1
|
Villar-Rodríguez E, Marin-Marin L, Baena-Pérez M, Cano-Melle C, Parcet MA, Ávila C. Musicianship and Prominence of Interhemispheric Connectivity Determine Two Different Pathways to Atypical Language Dominance. J Neurosci 2024; 44:e2430232024. [PMID: 39160067 PMCID: PMC11391498 DOI: 10.1523/jneurosci.2430-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/13/2024] [Accepted: 07/10/2024] [Indexed: 08/21/2024] Open
Abstract
During infancy and adolescence, language develops from a predominantly interhemispheric control-through the corpus callosum (CC)-to a predominantly intrahemispheric control, mainly subserved by the left arcuate fasciculus (AF). Using multimodal neuroimaging, we demonstrate that human left-handers (both male and female) with an atypical language lateralization show a rightward participation of language areas from the auditory cortex to the inferior frontal cortex when contrasting speech to tone perception and an enhanced interhemispheric anatomical and functional connectivity. Crucially, musicianship determines two different structural pathways to this outcome. Nonmusicians present a relation between atypical lateralization and intrahemispheric underdevelopment across the anterior AF, hinting at a dysregulation of the ontogenetic shift from an interhemispheric to an intrahemispheric brain. Musicians reveal an alternative pathway related to interhemispheric overdevelopment across the posterior CC and the auditory cortex. We discuss the heterogeneity in reaching atypical language lateralization and the relevance of early musical training in altering the normal development of language cognitive functions.
Collapse
Affiliation(s)
- Esteban Villar-Rodríguez
- Neuropsychology and Functional Neuroimaging, Universitat Jaume I, Castelllón de la Plana 12071, Spain
| | - Lidón Marin-Marin
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
- York Neuroimaging Centre, York YO10 5NY, United Kingdom
| | - María Baena-Pérez
- Neuropsychology and Functional Neuroimaging, Universitat Jaume I, Castelllón de la Plana 12071, Spain
| | - Cristina Cano-Melle
- Neuropsychology and Functional Neuroimaging, Universitat Jaume I, Castelllón de la Plana 12071, Spain
| | - Maria Antònia Parcet
- Neuropsychology and Functional Neuroimaging, Universitat Jaume I, Castelllón de la Plana 12071, Spain
| | - César Ávila
- Neuropsychology and Functional Neuroimaging, Universitat Jaume I, Castelllón de la Plana 12071, Spain
| |
Collapse
|
2
|
McFayden TC, Rutsohn J, Cetin G, Forsen E, Swanson MR, Meera SS, Wolff JJ, Elison JT, Shen MD, Botteron K, Dager SR, Estes A, Gerig G, McKinstry RC, Pandey J, Schultz R, St John T, Styner M, Truong Y, Zwaigenbaum L, Hazlett HC, Piven J, Girault JB. White matter development and language abilities during infancy in autism spectrum disorder. Mol Psychiatry 2024; 29:2095-2104. [PMID: 38383768 PMCID: PMC11336031 DOI: 10.1038/s41380-024-02470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
White matter (WM) fiber tract differences are present in autism spectrum disorder (ASD) and could be important markers of behavior. One of the earliest phenotypic differences in ASD are language atypicalities. Although language has been linked to WM in typical development, no work has evaluated this association in early ASD. Participants came from the Infant Brain Imaging Study and included 321 infant siblings of children with ASD at high likelihood (HL) for developing ASD; 70 HL infants were later diagnosed with ASD (HL-ASD), and 251 HL infants were not diagnosed with ASD (HL-Neg). A control sample of 140 low likelihood infants not diagnosed with ASD (LL-Neg) were also included. Infants contributed expressive language, receptive language, and diffusion tensor imaging data at 6-, 12-, and 24 months. Mixed effects regression models were conducted to evaluate associations between WM and language trajectories. Trajectories of microstructural changes in the right arcuate fasciculus were associated with expressive language development. HL-ASD infants demonstrated a different developmental pattern compared to the HL-Neg and LL-Neg groups, wherein the HL-ASD group exhibited a positive association between WM fractional anisotropy and language whereas HL-Neg and LL-Neg groups showed weak or no association. No other fiber tracts demonstrated significant associations with language. In conclusion, results indicated arcuate fasciculus WM is linked to language in early toddlerhood for autistic toddlers, with the strongest associations emerging around 24 months. To our knowledge, this is the first study to evaluate associations between language and WM development during the pre-symptomatic period in ASD.
