1
|
Morozov B, Oshchepkov AS, Klemt I, Agafontsev AM, Krishna S, Hampel F, Xu HG, Mokhir A, Guldi D, Kataev E. Supramolecular Recognition of Cytidine Phosphate in Nucleotides and RNA Sequences. JACS AU 2023; 3:964-977. [PMID: 37006770 PMCID: PMC10052242 DOI: 10.1021/jacsau.2c00658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 06/19/2023]
Abstract
Supramolecular recognition of nucleotides would enable manipulating crucial biochemical pathways like transcription and translation directly and with high precision. Therefore, it offers great promise in medicinal applications, not least in treating cancer or viral infections. This work presents a universal supramolecular approach to target nucleoside phosphates in nucleotides and RNA. The artificial active site in new receptors simultaneously realizes several binding and sensing mechanisms: encapsulation of a nucleobase via dispersion and hydrogen bonding interactions, recognition of the phosphate residue, and a self-reporting feature-"turn-on" fluorescence. Key to the high selectivity is the conscious separation of phosphate- and nucleobase-binding sites by introducing specific spacers in the receptor structure. We have tuned the spacers to achieve high binding affinity and selectivity for cytidine 5' triphosphate coupled to a record 60-fold fluorescence enhancement. The resulting structures are also the first functional models of poly(rC)-binding protein coordinating specifically to C-rich RNA oligomers, e.g., the 5'-AUCCC(C/U) sequence present in poliovirus type 1 and the human transcriptome. The receptors bind to RNA in human ovarian cells A2780, causing strong cytotoxicity at 800 nM. The performance, self-reporting property, and tunability of our approach open up a promising and unique avenue for sequence-specific RNA binding in cells by using low-molecular-weight artificial receptors.
Collapse
Affiliation(s)
- Boris
S. Morozov
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | | | - Insa Klemt
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Aleksandr M. Agafontsev
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Swathi Krishna
- Department
of Chemistry and Pharmacy, Interdisciplinary Center for Molecular
Materials (ICMM), Friedrich-Alexander-Universität
Erlangen-Nürnberg, Egerlandstr. 3, Erlangen 91058, Germany
| | - Frank Hampel
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Hong-Gui Xu
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Andriy Mokhir
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Dirk Guldi
- Department
of Chemistry and Pharmacy, Interdisciplinary Center for Molecular
Materials (ICMM), Friedrich-Alexander-Universität
Erlangen-Nürnberg, Egerlandstr. 3, Erlangen 91058, Germany
| | - Evgeny Kataev
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| |
Collapse
|
2
|
Rim Lee Y, Kwon N, Swamy KMK, Kim G, Yoon J. Rhodamine-thiourea Linked Naphthalimide Derivative to Image ATP in Mitochondria using Two Channels. Chem Asian J 2022; 17:e202200413. [PMID: 35671139 DOI: 10.1002/asia.202200413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Indexed: 11/08/2022]
Abstract
Adenosine 5'-triphosphate (ATP), synthesized in mitochondria, is an energy molecule in all living things. ATP not only serves as an energy source for protein synthesis and muscle contraction, but also as an important indicator for various diseases, such as Parkinson's disease, cardiovascular disease, and others. Accordingly, detection and sensing of ATP, especially in mitochondria, are important. In this study, a unique ring-opening process of rhodamine was coupled to recognition of ATP via introduction of a thiourea moiety, which was further linked to a naphthalimide group. A strong fluorescent emission at ∼580 nm was accompanied by a color change from colorless to pink upon addition of ATP at pH 7.4. Fluorescent probe 1 successfully imaged mitochondrial ATP with a Pearson's coefficient of 0.8. In addition, green emission from the naphthalimide moiety at ∼530 nm was observed without any change upon addition of ATP. This emission can be considered equivalent to an internal standard to utilize probe 1 as a dual-channel probe for ATP. Furthermore, probe 1 showed negligible cytotoxicity based on MTT assays.
Collapse
Affiliation(s)
- You Rim Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| | - K M K Swamy
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| |
Collapse
|
3
|
|
4
|
López-Alled CM, Park SJ, Lee DJ, Murfin LC, Kociok-Köhn G, Hann JL, Wenk J, James TD, Kim HM, Lewis SE. Azulene-based fluorescent chemosensor for adenosine diphosphate. Chem Commun (Camb) 2021; 57:10608-10611. [PMID: 34570136 DOI: 10.1039/d1cc04122c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AzuFluor® 435-DPA-Zn, an azulene fluorophore bearing two zinc(II)-dipicolylamine receptor motifs, exhibits fluorescence enhancement in the presence of adenosine diphosphate. Selectivity for ADP over ATP, AMP and PPi results from appropriate positioning of the receptor motifs, since an isomeric sensor cannot discriminate between ADP and ATP.
Collapse
Affiliation(s)
- Carlos M López-Alled
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,Centre for Sustainable Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| | - Sang Jun Park
- Department of Energy Systems Research, Ajou University, Suwon 443-749, South Korea.
| | - Dong Joon Lee
- Department of Energy Systems Research, Ajou University, Suwon 443-749, South Korea.
| | - Lloyd C Murfin
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Gabriele Kociok-Köhn
- Material and Chemical Characterisation Facility (MC2), University of Bath, Bath, BA2 7AY, UK
| | - Jodie L Hann
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Jannis Wenk
- Centre for Sustainable Circular Technologies, University of Bath, Bath, BA2 7AY, UK. .,Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,Centre for Sustainable Circular Technologies, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hwan Myung Kim
- Department of Energy Systems Research, Ajou University, Suwon 443-749, South Korea.
