results demonstrate that astrocytic LCN2 upregulation in the lesioned DA system may play a role as a potential pathogenic factor in PD and suggest that inhibition of LCN2 expression or activity may be useful in protecting the nigrostriatal DA system in the adult brain. SIGNIFICANCE STATEMENT Lipocalin-2 (LCN2), a member of the highly heterogeneous secretory protein family of lipocalins, may contribute to neuroinflammation and neurotoxicity in the brain. However, LCN2 expression and its role in Parkinson's disease (PD) are largely unknown. Here, we report that LCN2 is upregulated in the substantia nigra of patients with PD and neurotoxin-treated animal models of PD. Our results suggest that LCN2 upregulation might be a potential pathogenic mechanism of PD, which would result in disruption of the nigrostriatal dopaminergic system through neurotoxic iron accumulation and neuroinflammation. Therefore, inhibition of LCN2 expression or activity may be useful in protecting the nigrostriatal dopaminergic projection in PD.
Collapse
|
30
|
Gomez-Chou SB, Swidnicka-Siergiejko AK, Badi N, Chavez-Tomar M, Lesinski GB, Bekaii-Saab T, Farren MR, Mace TA, Schmidt C, Liu Y, Deng D, Hwang RF, Zhou L, Moore T, Chatterjee D, Wang H, Leng X, Arlinghaus RB, Logsdon CD, Cruz-Monserrate Z. Lipocalin-2 Promotes Pancreatic Ductal Adenocarcinoma by Regulating Inflammation in the Tumor Microenvironment. Cancer Res 2017; 77:2647-2660. [PMID: 28249896 PMCID: PMC5441230 DOI: 10.1158/0008-5472.can-16-1986] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/16/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022]
Abstract
Lipocalin-2 (LCN2) promotes malignant development in many cancer types. LCN2 is upregulated in patients with pancreatic ductal adenocarcinoma (PDAC) and in obese individuals, but whether it contributes to PDAC development is unclear. In this study, we investigated the effects of Lcn2 depletion on diet-induced obesity, inflammation, and PDAC development. Mice with acinar cell-specific expression of KrasG12D were crossed with Lcn2-depleted animals and fed isocaloric diets with varying amounts of fat content. Pancreas were collected and analyzed for inflammation, pancreatic intraepithelial neoplasia (PanIN), and PDAC. We also used a syngeneic orthotopic PDAC mouse model to study tumor growth in the presence or absence of Lcn2 expression. In addition, to understand the mechanistic role of how LCN2 could be mediating PDAC, we studied LCN2 and its specific receptor solute carrier family 22 member 17 (SLC22A17) in human pancreatic cancer stellate cells (PSC), key mediators of the PDAC stroma. Depletion of Lcn2 diminished extracellular matrix deposition, immune cell infiltration, PanIN formation, and tumor growth. Notably, it also increased survival in both obesity-driven and syngeneic orthotopic PDAC mouse models. LCN2 modulated the secretion of proinflammatory cytokines in PSC of the PDAC tumor microenvironment, whereas downregulation of LCN2-specific receptor SLC22A17 blocked these effects. Our results reveal how LCN2 acts in the tumor microenvironment links obesity, inflammation, and PDAC development. Cancer Res; 77(10); 2647-60. ©2017 AACR.
Collapse
Affiliation(s)
- Sobeyda B Gomez-Chou
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Agnieszka Katarzyna Swidnicka-Siergiejko
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas
- Department of Gastroenterology and Internal Medicine, University of Bialystok, Bialystok, Poland
| | - Niharika Badi
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Myrriah Chavez-Tomar
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Tanios Bekaii-Saab
- Department of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Matthew R Farren
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Thomas A Mace
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Carl Schmidt
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yan Liu
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Defeng Deng
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Rosa F Hwang
- Department of Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Liran Zhou
- Department of Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Todd Moore
- Department of Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Deyali Chatterjee
- Department of Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Xiaohong Leng
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Ralph B Arlinghaus
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Craig D Logsdon
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas.
- Department of Gastrointestinal Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Zobeida Cruz-Monserrate
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio.
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
31
|
Furukawa T, Shimoyama S, Miki Y, Nikaido Y, Koga K, Nakamura K, Wakabayashi K, Ueno S. Chronic diazepam administration increases the expression of Lcn2 in the CNS. Pharmacol Res Perspect 2017; 5:e00283. [PMID: 28596835 PMCID: PMC5461642 DOI: 10.1002/prp2.283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/03/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022] Open
Abstract
Benzodiazepines (BZDs), which bind with high affinity to gamma-aminobutyric acid type A receptors (GABAA-Rs) and potentiate the effects of GABA, are widely prescribed for anxiety, insomnia, epileptic discharge, and as anticonvulsants. The long-term use of BZDs is limited due to adverse effects such as tolerance, dependence, withdrawal effects, and impairments in cognition and learning. Additionally, clinical reports have shown that chronic BZD treatment increases the risk of Alzheimer's disease. Unusual GABAA-R subunit expression and GABAA-R phosphorylation are induced by chronic BZD use. However, the gene expression and signaling pathways related to these effects are not completely understood. In this study, we performed a microarray analysis to investigate the mechanisms underlying the effect of chronic BZD administration on gene expression. Diazepam (DZP, a BZD) was chronically administered, and whole transcripts in the brain were analyzed. We found that the mRNA expression levels were significantly affected by chronic DZP administration and that lipocalin 2 (Lcn2) mRNA was the most upregulated gene in the cerebral cortex, hippocampus, and amygdala. Lcn2 is known as an iron homeostasis-associated protein. Immunostained signals of Lcn2 were detected in neuron, astrocyte, microglia, and Lcn2 protein expression levels were consistently upregulated. This upregulation was observed without proinflammatory genes upregulation, and was attenuated by chronic treatment of deferoxamine mesylate (DFO), iron chelator. Our results suggest that chronic DZP administration regulates transcription and upregulates Lcn2 expression levels without an inflammatory response in the mouse brain. Furthermore, the DZP-induced upregulation of Lcn2 expression was influenced by ambient iron.