Collapse
Affiliation(s)
- Tyler C McFayden
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carrboro, NC, USA.
| | - Joshua Rutsohn
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gizem Cetin
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carrboro, NC, USA
| | - Elizabeth Forsen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Meghan R Swanson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Shoba S Meera
- Department of Speech Pathology and Audiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Jason J Wolff
- Department of Educational Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Mark D Shen
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carrboro, NC, USA
| | - Kelly Botteron
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen R Dager
- Department of Radiology, University of Washington, Seattle, WA, USA
- Institute on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Annette Estes
- Institute on Human Development and Disability, University of Washington, Seattle, WA, USA
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Guido Gerig
- Tandon School of Engineering, New York University, New York, NY, USA
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Juhi Pandey
- Center for Autism Research, The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Schultz
- Center for Autism Research, The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Tanya St John
- Institute on Human Development and Disability, University of Washington, Seattle, WA, USA
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Young Truong
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Heather C Hazlett
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carrboro, NC, USA
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carrboro, NC, USA
| | - Jessica B Girault
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carrboro, NC, USA
| |
Collapse
|
3
|
Kauf C, Kim HS, Lee EJ, Jhingan N, Selena She J, Taliaferro M, Gibson E, Fedorenko E. Linguistic inputs must be syntactically parsable to fully engage the language network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.599332. [PMID: 38948870 PMCID: PMC11212959 DOI: 10.1101/2024.06.21.599332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Human language comprehension is remarkably robust to ill-formed inputs (e.g., word transpositions). This robustness has led some to argue that syntactic parsing is largely an illusion, and that incremental comprehension is more heuristic, shallow, and semantics-based than is often assumed. However, the available data are also consistent with the possibility that humans always perform rule-like symbolic parsing and simply deploy error correction mechanisms to reconstruct ill-formed inputs when needed. We put these hypotheses to a new stringent test by examining brain responses to a) stimuli that should pose a challenge for syntactic reconstruction but allow for complex meanings to be built within local contexts through associative/shallow processing (sentences presented in a backward word order), and b) grammatically well-formed but semantically implausible sentences that should impede semantics-based heuristic processing. Using a novel behavioral syntactic reconstruction paradigm, we demonstrate that backward-presented sentences indeed impede the recovery of grammatical structure during incremental comprehension. Critically, these backward-presented stimuli elicit a relatively low response in the language areas, as measured with fMRI. In contrast, semantically implausible but grammatically well-formed sentences elicit a response in the language areas similar in magnitude to naturalistic (plausible) sentences. In other words, the ability to build syntactic structures during incremental language processing is both necessary and sufficient to fully engage the language network. Taken together, these results provide strongest to date support for a generalized reliance of human language comprehension on syntactic parsing.
Collapse
Affiliation(s)
- Carina Kauf
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Hee So Kim
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Elizabeth J. Lee
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Niharika Jhingan
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Jingyuan Selena She
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Maya Taliaferro
- Department of Psychology, New York University, New York, NY 10012 USA
| | - Edward Gibson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- The Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|
4
|
Ozernov-Palchik O, O’Brien AM, Jiachen Lee E, Richardson H, Romeo R, Lipkin B, Small H, Capella J, Nieto-Castañón A, Saxe R, Gabrieli JDE, Fedorenko E. Precision fMRI reveals that the language network exhibits adult-like left-hemispheric lateralization by 4 years of age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594172. [PMID: 38798360 PMCID: PMC11118489 DOI: 10.1101/2024.05.15.594172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Left hemisphere damage in adulthood often leads to linguistic deficits, but many cases of early damage leave linguistic processing preserved, and a functional language system can develop in the right hemisphere. To explain this early apparent equipotentiality of the two hemispheres for language, some have proposed that the language system is bilateral during early development and only becomes left-lateralized with age. We examined language lateralization using functional magnetic resonance imaging with two large pediatric cohorts (total n=273 children ages 4-16; n=107 adults). Strong, adult-level left-hemispheric lateralization (in activation volume and response magnitude) was evident by age 4. Thus, although the right hemisphere can take over language function in some cases of early brain damage, and although some features of the language system do show protracted development (magnitude of language response and strength of inter-regional correlations in the language network), the left-hemisphere bias for language is robustly present by 4 years of age. These results call for alternative accounts of early equipotentiality of the two hemispheres for language.