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,Centre for Sustainable Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
5
|
Berthiot R, Giudice N, Douce L. Luminescent Imidazolium Salts as Bright Multi‐Faceted Tools for Biology. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Romain Berthiot
- Département des Matériaux Organiques Institut de Physique et de Chimie des Matériaux de Strasbourg (UMR 7504) Université de Strasbourg/CNRS 23 Rue du Loess 67000 Strasbourg France
| | - Nicolas Giudice
- Département des Matériaux Organiques Institut de Physique et de Chimie des Matériaux de Strasbourg (UMR 7504) Université de Strasbourg/CNRS 23 Rue du Loess 67000 Strasbourg France
| | - Laurent Douce
- Département des Matériaux Organiques Institut de Physique et de Chimie des Matériaux de Strasbourg (UMR 7504) Université de Strasbourg/CNRS 23 Rue du Loess 67000 Strasbourg France
| |
Collapse
|
6
|
Kim J, Oh J, Han MS. Versatile small molecule kinase assay through real-time, ratiometric fluorescence changes based on a pyrene-DPA-Zn2+ complex. RSC Adv 2021; 11:10375-10380. [PMID: 35423495 PMCID: PMC8695712 DOI: 10.1039/d1ra01547h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 01/01/2023] Open
Abstract
A real-time kinase assay method based on a ratiometric fluorescence probe that can be applied to various small-molecule kinases is described herein. The probe can trace the reversible interchange of ATP and ADP, which is a common phenomenon in most small-molecule kinase reactions, by a ratiometric fluorescence change. This property facilitates the monitoring of phosphorylation and dephosphorylation in small-molecule kinases, whereas most of the existing methods focus on one of these reactions. To prove the applicability of this method for small-molecule kinase assays, hexokinase and creatine kinase, which phosphorylate and dephosphorylate substrates, respectively, were analyzed. The ratiometric fluorescence change was correlated with the enzyme activity, and the inhibition efficiencies of the well-known inhibitors, N-benzoyl-d-glucosamine and iodoacetamide, were also monitored. Notably, the change in fluorescence can be observed with a simple light source by the naked eye. A versatile assay system that can be trace both phosphorylation and dephosphorylation by small molecule kinase is demonstrated, and can be applied regardless of substrate diversity.![]()
Collapse
Affiliation(s)
- Jihoon Kim
- Department of Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Jinyoung Oh
- Department of Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Min Su Han
- Department of Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| |
Collapse
|
7
|
Cui F, Yin G, Yang R, Guo X. A colorimetric chemosensor for pyrophosphate based on mono-pyrenylurea in aqueous media. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118658. [PMID: 32650244 DOI: 10.1016/j.saa.2020.118658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/15/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Research on pyrophosphate ions detection remains important because it plays crucial roles in various fields. A simple and new colorimetric sensor for pyrophosphate (PPi) based on mono-pyrenylurea ligand (L) has been designed and synthesized by a simple reaction of 1-pyrenemethylamine hydrochloride with p-nitrophenylisocyanate. In DMSO-15% H2O solution and DMSO-15% HEPES (10 mM, pH = 7.2) buffer solution, L displayed a selective colorimetric response for pyrophosphate (PPi) against other anions by changing color from colorless to yellow. This recognition process was confirmed by UV-vis spectroscopy. Also, the colorimetric properties of L are attributed to the anion-induced deprotonation of the urea subunit as demonstrated by 1H NMR titration method. Moreover, convenient test strips coated with L could be utilized to detect PPi in aqueous solution by naked-eye.
Collapse
Affiliation(s)
- Fengjuan Cui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China.
| | - Guangming Yin
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| | - Rui Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| | - Xiangfeng Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China.
| |
Collapse
|
8
|
Agafontsev AM, Shumilova TA, Oshchepkov AS, Hampel F, Kataev EA. Ratiometric Detection of ATP by Fluorescent Cyclophanes with Bellows-Type Sensing Mechanism. Chemistry 2020; 26:9991-9997. [PMID: 32497327 PMCID: PMC7496914 DOI: 10.1002/chem.202001523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/01/2020] [Indexed: 12/13/2022]
Abstract
Pyrene-based cyclophanes have been synthesized with the aim to realize a bellows-type sensing mechanism for the ratiometric detection of nucleotide concentrations in a buffered aqueous solution. The sensing mechanism involves the encapsulation of a nucleobase between two pyrene rings, which affects the monomer-excimer equilibrium of the receptor in the excited state. The nature of the spacer and its connection pattern to pyrene rings have been varied to achieve high selectivity for ATP. The 1,8-substituted pyrene-based cyclophane with the 2,2'-diaminodiethylamine spacer demonstrates the best selectivity for ATP showing a 50-fold increase in the monomer-excimer emission ratio upon saturation with the nucleotide. The receptor can detect ATP within the biological concentrations range over a wide pH range. NMR and spectroscopic studies have revealed the importance of hydrogen bonding and stacking interactions for achieving a required receptor selectivity. The probe has been successfully applied for the real-time monitoring of creatine kinase activity.
