1
|
Su J, Hu W, Ding Y, Zhang P, Li T, Liu S, Xing L. Serum GM-CSF level is a predictor of treatment response to tocilizumab in rheumatoid arthritis patients: a prospective observational cohort study. Arthritis Res Ther 2024; 26:130. [PMID: 38997725 PMCID: PMC11241958 DOI: 10.1186/s13075-024-03373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND The aim of this prospective observational cohort study was to unveil the predictors of treatment response to tocilizumab (TCZ) therapy in rheumatoid arthritis (RA) patients, in terms of clinical characteristics and serum proinflammatory cytokines, especially to explore the predictive value of granulocyte macrophage-colony stimulating factor (GM-CSF). METHODS Active adult RA patients with inadequate response to MTX intending to receive TCZ therapy were recruited prospectively in the study. A total of 174 severe RA patients were included for the identification of the associations between treatment response and the following characteristic features: demographics, medications, disease activity, serum proinflammatory cytokines and so on. RESULTS Disease duration (OR = 0.996), tender joint count (TJC)/68 (OR = 0.943), neutrophil ratio (W4/baseline) (OR = 0.224), the high level of GM-CSF > 5 ng/ml (OR = 0.414) at baseline were the independent adverse predictors of good response assessed by clinical disease activity index (CDAI) at week 24 (W24) for TCZ therapy in RA patients. Moreover, DAS28-ESR (OR = 2.951, P = 0.002) and the high level of GM-CSF > 10 ng/ml at baseline (OR = 5.419, P = 0.002) were independent predictors of poor response, but not the high level of GM-CSF > 5 ng/ml (OR = 2.713, P = 0.054). The patients in the high GM-CSF group had significantly higher DAS28-ESR and serum levels of cytokines (IL-17A, IL-1β, IL-6, TNF-α) at baseline, as well as significantly higher rate of non-good response (62.8% vs. 39.4%, P = 0.010) and poor response (27.9% vs. 9.1%, P = 0.004) than the low GM-CSF group at W24. In addition, poor responders had significantly higher levels of GM-CSF with concomitant increase in the serum levels of IL-17A and IL-1β at baseline than those in moderate and good response groups, while serum levels of IL-6 and TNF-α at baseline were not significantly different in three response groups. CONCLUSION The high levels of GM-CSF (> 5 ng/ml and > 10 ng/ml) at baseline were the independent predictors of non-good response and poor response to TCZ at W24 respectively. The high level of GM-CSF at baseline is a marker of high disease activity and a predictor of poor response to TCZ in severe RA patients, which may facilitate the development of individualized treatment strategies for refractory RA.
Collapse
Affiliation(s)
- Jingbo Su
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, E. Jianshe Rd. 1, Zhengzhou, 450052, China
| | - Wenlu Hu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, E. Jianshe Rd. 1, Zhengzhou, 450052, China
| | - Yanxia Ding
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, E. Jianshe Rd. 1, Zhengzhou, 450052, China
| | - Panpan Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, E. Jianshe Rd. 1, Zhengzhou, 450052, China
| | - Tianfang Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, E. Jianshe Rd. 1, Zhengzhou, 450052, China
| | - Shengyun Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, E. Jianshe Rd. 1, Zhengzhou, 450052, China.
| | - Lihua Xing
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, E. Jianshe Rd. 1, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Mok TC, Mok CC. Non-TNF biologics and their biosimilars in rheumatoid arthritis. Expert Opin Biol Ther 2024; 24:599-613. [PMID: 38766765 DOI: 10.1080/14712598.2024.2358165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory rheumatic disease that affects both the articular and extra-articular structures, leading to significant joint damage, disability and excess mortality. The treatment algorithm of RA has changed tremendously in the past 1-2 decades because of the emergence of novel biological therapies that target different mechanisms of action in addition to TNFα. AREAS COVERED This article summarizes the evidence and safety of the non-TNF biological DMARDs in the treatment of RA, including those that target B cells, T-cell co-stimulation, interleukin (IL)-6 and granulocyte-monocyte colony-stimulating factor (GM-CSF). The targeted synthetic DMARDs such as the Janus kinase inhibitors are not included. The availability of the less costly biosimilars has enabled more patients to receive biological therapy earlier in the course of the disease. The evidence for the non-TNF biosimilar compounds in RA is also reviewed. EXPERT OPINION There are unmet needs of developing novel therapeutic agents to enhance the response rate and provide more options for difficult-to-treat RA. These include the newer generation biologic and targeted synthetic DMARDs. A personalized treatment strategy in RA requires evaluation of the cellular, cytokine, genomic and transcriptomic profile that would predict treatment response to biologic or targeted DMARDs of different mechanisms of action.
Collapse
Affiliation(s)
- Tsz Ching Mok
- Department of Medicine, Ruttonjee Hospital, Hong Kong, China
| | - Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Hong Kong, China
| |
Collapse
|
3
|
Bindoli S, Baggio C, Doria A, Sfriso P. Adult-Onset Still's Disease (AOSD): Advances in Understanding Pathophysiology, Genetics and Emerging Treatment Options. Drugs 2024; 84:257-274. [PMID: 38441807 PMCID: PMC10982104 DOI: 10.1007/s40265-024-01993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 04/02/2024]
Abstract
Adult-onset Still's disease (AOSD) is a multisystemic complex disorder clinically characterised by episodes of spiking fever, evanescent rash, polyarthritis or diffuse arthralgias; multiorgan involvement may develop according to the hyper-inflammatory extent. The pathogenesis of AOSD is not completely recognised. The central role of macrophage activation, which results in T helper 1 (Th1) cell cytokine activation, is well established. Pro-inflammatory cytokines such as interleukin (IL)-1, IL-6 and IL-18 play a fundamental role in disease onset and progression. The disease may develop in both children and adults with overlapping clinical features, and although several subsets depending on the clinical manifestations and the cytokines expressed have been identified, the dichotomy between systemic juvenile idiopathic arthritis (sJIA) and AOSD nowadays has been overcome, and the pathology is considered a disease continuum between ages. Various therapeutic approaches have been evaluated thus far, and different compounds are under assessment for AOSD treatment. Historically, glucocorticoids have been employed for treating systemic manifestations of Still's disease, while conventional synthetic disease modifying anti-rheumatic drugs (csDMARDs) demonstrated efficacy in controlling the articular manifestations. Currently, biological (b) DMARDs are widely employed; IL-1 inhibitors such as anakinra and canakinumab have proven to have high efficacy and an excellent safety profile and the anti-IL-6 tocilizumab is approved for sJIA, with several trials and longitudinal studies confirming its efficacy and safety. Moreover, in the light of the 'window of opportunity', new evidence showed that the earlier these treatments are initiated, the sooner clinical inactivity can be achieved. Other treatment options are being considered since several molecules involved in the disease pathophysiology can be targeted through various mechanisms. This review will provide a broad overview of AOSD pathophysiology, insights into specific organ manifestations and the currently available treatments with the identification of potential therapeutic targets involved in AOSD pathogenesis will be outlined.
Collapse
Affiliation(s)
- Sara Bindoli
- Rheumatology Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Chiara Baggio
- Rheumatology Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Paolo Sfriso
- Rheumatology Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy.
| |
Collapse
|
4
|
Westhovens R, Verschueren P. Lessons from negative phase 3 trials in rheumatoid arthritis anno 2023. Ann Rheum Dis 2023; 82:1503-1505. [PMID: 37903542 DOI: 10.1136/ard-2023-224904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023]
Affiliation(s)
- René Westhovens
- University Hospitals Leuven and KU Leuven Belgium, Leuven, Belgium
| | | |
Collapse
|
5
|
Fleischmann RM, van der Heijde D, Strand V, Atsumi T, McInnes IB, Takeuchi T, Taylor PC, Bracher M, Brooks D, Davies J, Goode C, Gupta A, Mukherjee S, O'Shea C, Saurigny D, Schifano LA, Shelton C, Smith JE, Wang M, Wang R, Watts S, Weinblatt ME. Anti-GM-CSF otilimab versus tofacitinib or placebo in patients with active rheumatoid arthritis and an inadequate response to conventional or biologic DMARDs: two phase 3 randomised trials (contRAst 1 and contRAst 2). Ann Rheum Dis 2023; 82:1516-1526. [PMID: 37699654 PMCID: PMC10646845 DOI: 10.1136/ard-2023-224482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/20/2023] [Indexed: 09/14/2023]
Abstract
OBJECTIVES To investigate the efficacy and safety of otilimab, an antigranulocyte-macrophage colony-stimulating factor antibody, in patients with active rheumatoid arthritis. METHODS Two phase 3, double-blind randomised controlled trials including patients with inadequate responses to methotrexate (contRAst 1) or conventional synthetic/biologic disease-modifying antirheumatic drugs (cs/bDMARDs; contRAst 2). Patients received background csDMARDs. Through a testing hierarchy, subcutaneous otilimab (90/150 mg once weekly) was compared with placebo for week 12 endpoints (after which, patients receiving placebo switched to active interventions) or oral tofacitinib (5 mg two times per day) for week 24 endpoints. PRIMARY ENDPOINT proportion of patients achieving an American College of Rheumatology response ≥20% (ACR20) at week 12. RESULTS The intention-to-treat populations comprised 1537 (contRAst 1) and 1625 (contRAst 2) patients. PRIMARY ENDPOINT proportions of ACR20 responders were statistically significantly greater with otilimab 90 mg and 150 mg vs placebo in contRAst 1 (54.7% (p=0.0023) and 50.9% (p=0.0362) vs 41.7%) and contRAst 2 (54.9% (p<0.0001) and 54.5% (p<0.0001) vs 32.5%). Secondary endpoints: in both trials, compared with placebo, otilimab increased the proportion of Clinical Disease Activity Index (CDAI) low disease activity (LDA) responders (not significant for otilimab 150 mg in contRAst 1), and reduced Health Assessment Questionnaire-Disability Index (HAQ-DI) scores. Benefits with tofacitinib were consistently greater than with otilimab across multiple endpoints. Safety outcomes were similar across treatment groups. CONCLUSIONS Although otilimab demonstrated superiority to placebo in ACR20, CDAI LDA and HAQ-DI, improved symptoms, and had an acceptable safety profile, it was inferior to tofacitinib. TRIAL REGISTRATION NUMBERS NCT03980483, NCT03970837.
Collapse
Affiliation(s)
- Roy M Fleischmann
- Department of Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Metroplex Clinical Research Center, Dallas, Texas, USA
| | | | - Vibeke Strand
- Division of Immunology/Rheumatology, Stanford University, Palo Alto, California, USA
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Iain B McInnes
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Japan
- Saitama Medical University, Saitama, Japan
| | - Peter C Taylor
- Botnar Research Centre, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michael E Weinblatt
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Li M, Wang M, Wen Y, Zhang H, Zhao G, Gao Q. Signaling pathways in macrophages: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e349. [PMID: 37706196 PMCID: PMC10495745 DOI: 10.1002/mco2.349] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Macrophages play diverse roles in development, homeostasis, and immunity. Accordingly, the dysfunction of macrophages is involved in the occurrence and progression of various diseases, such as coronavirus disease 2019 and atherosclerosis. The protective or pathogenic effect that macrophages exert in different conditions largely depends on their functional plasticity, which is regulated via signal transduction such as Janus kinase-signal transducer and activator of transcription, Wnt and Notch pathways, stimulated by environmental cues. Over the past few decades, the molecular mechanisms of signaling pathways in macrophages have been gradually elucidated, providing more alternative therapeutic targets for diseases treatment. Here, we provide an overview of the basic physiology of macrophages and expound the regulatory pathways within them. We also address the crucial role macrophages play in the pathogenesis of diseases, including autoimmune, neurodegenerative, metabolic, infectious diseases, and cancer, with a focus on advances in macrophage-targeted strategies exploring modulation of components and regulators of signaling pathways. Last, we discuss the challenges and possible solutions of macrophage-targeted therapy in clinical applications. We hope that this comprehensive review will provide directions for further research on therapeutic strategies targeting macrophage signaling pathways, which are promising to improve the efficacy of disease treatment.