Collapse
Affiliation(s)
- Tomonori Furukawa
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Shuji Shimoyama
- Research Center for Child Mental Development Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Yasuo Miki
- Department of Neuropathology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Yoshikazu Nikaido
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Kohei Koga
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Kazuhiko Nakamura
- Research Center for Child Mental Development Hirosaki University Graduate School of Medicine Hirosaki Japan.,Department of Neuropsychiatry Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Koichi Wakabayashi
- Department of Neuropathology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Shinya Ueno
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan.,Research Center for Child Mental Development Hirosaki University Graduate School of Medicine Hirosaki Japan
| |
Collapse
|
32
|
Shao S, Cao T, Jin L, Li B, Fang H, Zhang J, Zhang Y, Hu J, Wang G. Increased Lipocalin-2 Contributes to the Pathogenesis of Psoriasis by Modulating Neutrophil Chemotaxis and Cytokine Secretion. J Invest Dermatol 2016; 136:1418-1428. [DOI: 10.1016/j.jid.2016.03.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
|
33
|
Martín R, Laval L, Chain F, Miquel S, Natividad J, Cherbuy C, Sokol H, Verdu EF, van Hylckama Vlieg J, Bermudez-Humaran LG, Smokvina T, Langella P. Bifidobacterium animalis ssp. lactis CNCM-I2494 Restores Gut Barrier Permeability in Chronically Low-Grade Inflamed Mice. Front Microbiol 2016; 7:608. [PMID: 27199937 PMCID: PMC4858658 DOI: 10.3389/fmicb.2016.00608] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/12/2016] [Indexed: 01/15/2023] Open
Abstract
Growing evidence supports the efficacy of many probiotic strains in the management of gastrointestinal disorders associated with deregulated intestinal barrier function and/or structure. In particular, bifidobacteria have been studied for their efficacy to both prevent and treat a broad spectrum of animal and/or human gut disorders. The aim of the current work was thus to evaluate effects on intestinal barrier function of Bifidobacterium animalis ssp. lactis CNCM-I2494, a strain used in fermented dairy products. A chronic dinitrobenzene sulfonic acid (DNBS)-induced low-grade inflammation model causing gut dysfunction in mice was used in order to study markers of inflammation, intestinal permeability, and immune function in the presence of the bacterial strain. In this chronic low-grade inflammation mice model several parameters pointed out the absence of an over active inflammation process. However, gut permeability, lymphocyte populations, and colonic cytokines were found to be altered. B. animalis ssp. lactis CNCM-I2494 was able to protect barrier functions by restoring intestinal permeability, colonic goblet cell populations, and cytokine levels. Furthermore, tight junction (TJ) proteins levels were also measured by qRT-PCR showing the ability of this strain to specifically normalize the level of several TJ proteins, in particular for claudin-4. Finally, B. lactis strain counterbalanced CD4+ lymphocyte alterations in both spleen and mesenteric lymphoid nodes. It restores the Th1/Th2 ratio altered by the DNBS challenge (which locally augments CD4+ Th1 cells) by increasing the Th2 response as measured by the increase in the production of major representative Th2 cytokines (IL-4, IL-5, and IL-10). Altogether, these data suggest that B. animalis ssp. lactis CNCM-I2494 may efficiently prevent disorders associated with increased barrier permeability.