Collapse
Affiliation(s)
- Aleksandr M. Agafontsev
- N. N. Vorozhtsov Institute of Organic Chemistry SB RAS9 Lavrentiev Avenue630090NovosibirskRussian Federation
- Institute of ChemistryTechnische Universität Chemnitz09107ChemnitzGermany
| | | | | | - Frank Hampel
- Department of Chemistry and PharmacyUniversity of Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Evgeny A. Kataev
- Department of Chemistry and PharmacyUniversity of Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| |
Collapse
|
9
|
Dey N, Bhattacharya S. Switchable Optical Probes for Simultaneous Targeting of Multiple Anions. Chem Asian J 2020; 15:1759-1779. [DOI: 10.1002/asia.201901811] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/08/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Nilanjan Dey
- Department of Organic Chemistry Indian Institute of Science Bangalore 560012
- Present Address: Department of Chemistry Kyoto University Kyoto Prefecture 606-8501 Japan
| | - Santanu Bhattacharya
- Department of Organic Chemistry Indian Institute of Science Bangalore 560012
- Present Address Indian Association of Cultivation of Science Kolkata 700032 India
| |
Collapse
|
10
|
Singh VR, Singh PK. A supramolecule based fluorescence turn-on and ratiometric sensor for ATP in aqueous solution. J Mater Chem B 2020; 8:1182-1190. [PMID: 31957759 DOI: 10.1039/c9tb02403d] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Considering the biological relevance of adenosine triphosphate (ATP) as an "energy currency" in all organisms and significance of its detection in various diseased conditions, enormous efforts have been made to develop selective and sensitive fluorescent sensors for the detection of ATP. However, these developed sensor probes frequently involve technically challenging and time-consuming synthetic protocols for the production of sensor molecules and often suffer from poor solubility in aqueous medium. Another major disadvantage of these developed sensor systems is their single wavelength based operation which makes their performance susceptible to minute changes in experimental conditions. Herein, we report a fluorescence turn-on ratiometric sensor for the detection of ATP which operates by the dissociation of Thioflavin-T-sulphated-β-cyclodextrin supramolecular assembly by Zn2+ followed by ATP induced reassociation of the same. This modulation of the monomer/aggregate equilibrium of the supramolecular assembly followed by subsequent interactions with Zn2+ and ATP acts as an optimal scheme for the ratiometric detection of ATP. Overall this supramolecular ensemble based sensing platform provides a simple, sensitive, selective and label free detection approach for ATP in aqueous solution. Importantly, our sensor platform responds to ATP in the biologically complex media of serum samples suggesting its potential for possible applications in real-life scenarios.
Collapse
Affiliation(s)
- Vidya R Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, Maharashtra, India.
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, Maharashtra, India.
| |
Collapse
|
11
|
Long S, Qiao Q, Miao L, Xu Z. A self-assembly/disassembly two-photo ratiometric fluorogenic probe for bacteria imaging. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.11.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
|
13
|
Zhang J, Zhang J, Yan Z, Xie J. Recent Progress in Fluorescent Probes for Adenosine Triphosphate Based on Small Organic Molecules. CHINESE J ORG CHEM 2019. [DOI: 10.6023/cjoc201905024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Farshbaf S, Anzenbacher P. Fluorimetric sensing of ATP in water by an imidazolium hydrazone based sensor. Chem Commun (Camb) 2019; 55:1770-1773. [PMID: 30666327 DOI: 10.1039/c8cc09857c] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bisantrene, a simple anthracene derivative carrying two imidazolium hydrazone moieties, has been used as a highly selective sensor of ATP in water.
Collapse
Affiliation(s)
- Sepideh Farshbaf
- Department of Chemistry and Center for Photochemical Sciences
- Bowling Green State University, Bowling Green
- Ohio 43403
- USA
| | - Pavel Anzenbacher
- Department of Chemistry and Center for Photochemical Sciences
- Bowling Green State University, Bowling Green
- Ohio 43403
- USA
| |
Collapse
|
15
|
Long S, Qiao Q, Deng F, Miao L, Yoon J, Xu Z. Self-assembling nanoprobes that display two-dimensional fluorescent signals for identification of surfactants and bacteria. Chem Commun (Camb) 2019; 55:969-972. [DOI: 10.1039/c8cc09544b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The imidazolium-pyrene self-assembling nanoprobes can rapidly discriminate four types of surfactants.
Collapse
Affiliation(s)
- Shuangshuang Long
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Qinglong Qiao
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Fei Deng
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Lu Miao
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 120-750
- Korea
| | - Zhaochao Xu
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
16
|
Agafontsev AM, Ravi A, Shumilova TA, Oshchepkov AS, Kataev EA. Molecular Receptors for Recognition and Sensing of Nucleotides. Chemistry 2018; 25:2684-2694. [PMID: 30289184 DOI: 10.1002/chem.201802978] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/05/2018] [Indexed: 12/15/2022]
Abstract
Nucleotides are constituents of nucleic acids and they have a variety of functions in cellular metabolism. Synthetic receptors and sensors are required to reveal the role of nucleotides in living organisms and mechanisms of signal transduction events. In recent years, a large number of nucleotide-selective synthetic receptors have been devised, which utilize different molecular designs and sensing mechanisms. This Minireview presents recent progress in the design of synthetic molecular receptors for selective recognition of nucleotides in aqueous solution. The binding properties of receptors and the origins of their selectivity for a particular nucleotide are discussed.