Collapse
Affiliation(s)
- Ming Li
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mengjie Wang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanjia Wen
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongfei Zhang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guang‐Nian Zhao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
7
|
Lupancu TJ, Eivazitork M, Hamilton JA, Achuthan AA, Lee KMC. CCL17/TARC in autoimmunity and inflammation-not just a T-cell chemokine. Immunol Cell Biol 2023; 101:600-609. [PMID: 36975092 DOI: 10.1111/imcb.12644] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023]
Abstract
Chemokine (C-C) ligand 17 (CCL17) was first identified as thymus- and activation-regulated chemokine when it was found to be constitutively expressed in the thymus and identified as a T-cell chemokine. This chemoattractant molecule has subsequently been found at elevated levels in a range of autoimmune and inflammatory diseases, as well as in cancer. CCL17 is a C-C chemokine receptor type 4 (CCR4) ligand, with chemokine (C-C) ligand 22 being the other major ligand and, as CCR4 is highly expressed on helper T cells, CCL17 can play a role in T-cell-driven diseases, usually considered to be via its chemotactic activity on T helper 2 cells; however, given that CCR4 is also expressed by other cell types and there is elevated expression of CCL17 in many diseases, a broader CCL17 biology is suggested. In this review, we summarize the biology of CCL17, its regulation and its potential contribution to the pathogenesis of various preclinical models. Reference is made, for example, to recent literature indicating a role for CCL17 in the control of pain as part of a granulocyte macrophage-colony-stimulating factor/CCL17 pathway in lymphocyte-independent models and thus not as a T-cell chemokine. The review also discusses the potential for CCL17 to be a biomarker and a therapeutic target in human disorders.
Collapse
Affiliation(s)
- Tanya J Lupancu
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Mahtab Eivazitork
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Kevin M-C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
8
|
Sharma S, Basu S, Goyal RK, Sahoo PK, Mathur R. Rituximab, a Safer Option for Rheumatoid Arthritis: A Comparison of the Reported Adverse Events of Approved Monoclonal Antibodies. J Pharmacol Pharmacother 2023. [DOI: 10.1177/0976500x231154743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Background & Objectives Monoclonal antibodies (mAbs), which are commonly used to treat rheumatoid arthritis (RA), have been linked to a variety of adverse events (AEs). The objective of the study was to compare the safety profiles of six FDA-approved mAbs (sarilumab, tocilizumab, adalimumab, golimumab, infliximab, and rituximab) marketed for the treatment of RA. Methods A systematic review of the literature was conducted using the databases PubMed, Cochrane Library, and Science Direct. The manuscript comprised a total of 23 clinical studies. The percentage of patients who had AEs was calculated and presented using box-whisker and forest plots. Results Infections and infestations were found to be the most common AEs in RA patients treated with mAbs. Raised alanine aminotransferase (ALT), aspartate aminotransferase (AST), upper respiratory tract infection (URTI), and nasopharyngitis were frequently reported. The most common AEs were reported with adalimumab. The highest percentage of patients reporting AEs was associated with golimumab (52%), while rituximab had the fewest AEs (4.9%). Conclusion In conclusion, rituximab appears to be a safer treatment option for RA as it is found to be associated with a lower risk of AEs, particularly respiratory infections.
Collapse
Affiliation(s)
- Sweety Sharma
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, India
| | - Somnath Basu
- Central Drug Standard Control Organisation, Directorate General of Health Services, Ministry of Health & Family Welfare, Govt. of India, India
| | - Ramesh K. Goyal
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, India
| | - Parbhat K. Sahoo
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, India
| | - Rajani Mathur
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, India
| |
Collapse
|
9
|
Coletto LA, Rizzo C, Guggino G, Caporali R, Alivernini S, D’Agostino MA. The Role of Neutrophils in Spondyloarthritis: A Journey across the Spectrum of Disease Manifestations. Int J Mol Sci 2023; 24:4108. [PMID: 36835520 PMCID: PMC9959122 DOI: 10.3390/ijms24044108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Spondyloarthritis (SpA) contemplates the inflammatory involvement of the musculoskeletal system, gut, skin, and eyes, delineating heterogeneous diseases with a common pathogenetic background. In the framework of innate and adaptive immune disruption in SpA, neutrophils are arising, across different clinical domains, as pivotal cells crucial in orchestrating the pro-inflammatory response, both at systemic and tissue levels. It has been suggested they act as key players along multiple stages of disease trajectory fueling type 3 immunity, with a significant impact in the initiation and amplification of inflammation as well as in structural damage occurrence, typical of long-standing disease. The aim of our review is to focus on neutrophils' role within the spectrum of SpA, dissecting their functions and abnormalities in each of the relevant disease domains to understand their rising appeal as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lavinia Agra Coletto
- Division of Rheumatology, Università Cattolica del Sacro Cuore, Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy
| | - Chiara Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90127 Palermo, Italy
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90127 Palermo, Italy
| | - Roberto Caporali
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Stefano Alivernini
- Division of Rheumatology, Università Cattolica del Sacro Cuore, Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy
| | - Maria Antonietta D’Agostino
- Division of Rheumatology, Università Cattolica del Sacro Cuore, Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy
| |
Collapse
|
10
|
Pant H, Hercus TR, Tumes DJ, Yip KH, Parker MW, Owczarek CM, Lopez AF, Huston DP. Translating the biology of β common receptor-engaging cytokines into clinical medicine. J Allergy Clin Immunol 2023; 151:324-344. [PMID: 36424209 DOI: 10.1016/j.jaci.2022.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022]
Abstract
The family of cytokines that comprises IL-3, IL-5, and GM-CSF was discovered over 30 years ago, and their biological activities and resulting impact in clinical medicine has continued to expand ever since. Originally identified as bone marrow growth factors capable of acting on hemopoietic progenitor cells to induce their proliferation and differentiation into mature blood cells, these cytokines are also recognized as key mediators of inflammation and the pathobiology of diverse immunologic diseases. This increased understanding of the functional repertoire of IL-3, IL-5, and GM-CSF has led to an explosion of interest in modulating their functions for clinical management. Key to the successful clinical translation of this knowledge is the recognition that these cytokines act by engaging distinct dimeric receptors and that they share a common signaling subunit called β-common or βc. The structural determination of how IL-3, IL-5, and GM-CSF interact with their receptors and linking this to their differential biological functions on effector cells has unveiled new paradigms of cell signaling. This knowledge has paved the way for novel mAbs and other molecules as selective or pan inhibitors for use in different clinical settings.
Collapse
Affiliation(s)
- Harshita Pant
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Timothy R Hercus
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Damon J Tumes
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Kwok Ho Yip
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Michael W Parker
- Bio 21 Institute, The University of Melbourne, Melbourne, Australia; St Vincent's Institute of Medical Research, Melbourne, Australia
| | | | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - David P Huston
- Texas A&M University School of Medicine, Houston, Tex; Houston Methodist Hospital and Research Institute, Houston, Tex.
| |
Collapse
|
11
|
Prajapati P, Doshi G. An Update on the Emerging Role of Wnt/β-catenin, SYK, PI3K/AKT, and GM-CSF Signaling Pathways in Rheumatoid Arthritis. Curr Drug Targets 2023; 24:1298-1316. [PMID: 38083893 DOI: 10.2174/0113894501276093231206064243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/14/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024]
Abstract
Rheumatoid arthritis is an untreatable autoimmune disorder. The disease is accompanied by joint impairment and anomalies, which negatively affect the patient's quality of life and contribute to a decline in manpower. To diagnose and treat rheumatoid arthritis, it is crucial to understand the abnormal signaling pathways that contribute to the disease. This understanding will help develop new rheumatoid arthritis-related intervention targets. Over the last few decades, researchers have given more attention to rheumatoid arthritis. The current review seeks to provide a detailed summary of rheumatoid arthritis, highlighting the basic description of the disease, past occurrences, the study of epidemiology, risk elements, and the process of disease progression, as well as the key scientific development of the disease condition and multiple signaling pathways and enumerating the most current advancements in discovering new rheumatoid arthritis signaling pathways and rheumatoid arthritis inhibitors. This review emphasizes the anti-rheumatoid effects of these inhibitors [for the Wnt/β-catenin, Phosphoinositide 3-Kinases (PI3K/AKT), Spleen Tyrosine Kinase (SYK), and Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) signaling pathways], illustrating their mechanism of action through a literature search, current therapies, and novel drugs under pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Pradyuman Prajapati
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Doshi
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
12
|
Honzawa T, Matsuo K, Hosokawa S, Kamimura M, Kaibori Y, Hara Y, Nagakubo D, Oiso N, Kawada A, Otsuka A, Yoshie O, Nakayama T. CCR4 plays a pivotal role in Th17 cell recruitment and expansion in a mouse model of rheumatoid arthritis. Int Immunol 2022; 34:635-642. [PMID: 35997787 DOI: 10.1093/intimm/dxac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 08/20/2022] [Indexed: 02/01/2023] Open
Abstract
T helper 17 (Th17) cells express CC chemokine receptor 4 (CCR4) and secrete cytokines such as interleukin-17A (IL-17A) and granulocyte macrophage colony-stimulating factor (GM-CSF), while dendritic cells (DCs) produce CC chemokine ligand 22 (CCL22), a CCR4 ligand, upon stimulation with GM-CSF. Th17 cells are known to play a critical role in the pathogenesis of rheumatoid arthritis (RA). CCL22 has also been shown to be up-regulated in the synovial tissues of RA patients. Here, we investigated the role of CCR4 in collagen-induced arthritis (CIA), a mouse model of RA. DBA/1J mice efficiently developed CIA as shown by erythema, paw swelling, joint rigidity, and joint destruction. Th17 cells were increased in the arthritic joints and regional lymph nodes (LNs) of CIA mice. A fraction of Th17 cells were also shown to produce GM-CSF. On the other hand, we observed no significant increases of Th2 cells or Treg cells, the T cell subsets also known to express CCR4, in these tissues. We further observed clusters of CCR4-expressing memory Th17 cells and CCL22-producing DCs in the regional LNs of CIA mice, supporting the role of the CCR4-CCL22 axis in the expansion of Th17 cells in the regional LNs. Compound 22, a CCR4 inhibitor, ameliorated the disease severity with reduction of Th17 cells in the arthritic joints and regional LNs and Th17-DC clusters in the regional LNs. We further confirmed that CCR4-deficient mice in the C57BL/6J background were highly resistant to CIA induction compared with wild-type mice. Collectively, CCR4 contributes to the pathogenesis of CIA and may thus represent a new therapeutic target for RA.
Collapse
Affiliation(s)
- Tatsuma Honzawa
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Kazuhiko Matsuo
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Shunya Hosokawa
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Mayu Kamimura
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Yuichiro Kaibori
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji, Hyogo 670-8524, Japan
| | - Yuta Hara
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Daisuke Nagakubo
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji, Hyogo 670-8524, Japan
| | - Naoki Oiso
- Department of Dermatology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Akira Kawada
- Department of Dermatology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Osamu Yoshie
- Health and Kampo Institute, 1-11-10 Murasakiyama, Sendai, Miyagi 981-3205, Japan.,Aoinosono Sendai Izumi Long-Term Health Care Facility, Izumi, Sendai 981-3126, Japan
| | - Takashi Nakayama
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| |
Collapse
|
13
|
Delgado-Arévalo C, Calvet-Mirabent M, Triguero-Martínez A, Vázquez de Luis E, Benguría-Filippini A, Largo R, Calzada-Fraile D, Popova O, Sánchez-Cerrillo I, Tsukalov I, Moreno-Vellisca R, de la Fuente H, Herrero-Beaumont G, Ramiro A, Sánchez-Madrid F, Castañeda S, Dopazo A, González Álvaro I, Martin-Gayo E. NLRC4-mediated activation of CD1c+ DC contributes to perpetuation of synovitis in rheumatoid arthritis. JCI Insight 2022; 7:152886. [PMID: 36194479 DOI: 10.1172/jci.insight.152886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/29/2022] [Indexed: 12/15/2022] Open
Abstract
The individual contribution of specific myeloid subsets such as CD1c+ conventional DC (cDC) to perpetuation of rheumatoid arthritis (RA) pathology remains unclear. In addition, the specific innate sensors driving pathogenic activation of CD1c+ cDC in patients with RA and their functional implications have not been characterized. Here, we assessed phenotypical, transcriptional, and functional characteristics of CD1c+ and CD141+ cDC and monocytes from the blood and synovial fluid of patients with RA. Increased levels of CCR2 and the IgG receptor CD64 on circulating CD1c+ cDC was associated with the presence of this DC subset in the synovial membrane in patients with RA. Moreover, synovial CD1c+ cDC are characterized by increased expression of proinflammatory cytokines and high abilities to induce pathogenic IFN-γ+IL-17+CD4+ T cells in vitro. Finally, we identified the crosstalk between Fcγ receptors and NLRC4 as a potential molecular mechanism mediating pathogenic activation, CD64 upregulation, and functional specialization of CD1c+ cDC in response to dsDNA-IgG in patients with RA.