Collapse
Affiliation(s)
- Rebeca Martín
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Laure Laval
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France; Danone Nutricia ResearchPalaiseau, France
| | - Florian Chain
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Sylvie Miquel
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Jane Natividad
- Farncombe Family Digestive Health Research Institute, McMaster University Hamilton, ON, Canada
| | - Claire Cherbuy
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Harry Sokol
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France; ERL INSERM U 1057/UMR7203, Faculté de Médecine Saint-Antoine, Université Pierre et Marie CurieParis, France; Service de Gastroentérologie, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de ParisParis, France
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University Hamilton, ON, Canada
| | | | - Luis G Bermudez-Humaran
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | | | - Philippe Langella
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| |
Collapse
|
34
|
Hovens IB, van Leeuwen BL, Mariani MA, Kraneveld AD, Schoemaker RG. Postoperative cognitive dysfunction and neuroinflammation; Cardiac surgery and abdominal surgery are not the same. Brain Behav Immun 2016; 54:178-193. [PMID: 26867718 DOI: 10.1016/j.bbi.2016.02.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/25/2016] [Accepted: 02/07/2016] [Indexed: 12/21/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a debilitating surgical complication, with cardiac surgery patients at particular risk. To gain insight in the mechanisms underlying the higher incidence of POCD after cardiac versus non-cardiac surgery, systemic and central inflammatory changes, alterations in intraneuronal pathways, and cognitive performance were studied after cardiac and abdominal surgery in rats. Male Wistar rats were subjected to ischemia reperfusion of the upper mesenteric artery (abdominal surgery) or the left coronary artery (cardiac surgery). Control rats remained naïve, received anesthesia only, or received thoracic sham surgery. Rats were subjected to affective and cognitive behavioral tests in postoperative week 2. Plasma concentrations of inflammatory factors, and markers for neuroinflammation (NGAL and microglial activity) and the BDNF pathway (BDNF, p38MAPK and DCX) were determined. Spatial memory was impaired after both abdominal and cardiac surgery, but only cardiac surgery impaired spatial learning and object recognition. While all surgical procedures elicited a pronounced acute systemic inflammatory response, NGAL and TNFα levels were particularly increased after abdominal surgery. Conversely, NGAL in plasma and the paraventricular nucleus of the hypothalamus and microglial activity in hippocampus and prefrontal cortex on postoperative day 14 were increased after cardiac, but not abdominal surgery. Both surgery types induced hippocampal alterations in BDNF signaling. These results suggest that POCD after cardiac surgery, compared to non-cardiac surgery, affects different cognitive domains and hence may be more extended rather than more severe. Moreover, while abdominal surgery effects seem limited to hippocampal brain regions, cardiac surgery seems associated with more wide spread alterations in the brain.
Collapse
Affiliation(s)
- Iris B Hovens
- Department of Molecular Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; Department of Surgery and Surgical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Barbara L van Leeuwen
- Department of Surgery and Surgical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Massimo A Mariani
- Department of Cardio-Thoracic Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Regien G Schoemaker
- Department of Molecular Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
35
|
Ashraf MI, Schwelberger HG, Brendel KA, Feurle J, Andrassy J, Kotsch K, Regele H, Pratschke J, Maier HT, Aigner F. Exogenous Lipocalin 2 Ameliorates Acute Rejection in a Mouse Model of Renal Transplantation. Am J Transplant 2016; 16:808-20. [PMID: 26595644 PMCID: PMC4996417 DOI: 10.1111/ajt.13521] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 01/25/2023]
Abstract
Lipocalin 2 (Lcn2) is rapidly produced by damaged nephron epithelia and is one of the most promising new markers of renal injury, delayed graft function and acute allograft rejection (AR); however, the functional importance of Lcn2 in renal transplantation is largely unknown. To understand the role of Lcn2 in renal AR, kidneys from Balb/c mice were transplanted into C57Bl/6 mice and vice versa and analyzed for morphological and physiological outcomes of AR at posttransplantation days 3, 5, and 7. The allografts showed a steady increase in intensity of interstitial infiltration, tubulitis and periarterial aggregation of lymphocytes associated with a substantial elevation in serum levels of creatinine, urea and Lcn2. Perioperative administration of recombinant Lcn2:siderophore:Fe complex (rLcn2) to recipients resulted in functional and morphological amelioration of the allograft at day 7 almost as efficiently as daily immunosuppression with cyclosporine A (CsA). No significant differences were observed in various donor-recipient combinations (C57Bl/6 wild-type and Lcn2(-/-) , Balb/c donors and recipients). Histochemical analyses of the allografts showed reduced cell death in recipients treated with rLcn2 or CsA. These results demonstrate that Lcn2 plays an important role in reducing the extent of kidney AR and indicate the therapeutic potential of Lcn2 in transplantation.
Collapse
Affiliation(s)
- M. I. Ashraf
- Department of VisceralTransplant and Thoracic SurgeryMedical University InnsbruckInnsbruckAustria,Department for General, Visceral and Transplantation Surgery, Campus Virchow‐KlinikumCharité UniversitätsmedizinBerlinGermany
| | - H. G. Schwelberger
- Department of VisceralTransplant and Thoracic SurgeryMedical University InnsbruckInnsbruckAustria
| | - K. A. Brendel
- Institute of PathologyMedical University InnsbruckInnsbruckAustria
| | - J. Feurle
- Department of VisceralTransplant and Thoracic SurgeryMedical University InnsbruckInnsbruckAustria
| | - J. Andrassy
- Department of Surgery, Clinic GrosshadernLudwig‐Maximilian‐University MunichMunichGermany
| | - K. Kotsch
- Department of VisceralTransplant and Thoracic SurgeryMedical University InnsbruckInnsbruckAustria
| | - H. Regele
- Institute of PathologyMedical University InnsbruckInnsbruckAustria