Collapse
Affiliation(s)
- Aleksandr M Agafontsev
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany.,N. N. Vorozhtsov Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, 630090, Novosibirsk, Russia.,Novosibirsk State University, Pirogova St. 1, 630090, Novosibirsk, Russia
| | - Anil Ravi
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Tatiana A Shumilova
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Aleksandr S Oshchepkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russia
| | - Evgeny A Kataev
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| |
Collapse
|
17
|
Philips DS, Ghosh S, Sudheesh KV, Suresh CH, Ajayaghosh A. An Unsymmetrical Squaraine-Dye-Based Chemical Platform for Multiple Analyte Recognition. Chemistry 2017; 23:17973-17980. [DOI: 10.1002/chem.201703645] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Divya S. Philips
- Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Samrat Ghosh
- Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Karivachery V. Sudheesh
- Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Cherumuttathu H. Suresh
- Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Ayyappanpillai Ajayaghosh
- Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
| |
Collapse
|
18
|
|
19
|
An N, Zhang Q, Wang J, Liu C, Shi L, Liu L, Deng L, Lu Y. A new FRET-based ratiometric probe for fluorescence and colorimetric analyses of adenosine 5′-triphosphate. Polym Chem 2017. [DOI: 10.1039/c6py02001a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A new ratiometric probe for ATP was designed based on the binding-induced modulation of FRET coupled with the ACQ sensing mechanism.
Collapse
Affiliation(s)
- Nianqi An
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Qiang Zhang
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Jing Wang
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Cui Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Luqing Shi
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Lihua Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Ludi Deng
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Yan Lu
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| |
Collapse
|
20
|
Liu Y, Hu Y, Lee S, Lee D, Yoon J. Fluorescent and Colorimetric Chemosensors for Anions, Metal Ions, Reactive Oxygen Species, Biothiols, and Gases. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10926] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yifan Liu
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Ying Hu
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Songyi Lee
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Dayoung Lee
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| |
Collapse
|
21
|
Reissig F, Mamat C, Steinbach J, Pietzsch HJ, Freudenberg R, Navarro-Retamal C, Caballero J, Kotzerke J, Wunderlich G. Direct and Auger Electron-Induced, Single- and Double-Strand Breaks on Plasmid DNA Caused by 99mTc-Labeled Pyrene Derivatives and the Effect of Bonding Distance. PLoS One 2016; 11:e0161973. [PMID: 27583677 PMCID: PMC5008623 DOI: 10.1371/journal.pone.0161973] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/15/2016] [Indexed: 11/29/2022] Open
Abstract
It is evident that 99mTc causes radical-mediated DNA damage due to Auger electrons, which were emitted simultaneously with the known γ-emission of 99mTc. We have synthesized a series of new 99mTc-labeled pyrene derivatives with varied distances between the pyrene moiety and the radionuclide. The pyrene motif is a common DNA intercalator and allowed us to test the influence of the radionuclide distance on damages of the DNA helix. In general, pUC 19 plasmid DNA enables the investigation of the unprotected interactions between the radiotracers and DNA that results in single-strand breaks (SSB) or double-strand breaks (DSB). The resulting DNA fragments were separated by gel electrophoresis and quantified by fluorescent staining. Direct DNA damage and radical-induced indirect DNA damage by radiolysis products of water were evaluated in the presence or absence of the radical scavenger DMSO. We demonstrated that Auger electrons directly induced both SSB and DSB in high efficiency when 99mTc was tightly bound to the plasmid DNA and this damage could not be completely prevented by DMSO, a free radical scavenger. For the first time, we were able to minimize this effect by increasing the carbon chain lengths between the pyrene moiety and the 99mTc nuclide. However, a critical distance between the 99mTc atom and the DNA helix could not be determined due to the significantly lowered DSB generation resulting from the interaction which is dependent on the type of the 99mTc binding motif. The effect of variable DNA damage caused by the different chain length between the pyrene residue and the Tc-core as well as the possible conformations of the applied Tc-complexes was supplemented with molecular dynamics (MD) calculations. The effectiveness of the DNA-binding 99mTc-labeled pyrene derivatives was demonstrated by comparison to non-DNA-binding 99mTcO4–, since nearly all DNA damage caused by 99mTcO4– was prevented by incubating with DMSO.