Collapse
Affiliation(s)
- Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Marta Calvet-Mirabent
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ana Triguero-Martínez
- Rheumatology Department from Hospital Universitario La Princesa, Instituto de Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | | | | | - Raquel Largo
- Bone and Joint Research Unit, Rheumatology Service, IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Diego Calzada-Fraile
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| | - Olga Popova
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ilya Tsukalov
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | | | - Hortensia de la Fuente
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| | | | - Almudena Ramiro
- Biology Laboratory, The National Centre for Cardiovascular Research, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain.,Biology Laboratory, The National Centre for Cardiovascular Research, Madrid, Spain
| | - Santos Castañeda
- Rheumatology Department from Hospital Universitario La Princesa, Instituto de Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.,Cátedra UAM-Roche, EPID-Future, Department of Medicine, UAM, Madrid, Spain
| | - Ana Dopazo
- Genomic Unit, The National Centre for Cardiovascular Research, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| | - Isidoro González Álvaro
- Rheumatology Department from Hospital Universitario La Princesa, Instituto de Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Enrique Martin-Gayo
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.,CIBER Infectious Diseases, Madrid, Spain
| |
Collapse
|
14
|
Proinflammatory cytokines and their receptors as druggable targets to alleviate pathological pain. Pain 2022; 163:S79-S98. [DOI: 10.1097/j.pain.0000000000002737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
|
15
|
An update on novel therapeutic intervention in Rheumatoid arthritis. Int Immunopharmacol 2022; 109:108794. [DOI: 10.1016/j.intimp.2022.108794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022]
|
16
|
Corbera-Bellalta M, Alba-Rovira R, Muralidharan S, Espígol-Frigolé G, Ríos-Garcés R, Marco-Hernández J, Denuc A, Kamberovic F, Pérez-Galán P, Joseph A, D'Andrea A, Bondensgaard K, Cid MC, Paolini JF. Blocking GM-CSF receptor α with mavrilimumab reduces infiltrating cells, pro-inflammatory markers and neoangiogenesis in ex vivo cultured arteries from patients with giant cell arteritis. Ann Rheum Dis 2022; 81:524-536. [PMID: 35045965 PMCID: PMC8921590 DOI: 10.1136/annrheumdis-2021-220873] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Effective and safe therapies are needed for the treatment of patients with giant cell arteritis (GCA). Emerging as a key cytokine in inflammation, granulocyte-macrophage colony stimulating factor (GM-CSF) may play a role in promoting inflammation in GCA. OBJECTIVES To investigate expression of GM-CSF and its receptor in arterial lesions from patients with GCA. To analyse activation of GM-CSF receptor-associated signalling pathways and expression of target genes. To evaluate the effects of blocking GM-CSF receptor α with mavrilimumab in ex vivo cultured arteries from patients with GCA. METHODS Quantitative real time PCR, in situ RNA hybridisation, immunohistochemistry, immunofluorescence and confocal microscopy, immunoassay, western blot and ex vivo temporal artery culture. RESULTS GM-CSF and GM-CSF receptor α mRNA and protein were increased in GCA lesions; enhanced JAK2/STAT5A expression/phosphorylation as well as increased expression of target genes CD83 and Spi1/PU.1 were observed. Treatment of ex vivo cultured GCA arteries with mavrilimumab resulted in decreased transcripts of CD3ε, CD20, CD14 and CD16 cell markers, and reduction of infiltrating CD16 and CD3ε cells was observed by immunofluorescence. Mavrilimumab reduced expression of molecules relevant to T cell activation (human leukocyte antigen-DR [HLA-DR]) and Th1 differentiation (interferon-γ), the pro-inflammatory cytokines: interleukin 6 (IL-6), tumour necrosis factor α (TNFα) and IL-1β, as well as molecules related to vascular injury (matrix metalloprotease 9, lipid peroxidation products and inducible nitric oxide synthase [iNOS]). Mavrilimumab reduced CD34 + cells and neoangiogenesis in GCA lesions. CONCLUSION The inhibitory effects of mavrilimumab on multiple steps in the GCA pathogenesis cascade in vitro are consistent with the clinical observation of reduced GCA flares in a phase 2 trial and support its development as a therapeutic option for patients with GCA.
Collapse
Affiliation(s)
- Marc Corbera-Bellalta
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roser Alba-Rovira
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Georgina Espígol-Frigolé
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roberto Ríos-Garcés
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Javier Marco-Hernández
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Farah Kamberovic
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | | - Maria C Cid
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - John F Paolini
- Kiniksa Pharmaceuticals Corp, Lexington, Massachusetts, USA
| |
Collapse
|
17
|
Galozzi P, Bindoli S, Doria A, Sfriso P. Progress in Biological Therapies for Adult-Onset Still’s Disease. Biologics 2022; 16:21-34. [PMID: 35481241 PMCID: PMC9038152 DOI: 10.2147/btt.s290329] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/06/2022] [Indexed: 12/17/2022]
Abstract
Adult-onset Still’s disease (AOSD) is a rare multifactorial autoinflammatory disorder of unknown etiology, characterized by an excessive release of cytokines triggered by dysregulated inflammation and articular and systemic manifestations. The clinical spectrum of AOSD ranges from self-limiting forms with mild symptoms to life-threatening cases and presents clinical and biological similarities with the juvenile form (sJIA). Nowadays, the advances in biologic agents no longer limit the treatment to NSAIDs, glucocorticoids, or conventional synthetic DMARDs. The blockade of IL-1 and IL-6 is effective in the treatment of systemic and articular inflammation of AOSD patients; however, novel compounds with different properties and targets are now available and others are being studied. In this review, starting from the pathogenesis of AOSD, we summarized the current and emerging biological therapies, possible effective agents for achieving AOSD control and remission.
Collapse
Affiliation(s)
- Paola Galozzi
- Rheumatology Unit, Department of Medicine DIMED, University of Padova, Padova, Italy
- Correspondence: Paola Galozzi, Rheumatology Unit, Department of Medicine DIMED, University of Padova, via Giustiniani, 2, Padova, 35128, Italy, Tel +39 049 821 8654, Email
| | - Sara Bindoli
- Rheumatology Unit, Department of Medicine DIMED, University of Padova, Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine DIMED, University of Padova, Padova, Italy
| | - Paolo Sfriso
- Rheumatology Unit, Department of Medicine DIMED, University of Padova, Padova, Italy
| |
Collapse
|
18
|
Cid MC, Unizony SH, Blockmans D, Brouwer E, Dagna L, Dasgupta B, Hellmich B, Molloy E, Salvarani C, Trapnell BC, Warrington KJ, Wicks I, Samant M, Zhou T, Pupim L, Paolini JF. Efficacy and safety of mavrilimumab in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial. Ann Rheum Dis 2022; 81:653-661. [PMID: 35264321 PMCID: PMC8995812 DOI: 10.1136/annrheumdis-2021-221865] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/04/2022] [Indexed: 01/11/2023]
Abstract
Objectives Granulocyte-macrophage colony-stimulating factor (GM-CSF) is implicated in pathogenesis of giant cell arteritis. We evaluated the efficacy of the GM-CSF receptor antagonist mavrilimumab in maintaining disease remission. Methods This phase 2, double-blind, placebo-controlled trial enrolled patients with biopsy-confirmed or imaging-confirmed giant cell arteritis in 50 centres (North America, Europe, Australia). Active disease within 6 weeks of baseline was required for inclusion. Patients in glucocorticoid-induced remission were randomly assigned (3:2 ratio) to mavrilimumab 150 mg or placebo injected subcutaneously every 2 weeks. Both groups received a 26-week prednisone taper. The primary outcome was time to adjudicated flare by week 26. A prespecified secondary efficacy outcome was sustained remission at week 26 by Kaplan-Meier estimation. Safety was also assessed. Results Of 42 mavrilimumab recipients, flare occurred in 19% (n=8). Of 28 placebo recipients, flare occurred in 46% (n=13). Median time to flare (primary outcome) was 25.1 weeks in the placebo group, but the median was not reached in the mavrilimumab group (HR 0.38; 95% CI 0.15 to 0.92; p=0.026). Sustained remission at week 26 was 83% for mavrilimumab and 50% for placebo recipients (p=0.0038). Adverse events occurred in 78.6% (n=33) of mavrilimumab and 89.3% (n=25) of placebo recipients. No deaths or vision loss occurred in either group. Conclusions Mavrilimumab plus 26 weeks of prednisone was superior to placebo plus 26 weeks of prednisone for time to flare by week 26 and sustained remission in patients with giant cell arteritis. Longer treatment is needed to determine response durability and quantify the glucocorticoid-sparing potential of mavrilimumab. Trial registration number ClinicalTrials.gov number: NCT03827018, Europe (EUdraCT number: 2018-001003-36), and Australia (CT-2018-CTN-01 865-1).
Collapse
Affiliation(s)
- Maria C Cid
- Department of Autoimmune Diseases, Hospital Clinic de Barcelona. University of Barcelona. Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Sebastian H Unizony
- Vasculitis and Glomerulonephritis Center, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel Blockmans
- Clinical department of General Internal Medicine Department, Research Department of Microbiology and Immunology, Laboratory of Clinical Infectious and Inflammatory Disorders, Katholieke Universiteit Leuven Universitaire Ziekenhuizen Leuven, Leuven, Belgium
| | - Elisabeth Brouwer
- Rheumatology and Clinical Immunology, Universitair Medisch Centrum Groningen afdeling Reumatologie & Klinische Immunologie, Groningen, The Netherlands
| | - Lorenzo Dagna
- Vita-Salute San Raffaele University, Milano, Italy.,Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Bhaskar Dasgupta
- Rheumatology, Mid & South Essex University Hospitals NHS Foundation Trust, Southend University Hospital, Basildon, UK
| | - Bernhard Hellmich
- Klinik für Innere Medizin, Rheumatolgie und Immunologie, Medius KLINIKEN gemeinnutzige GmbH, Kirchheim unter Teck, Germany
| | - Eamonn Molloy
- Bone and Joint Unit, Saint Vincent's University Hospital, Dublin, Ireland
| | - Carlo Salvarani
- Unit of Rheumatology, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Universita degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Bruce C Trapnell
- Translational Pulmonary Science Center, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | | | - Ian Wicks
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Rheumatology Unit, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Manoj Samant
- Kiniksa Pharmaceuticals Corp, Lexington, Massachusetts, USA
| | - Teresa Zhou
- Kiniksa Pharmaceuticals Corp, Lexington, Massachusetts, USA
| | - Lara Pupim
- Kiniksa Pharmaceuticals Corp, Lexington, Massachusetts, USA
| | - John F Paolini
- Kiniksa Pharmaceuticals Corp, Lexington, Massachusetts, USA
| | | |
Collapse
|
19
|
Ochi S, Sonomoto K, Nakayamada S, Tanaka Y. Preferable outcome of Janus kinase inhibitors for a group of difficult-to-treat rheumatoid arthritis patients: from the FIRST Registry. Arthritis Res Ther 2022; 24:61. [PMID: 35232462 PMCID: PMC8886884 DOI: 10.1186/s13075-022-02744-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/13/2022] [Indexed: 12/16/2022] Open
Abstract
Backgrounds Treatment of difficult-to-treat rheumatoid arthritis (D2T RA) is one of the greatest unmet needs in rheumatology. This study aims to find out preferable treatment options for a group of D2T RA patients who are refractory to multiple biologic and targeted synthetic disease-modifying anti-rheumatic drugs (b/tsDMARDs). Methods Data were obtained from patients enrolled in the FIRST Registry who started either TNF inhibitor (TNFi), interleukin-6 receptor inhibitor, cytotoxic T-lymphocyte–associated antigen-4 immunoglobulin, or Janus-kinase inhibitor (JAKi) in the period of August 2013 to December 2020. Those who failed to ≥ 2 and ≥ 3 b/tsDMARDs were categorised as D2T RA and very D2T RA (vD2T RA), respectively. Change in Clinical Disease Activity Index (CDAI) and Health Assessment Questionnaire Disability Index were compared among the groups using propensity-based inverse probability treatment weighted (IPTW) method. Results Of 2128 cases included, 353 were categorised as D2T RA. Among the D2T RA, 106 were identified as vD2T RA. JAKi showed a significant improvement in CDAI in the patients with D2T RA and vD2T RA, compared to IPTW-adjusted patients treated with the other 3 regimens. Latent class analysis of the trajectories of treatment response revealed that the proportion of a group of patients who showed poor response was lower among the JAKi subgroup than among those with other subgroups. This superiority of JAKi was more apparent among methotrexate- and glucocorticoid-free individuals. The hazard ratio of severe adverse events was comparable among the four treatment subgroups in both the D2T RA and b/tsDMARD-naïve groups. Conclusions This study compared responsiveness to different classes of b/tsDMARDs among D2T RA and vD2T RA patients who were refractory to multiple b/tsDMARDs. The results suggest JAKi is a preferable treatment choice for this type of D2T RA. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02744-7.