| | - J. Pratschke
- Department of VisceralTransplant and Thoracic SurgeryMedical University InnsbruckInnsbruckAustria,Department for General, Visceral and Transplantation Surgery, Campus Virchow‐KlinikumCharité UniversitätsmedizinBerlinGermany
| | - H. T. Maier
- Department of VisceralTransplant and Thoracic SurgeryMedical University InnsbruckInnsbruckAustria
| | - F. Aigner
- Department of VisceralTransplant and Thoracic SurgeryMedical University InnsbruckInnsbruckAustria,Department for General, Visceral and Transplantation Surgery, Campus Virchow‐KlinikumCharité UniversitätsmedizinBerlinGermany
| |
Collapse
|
36
|
Kim HJ, Ohk B, Kang WY, Seong SJ, Suk K, Lim MS, Kim SY, Yoon YR. Deficiency of Lipocalin-2 Promotes Proliferation and Differentiation of Osteoclast Precursors via Regulation of c-Fms Expression and Nuclear Factor-kappa B Activation. J Bone Metab 2016; 23:8-15. [PMID: 26981515 PMCID: PMC4791440 DOI: 10.11005/jbm.2016.23.1.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 01/27/2023] Open
Abstract
Background Lipocalin-2 (LCN2), a small glycoprotein, has a pivotal role in diverse biological processes such as cellular proliferation and differentiation. We previously reported that LCN2 is implicated in osteoclast formation induced by receptor activator of nuclear factor-kappa B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). In the present study, we used a knockout mouse model to further investigate the role of LCN2 in osteoclast development. Methods Osteoclastogenesis was assessed using primary bone marrow-derived macrophages. RANKL and M-CSF signaling was determined by immunoblotting, cell proliferation by bromodeoxyuridine (BrdU) enzyme-linked immunosorbent assay (ELISA), and apoptosis by cell death detection ELISA. Bone morphometric parameters were determined using a micro-computed tomography system. Results Our results showed that LCN2 deficiency increases tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclast formation in vitro, a finding that reflects enhanced proliferation and differentiation of osteoclast lineage cells. LCN2 deficiency promotes M-CSF-induced proliferation of bone marrow macrophages (BMMs), osteoclast precursors, without altering their survival. The accelerated proliferation of LCN2-deficient precursors is associated with enhanced expression and activation of the M-CSF receptor, c-Fms. Furthermore, LCN2 deficiency stimulates the induction of c-Fos and nuclear factor of activated T cells c1 (NFATc1), key transcription factors for osteoclastogenesis, and promotes RANKL-induced inhibitor of kappa B (IκBα) phosphorylation. Interestingly, LCN2 deficiency does not affect basal osteoclast formation in vivo, suggesting that LCN2 might play a role in the enhanced osteoclast development that occurs under some pathological conditions. Conclusions Our study establishes LCN2 as a negative modulator of osteoclast formation, results that are in accordance with our previous findings.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Biomedical Science, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Clinical Trial Center, School of Medicine, Kyungpook National University and Hospital, Daegu, Korea.; Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Boram Ohk
- Department of Biomedical Science, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Clinical Trial Center, School of Medicine, Kyungpook National University and Hospital, Daegu, Korea
| | - Woo Youl Kang
- Department of Biomedical Science, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Clinical Trial Center, School of Medicine, Kyungpook National University and Hospital, Daegu, Korea
| | - Sook Jin Seong
- Department of Biomedical Science, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Clinical Trial Center, School of Medicine, Kyungpook National University and Hospital, Daegu, Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Mi-Sun Lim
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - Shin-Yoon Kim
- Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Young-Ran Yoon
- Department of Biomedical Science, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Clinical Trial Center, School of Medicine, Kyungpook National University and Hospital, Daegu, Korea
| |
Collapse
|
37
|
Hau CS, Kanda N, Tada Y, Shibata S, Uozaki H, Fukusato T, Sato S, Watanabe S. Lipocalin-2 exacerbates psoriasiform skin inflammation by augmenting T-helper 17 response. J Dermatol 2015; 43:785-94. [DOI: 10.1111/1346-8138.13227] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 10/15/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Carren S. Hau
- Department of Dermatology; Teikyo University School of Medicine; Tokyo Japan
| | - Naoko Kanda
- Department of Dermatology; Teikyo University School of Medicine; Tokyo Japan
| | - Yayoi Tada
- Department of Dermatology; Teikyo University School of Medicine; Tokyo Japan
- Department of Dermatology; University of Tokyo Faculty of Medicine; Tokyo Japan
| | - Sayaka Shibata
- Department of Dermatology; University of Tokyo Faculty of Medicine; Tokyo Japan
| | - Hiroshi Uozaki
- Department of Pathology; Teikyo University School of Medicine; Tokyo Japan
| | - Toshio Fukusato
- Department of Pathology; Teikyo University School of Medicine; Tokyo Japan
| | - Shinichi Sato
- Department of Dermatology; University of Tokyo Faculty of Medicine; Tokyo Japan
| | - Shinichi Watanabe
- Department of Dermatology; Teikyo University School of Medicine; Tokyo Japan
| |
Collapse
|
38
|
Abella V, Scotece M, Conde J, Gómez R, Lois A, Pino J, Gómez-Reino JJ, Lago F, Mobasheri A, Gualillo O. The potential of lipocalin-2/NGAL as biomarker for inflammatory and metabolic diseases. Biomarkers 2015; 20:565-71. [PMID: 26671823 PMCID: PMC4819811 DOI: 10.3109/1354750x.2015.1123354] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lipocalin-2 (LCN2), also known as neutrophil gelatinase-associated lipocalin (NGAL), is a secreted glycoprotein that belongs to a group of transporters of small lipophilic molecules in circulation. LCN2 has been recently characterized as an adipose-derived cytokine. This adipokine is believed to bind small substances, such as steroids and lipopolysaccharides, and has been reported to have roles in the induction of apoptosis in hematopoietic cells, transport of fatty acids and iron, modulation of inflammation, and metabolic homeostasis. Recently, LCN2 has emerged as a useful biomarker and rheumatic diseases. This review provides an overview of LCN2 in inflammation, immunity, and metabolism.