Collapse
Affiliation(s)
- Falco Reissig
- University Hospital/ Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
- * E-mail: (GW); (FR)
| | - Constantin Mamat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Joerg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Hans-Juergen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Robert Freudenberg
- University Hospital/ Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Carlos Navarro-Retamal
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile
| | - Julio Caballero
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile
| | - Joerg Kotzerke
- University Hospital/ Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Gerd Wunderlich
- University Hospital/ Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
- * E-mail: (GW); (FR)
| |
Collapse
|
22
|
Fang W, Liu C, Yu F, Liu Y, Li Z, Chen L, Bao X, Tu T. Macroscopic and Fluorescent Discrimination of Adenosine Triphosphate via Selective Metallo-hydrogel Formation: A Visual, Practical, and Reliable Rehearsal toward Cellular Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:20583-20590. [PMID: 27420773 DOI: 10.1021/acsami.6b05804] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
With use of simple terpyridine zinc nitrate complexes, intriguing visual recognition of adenosine triphosphate (ATP) via selective coordination assembly leading to two-component metallo-hydrogel formation has been realized. With intensive fluorescent study and density functional theory calculations, it may be inferred, besides the selective metal-ligand interaction between Zn center and phosphate groups, the intramolecular π-stacking between the planar nucleobases of ATP and the metal-hybrid aromatic ring of pincer complex strongly affected the geometry of the coordinated adducts and possible molecular self-assembly process, which constitute a completely new sensing strategy in comparison with the conventional approaches. Furthermore, in light of extreme sensitivity of pincer zinc complexes toward ATP at micromolar scale (1.85 μM) and remarkable fluorescent enhancement (ca. 44-fold) upon ATP addition, the feasibility of the low cytotoxicity pincer zinc complexes in monitoring ATP in HeLa cells has been fulfilled with confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Weiwei Fang
- Department of Chemistry, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Cong Liu
- Department of Chemistry, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Fabiao Yu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003, China
| | - Yaoqi Liu
- Department of Chemistry, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Zhenhua Li
- Department of Chemistry, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003, China
| | - Xiaoling Bao
- Institute of Quality Inspection of Food and Cosmetics, Shanghai Institute of Quality Inspection and Technical Research , 381 Cangwu Road, Shanghai 200233, China
| | - Tao Tu
- Department of Chemistry, Fudan University , 220 Handan Road, Shanghai 200433, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032, China
| |
Collapse
|
23
|
Huang F, Hao G, Wu F, Feng G. Fluorescence sensing of ADP over ATP and PPi in 100% aqueous solution. Analyst 2016. [PMID: 26213259 DOI: 10.1039/c5an01291k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An anthracene-bridged dinuclear zinc(ii)-dipicolylamine complex was found to show high selectivity for ADP with a significant fluorescence enhancement over ATP, PPi and other common analytes in 100% aqueous solution. This complex can be used for fluorescence detection of ADP in living cells and for monitoring the activity of kinases.
Collapse
Affiliation(s)
- Feihu Huang
- Key laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.
| | | | | | | |
Collapse
|
24
|
Cheng D, Li Y, Wang J, Sun Y, Jin L, Li C, Lu Y. Fluorescence and colorimetric detection of ATP based on a strategy of self-promoting aggregation of a water-soluble polythiophene derivative. Chem Commun (Camb) 2016; 51:8544-6. [PMID: 25894335 DOI: 10.1039/c5cc01713k] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A sensitive fluorescent and colorimetric dual-modal probe for the detection of ATP has been developed based on a strategy of self-promoting aggregation of a cationic polythiophene derivative bearing anthracene groups in the side chain with a detection limit as low as 10(-9) M.
Collapse
Affiliation(s)
- Dandan Cheng
- School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Samanta PK, Pati SK. Theoretical understanding of two-photon-induced fluorescence of isomorphic nucleoside analogs. Phys Chem Chem Phys 2016; 17:10053-8. [PMID: 25785569 DOI: 10.1039/c5cp00134j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We use ab initio Density Functional Theory (DFT) and Time-dependent DFT (TDDFT) calculations for a detailed understanding of one-photon absorption (1PA) and two-photon absorption (2PA) cross sections of eight different nucleoside analogs. The results are compared and contrasted with the available experimental data. Our calculated results show that the low energy peaks in the absorption spectra mainly arise because of the π-π* electronic transition of the nucleoside analogs. The emission spectra of the nucleoside analogs are also calculated using TDDFT methods. The calculated absorption and emission spectra in the presence of a solvent follow the same trend as those found experimentally. Our results demonstrate that the nucleoside analogs show significantly different electronic and optical properties, although their bonding aspects towards Watson-Crick base pairing remain the same. We also derive the microscopic details of the origin of nonlinear optical properties of the nucleoside analogs.
Collapse
Affiliation(s)
- Pralok K Samanta
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | | |
Collapse
|
26
|
Zhao Y, Swager TM. Functionalized Metalated Cavitands via Imidation and Late-Stage Elaboration. European J Org Chem 2015; 2015:4593-4597. [DOI: 10.1002/ejoc.201500714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Wu J, Kwon B, Liu W, Anslyn EV, Wang P, Kim JS. Chromogenic/Fluorogenic Ensemble Chemosensing Systems. Chem Rev 2015; 115:7893-943. [DOI: 10.1021/cr500553d] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiasheng Wu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Bomi Kwon
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
| | - Weimin Liu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Eric V. Anslyn
- Department
of Chemistry, The University of Texas at Austin, 105 E. 24th,
Street-Stop A5300, Austin, Texas 78712-1224, United States
| | - Pengfei Wang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
| |
Collapse
|
28
|
Jiao SY, Li K, Wang X, Huang Z, Pu L, Yu XQ. Making pyrophosphate visible: the first precipitable and real-time fluorescent sensor for pyrophosphate in aqueous solution. Analyst 2015; 140:174-81. [DOI: 10.1039/c4an01615g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An in situ generated Zn2+ complex of di-2-(picoly) amine BINOL–DPA was presented as a precipitable and real-time fluorescent sensor for PPi with a detection limit of 95 nm, and it could be successfully applied in imaging PPi in living cells.