Collapse
Affiliation(s)
- Sae Ochi
- Department of Laboratory Medicine, The Jikei University School of Medicine, Nishi-shinbashi 3-25-8, Minatoku, Tokyo, 105-8461, Japan.,The First Department of Internal Medicine, School of Medicine University of Occupational and Environmental Health, Japan, Iseigaoka1-1, Yahata-Nishiku, Kitakyushu, 807-8555, Japan
| | - Koshiro Sonomoto
- The First Department of Internal Medicine, School of Medicine University of Occupational and Environmental Health, Japan, Iseigaoka1-1, Yahata-Nishiku, Kitakyushu, 807-8555, Japan
| | - Shingo Nakayamada
- The First Department of Internal Medicine, School of Medicine University of Occupational and Environmental Health, Japan, Iseigaoka1-1, Yahata-Nishiku, Kitakyushu, 807-8555, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine University of Occupational and Environmental Health, Japan, Iseigaoka1-1, Yahata-Nishiku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
20
|
Cheng CF, Liao HJ, Wu CS. Tissue microenvironment dictates inflammation and disease activity in rheumatoid arthritis. J Formos Med Assoc 2022; 121:1027-1033. [PMID: 35144834 DOI: 10.1016/j.jfma.2022.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/08/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
The recent advance in treatments for rheumatoid arthritis (RA) has significantly improved the prognosis of RA patients. However, these novel therapies do not work well for all RA patients. The unmet need suggests that the current understanding about how inflammatory response arises and progresses in RA is limited. Recent accumulating evidence reveals an important role for the tissue microenvironment in the pathogenesis of RA. The synovium, the main tissue where the RA activity occurs, is composed by a unique extracellular matrix (ECM) and residing cells. The ECM molecules provide environmental signals that determine programmed site-specific cell behavior. Improved understanding of the tissue microenvironment, especially how the synovial architecture, ECM molecules, and site-specific cell behavior promote chronic inflammation and tissue destruction, will enhance deciphering the pathogenesis of RA. Moreover, in-depth analysis of tissue microenvironment will allow us to identify potential therapeutic targets. Research is now undertaken to explore potential candidates, both cellular and ECM molecules, to develop novel therapies. This article reviews recent advances in knowledge about how changes in cellular and ECM factors within the tissue microenvironment result in propagation of chronic inflammation in RA.
Collapse
Affiliation(s)
- Chiao-Feng Cheng
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin County, Taiwan
| | - Hsiu-Jung Liao
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chien-Sheng Wu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| |
Collapse
|
21
|
Degboé Y, Poupot R, Poupot M. Repolarization of Unbalanced Macrophages: Unmet Medical Need in Chronic Inflammation and Cancer. Int J Mol Sci 2022; 23:1496. [PMID: 35163420 PMCID: PMC8835955 DOI: 10.3390/ijms23031496] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Monocytes and their tissue counterpart macrophages (MP) constitute the front line of the immune system. Indeed, they are able to rapidly and efficiently detect both external and internal danger signals, thereby activating the immune system to eradicate the disturbing biological, chemical, or physical agents. They are also in charge of the control of the immune response and account for the repair of the damaged tissues, eventually restoring tissue homeostasis. The balance between these dual activities must be thoroughly controlled in space and time. Any sustained unbalanced response of MP leads to pathological disorders, such as chronic inflammation, or favors cancer development and progression. In this review, we take advantage of our expertise in chronic inflammation, especially in rheumatoid arthritis, and in cancer, to highlight the pivotal role of MP in the physiopathology of these disorders and to emphasize the repolarization of unbalanced MP as a promising therapeutic strategy to control these diseases.
Collapse
Affiliation(s)
- Yannick Degboé
- Infinity, Université Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France;
- Département de Rhumatologie, CHU Toulouse, 31029 Toulouse, France
| | - Rémy Poupot
- Infinity, Université Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France;
| | - Mary Poupot
- Centre de Recherche en Cancérologie de Toulouse, Université Toulouse, INSERM, UPS, 31037 Toulouse, France;
| |
Collapse
|
22
|
Cao W, Fan W, Wang F, Zhang Y, Wu G, Shi X, Shi JX, Gao F, Yan M, Guo R, Li Y, Li W, Du C, Jiang Z. GM-CSF impairs erythropoiesis by disrupting erythroblastic island formation via macrophages. J Transl Med 2022; 20:11. [PMID: 34980171 PMCID: PMC8721478 DOI: 10.1186/s12967-021-03214-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023] Open
Abstract
Anemia is a significant complication of chronic inflammation and may be related to dysregulated activities among erythroblastic island (EBI) macrophages. GM-CSF was reported to be upregulated and attracted as a therapeutic target in many inflammatory diseases. Among EBIs, we found that the GM-CSF receptor is preferentially and highly expressed among EBI macrophages but not among erythroblasts. GM-CSF treatment significantly decreases human EBI formation in vitro by decreasing the adhesion molecule expression of CD163. RNA-sequence analysis suggests that GM-CSF treatment impairs the supporting function of human EBI macrophages during erythropoiesis. GM-CSF treatment also polarizes human EBI macrophages from M2-like type to M1-like type. In addition, GM-CSF decreases mouse bone marrow (BM) erythroblasts as well as EBI macrophages, leading to a reduction in EBI numbers. In defining the molecular mechanism at work, we found that GM-CSF treatment significantly decreases the adhesion molecule expression of CD163 and Vcam1 in vivo. Importantly, GM-CSF treatment also decreases the phagocytosis rate of EBI macrophages in mouse BM as well as decreases the expression of the engulfment-related molecules Mertk, Axl, and Timd4. In addition, GM-CSF treatment polarizes mouse BM EBI macrophages from M2-like type to M1-like type. Thus, we document that GM-CSF impairs EBI formation in mice and humans. Our findings support that targeting GM-CSF or reprogramming EBI macrophages might be a novel strategy to treat anemia resulting from inflammatory diseases.
Collapse
Affiliation(s)
- Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenjuan Fan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yinyin Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guanghua Wu
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaojing Shi
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jian Xiang Shi
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences in Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fengcai Gao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Meimei Yan
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Chunyan Du
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
23
|
Tanaka Y. Recent progress in treatments of rheumatoid arthritis: an overview of developments in biologics and small molecules, and remaining unmet needs. Rheumatology (Oxford) 2021; 60:vi12-vi20. [PMID: 34951925 PMCID: PMC8709568 DOI: 10.1093/rheumatology/keab609] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
Through treatment with biological DMARDs (bDMARDs) or targeted synthetic (tsDMARDs) such as Janus kinase (JAK) inhibitors in addition to MTX, clinical remission has become a realistic therapeutic goal for the majority of patients with RA, and sustained remission facilitates prevention of joint damage and physical dysfunction. Long-term safety and sustained inhibition of structural changes and physical dysfunction by bDMARDs have been reported. The development of next-generation bDMARDs and expansion of their indications to various autoimmune diseases are expected. Five JAK inhibitors show comparable efficacy to bDMARDs, and the latest ones are effective for overcoming difficult-to-treat RA regardless of prior medications. Patients treated with JAK inhibitors should be adequately screened and monitored for infection, cardiovascular disorders, thrombosis, malignancies and so on. Advances in therapeutic strategies, including the differential use of therapeutic drugs and de-escalation of treatment after remission induction, are prioritized.
Collapse
Affiliation(s)
- Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
24
|
Chronic pharmacological antagonism of the GM-CSF receptor in mice does not replicate the pulmonary alveolar proteinosis phenotype but does alter lung surfactant turnover. Clin Sci (Lond) 2021; 135:2559-2573. [PMID: 34778899 DOI: 10.1042/cs20210713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022]
Abstract
Granulocyte macrophage colony stimulating factor (GM-CSF) is a key participant in, and a clinical target for, the treatment of inflammatory diseases including rheumatoid arthritis (RA). Therapeutic inhibition of GM-CSF signalling using monoclonal antibodies to the α-subunit of the GM-CSF receptor (GMCSFRα) has shown clear benefit in patients with RA, giant cell arteritis (GCAs) and some efficacy in severe SARS-CoV-2 infection. However, GM-CSF autoantibodies are associated with the development of pulmonary alveolar proteinosis (PAP), a rare lung disease characterised by alveolar macrophage (AM) dysfunction and the accumulation of surfactant lipids. We assessed how the anti-GMCSFRα approach might impact surfactant turnover in the airway. Female C57BL/6J mice received a mouse-GMCSFRα blocking antibody (CAM-3003) twice per week for up to 24 weeks. A parallel, comparator cohort of the mouse PAP model, GM-CSF receptor β subunit (GMCSFRβ) knock-out (KO), was maintained up to 16 weeks. We assessed lung tissue histopathology alongside lung phosphatidylcholine (PC) metabolism using stable isotope lipidomics. GMCSFRβ KO mice reproduced the histopathological and biochemical features of PAP, accumulating surfactant PC in both broncho-alveolar lavage fluid (BALF) and lavaged lung tissue. The incorporation pattern of methyl-D9-choline showed impaired catabolism and not enhanced synthesis. In contrast, chronic supra-pharmacological CAM-3003 exposure (100 mg/kg) over 24 weeks did not elicit a histopathological PAP phenotype despite some changes in lung PC catabolism. Lack of significant impairment of AM catabolic function supports clinical observations that therapeutic antibodies to this pathway have not been associated with PAP in clinical trials.