Collapse
Affiliation(s)
- Vanessa Abella
- a SERGAS (Servizo Galego de Saude), Research Laboratory 9, NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Institute of Medical Research (IDIS), Santiago University Clinical Hospital , Santiago de Compostela , Spain .,b Departamento de Bioloxía Celular e Molecular , Facultade de Ciencias, Universidade Da Coruña (UDC) , Campus de A Coruña , Spain
| | - Morena Scotece
- a SERGAS (Servizo Galego de Saude), Research Laboratory 9, NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Institute of Medical Research (IDIS), Santiago University Clinical Hospital , Santiago de Compostela , Spain
| | - Javier Conde
- a SERGAS (Servizo Galego de Saude), Research Laboratory 9, NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Institute of Medical Research (IDIS), Santiago University Clinical Hospital , Santiago de Compostela , Spain
| | - Rodolfo Gómez
- a SERGAS (Servizo Galego de Saude), Research Laboratory 9, NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Institute of Medical Research (IDIS), Santiago University Clinical Hospital , Santiago de Compostela , Spain
| | - Ana Lois
- a SERGAS (Servizo Galego de Saude), Research Laboratory 9, NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Institute of Medical Research (IDIS), Santiago University Clinical Hospital , Santiago de Compostela , Spain
| | - Jesús Pino
- c SERGAS, Division of Orthopaedics Surgery and Traumatology, Santiago University Clinical Hospital , Santiago de Compostela , Spain
| | - Juan J Gómez-Reino
- a SERGAS (Servizo Galego de Saude), Research Laboratory 9, NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Institute of Medical Research (IDIS), Santiago University Clinical Hospital , Santiago de Compostela , Spain
| | - Francisca Lago
- d SERGAS (Servizo Galego de Saude), Research Laboratory 7, Molecular and Cellular Cardiology Laboratory, Institute of Medical Research (IDIS), Santiago University Clinical Hospital , Santiago de Compostela , Spain
| | - Ali Mobasheri
- e The D-BOARD European Consortium for Biomarker Discovery, Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey , Guildford , UK .,f Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen's Medical Centre , Nottingham , UK , and.,g Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), Faculty of Applied Medical Sciences, King AbdulAziz University , Jeddah , Kingdom of Saudi Arabia
| | - Oreste Gualillo
- a SERGAS (Servizo Galego de Saude), Research Laboratory 9, NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Institute of Medical Research (IDIS), Santiago University Clinical Hospital , Santiago de Compostela , Spain
| |
Collapse
|
39
|
Ferreira AC, Dá Mesquita S, Sousa JC, Correia-Neves M, Sousa N, Palha JA, Marques F. From the periphery to the brain: Lipocalin-2, a friend or foe? Prog Neurobiol 2015; 131:120-36. [PMID: 26159707 DOI: 10.1016/j.pneurobio.2015.06.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/23/2015] [Accepted: 06/28/2015] [Indexed: 01/08/2023]
Abstract
Lipocalin-2 (LCN2) is an acute-phase protein that, by binding to iron-loaded siderophores, acts as a potent bacteriostatic agent in the iron-depletion strategy of the immune system to control pathogens. The recent identification of a mammalian siderophore also suggests a physiological role for LCN2 in iron homeostasis, specifically in iron delivery to cells via a transferrin-independent mechanism. LCN2 participates, as well, in a variety of cellular processes, including cell proliferation, cell differentiation and apoptosis, and has been mostly found up-regulated in various tissues and under inflammatory states, being its expression regulated by several inducers. In the central nervous system less is known about the processes involving LCN2, namely by which cells it is produced/secreted, and its impact on cell proliferation and death, or in neuronal plasticity and behaviour. Importantly, LCN2 recently emerged as a potential clinical biomarker in multiple sclerosis and in ageing-related cognitive decline. Still, there are conflicting views on the role of LCN2 in pathophysiological processes, with some studies pointing to its neurodeleterious effects, while others indicate neuroprotection. Herein, these various perspectives are reviewed and a comprehensive and cohesive view of the general function of LCN2, particularly in the brain, is provided.
Collapse
Affiliation(s)
- Ana C Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sandro Dá Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João C Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana A Palha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
40
|
Pradeep AR, Nagpal K, Karvekar S, Patnaik K. Levels of lipocalin-2 in crevicular fluid and tear fluid in chronic periodontitis and obesity subjects. ACTA ACUST UNITED AC 2015; 7:376-382. [PMID: 26097179 DOI: 10.1111/jicd.12165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/07/2015] [Indexed: 12/27/2022]
Abstract
AIM Lipocalin-2, a 25 kDa secretory glycoprotein, was first found in the neutrophilic granules of humans and in mouse kidney cells. It has been shown to have an important role in inflammation. The aim of this study was to determine the levels of lipocalin-2 in gingival crevicular fluid and tear fluid in patients with obesity and chronic periodontitis. METHODS A total of 40 subjects in the age group 25-40 years were divided into four groups based on probing depth, gingival index, clinical attachment level, body mass index, and radiographic evidence of bone loss. The groups were: nonobese healthy group; obese healthy group; nonobese chronic periodontitis group; obese chronic periodontitis group Gingival crevicular fluid and tear fluid samples were collected on the subsequent day. RESULTS There was an increase in lipocalin-2 levels from group 1 to group 4 (with the nonobese healthy group showing the least levels and obese chronic periodontitis group showing the highest levels) in both gingival crevicular fluid and tear fluid. CONCLUSION Lipocalin-2 may be an important inflammatory marker that may help link obesity and chronic periodontitis.