Collapse
Affiliation(s)
- Shu-Yan Jiao
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Xin Wang
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Zeng Huang
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Lin Pu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| |
Collapse
|
29
|
De la Fuente IM, Cortés JM, Valero E, Desroches M, Rodrigues S, Malaina I, Martínez L. On the dynamics of the adenylate energy system: homeorhesis vs homeostasis. PLoS One 2014; 9:e108676. [PMID: 25303477 PMCID: PMC4193753 DOI: 10.1371/journal.pone.0108676] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 09/03/2014] [Indexed: 11/20/2022] Open
Abstract
Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life.
Collapse
Affiliation(s)
- Ildefonso M. De la Fuente
- Institute of Parasitology and Biomedicine “López-Neyra”, CSIC, Granada, Spain
- Department of Mathematics, University of the Basque Country UPV/EHU, Leioa, Spain
- Unit of Biophysics (CSIC, UPV/EHU), and Department of Biochemistry and Molecular Biology University of the Basque Country, Bilbao, Spain
- Biocruces Health Research Institute, Hospital Universitario de Cruces, Barakaldo, Spain
| | - Jesús M. Cortés
- Biocruces Health Research Institute, Hospital Universitario de Cruces, Barakaldo, Spain
- Ikerbasque: The Basque Foundation for Science, Bilbao, Basque Country, Spain
| | - Edelmira Valero
- Department of Physical Chemistry, School of Industrial Engineering, University of Castilla-La Mancha, Albacete, Spain
| | | | - Serafim Rodrigues
- School of Computing and Mathematics, University of Plymouth, Plymouth, United Kingdom
| | - Iker Malaina
- Biocruces Health Research Institute, Hospital Universitario de Cruces, Barakaldo, Spain
- Department of Physiology, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Luis Martínez
- Department of Mathematics, University of the Basque Country UPV/EHU, Leioa, Spain
- Biocruces Health Research Institute, Hospital Universitario de Cruces, Barakaldo, Spain
| |
Collapse
|
30
|
Xu QC, Lv HJ, Lv ZQ, Liu M, Li YJ, Wang XF, Zhang Y, Xing GW. A pyrene-functionalized Zinc(ii)–BPEA complex: sensing and discrimination of ATP, ADP and AMP. RSC Adv 2014. [DOI: 10.1039/c4ra07923j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
31
|
Bartovsky P, Ribes A, Agostini A, Benito A, Martínez-Máñez R. Delivery modulation in silica mesoporous supports via functionalization in the pore outlets with a Zn(II)–bis(2-pyridylmethyl)amine complex. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
32
|
Inclán M, Albelda MT, Carbonell E, Blasco S, Bauzá A, Frontera A, García-España E. Molecular recognition of nucleotides in water by scorpiand-type receptors based on nucleobase discrimination. Chemistry 2014; 20:3730-41. [PMID: 24574302 DOI: 10.1002/chem.201303861] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/20/2013] [Indexed: 12/19/2022]
Abstract
The detection of nucleotides is of crucial importance because they are the basic building blocks of nucleic acids. Scorpiand-based polyamine receptors functionalized with pyridine or anthracene units are able to form stable complexes with nucleotides in water, based on coulombic, π-π stacking, and hydrogen-bonding interactions. This behavior has been rationalized by means of an exploration with NMR spectroscopy and DFT calculations. Binding constants were determined by potentiometry. Fluorescence spectroscopy studies have revealed the potential of these receptors as sensors to effectively and selectively distinguish guanosine-5'-triphosphate (GTP) from adenosine-5'-triphosphate (ATP).
Collapse
Affiliation(s)
- Mario Inclán
- Molecular Science Institute (ICMol), Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna (Spain)
| | | | | | | | | | | | | |
Collapse
|
33
|
Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS. Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev 2013; 65:1933-50. [PMID: 23906934 DOI: 10.1016/j.addr.2013.07.015] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 01/11/2023]
Abstract
Biosensors are important tools in biomedical research. Moreover, they are becoming an essential part of modern healthcare. In the future, biosensor development will become even more crucial due to the demand for personalized-medicine, point-of care devices and cheaper diagnostic tools. Substantial advances in sensor technology are often fueled by the advent of new materials. Therefore, nanomaterials have motivated a large body of research and such materials have been implemented into biosensor devices. Among these new materials carbon nanotubes (CNTs) are especially promising building blocks for biosensors due to their unique electronic and optical properties. Carbon nanotubes are rolled-up cylinders of carbon monolayers (graphene). They can be chemically modified in such a way that biologically relevant molecules can be detected with high sensitivity and selectivity. In this review article we will discuss how carbon nanotubes can be used to create biosensors. We review the latest advancements of optical carbon nanotube based biosensors with a special focus on near-infrared (NIR)-fluorescence, Raman-scattering and fluorescence quenching.