Collapse
|
25
|
Zhao J, Guo S, Schrodi SJ, He D. Molecular and Cellular Heterogeneity in Rheumatoid Arthritis: Mechanisms and Clinical Implications. Front Immunol 2021; 12:790122. [PMID: 34899757 PMCID: PMC8660630 DOI: 10.3389/fimmu.2021.790122] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis is an autoimmune disease that exhibits significant clinical heterogeneity. There are various treatments for rheumatoid arthritis, including disease-modifying anti-rheumatic drugs (DMARDs), glucocorticoids, non-steroidal anti-inflammatory drugs (NSAIDs), and inflammatory cytokine inhibitors (ICI), typically associated with differentiated clinical effects and characteristics. Personalized responsiveness is observed to the standard treatment due to the pathophysiological heterogeneity in rheumatoid arthritis, resulting in an overall poor prognosis. Understanding the role of individual variation in cellular and molecular mechanisms related to rheumatoid arthritis will considerably improve clinical care and patient outcomes. In this review, we discuss the source of pathophysiological heterogeneity derived from genetic, molecular, and cellular heterogeneity and their possible impact on precision medicine and personalized treatment of rheumatoid arthritis. We provide emphasized description of the heterogeneity derived from mast cells, monocyte cell, macrophage fibroblast-like synoviocytes and, interactions within immune cells and with inflammatory cytokines, as well as the potential as a new therapeutic target to develop a novel treatment approach. Finally, we summarize the latest clinical trials of treatment options for rheumatoid arthritis and provide a suggestive framework for implementing preclinical and clinical experimental results into clinical practice.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
26
|
Rahimizadeh P, Rezaieyazdi Z, Behzadi F, Hajizade A, Lim SI. Nanotechnology as a promising platform for rheumatoid arthritis management: Diagnosis, treatment, and treatment monitoring. Int J Pharm 2021; 609:121137. [PMID: 34592396 DOI: 10.1016/j.ijpharm.2021.121137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that develops in about 5 per 1000 people. Over the past years, substantial progresses in knowledge of the disease's pathophysiology, effective diagnosis methods, early detection, and efficient treatment strategies have been made. Notably, nanotechnology has emerged as a game-changer in the efficacious management of many diseases, especially for RA. Joint replacement, photothermal therapy (PTT), photodynamic therapy (PDT), RA diagnosis, and treatment monitoring are nano-based avenues in RA management. Here, we present a brief overview of the pathogenesis of RA, risk factors, conventional diagnostic methods and treatment approaches, and then discuss the role of nanomedicine in RA diagnosis, treatment, and treatment monitoring with an emphasis on functional characteristics distinctive from other RA therapeutics.
Collapse
Affiliation(s)
- Parastou Rahimizadeh
- Department of Chemical Engineering, Pukyong National University, Busan 48513, South Korea
| | - Zahra Rezaieyazdi
- Rheumatic Disease Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Faezeh Behzadi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Abbas Hajizade
- Biology Research Centre, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran.
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
27
|
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) was originally identified as a growth factor for its ability to promote the proliferation and differentiation in vitro of bone marrow progenitor cells into granulocytes and macrophages. Many preclinical studies, using GM-CSF deletion or depletion approaches, have demonstrated that GM-CSF has a wide range of biological functions, including the mediation of inflammation and pain, indicating that it can be a potential target in many inflammatory and autoimmune conditions. This review provides a brief overview of GM-CSF biology and signaling, and summarizes the findings from preclinical models of a range of inflammatory and autoimmune disorders and the latest clinical trials targeting GM-CSF or its receptor in these disorders.
Collapse
Affiliation(s)
- Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Kevin M C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia; Australian Institute for Musculoskeletal Science, St Albans, Victoria 3021, Australia
| |
Collapse
|
28
|
Zhang M, Deng H, Yi X, Xie S, Zhan Q. Study on Chlorogenic Acid Inhibiting the Proliferation and Invasion of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis Model. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This paper explored Chlorogenic acid regulating the biological behavior of RA FLSs and studied the functional role of microRNAs in it. In vivo experiment: Female DBA/1 J mice were used for model establishment and grouping. HE staining was employed. The damage of ankle cartilage
was analyzed in each group of mice. The levels of serum cytokines TNF-α and IL-β were measured by ELISA. In vitro experiment: The cells were counterstained with Hoechst 33342, Transwell was used to detect cell invasion. Western blotting was used to detect the
expression of Akt protein. The Akt expression plasmid and miR-23b mimic were co-transfected into RA FLSs, and the luciferase activity was measured using a dual-luciferase detection system. In vivo experiments found that Chlorogenic acid can significantly reduce arthritis index and inhibit
TNF-α and IL-β levels. In vitro experiments found that TNF-α-induced proliferation of RA FLSs was significantly inhibited by Chlorogenic acid. Transwell invasion test showed that TNF-α-induced cell invasion was attenuated at the presence
of Chlorogenic acid, which significantly inhibited Akt protein expression and phosphorylation. The expression of miR-23b in Chlorogenic acid-treated RA-FLSs increased, and silencing miR-23b enhanced the inhibitory effect of RA FLSs on Chlorogenic acid induction. Chlorogenic acid has potential
anti-rheumatoid arthritis activity. Its inhibition of RA FLSs proliferation and invasion is related to the induction of miR-23b and the down-regulation of Akt expression.
Collapse
Affiliation(s)
- Mingjuan Zhang
- Guangzhou Vocational and Technical University of Science and Technology, GuangZhou, Guang Dong, 510550, China
| | - Huaming Deng
- College of Nursing and Health Management, Lingnan Institute of Technology, Guangzhou 510663, China
| | - Xiajun Yi
- Guangzhou Vocational and Technical University of Science and Technology, GuangZhou, Guang Dong, 510550, China
| | - Siying Xie
- Guangzhou Vocational and Technical University of Science and Technology, GuangZhou, Guang Dong, 510550, China
| | - Qingying Zhan
- Guangzhou Vocational and Technical University of Science and Technology, GuangZhou, Guang Dong, 510550, China
| |
Collapse
|
29
|
Ma Y, Meng J, Jia J, Wang M, Teng J, Zhu D, Yang C, Hu Q. Current and emerging biological therapy in adult-onset Still's disease. Rheumatology (Oxford) 2021; 60:3986-4000. [PMID: 34117886 PMCID: PMC8410009 DOI: 10.1093/rheumatology/keab485] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022] Open
Abstract
Adult-onset Still's disease (AOSD) is a rare, but characteristic non-familial, multi-genic systemic auto-inflammatory disorder, characterized by high spiking fever, salmon-like evanescent skin rash, polyarthritis, sore throat, hyperferritinemia and leucocytosis. The hallmark of AOSD is a cytokine storm triggered by dysregulation of inflammation. Nowadays, with advances in anti-cytokine biologic agents, the treatment of AOSD is no longer limited to NSAIDs, glucocorticoids or conventional synthetic DMARDs. In this review, we focussed on the roles of these cytokines in the pathogenesis of AOSD and summarized the current and emerging biological therapy.
Collapse
Affiliation(s)
- Yuning Ma
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Jianfen Meng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai.,Department of Rheumatology and Immunology, The Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, Yancheng, China
| | - Jinchao Jia
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Mengyan Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Dehao Zhu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| |
Collapse
|
30
|
Lopez L, Griffier R, Barnetche T, Lhomme E, Kostine M, Truchetet ME, Schaeverbeke T, Richez C. The response to TNF blockers depending on their comparator in rheumatoid arthritis clinical trials: the lessebo effect, a meta-analysis. Rheumatology (Oxford) 2021; 61:531-541. [PMID: 34382085 DOI: 10.1093/rheumatology/keab630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To compare the effect of the biological reference agents (infliximab, etanercept, adalimumab) in rheumatoid arthritis (RA) in pivotal superiority placebo-controlled trials (reference agent vs placebo) vs their effect in equivalence active comparator-controlled trials (reference agent vs biosimilar). METHODS The PubMed, EMBASE, Cochrane, databases were searched for randomized, double-blind, controlled trials up to March 2020 comparing a biological reference agent vs placebo or biosimilar. The study assessed the American College of Rheumatology (ACR) 20/50/70 responses of the reference agent in these groups (Reference-pbo and Reference-bs, respectively). The effect of the reference agent in both groups was estimated with 95% confidence intervals (95%CI), pooled using random-effects models and then compared using a meta-regression model. RESULTS We included 31 trials. The main characteristics of the population (disease duration and activity, % seropositivity and methotrexate dose) of the population in both groups were similar. The meta-analysis found a better ACR20 response to the biological originator in the Reference-bs group with a global rate of 70% (95%CI, 66-74) compared with 59% (95%CI, 55-62) in the reference-pbo group (p= 0.001). A significant difference was also found for ACR 50 [44% (95%CI, 39-50) vs 35% (95%CI, 31-39) respectively, p< 0.01]. CONCLUSION Effect of the reference biologic agent was better when compared with an active drug to a placebo. This could be linked to an increased placebo effect in active comparator-controlled studies or a nocebo effect in placebo-controlled studies. This effect can be called the Lessebo effect.
Collapse
Affiliation(s)
- Lea Lopez
- Bordeaux University Hospital, Rheumatology department, FHU ACRONIM, Place Amélie Raba Léon, 33076, Bordeaux, France.,Bordeaux University, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Romain Griffier
- Bordeaux University Hospital, Rheumatology department, FHU ACRONIM, Place Amélie Raba Léon, 33076, Bordeaux, France.,Bordeaux University, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Thomas Barnetche
- Bordeaux University Hospital, Rheumatology department, FHU ACRONIM, Place Amélie Raba Léon, 33076, Bordeaux, France
| | - Edouard Lhomme
- Bordeaux University Hospital, Rheumatology department, FHU ACRONIM, Place Amélie Raba Léon, 33076, Bordeaux, France.,Bordeaux University, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Marie Kostine
- Bordeaux University Hospital, Rheumatology department, FHU ACRONIM, Place Amélie Raba Léon, 33076, Bordeaux, France.,Bordeaux University, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164 Immuno ConcEpT, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Marie-Elise Truchetet
- Bordeaux University Hospital, Rheumatology department, FHU ACRONIM, Place Amélie Raba Léon, 33076, Bordeaux, France.,Bordeaux University, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164 Immuno ConcEpT, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Thierry Schaeverbeke
- Bordeaux University Hospital, Rheumatology department, FHU ACRONIM, Place Amélie Raba Léon, 33076, Bordeaux, France.,Bordeaux University, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164 Immuno ConcEpT, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Christophe Richez
- Bordeaux University Hospital, Rheumatology department, FHU ACRONIM, Place Amélie Raba Léon, 33076, Bordeaux, France.,Bordeaux University, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164 Immuno ConcEpT, 146 rue Léo Saignat, 33076, Bordeaux, France
| |
Collapse
|
31
|
Maurer M, Khan DA, Elieh Ali Komi D, Kaplan AP. Biologics for the Use in Chronic Spontaneous Urticaria: When and Which. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:1067-1078. [PMID: 33685605 DOI: 10.1016/j.jaip.2020.11.043] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
Guidelines for the treatment of chronic spontaneous urticaria (CSU) recommend the use of the IgE-targeted biologic omalizumab in patients with antihistamine-refractory disease. The rationale for this is supported by the key role of IgE and its high-affinity receptor, FcεRI, in the degranulation of skin mast cells that drives the development of the signs and symptoms of CSU, itchy wheals, and angioedema. Here, we review the current understanding of the pathogenesis of CSU and its autoimmune endotypes. We describe the mechanisms of action of omalizumab, the only biologic currently approved for CSU, its efficacy and ways to improve it, biomarkers for treatment response, and strategies for its discontinuation. We provide information on the effects of the off-label use, in CSU, of biologics licensed for the treatment of other diseases, including dupilumab, benralizumab, mepolizumab, reslizumab, and secukinumab. Finally, we discuss targets for novel biologics and where we stand with their clinical development. These include IgE/ligelizumab, IgE/GI-310, thymic stromal lymphopoietin/tezepelumab, C5a receptor/avdoralimab, sialic acid-binding Ig-like lectin 8/lirentelimab, CD200R/LY3454738, and KIT/CDX-0159. Our aim is to provide updated information and guidance on the use of biologics in the treatment of patients with CSU, now and in the near future.
Collapse
Affiliation(s)
- Marcus Maurer
- Department of Dermatology and Allergy, Dermatological Allergology, Allergie-Centrum-Charité, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - David A Khan
- Division of Allergy and Immunology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Daniel Elieh Ali Komi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Allen P Kaplan
- Department of Medicine, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
32
|
Bhatt K, Garimella R, Taugir R, Mehta I, Jamal M, Vijayan R, Offor R, Nwankwo K, Arif U, Waheed K, Kumari P, Lathiya M, Michel G, Pandya N, Halpern J, Nasir H, Sanchez-Gonzalez MA. Effectiveness of Mavrilimumab in Viral Infections Including SARS-CoV-2 Infection - A Brief Review. Infect Chemother 2021; 53:1-12. [PMID: 34409778 PMCID: PMC8032909 DOI: 10.3947/ic.2020.0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
Hyperinflammation and cytokine storm has been noted as a poor prognostic factor in patients with severe pneumonia related to coronavirus disease 2019 (COVID-19). In COVID-19, pathogenic myeloid cell overactivation is found to be a vital mediator of damage to tissues, hypercoagulability, and the cytokine storm. These cytokines unselectively infiltrate various tissues, such as the lungs and heart, and nervous system. This cytokine storm can hence cause multi-organ dysfunction and life-threatening complications. Mavrilimumab is a monoclonal antibody (mAb) that may be helpful in some cases with COVID-19. During an inflammation, Granulocyte-macrophage colony-stimulating factor (GM-CSF) release is crucial to driving both innate and adaptive immune responses. The GM-CSF immune response is triggered when an antigen attaches to the host cell and induces the signaling pathway. Mavrilimumab antagonizes the action of GM-CSF and decreases the hyperinflammation associated with pneumonia in COVID-19, therefore strengthening the rationale that mavrilimumab when added to the standard protocol of treatment could improve the clinical outcomes in COVID-19 patients, specifically those patients with pneumonia. With this review paper, we aim to demonstrate the inhibitory effect of mavrilimumab on cytokine storms in patients with COVID-19 by reviewing published clinical trials and emphasize the importance of extensive future trials.