Collapse
Affiliation(s)
- Avani Raju Pradeep
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, India.
| | - Kanika Nagpal
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, India
| | - Shruti Karvekar
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, India
| | - Kaushik Patnaik
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, India
| |
Collapse
|
41
|
Gouweleeuw L, Naudé PJW, Rots M, DeJongste MJL, Eisel ULM, Schoemaker RG. The role of neutrophil gelatinase associated lipocalin (NGAL) as biological constituent linking depression and cardiovascular disease. Brain Behav Immun 2015; 46:23-32. [PMID: 25576802 DOI: 10.1016/j.bbi.2014.12.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/11/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
Depression is more common in patients with cardiovascular disease than in the general population. Conversely, depression is a risk factor for developing cardiovascular disease. Comorbidity of these two pathologies worsens prognosis. Several mechanisms have been indicated in the link between cardiovascular disease and depression, including inflammation. Systemic inflammation can have long-lasting effects on the central nervous system, which could be associated with depression. NGAL is an inflammatory marker and elevated plasma levels are associated with both cardiovascular disease and depression. While patients with depression show elevated NGAL levels, in patients with comorbid heart failure, NGAL levels are significantly higher and associated with depression scores. Systemic inflammation evokes NGAL expression in the brain. This is considered a proinflammatory effect as it is involved in microglia activation and reactive astrocytosis. Animal studies support a direct link between NGAL and depression/anxiety associated behavior. In this review we focus on the role of NGAL in linking depression and cardiovascular disease.
Collapse
Affiliation(s)
- L Gouweleeuw
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands
| | - P J W Naudé
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands; Department of Neurology and Alzheimer Research Center, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - M Rots
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands
| | - M J L DeJongste
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - U L M Eisel
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands
| | - R G Schoemaker
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands; Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
Kim HJ, Yoon HJ, Yoon KA, Gwon MR, Jin Seong S, Suk K, Kim SY, Yoon YR. Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells. Exp Cell Res 2015; 334:301-9. [PMID: 25814363 DOI: 10.1016/j.yexcr.2015.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/12/2015] [Accepted: 03/14/2015] [Indexed: 01/28/2023]
Abstract
Lipocalin-2 (LCN2) is a member of the lipocalin superfamily and plays a critical role in the regulation of various physiological processes, such as inflammation and obesity. In this study, we report that LCN2 negatively modulates the proliferation and differentiation of osteoclast precursors, resulting in impaired osteoclast formation. The overexpression of LCN2 in bone marrow-derived macrophages or the addition of recombinant LCN2 protein inhibits the formation of multinuclear osteoclasts. LCN2 suppresses macrophage colony-stimulating factor (M-CSF)-induced proliferation of osteoclast precursor cells without affecting their apoptotic cell death. Interestingly, LCN2 decreases the expression of the M-CSF receptor, c-Fms, and subsequently blocks its downstream signaling cascades. In addition, LCN2 inhibits RANKL-induced osteoclast differentiation and attenuates the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important modulators in osteoclastogenesis. Mechanistically, LCN2 inhibits NF-κB signaling pathways, as demonstrated by the suppression of IκBα phosphorylation, nuclear translocation of p65, and NF-κB transcriptional activity. Thus, LCN2 is an anti-osteoclastogenic molecule that exerts its effects by retarding the proliferation and differentiation of osteoclast lineage cells.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea.
| | - Hye-Jin Yoon
- Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Kyung-Ae Yoon
- Department of Orthopedic Surgery, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Mi-Ri Gwon
- Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Sook Jin Seong
- Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Shin-Yoon Kim
- Department of Orthopedic Surgery, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Young-Ran Yoon
- Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea.
| |
Collapse
|
43
|
Martín R, Miquel S, Chain F, Natividad JM, Jury J, Lu J, Sokol H, Theodorou V, Bercik P, Verdu EF, Langella P, Bermúdez-Humarán LG. Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiol 2015; 15:67. [PMID: 25888448 PMCID: PMC4391109 DOI: 10.1186/s12866-015-0400-1] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 03/02/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The human gut houses one of the most complex and abundant ecosystems composed of up to 10(13)-10(14) microorganisms. The importance of this intestinal microbiota is highlighted when a disruption of the intestinal ecosystem equilibrium appears (a phenomenon called dysbiosis) leading to an illness status, such as inflammatory bowel diseases (IBD). Indeed, the reduction of the commensal bacterium Faecalibacterium prausnitzii (one of the most prevalent intestinal bacterial species in healthy adults) has been correlated with several diseases, including IBD, and most importantly, it has been shown that this bacterium has anti-inflammatory and protective effects in pre-clinical models of colitis. Some dysbiosis disorders are characterized by functional and physiological alterations. Here, we report the beneficial effects of F. prausnitzii in the physiological changes induced by a chronic low-grade inflammation in a murine model. Chronic low-grade inflammation and gut dysfunction were induced in mice by two episodes of dinitro-benzene sulfonic acid (DNBS) instillations. Markers of inflammation, gut permeability, colonic serotonin and cytokine levels were studied. The effects of F. prausnitzii strain A2-165 and its culture supernatant (SN) were then investigated. RESULTS No significant differences were observed in classical inflammation markers confirming that inflammation was subclinical. However, gut permeability, colonic serotonin levels and the colonic levels of the cytokines IL-6, INF-γ, IL-4 and IL-22 were higher in DNBS-treated than in untreated mice. Importantly, mice treated with either F. prausnitzii or its SN exhibited significant decreases in intestinal permeability, tissue cytokines and serotonin levels. CONCLUSIONS Our results show that F. prausnitzii and its SN had beneficial effects on intestinal epithelial barrier impairment in a chronic low-grade inflammation model. These observations confirm the potential of this bacterium as a novel probiotic treatment in the management of gut dysfunction and low-grade inflammation.