Collapse
Affiliation(s)
- Sebastian Kruss
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | | | | | | | | | |
Collapse
|
34
|
Zhong L, Xing F, Bai Y, Zhao Y, Zhu S. Aspartic acid functionalized water-soluble perylene diimide as "Off-On" fluorescent sensor for selective detection Cu(2+) and ATP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 115:370-375. [PMID: 23856042 DOI: 10.1016/j.saa.2013.06.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
Aspartic functionalized water-soluble perylene diimide, N,N'-di(2-succinic acid)-perylene-3,4,9,10-tetracarboxylic diimide (PASP) has two absorbance maximums at 527 and 498nm (ε≈1.7×10(4)Lcm(-1)mol(-1)) and two emission peaks at 547 and 587nm respectively. Emission intensities decrease with the increase of PASP concentrations in 20-100μM ranges. Spectral titrations demonstrate that each PASP can coordinate to two Cu(2+) ions in the absence of HEPES buffer. Its stability constant is estimated to be about 1.0×10(12)L(2)mol(-2) at pH 7.20 and its coordinate stoichiometry increased to 7.5 in the same pH in the presence of HEPES buffer. The emission of PASP will be completely quenched upon formation of Cu(2+) complex. The lowest "turn-off" fluorescence detection limit was calculated to be 0.3μM Cu(2+). PASP-Cu solution was used as a "turn-on" fluorescence biosensor to detect ATP. The sensitivity towards ATP is 0.3μM in 50mM HEPES buffer at pH 7.20, which is one of the most sensitive fluorescence sensors.
Collapse
Affiliation(s)
- Lina Zhong
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | | | | | | | | |
Collapse
|
35
|
Cho Y, Lee SK, Lee JW, Ahn S, Chang SK. Reaction-based Hg2+ signaling by excimer–monomer switching of a bis-pyrene dithioacetal. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.07.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
36
|
Highly selective recognition of adenosine 5′-triphosphate against other nucleosides triphosphate with a luminescent metal-organic framework of [Zn(BDC)(H2O)2] n (BDC = 1,4-benzenedicarboxylate). Sci China Chem 2013. [DOI: 10.1007/s11426-013-4905-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Baek K, Eom MS, Kim S, Han MS. Metal ion-prompted pyrene–excimer formation via an anion-mediated process and its application for a ratiometric Zn2+ chemosensor with high selectivity over Cd2+. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Santos-Figueroa LE, Moragues ME, Climent E, Agostini A, Martínez-Máñez R, Sancenón F. Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010-2011. Chem Soc Rev 2013; 42:3489-613. [PMID: 23400370 DOI: 10.1039/c3cs35429f] [Citation(s) in RCA: 361] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review focuses on examples reported in the years 2010-2011 dealing with the design of chromogenic and fluorogenic chemosensors or reagents for anions.
Collapse
Affiliation(s)
- Luis E Santos-Figueroa
- Centro Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico, (IDM), Unidad Mixta Universidad Politécnica de Valencia - Universitat de València, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Weitz EA, Chang JY, Rosenfield AH, Morrow EA, Pierre VC. The basis for the molecular recognition and the selective time-gated luminescence detection of ATP and GTP by a lanthanide complex. Chem Sci 2013. [DOI: 10.1039/c3sc51583d] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
40
|
Samanta PK, Pati SK. Structural, electronic and photophysical properties of analogous RNA nucleosides: a theoretical study. NEW J CHEM 2013. [DOI: 10.1039/c3nj00633f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Kurishita Y, Kohira T, Ojida A, Hamachi I. Organelle-localizable fluorescent chemosensors for site-specific multicolor imaging of nucleoside polyphosphate dynamics in living cells. J Am Chem Soc 2012; 134:18779-89. [PMID: 23098271 DOI: 10.1021/ja308754g] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ATP and its derivatives (nucleoside polyphosphates (NPPs)) are implicated in many biological events, so their rapid and convenient detection is important. In particular, live cell detection of NPPs at specific local regions of cells could greatly contribute understanding of the complicated roles of NPPs. We report herein the design of two new fluorescent chemosensors that detect the dynamics of NPPs in specific regions of living cells. To achieve imaging of NPPs on plasma membrane surfaces (2-2Zn(II)), a lipid anchor was introduced into xanthene-based Zn(II) complex 1-2Zn(II), which was previously developed as a turn-on type fluorescent chemosensor for NPPs. Meanwhile, for subcellular imaging of ATP in mitochondria, we designed rhodamine-type Zn(II) complex 3-2Zn(II), which possesses a cationic pyronin ring instead of xanthene. Detailed spectroscopic studies revealed that 2-2Zn(II) and 3-2Zn(II) can sense NPPs with a several-fold increase of their fluorescence intensities through a sensing mechanism similar to 1-2Zn(II), involving binding-induced recovery of the conjugated form of the xanthene or pyronin ring. In live cell imaging, 2-2Zn(II) containing a lipid anchor selectively localized on the plasma membrane surface and detected the extracellular release of NPPs during cell necrosis induced by streptolysin O. On the other hand, rhodamine-type complex 3-2Zn(II) spontaneously localized at mitochondria inside cells, and sensed the local increase of ATP concentration during apoptosis. Multicolor images were obtained through simultaneous use of 2-2Zn(II) and 3-2Zn(II), allowing detection of the dynamics of ATP in different cellular compartments at the same time.