Collapse
Affiliation(s)
- Kinal Bhatt
- Division of Clinical & Translational Research, Larkin Health System, South Miami, FL, USA.
| | | | - Rahima Taugir
- Medical University of the Americas, St. Kitts and Nevis
| | - Isha Mehta
- Windsor University School of Medicine, St. Kitts and Nevis
| | | | | | - Rita Offor
- Texas A and M University, College Station, Texas, USA
| | | | - Uroosa Arif
- Khyber Teaching Hospital, Peshawar, Pakistan
| | | | | | | | - George Michel
- Department of Internal Medicine, Larkin Health System, South Miami, FL, USA
| | | | | | | | | |
Collapse
|
33
|
Boutet MA, Courties G, Nerviani A, Le Goff B, Apparailly F, Pitzalis C, Blanchard F. Novel insights into macrophage diversity in rheumatoid arthritis synovium. Autoimmun Rev 2021; 20:102758. [PMID: 33476818 DOI: 10.1016/j.autrev.2021.102758] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease affecting joints and causing progressive damage and disability. Macrophages are of critical importance in the initiation and perpetuation of synovitis in RA, they can function as antigen presenting cells leading to T-cell dependent B-cell activation, assume a variety of inflammatory cell states with the production of destructive cytokines, but also contribute to tissue homeostasis/repair. The recent development of high-throughput technologies, including bulk and single cells RNA-sequencing, has broadened our understanding of synovial cell diversity, and opened novel perspectives to the discovery of new potential therapeutic targets in RA. In this review, we will focus on the relationship between the synovial macrophage infiltration and clinical disease severity and response to treatment. We will then provide a state-of-the-art picture of the biological roles of synovial macrophages and distinct macrophage subsets described in RA. Finally, we will review the effects of approved conventional and biologic drugs on the synovial macrophage component and highlight the therapeutic potential of future strategies to re-program macrophage phenotypes in RA.
Collapse
Affiliation(s)
- Marie-Astrid Boutet
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Gabriel Courties
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France.
| | - Alessandra Nerviani
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Benoit Le Goff
- INSERM UMR1238, Bone Sarcoma and Remodelling of Calcified Tissues, Nantes University, Nantes, France; Rheumatology Department, Nantes University Hospital, Nantes, France.
| | | | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Frédéric Blanchard
- INSERM UMR1238, Bone Sarcoma and Remodelling of Calcified Tissues, Nantes University, Nantes, France.
| |
Collapse
|
34
|
Bonek K, Roszkowski L, Massalska M, Maslinski W, Ciechomska M. Biologic Drugs for Rheumatoid Arthritis in the Context of Biosimilars, Genetics, Epigenetics and COVID-19 Treatment. Cells 2021; 10:323. [PMID: 33557301 PMCID: PMC7914976 DOI: 10.3390/cells10020323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 01/08/2023] Open
Abstract
Rheumatoid arthritis (RA) affects around 1.2% of the adult population. RA is one of the main reasons for work disability and premature retirement, thus substantially increasing social and economic burden. Biological disease-modifying antirheumatic drugs (bDMARDs) were shown to be an effective therapy especially in those rheumatoid arthritis (RA) patients, who did not adequately respond to conventional synthetic DMARD therapy. However, despite the proven efficacy, the high cost of the therapy resulted in limitation of the widespread use and unequal access to the care. The introduction of biosimilars, which are much cheaper relative to original drugs, may facilitate the achievement of the therapy by a much broader spectrum of patients. In this review we present the properties of original biologic agents based on cytokine-targeted (blockers of TNF, IL-6, IL-1, GM-CSF) and cell-targeted therapies (aimed to inhibit T cells and B cells properties) as well as biosimilars used in rheumatology. We also analyze the latest update of bDMARDs' possible influence on DNA methylation, miRNA expression and histone modification in RA patients, what might be the important factors toward precise and personalized RA treatment. In addition, during the COVID-19 outbreak, we discuss the usage of biologicals in context of effective and safe COVID-19 treatment. Therefore, early diagnosing along with therapeutic intervention based on personalized drugs targeting disease-specific genes is still needed to relieve symptoms and to improve the quality of life of RA patients.
Collapse
Affiliation(s)
- Krzysztof Bonek
- Department of Rheumatology, National Institute of Geriatrics Rheumatology and Rehabilitation, 02-635 Warsaw, Poland; (K.B.); (L.R.)
| | - Leszek Roszkowski
- Department of Rheumatology, National Institute of Geriatrics Rheumatology and Rehabilitation, 02-635 Warsaw, Poland; (K.B.); (L.R.)
| | - Magdalena Massalska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics Rheumatology and Rehabilitation, 02-635 Warsaw, Poland; (M.M.); (W.M.)
| | - Wlodzimierz Maslinski
- Department of Pathophysiology and Immunology, National Institute of Geriatrics Rheumatology and Rehabilitation, 02-635 Warsaw, Poland; (M.M.); (W.M.)
| | - Marzena Ciechomska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics Rheumatology and Rehabilitation, 02-635 Warsaw, Poland; (M.M.); (W.M.)
| |
Collapse
|
35
|
Roodenrijs NMT, Hamar A, Kedves M, Nagy G, van Laar JM, van der Heijde D, Welsing PMJ. Pharmacological and non-pharmacological therapeutic strategies in difficult-to-treat rheumatoid arthritis: a systematic literature review informing the EULAR recommendations for the management of difficult-to-treat rheumatoid arthritis. RMD Open 2021; 7:e001512. [PMID: 33419871 PMCID: PMC7798678 DOI: 10.1136/rmdopen-2020-001512] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To summarise, by a systematic literature review (SLR), the evidence regarding pharmacological and non-pharmacological therapeutic strategies in difficult-to-treat rheumatoid arthritis (D2T RA), informing the EULAR recommendations for the management of D2T RA. METHODS PubMed, Embase and Cochrane databases were searched up to December 2019. Relevant papers were selected and appraised. RESULTS Two hundred seven (207) papers studied therapeutic strategies. Limited evidence was found on effective and safe disease-modifying antirheumatic drugs (DMARDs) in patients with comorbidities and other contraindications that limit DMARD options (patients with obesity, hepatitis B and C, risk of venous thromboembolisms, pregnancy and lactation). In patients who previously failed biological (b-)DMARDs, all currently used b/targeted synthetic (ts-)DMARDs were found to be more effective than placebo. In patients who previously failed a tumour necrosis factor inhibitor (TNFi), there was a tendency of non-TNFi bDMARDs to be more effective than TNFis. Generally, effectiveness decreased in patients who previously failed a higher number of bDMARDs. Additionally, exercise, psychological, educational and self-management interventions were found to improve non-inflammatory complaints (mainly functional disability, pain, fatigue), education to improve goal setting, and self-management programmes, educational and psychological interventions to improve self-management.The identified evidence had several limitations: (1) no studies were found in patients with D2T RA specifically, (2) heterogeneous outcome criteria were used and (3) most studies had a moderate or high risk of bias. CONCLUSIONS This SLR underscores the scarcity of high-quality evidence on the pharmacological and non-pharmacological treatment of patients with D2T RA. Effectiveness of b/tsDMARDs decreased in RA patients who had failed a higher number of bDMARDs and a subsequent b/tsDMARD of a previously not targeted mechanism of action was somewhat more effective. Additionally, a beneficial effect of non-pharmacological interventions was found for improvement of non-inflammatory complaints, goal setting and self-management.
Collapse
Affiliation(s)
- Nadia M T Roodenrijs
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Attila Hamar
- Rheumatology, University of Debrecen, Debrecen, Hungary
| | - Melinda Kedves
- Rheumatology, Bacs-Kiskun Megyei Korhaz, Kecskemet, Hungary
| | - György Nagy
- Genetics, Cell- and Immunobiology & Rheumatology & Clinical Rheumatology, Semmelweis University, Budapest, Hungary
| | - Jacob M van Laar
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Paco M J Welsing
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
36
|
Buch MH, Eyre S, McGonagle D. Persistent inflammatory and non-inflammatory mechanisms in refractory rheumatoid arthritis. Nat Rev Rheumatol 2020; 17:17-33. [PMID: 33293696 DOI: 10.1038/s41584-020-00541-7] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Despite nearly three decades of advances in the management of rheumatoid arthritis (RA), a substantial minority of patients are exposed to multiple DMARDs without necessarily benefitting from them; a group of patients variously designated as having 'difficult to treat', 'treatment-resistant' or 'refractory' RA. This Review of refractory RA focuses on two types of patients: those for whom multiple targeted therapies lack efficacy and who have persistent inflammatory pathology, which we designate as persistent inflammatory refractory RA (PIRRA); and those with supposed refractory RA who have continued disease activity that is predominantly independent of objective evidence of inflammation, which we designate as non-inflammatory refractory RA (NIRRA). These two types of disease are not mutually exclusive, but identifying those individuals with predominant PIRRA or NIRRA is important, as it informs distinct treatment and management approaches. This Review outlines the clinical differences between PIRRA and NIRRA, the genetic and epigenetic mechanisms and immune pathways that might contribute to the immunopathogenesis of recalcitrant synovitis in PIRRA, and a possible basis for non-inflammatory symptomatology in NIRRA. Future approaches towards the definition of refractory RA and the application of single-cell and integrated omics technologies to the identification of refractory RA endotypes are also discussed.
Collapse
Affiliation(s)
- Maya H Buch
- Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK. .,NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University Foundation Trust, Manchester, UK. .,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.
| | - Stephen Eyre
- Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University Foundation Trust, Manchester, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
37
|
Cantini F, Goletti D, Petrone L, Najafi Fard S, Niccoli L, Foti R. Immune Therapy, or Antiviral Therapy, or Both for COVID-19: A Systematic Review. Drugs 2020; 80:1929-1946. [PMID: 33068263 PMCID: PMC7568461 DOI: 10.1007/s40265-020-01421-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Based on current evidence, recent guidelines of the National Institute of Health, USA indicated the use of remdesivir and dexamethasone for the treatment of COVID-19 patients with mild-moderate disease, not requiring high-flow oxygen. No therapeutic agent directed against the immunologic pathogenic mechanisms related to the cytokine release syndrome complicating the disease was indicated. OBJECTIVES The purpose of this review was to assess the clinical impact of different therapies for COVID-19; thus, helping to identify the optimal management of the disease. To explain the rationale for the different therapeutic approaches, the characteristics of SARS-CoV-2, the pathogenesis of COVID-19, and the immune response triggered by SARS-CoV-2 infection were reported. METHODS The efficacy assessment of the different treatments was performed by a systematic review in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Available English language published articles including randomised controlled trials, open-label trials of antivirals and immune therapies extracted from Medline, Google Scholar, and MedRxiv databases were analysed. For inclusion, the primary end point of the trials had to be the efficacy as measured by the improvement of clinical features, or mortality, or the Intensive Care Unit Admission rate, or the discharge number. Case reports, paediatric studies, and studies without control group were excluded. The literature search was extended up to August 15, 2020. RESULTS After the removal of duplicate articles, and the exclusion of studies not meeting the eligibility criteria, 2 trials of lopinavir/ritonavir, 1 of favipiravir, 3 of remdesivir, 1 of dexamethasone, 3 of hydroxychloroquine, 2 of colchicine, 6 of tocilizumab, 1 of sarilumab, 1 of siltuximab, 2 of anakinra, 3 of baricitinib, 1 of ruxolitinib, 1 of mavrilimumab, and 1 of itolizumab were suitable for the review. Among antivirals, only remdesivir significantly reduced the time to recovery, and mortality. Data for chloroquine and hydroxychloroquine were largely inconclusive. In a large trial, dexamethasone 6 mg/day reduced mortality by one-third. Trials of tocilizumab and sarilumab did not definitively demonstrate efficacy. Anakinra significantly reduced the mortality in 2 trials. Three retrospective trials on a cumulative number of 145 patients, reported the efficacy of baricitinib, with significant reduction of intensive care unit admission, and deaths. These results were recently confirmed by the ACTT-2 trial. Due to paucity of studies and to the small size clinical series, the results of other immune therapies were not conclusive. CONCLUSIONS Beyond the supportive therapy, up to now the best therapeutic approach for COVID-19 may be a three-step combination therapy, including remdesivir 100 mg/day (200 mg loading dose on first day) in the first stage of the disease, and combined dexamethasone 6 mg/day plus baricitinib 4 mg/day to target the immune dysregulation triggered by the SARS-CoV-2 infection. The promising results of anakinra should be confirmed by the ongoing RCTs.