Collapse
Affiliation(s)
- Rebeca Martín
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Sylvie Miquel
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France.
| | - Florian Chain
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France.
| | - Jane M Natividad
- Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Jennifer Jury
- Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Jun Lu
- Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Harry Sokol
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,INSERM, Equipe AVENIR U1057 / UMR CNRS 7203, 75012, Paris, France. .,Department of Gastroenterology and Nutrition, AP-HP, Hôpital Saint-Antoine F-75012 and UPMC Univ Paris 06F-75005, Paris, France.
| | - Vassilia Theodorou
- INRA, Neuro-Gastroenterology and Nutrition Team, UMR 1331 Toxalim, F-31931, Toulouse, France.
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Philippe Langella
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Luis G Bermúdez-Humarán
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France.
| |
Collapse
|
44
|
Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev 2015; 49:135-56. [DOI: 10.1016/j.neubiorev.2014.12.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022]
|
45
|
Pain-associated biomarkers in breast cancer. J Med Life 2015; 8:32-6. [PMID: 25914735 PMCID: PMC4397516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 12/02/2014] [Indexed: 11/04/2022] Open
Abstract
Breast cancer represents a major public health problem, being the highest incidence neoplasia in females in Romania. The most important step in the treatment of this neoplasia is the surgical procedure; the biggest problem associated with this form of treatment in these patients is pain-related. Pain is a complex symptom with an impact on quality of life and psychology of cancer patient and can only be monitored verbally and subjectively. Consequently, the purpose of our work is to identify some biochemical parameters involved in the events cascade associated with inflammation and pain in breast cancer female patients, monitored in dynamics of anesthesia and surgical procedure. Measurements of lipid peroxides, ceruloplasmin and immune circulating complexes in mentioned dynamics have been performed. The recorded values are in concordance with the inflammatory processes and pain intensity, thus we can allege that these measurements can complete the pain-associated clinical picture in female breast cancer patients.
Collapse
|
46
|
Pawar RD, Goilav B, Xia Y, Zhuang H, Herlitz L, Reeves WH, Putterman C. Serum autoantibodies in pristane induced lupus are regulated by neutrophil gelatinase associated lipocalin. Clin Immunol 2014; 154:49-65. [PMID: 24971701 PMCID: PMC4119527 DOI: 10.1016/j.clim.2014.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 11/28/2022]
Abstract
The onset of autoantibodies in systemic autoimmunity can be the result of a breakdown in tolerance at multiple checkpoints. Genetic, hormonal, and immunological factors can combine with environmental influences to accelerate the onset of disease and aggravate disease outcome. Here, we describe a novel mechanism relating to the regulatory role of Neutrophil Gelatinase Associated Lipocalin (NGAL) in modulating the levels of autoantibodies in pristane induced lupus. Following a single injection of pristane intraperitoneally, NGAL expression was induced in both the serum and spleen. Furthermore, NGAL deficient mice were more susceptible to the induction of pristane stimulated autoimmunity, and displayed higher numbers of autoantibody secreting cells and increased expression of activation induced cytidine deaminase (AID) and other inflammatory mediators in the spleen. In contrast, kidney damage was milder in NGAL deficient mice, indicating that NGAL was detrimental in autoantibody mediated kidney disease. These studies indicate that NGAL plays differential roles in different tissues in the context of lupus, and suggest a previously unrecognized role for NGAL in adaptive immunity.