Collapse
Affiliation(s)
- Yasutaka Kurishita
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Japan
| | | | | | | |
Collapse
|
42
|
Ghosh K, Saha I. Ortho-phenylenediamine-based open and macrocyclic receptors in selective sensing of H2PO4(-), ATP and ADP under different conditions. Org Biomol Chem 2012; 10:9383-92. [PMID: 23108334 DOI: 10.1039/c2ob26995c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ortho-phenylenediamine-based open and macrocyclic receptors have been designed and synthesized. The open receptor 1 and the macrocyclic receptor 2 fluorimetrically distinguish H(2)PO(4)(-) from the other anions examined in CH(3)CN with appreciable binding constant values. As practical applications, they are also sensible to nucleotides in aq. CH(3)CN (1 : 1, v/v). The receptor 1 shows significant emission change upon complexation of ATP and ADP. ADP is selectively distinguished by a ratiometric change in emission. In contrast, the macrocyclic receptor 2, under similar conditions, shows good binding with ATP over the others.
Collapse
Affiliation(s)
- Kumaresh Ghosh
- Department of Chemistry, University of Kalyani, Kalyani-741235, India.
| | | |
Collapse
|
43
|
Strianese M, Milione S, Maranzana A, Grassi A, Pellecchia C. Selective detection of ATP and ADP in aqueous solution by using a fluorescent zinc receptor. Chem Commun (Camb) 2012; 48:11419-21. [PMID: 23086379 DOI: 10.1039/c2cc35730e] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the successful use of a new zinc complex for the selective fluorescent detection of ADP and ATP in water. This is achieved by the complementary coordination of the phosphate groups to the metal centre and hydrogen bonding of the adenosine with the coordinated ligand.
Collapse
Affiliation(s)
- Maria Strianese
- Dipartimento di Chimica e Biologia, Università di Salerno, Fisciano, Italy
| | | | | | | | | |
Collapse
|
44
|
Sun X, Wang YW, Peng Y. A Selective and Ratiometric Bifunctional Fluorescent Probe for Al3+ Ion and Proton. Org Lett 2012; 14:3420-3. [DOI: 10.1021/ol301390g] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xin Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ya-Wen Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yu Peng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
45
|
Ngo HT, Liu X, Jolliffe KA. Anion recognition and sensing with Zn(II)-dipicolylamine complexes. Chem Soc Rev 2012; 41:4928-65. [PMID: 22688834 DOI: 10.1039/c2cs35087d] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This critical review covers the developments in anion recognition and sensing using Zn(II)-dipicolylamine functionalized receptors over the past decade with emphasis on recent rapid advances in the last five years.
Collapse
Affiliation(s)
- Huy Tien Ngo
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
46
|
Ahmed N, Shirinfar B, Youn IS, Bist A, Suresh V, Kim KS. A highly selective fluorescent chemosensor for guanosine-5'-triphosphate via excimer formation in aqueous solution of physiological pH. Chem Commun (Camb) 2012; 48:2662-4. [PMID: 22222484 DOI: 10.1039/c2cc17145g] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new water-soluble and fluorescent imidazolium-anthracene cyclophane 1 effectively recognizes and differentiates the biologically important GTP and ATP in 100% aqueous solution of physiological pH 7.4. Fluorescence, (1)H-NMR spectra and ab initio calculations demonstrate that excimer formation and fluorescence enhancement occur upon GTP and ATP binding, respectively, through (C-H)(+)···A(-) hydrogen bond interactions.
Collapse
Affiliation(s)
- Nisar Ahmed
- Center for Superfunctional Materials, Department of Chemistry Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | | | |
Collapse
|
47
|
Jeon H, Lee S, Li Y, Park S, Yoon J. Conjugated polydiacetylenes bearing quaternary ammonium groups as a dual colorimetric and fluorescent sensor for ATP. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm14996f] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
48
|
Xu Z, Song NR, Moon JH, Lee JY, Yoon J. Bis- and tris-naphthoimidazolium derivatives for the fluorescent recognition of ATP and GTP in 100% aqueous solution. Org Biomol Chem 2011; 9:8340-5. [PMID: 22052071 DOI: 10.1039/c1ob06344h] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Naphthoimidazolium groups can form unique ionic hydrogen bonds with anions as imidazolium moieties, and in addition, they are fluorescent, so no further elaborative synthesis is needed to introduce a fluorescent group. In this paper, three naphthoimidazolium derivatives were synthesized and studied for the recognition of nucleotides. Compound 1 composed of a single naphthoimidazolium group and quaternary ammonium group did not show any significant fluorescent changes with various anions and nucleotides, such as ATP, GTP, CTP, TTP, UTP, ADP and AMP. A tripodal compound 3 bearing three naphthoimidazolium groups and three quaternary ammonium groups, respectively, showed large fluorescence enhancements with UTP, CTP and TTP and moderate fluorescence enhancements with ATP and pyrophosphate and a fluorescence quenching effect with GTP. On the other hand, compound 2 bearing two naphthoimidazolium groups and two quaternary ammonium groups displayed a selective fluorescence enhancement with ATP and a selective fluorescence quenching effect with GTP in 100% aqueous solution.
Collapse
Affiliation(s)
- Zhaochao Xu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | |
Collapse
|