Collapse
Affiliation(s)
- Fabrizio Cantini
- Department of Rheumatology, Azienda USL Toscana Centro, Hospital of Prato, Prato, Italy.
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Saied Najafi Fard
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Laura Niccoli
- Department of Rheumatology, Azienda USL Toscana Centro, Hospital of Prato, Prato, Italy
| | - Rosario Foti
- Rheumatology Unit, Vittorio-Emanuele University Hospital of Catania, Catania, Italy
| |
Collapse
|
38
|
Lee KMC, Achuthan AA, Hamilton JA. GM-CSF: A Promising Target in Inflammation and Autoimmunity. Immunotargets Ther 2020; 9:225-240. [PMID: 33150139 PMCID: PMC7605919 DOI: 10.2147/itt.s262566] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
The cytokine, granulocyte macrophage-colony stimulating factor (GM-CSF), was firstly identified as being able to induce in vitro the proliferation and differentiation of bone marrow progenitors into granulocytes and macrophages. Much preclinical data have indicated that GM-CSF has a wide range of functions across different tissues in its action on myeloid cells, and GM-CSF deletion/depletion approaches indicate its potential as an important therapeutic target in several inflammatory and autoimmune disorders, for example, rheumatoid arthritis. In this review, we discuss briefly the biology of GM-CSF, raise some current issues and questions pertaining to this biology, summarize the results from preclinical models of a range of inflammatory and autoimmune disorders and list the latest clinical trials evaluating GM-CSF blockade in such disorders.
Collapse
Affiliation(s)
- Kevin M C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
| |
Collapse
|
39
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020; 11:1986. [PMID: 32983137 PMCID: PMC7485114 DOI: 10.3389/fimmu.2020.01986] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage–derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
40
|
Hamilton JA. GM-CSF in inflammation. J Exp Med 2020; 217:jem.20190945. [PMID: 31611249 PMCID: PMC7037240 DOI: 10.1084/jem.20190945] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/09/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
GM-CSF is a potential therapeutic target in inflammation and autoimmunity. This study reviews the literature on the biology of GM-CSF, in particular that describing the research leading to clinical trials targeting GM-CSF and its receptor in numerous inflammatory/autoimmune conditions, such as rheumatoid arthritis. Granulocyte–macrophage colony-stimulating factor (GM-CSF) has many more functions than its original in vitro identification as an inducer of granulocyte and macrophage development from progenitor cells. Key features of GM-CSF biology need to be defined better, such as the responding and producing cell types, its links with other mediators, its prosurvival versus activation/differentiation functions, and when it is relevant in pathology. Significant preclinical data have emerged from GM-CSF deletion/depletion approaches indicating that GM-CSF is a potential target in many inflammatory/autoimmune conditions. Clinical trials targeting GM-CSF or its receptor have shown encouraging efficacy and safety profiles, particularly in rheumatoid arthritis. This review provides an update on the above topics and current issues/questions surrounding GM-CSF biology.
Collapse
Affiliation(s)
- John A Hamilton
- The University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Australian Institute for Musculoskeletal Science, The University of Melbourne and Western Health, St Albans, Victoria, Australia
| |
Collapse
|
41
|
Nanoparticle-siRNA: A potential strategy for rheumatoid arthritis therapy? J Control Release 2020; 325:380-393. [PMID: 32653501 DOI: 10.1016/j.jconrel.2020.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a common clinical inflammatory disease of the autoimmune system manifested by persistent synovitis, cartilage damage and even deformities. Despite significant progress in the clinical treatment of RA, long-term administration of anti-rheumatic drugs can cause a series of problems, including infections, gastrointestinal reactions, and abnormal liver and kidney functions. The emergence of RNA interference (RNAi) drugs has brought new hope for the treatment of RA. Designing a reasonable vector for RNAi drugs will greatly expand the application prospects of RNAi. Nanoparticles as a promising drug carrier provide reliable support for RNAi drugs. The review summarizes the pathogenesis of RA as a possible target for small interference RNA (siRNA) design. At the same time, the review also analyzes the nanoparticles used in siRNA carriers in recent years, laying the foundation and prospect for the next step in the development of intelligent nanocarriers.
Collapse
|
42
|
Bonaventura A, Vecchié A, Wang TS, Lee E, Cremer PC, Carey B, Rajendram P, Hudock KM, Korbee L, Van Tassell BW, Dagna L, Abbate A. Targeting GM-CSF in COVID-19 Pneumonia: Rationale and Strategies. Front Immunol 2020; 11:1625. [PMID: 32719685 PMCID: PMC7348297 DOI: 10.3389/fimmu.2020.01625] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a clinical syndrome ranging from mild symptoms to severe pneumonia that often leads to respiratory failure, need for mechanical ventilation, and death. Most of the lung damage is driven by a surge in inflammatory cytokines [interleukin-6, interferon-γ, and granulocyte-monocyte stimulating factor (GM-CSF)]. Blunting this hyperinflammation with immunomodulation may lead to clinical improvement. GM-CSF is produced by many cells, including macrophages and T-cells. GM-CSF-derived signals are involved in differentiation of macrophages, including alveolar macrophages (AMs). In animal models of respiratory infections, the intranasal administration of GM-CSF increased the proliferation of AMs and improved outcomes. Increased levels of GM-CSF have been recently described in patients with COVID-19 compared to healthy controls. While GM-CSF might be beneficial in some circumstances as an appropriate response, in this case the inflammatory response is maladaptive by virtue of being later and disproportionate. The inhibition of GM-CSF signaling may be beneficial in improving the hyperinflammation-related lung damage in the most severe cases of COVID-19. This blockade can be achieved through antagonism of the GM-CSF receptor or the direct binding of circulating GM-CSF. Initial findings from patients with COVID-19 treated with a single intravenous dose of mavrilimumab, a monoclonal antibody binding GM-CSF receptor α, showed oxygenation improvement and shorter hospitalization. Prospective, randomized, placebo-controlled trials are ongoing. Anti-GM-CSF monoclonal antibodies, TJ003234 and gimsilumab, will be tested in clinical trials in patients with COVID-19, while lenzilumab received FDA approval for compassionate use. These trials will help inform whether blunting the inflammatory signaling provided by the GM-CSF axis in COVID-19 is beneficial.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/therapeutic use
- Betacoronavirus/immunology
- COVID-19
- Coronavirus Infections/drug therapy
- Coronavirus Infections/immunology
- Coronavirus Infections/pathology
- Disease Models, Animal
- Drug Delivery Systems
- Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
- Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Humans
- Inflammation/drug therapy
- Inflammation/immunology
- Inflammation/pathology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/pathology
- Pandemics
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/immunology
- Pneumonia, Viral/pathology
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- SARS-CoV-2
- Signal Transduction/drug effects
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Aldo Bonaventura
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Alessandra Vecchié
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Tisha S. Wang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Elinor Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Paul C. Cremer
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Brenna Carey
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | | | - Kristin M. Hudock
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH, United States
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Leslie Korbee
- Academic Regulatory & Monitoring Services, LLC, Cincinnati, OH, United States
| | - Benjamin W. Van Tassell
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Abbate
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
43
|
Lang FM, Lee KMC, Teijaro JR, Becher B, Hamilton JA. GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nat Rev Immunol 2020; 20:507-514. [PMID: 32576980 PMCID: PMC7309428 DOI: 10.1038/s41577-020-0357-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Therapeutics against coronavirus disease 2019 (COVID-19) are urgently needed. Granulocyte–macrophage colony-stimulating factor (GM-CSF), a myelopoietic growth factor and pro-inflammatory cytokine, plays a critical role in alveolar macrophage homeostasis, lung inflammation and immunological disease. Both administration and inhibition of GM-CSF are currently being therapeutically tested in COVID-19 clinical trials. This Perspective discusses the pleiotropic biology of GM-CSF and the scientific merits behind these contrasting approaches. Recombinant granulocyte–macrophage colony-stimulating factor (GM-CSF) as well as antibodies targeted at GM-CSF or its receptor are being tested in clinical trials for coronavirus disease 2019 (COVID-19). This Perspective introduces the pleiotropic functions of GM-CSF and explores the rationale behind these different approaches.
Collapse
Affiliation(s)
| | - Kevin M-C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - John R Teijaro
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia. .,Australian Institute for Musculoskeletal Science, The University of Melbourne and Western Health, St Albans, Melbourne, Victoria, Australia.
| |
Collapse
|
44
|
De Luca G, Cavalli G, Campochiaro C, Della-Torre E, Angelillo P, Tomelleri A, Boffini N, Tentori S, Mette F, Farina N, Rovere-Querini P, Ruggeri A, D'Aliberti T, Scarpellini P, Landoni G, De Cobelli F, Paolini JF, Zangrillo A, Tresoldi M, Trapnell BC, Ciceri F, Dagna L. GM-CSF blockade with mavrilimumab in severe COVID-19 pneumonia and systemic hyperinflammation: a single-centre, prospective cohort study. LANCET RHEUMATOLOGY 2020; 2:e465-e473. [PMID: 32835256 PMCID: PMC7430344 DOI: 10.1016/s2665-9913(20)30170-3] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Mortality in patients with COVID-19 pneumonia and systemic hyperinflammation is high. We aimed to examine whether mavrilimumab, an anti-granulocyte–macrophage colony-stimulating factor receptor-α monoclonal antibody, added to standard management, improves clinical outcomes in patients with COVID-19 pneumonia and systemic hyperinflammation. Methods This single-centre prospective cohort study included patients aged 18 years or older who were admitted to San Raffaele Hospital (Milan, Italy) with severe COVID-19 pneumonia, hypoxia, and systemic hyperinflammation. Patients received a single intravenous dose (6 mg/kg) of mavrilimumab added to standard care given by the hospital at the time. The control group consisted of contemporaneous patients with similar baseline characteristics who received standard care at the same hospital. The main outcome was time to clinical improvement (defined as improvement of two or more points on the seven-point ordinal scale of clinical status). Other outcomes included proportion of patients achieving clinical improvement, survival, mechanical ventilation-free survival, and time to fever resolution. Adverse events were monitored daily. Findings Between March 17 and April 15, 2020, 13 non-mechanically ventilated patients (median age 57 years [IQR 52–58], 12 [92%] men) received mavrilimumab and 26 patients (median age 60 [IQR 53–67], 17 [65%] men) in the control group received standard care. During the 28-day follow-up, no patients in the mavrilimumab group died, and seven (27%) patients in the control group died (p=0·086). At day 28, all patients in the mavrilimumab group and 17 (65%) patients in the control group showed clinical improvement (p=0·030), with earlier improvement in the mavrilimumab than in the control group (mean time to improvement 8 days [IQR 5 to 11] vs 19 days [11 to >28], p=0·0001). By day 28, one (8%) patient in the mavrilimumab group progressed to mechanical ventilation compared with nine (35%) patients in the control group who progressed to mechanical ventilation or died (p=0·14). By day 14, fever resolved in ten (91%) of 11 febrile patients in the mavrilimumab group, compared with 11 (61%) of 18 febrile patients in the control group (p=0·18); fever resolution was faster in mavrilimumab recipients versus controls (median time to resolution 1 day [IQR 1 to 2] vs 7 days [3 to >14], p=0·0093). Mavrilimumab was well tolerated, with no infusion reactions. Three (12%) patients in the control group developed infectious complications. Interpretation Mavrilimumab treatment was associated with improved clinical outcomes compared with standard care in non-mechanically ventilated patients with severe COVID-19 pneumonia and systemic hyperinflammation. Treatment was well tolerated. Confirmation of efficacy requires controlled testing. Funding IRCCS San Raffaele Scientific Institute.