Collapse
Affiliation(s)
- Rahul D Pawar
- The Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Beatrice Goilav
- The Division of Pediatric Nephrology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yumin Xia
- The Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Haoyang Zhuang
- The Division of Rheumatology & Clinical Immunology, University of Florida, Gainesville, FL 32611, USA
| | - Leal Herlitz
- The Department of Pathology, Columbia University Medical Center, NY 10032, USA
| | - Westley H Reeves
- The Division of Rheumatology & Clinical Immunology, University of Florida, Gainesville, FL 32611, USA
| | - Chaim Putterman
- The Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
47
|
Martín R, Chain F, Miquel S, Natividad JM, Sokol H, Verdu EF, Langella P, Bermúdez-Humarán LG. Effects in the use of a genetically engineered strain of Lactococcus lactis delivering in situ IL-10 as a therapy to treat low-grade colon inflammation. Hum Vaccin Immunother 2014; 10:1611-21. [PMID: 24732667 DOI: 10.4161/hv.28549] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a gastrointestinal disorder characterized by chronic abdominal pain, discomfort, and bloating. Interestingly, there is now evidence of the presence of a low-grade inflammatory status in many IBS patients, including histopathological and mucosal cytokine levels in the colon, as well as the presence of IBS-like symptoms in quiescent inflammatory bowel disease (IBD). The use of a genetically engineered food-grade bacterium, such as Lactococcus lactis, secreting the anti-inflammatory cytokine IL-10 has been proven by many pre-clinical studies to be a successful therapy to treat colon inflammation. In this study, we first reproduced the recovery-recurrence periods observed in IBS-patients in a new chronic model characterized by 2 episodes of DiNitro-BenzeneSulfonic-acid (DNBS)-challenge and we tested the effects of a recombinant strain of L. lactis secreting IL-10 under a Stress-Inducible Controlled Expression (SICE) system. In vivo gut permeability, colonic serotonin levels, cytokine profiles, and spleen cell populations were then measured as readouts of a low-grade inflammation. In addition, since there is increasing evidence that gut microbiota tightly regulates gut barrier function, tight junction proteins were also measured by qRT-PCR after administration of recombinant L. lactis in DNBS-treated mice. Strikingly, oral administration of L. lactis secreting active IL-10 in mice resulted in significant protective effects in terms of permeability, immune activation, and gut-function parameters. Although genetically engineered bacteria are, for now, used only as a "proof-of-concept," our study validates the interest in the use of the novel SICE system in L. lactis to express therapeutic molecules, such as IL-10, locally at mucosal surfaces.
Collapse
Affiliation(s)
- Rebeca Martín
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; Jouy-en-Josas, France; AgroParisTech; UMR1319 Micalis; Jouy-en-Josas, France
| | - Florian Chain
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; Jouy-en-Josas, France; AgroParisTech; UMR1319 Micalis; Jouy-en-Josas, France
| | - Sylvie Miquel
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; Jouy-en-Josas, France; AgroParisTech; UMR1319 Micalis; Jouy-en-Josas, France
| | - Jane M Natividad
- Farncombe Family Digestive Health Research Institute; McMaster University; Hamilton, ON Canada
| | - Harry Sokol
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; Jouy-en-Josas, France; AgroParisTech; UMR1319 Micalis; Jouy-en-Josas, France; Department of Gastroenterology and Nutrition; AP-HP; Hôpital Saint-Antoine F-75012 and UPMC Univ Paris; Paris, France; INSERM; Equipe AVENIR U1057 / UMR CNRS 7203; Paris, France
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute; McMaster University; Hamilton, ON Canada
| | - Philippe Langella
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; Jouy-en-Josas, France; AgroParisTech; UMR1319 Micalis; Jouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; Jouy-en-Josas, France; AgroParisTech; UMR1319 Micalis; Jouy-en-Josas, France
| |
Collapse
|
48
|
The pivotal role played by lipocalin-2 in chronic inflammatory pain. Exp Neurol 2014; 254:41-53. [PMID: 24440229 DOI: 10.1016/j.expneurol.2014.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/13/2013] [Accepted: 01/07/2014] [Indexed: 12/30/2022]
|
49
|
Abella V, Scotece M, Conde J, López V, Lazzaro V, Pino J, Gómez-Reino JJ, Gualillo O. Adipokines, metabolic syndrome and rheumatic diseases. J Immunol Res 2014; 2014:343746. [PMID: 24741591 PMCID: PMC3987880 DOI: 10.1155/2014/343746] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 02/06/2023] Open
Abstract
The metabolic syndrome (MetS) is a cluster of cardiometabolic disorders that result from the increasing prevalence of obesity. The major components of MetS include insulin resistance, central obesity, dyslipidemia, and hypertension. MetS identifies the central obesity with increased risk for cardiovascular diseases (CVDs) and type-2 diabetes mellitus (T2DM). Patients with rheumatic diseases, such as rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, and ankylosing spondylitis, have increased prevalence of CVDs. Moreover, CVD risk is increased when obesity is present in these patients. However, traditional cardiovascular risk factors do not completely explain the enhanced cardiovascular risk in this population. Thus, MetS and the altered secretion patterns of proinflammatory adipokines present in obesity could be the link between CVDs and rheumatic diseases. Furthermore, adipokines have been linked to the pathogenesis of MetS and its comorbidities through their effects on vascular function and inflammation. In the present paper, we review recent evidence of the role played by adipokines in the modulation of MetS in the general population, and in patients with rheumatic diseases.
Collapse
Affiliation(s)
- Vanessa Abella
- SERGAS, Research Laboratory 9, NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Institute of Medical Research (IDIS), Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain ; Department of Molecular and Cellular Biology, University of Coruña (UDC), 15071 A Coruña, Spain
| | - Morena Scotece
- SERGAS, Research Laboratory 9, NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Institute of Medical Research (IDIS), Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Javier Conde
- SERGAS, Research Laboratory 9, NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Institute of Medical Research (IDIS), Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Verónica López
- SERGAS, Research Laboratory 9, NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Institute of Medical Research (IDIS), Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Verónica Lazzaro
- SERGAS, Research Laboratory 9, NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Institute of Medical Research (IDIS), Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain ; University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Jesús Pino
- SERGAS, Division of Orthopaedics Surgery and Traumatology, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Juan J Gómez-Reino
- SERGAS, Research Laboratory 9, NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Institute of Medical Research (IDIS), Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Oreste Gualillo
- SERGAS, Research Laboratory 9, NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Institute of Medical Research (IDIS), Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| |
Collapse
|