Collapse
Affiliation(s)
- Giacomo De Luca
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Emanuel Della-Torre
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Piera Angelillo
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Tomelleri
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Nicola Boffini
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Tentori
- Internal Medicine and Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Mette
- Emergency Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Nicola Farina
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Patrizia Rovere-Querini
- Internal Medicine, Diabetes and Endocrinology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annalisa Ruggeri
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teresa D'Aliberti
- General Medicine and Advanced Care Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Scarpellini
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco De Cobelli
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | | | - Alberto Zangrillo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Moreno Tresoldi
- General Medicine and Advanced Care Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bruce C Trapnell
- Translational Pulmonary Science Center, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
45
|
Affiliation(s)
- Akio Morinobu
- Section of Rheumatology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
46
|
Kerschbaumer A, Sepriano A, Smolen JS, van der Heijde D, Dougados M, van Vollenhoven R, McInnes IB, Bijlsma JWJ, Burmester GR, de Wit M, Falzon L, Landewé R. Efficacy of pharmacological treatment in rheumatoid arthritis: a systematic literature research informing the 2019 update of the EULAR recommendations for management of rheumatoid arthritis. Ann Rheum Dis 2020; 79:744-759. [PMID: 32033937 PMCID: PMC7286044 DOI: 10.1136/annrheumdis-2019-216656] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To inform the 2019 update of the European League against Rheumatism (EULAR) recommendations for the management of rheumatoid arthritis (RA). METHODS A systematic literature research (SLR) to investigate the efficacy of any disease-modifying antirheumatic drug (DMARD) (conventional synthetic (cs)DMARD, biological (b) and biosimilar DMARD, targeted synthetic (ts)DMARD) or glucocorticoid (GC) therapy in patients with RA was done by searching MEDLINE, Embase and the Cochrane Library for articles published between 2016 and 8 March 2019. RESULTS 234 abstracts were selected for detailed assessment, with 136 finally included. They comprised the efficacy of bDMARDs versus placebo or other bDMARDs, efficacy of Janus kinase (JAK) inhibitors (JAKi) across different patient populations and head-to-head of different bDMARDs versus JAKi or other bDMARDs. Switching of bDMARDs to other bDMARDs or tsDMARDs, strategic trials and tapering studies of bDMARDs, csDMARDs and JAKi were assessed. The drugs evaluated included abatacept, adalimumab, ABT-122, baricitinib, certolizumab pegol, SBI-087, CNTO6785, decernotinib, etanercept, filgotinib, golimumab, GCs, GS-9876, guselkumab, hydroxychloroquine, infliximab, leflunomide, mavrilimumab, methotrexate, olokizumab, otilimab, peficitinib, rituximab, sarilumab, salazopyrine, secukinumab, sirukumab, tacrolimus, tocilizumab, tofacitinib, tregalizumab, upadacitinib, ustekinumab and vobarilizumab. The efficacy of many bDMARDs and tsDMARDs was shown. Switching to another tumour necrosis factor inhibitor (TNFi) or non-TNFi bDMARDs after TNFi treatment failure is efficacious. Tapering of DMARDs is possible in patients achieving long-standing stringent clinical remission; in patients with residual disease activity (including patients in LDA) the risk of flares is increased during the tapering. Biosimilars are non-inferior to their reference products. CONCLUSION This SLR informed the task force regarding the evidence base of various therapeutic regimen for the development of the update of EULAR's RA management recommendation.
Collapse
Affiliation(s)
| | - Alexandre Sepriano
- Leiden University Medical Center, Leiden, The Netherlands
- NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | | | | | | | | | | | | | | | | | - Robert Landewé
- Amsterdam Rheumatology Center, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Sepriano A, Kerschbaumer A, Smolen JS, van der Heijde D, Dougados M, van Vollenhoven R, McInnes IB, Bijlsma JW, Burmester GR, de Wit M, Falzon L, Landewé R. Safety of synthetic and biological DMARDs: a systematic literature review informing the 2019 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis 2020; 79:760-770. [PMID: 32033941 DOI: 10.1136/annrheumdis-2019-216653] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVES To perform a systematic literature review (SLR) concerning the safety of synthetic (s) and biological (b) disease-modifying anti rheumatic dugs (DMARDs) to inform the 2019 update of the EULAR recommendations for the management of rheumatoid arthritis (RA). METHODS An SLR of observational studies comparing safety outcomes of any DMARD with another intervention for the management of RA. A comparator group was required for inclusion. For treatments still without registry data (eg, sarilumab and the Janus kinase (JAK) inhibitors baricitinib, upadacitinib), randomised controlled trials (RCTs) and long-term extensions (LTEs) were used. Risk of bias (RoB) was assessed according to standard procedures. RESULTS Forty-two observational studies fulfilled the inclusion criteria, addressing safety outcomes with bDMARDs and sDMARDs. Nine studies showed no difference in the risk of serious infections across bDMARDs and two studies (high RoB) showed an increased risk with bDMARDs compared with conventional synthetic (cs) DMARDs (adjusted incidence rate ratio 3.1-3.9). The risk of Herpes zoster infection was similar across bDMARDs, but one study showed an increased risk with tofacitinib compared with abatacept (adjusted HR (aHR) 2.0). Five studies showed no increased risk of cancer for bDMARDs compared with csDMARDs. An increased risk of lower intestinal perforation was found for tocilizumab compared with csDMARDs (aHR 4.5) and tumour necrosis factor inhibitor (TNFi) (aHR 2.6-4.0). Sixty manuscripts reported safety data from RCTs/LTEs. Overall, no unexpected safety outcomes were found, except for the possibly increased risk of venous thromboembolism (VTE) with JAK inhibitors. CONCLUSION Data obtained by this SLR confirm the known safety profile of bDMARDs. The risk of VTE in RA, especially in patients on JAK inhibitors, needs further evaluation.
Collapse
Affiliation(s)
- Alexandre Sepriano
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
- NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal, Lisboa, Portugal
| | - Andreas Kerschbaumer
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Josef S Smolen
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
- 2nd Department of Medicine, Hietzing Hospital, Vienna, Austria
| | | | - Maxime Dougados
- Department of Rheumatology, Hôpital Cochin. Assistance Publique - Hôpitaux de Paris, Paris, France
- Clinical Epidemiology and Biostatistics, INSERM U1153, Paris, France
| | - Ronald van Vollenhoven
- Department Rheumatology and Clinical Immunology, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Johannes W Bijlsma
- Department of Rheumatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maarten de Wit
- EULAR Standing Committee of People with Arthritis/Rheumatism in Europe, Zurich, Switzerland
| | - Louise Falzon
- Center for Personalized Health, Feinstein Institute for Medical Research, Northwell Health, New York, New York, USA
| | - Robert Landewé
- Amsterdam University Medical Center (ARC), Amsterdam, The Netherlands
- Department of Rheumatology, Zuyderland Medical Center, Heerlen, The Netherlands
| |
Collapse
|
48
|
Targeting Granulocyte-Monocyte Colony-Stimulating Factor Signaling in Rheumatoid Arthritis: Future Prospects. Drugs 2020; 79:1741-1755. [PMID: 31486005 DOI: 10.1007/s40265-019-01192-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic, autoimmune disease that affects joints and extra-articular structures. In the last decade, the management of this chronic disease has dramatically changed with the introduction of several targeted mechanisms of action, such as tumor necrosis factor-α inhibition, T-cell costimulation inhibition, B-cell depletion, interleukin-6 blockade, and Janus kinase inhibition. Beyond its well-known hematopoietic role on the proliferation and differentiation of myeloid cells, granulocyte-monocyte colony-stimulating factor (GM-CSF) is a proinflammatory mediator acting as a cytokine, with a proven pathogenetic role in autoimmune disorders such as RA. In vitro studies clearly demonstrated the effect of GM-CSF in the communication between resident tissue cells and activated macrophages at chronic inflammation sites, and confirmed the elevation of GM-CSF levels in inflamed synovial tissue of RA subjects compared with healthy controls. Moreover, a pivotal role of GM-CSF in the perception of pain has been clearly confirmed. Therefore, blockade of the GM-CSF pathway by monoclonal antibodies directed against the cytokine itself or its receptor has been investigated in refractory RA patients. Overall, the safety profile of GM-CSF inhibitors seems to be very favorable, with a particularly low incidence of infectious complications. The efficacy of this new mechanism of action is comparable with main competitors, even though the response rates reported in phase II randomized controlled trials (RCTs) appear to be numerically lower than the response rates observed with other biological disease-modifying antirheumatic drugs already licensed for RA. Mainly because of this reason, nowadays the development program of most GM-CSF blockers for RA has been discontinued, with the exception of otilimab, which is under evaluation in two phase III RCTs with a head-to head non-inferiority design against tofacitinib. These studies will likely be useful for better defining the potential role of GM-CSF inhibition in the therapeutic algorithm of RA. On the other hand, the potential role of GM-CSF blockade in the treatment of other rheumatic diseases is now under investigation. Phase II trials are ongoing with the aim of evaluating mavrilimumab for the treatment of giant cell arteritis, and namilumab for the treatment of spondyloarthritis. Moreover, GM-CSF inhibitors have been tested in osteoarthritis and diffuse subtype of systemic sclerosis. This review aims to describe in detail the available evidence on the GM-CSF blocking pathway in RA management, paving the way to a possible alternative treatment for RA patients. Novel insights regarding the potential use of GM-CSF blockers for alternative indications will be also addressed.
Collapse
|
49
|
Choy EH. Clinical significance of Janus Kinase inhibitor selectivity. Rheumatology (Oxford) 2020; 58:953-962. [PMID: 30508136 PMCID: PMC6532440 DOI: 10.1093/rheumatology/key339] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/16/2018] [Indexed: 12/18/2022] Open
Abstract
Cytokines are key drivers of inflammation in RA, and anti-cytokine therapy has improved the outcome of RA. Janus Kinases (JAK) are intracellular tyrosine kinases linked to intracellular domains of many cytokine receptors. There are four JAK isoforms: JAK1, JAK2, JAK3 and TYK2. Different cytokine receptor families utilize specific JAK isoforms for signal transduction. Phosphorylation of JAK when cytokine binds to its cognate receptor leads to phosphorylation of other intracellular molecules that eventually leads to gene transcription. Oral JAK inhibitors (JAKi) have been developed as anti-cytokine therapy in RA. Two JAKi, tofacitinib and baricitinib, have been approved recently for the treatment of RA, and many JAKi are currently in development. JAKi inhibit JAK isoforms with different selectivity. This review discusses the efficacy and safety of JAKi in RA, in particular the potential clinical significance of JAKi selectivity.
Collapse
Affiliation(s)
- Ernest H Choy
- CREATE Centre, Section of Rheumatology, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
50
|
Abstract
The development of rheumatoid arthritis (RA), at least in its autoantibody-positive subset, evolves through a series of events starting well before the appearance of synovitis. The distinction between 'early' and 'established' RA is, therefore, an evolving concept. In routine practice, however, the management of RA still starts with the occurrence of clinically detectable synovitis. As such, the synovial membrane remains a major target for the exploitation of possible stage-specific drivers of the disease. The recognition of a 'window of opportunity', in which treatment is more likely to succeed, raises the hypothesis that there might be a period in which the biological processes of RA are less mature and potentially reversible. The present review aims to provide a general picture of the modifications occurring in RA synovium, analysing the contribution of both infiltrating immune cells and stromal cells. When available, differences between early and established RA will be discussed.
Collapse
|