Collapse
Affiliation(s)
- Ola Ozernov-Palchik
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Amanda M. O’Brien
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02138, United States
| | - Elizabeth Jiachen Lee
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| | - Hilary Richardson
- School of Philosophy, Psychology, and Language Sciences, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Rachel Romeo
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20742, United States
| | - Benjamin Lipkin
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| | - Hannah Small
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Jimmy Capella
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | | | - Rebecca Saxe
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| | - John D. E. Gabrieli
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| | - Evelina Fedorenko
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| |
Collapse
|
5
|
Peterson M, Prigge MBD, Floris DL, Bigler ED, Zielinski BA, King JB, Lange N, Alexander AL, Lainhart JE, Nielsen JA. Reduced lateralization of multiple functional brain networks in autistic males. J Neurodev Disord 2024; 16:23. [PMID: 38720286 PMCID: PMC11077748 DOI: 10.1186/s11689-024-09529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/26/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Autism spectrum disorder has been linked to a variety of organizational and developmental deviations in the brain. One such organizational difference involves hemispheric lateralization, which may be localized to language-relevant regions of the brain or distributed more broadly. METHODS In the present study, we estimated brain hemispheric lateralization in autism based on each participant's unique functional neuroanatomy rather than relying on group-averaged data. Additionally, we explored potential relationships between the lateralization of the language network and behavioral phenotypes including verbal ability, language delay, and autism symptom severity. We hypothesized that differences in hemispheric asymmetries in autism would be limited to the language network, with the alternative hypothesis of pervasive differences in lateralization. We tested this and other hypotheses by employing a cross-sectional dataset of 118 individuals (48 autistic, 70 neurotypical). Using resting-state fMRI, we generated individual network parcellations and estimated network asymmetries using a surface area-based approach. A series of multiple regressions were then used to compare network asymmetries for eight significantly lateralized networks between groups. RESULTS We found significant group differences in lateralization for the left-lateralized Language (d = -0.89), right-lateralized Salience/Ventral Attention-A (d = 0.55), and right-lateralized Control-B (d = 0.51) networks, with the direction of these group differences indicating less asymmetry in autistic males. These differences were robust across different datasets from the same participants. Furthermore, we found that language delay stratified language lateralization, with the greatest group differences in language lateralization occurring between autistic males with language delay and neurotypical individuals. CONCLUSIONS These findings evidence a complex pattern of functional lateralization differences in autism, extending beyond the Language network to the Salience/Ventral Attention-A and Control-B networks, yet not encompassing all networks, indicating a selective divergence rather than a pervasive one. Moreover, we observed an association between Language network lateralization and language delay in autistic males.
Collapse
Affiliation(s)
- Madeline Peterson
- Department of Psychology, Brigham Young University, Provo, UT, 1070 KMBL, 84602, USA
| | - Molly B D Prigge
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84108, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dorothea L Floris
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Erin D Bigler
- Department of Psychology, Brigham Young University, Provo, UT, 1070 KMBL, 84602, USA
- Neuroscience Center, Brigham Young University, Provo, UT, 84604, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, 84108, USA
- Department of Neurology, University of California-Davis, Davis, CA, USA
| | - Brandon A Zielinski
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84108, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, 84108, USA
- Department of Pediatrics, University of Utah, Salt Lake City, UT, 84108, USA
- Division of Pediatric Neurology, Departments of Pediatrics, Neurology, and Neuroscience, College of Medicine, University of Florida, Florida, FL, 32610, USA
| | - Jace B King
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84108, USA
| | - Nicholas Lange
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew L Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Janet E Lainhart
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Jared A Nielsen
- Department of Psychology, Brigham Young University, Provo, UT, 1070 KMBL, 84602, USA.
- Neuroscience Center, Brigham Young University, Provo, UT, 84604, USA.
| |
Collapse
|
6
|
Nagai Y, Kirino E, Tanaka S, Usui C, Inami R, Inoue R, Hattori A, Uchida W, Kamagata K, Aoki S. Functional connectivity in autism spectrum disorder evaluated using rs-fMRI and DKI. Cereb Cortex 2024; 34:129-145. [PMID: 38012112 PMCID: PMC11065111 DOI: 10.1093/cercor/bhad451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
We evaluated functional connectivity (FC) in patients with adult autism spectrum disorder (ASD) using resting-state functional MRI (rs-fMRI) and diffusion kurtosis imaging (DKI). We acquired rs-fMRI data from 33 individuals with ASD and 33 healthy controls (HC) and DKI data from 18 individuals with ASD and 17 HC. ASD showed attenuated FC between the right frontal pole (FP) and the bilateral temporal fusiform cortex (TFusC) and enhanced FC between the right thalamus and the bilateral inferior division of lateral occipital cortex, and between the cerebellar vermis and the right occipital fusiform gyrus (OFusG) and the right lingual gyrus, compared with HC. ASD demonstrated increased axial kurtosis (AK) and mean kurtosis (MK) in white matter (WM) tracts, including the right anterior corona radiata (ACR), forceps minor (FM), and right superior longitudinal fasciculus (SLF). In ASD, there was also a significant negative correlation between MK and FC between the cerebellar vermis and the right OFusG in the corpus callosum, FM, right SLF and right ACR. Increased DKI metrics might represent neuroinflammation, increased complexity, or disrupted WM tissue integrity that alters long-distance connectivity. Nonetheless, protective or compensating adaptations of inflammation might lead to more abundant glial cells and cytokine activation effectively alleviating the degeneration of neurons, resulting in increased complexity. FC abnormality in ASD observed in rs-fMRI may be attributed to microstructural alterations of the commissural and long-range association tracts in WM as indicated by DKI.
Collapse
Affiliation(s)
- Yasuhito Nagai
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Eiji Kirino
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
- Department of Psychiatry, Juntendo University Shizuoka Hospital, 1129 Nagaoka Izunokuni-shi Shizuoka 410-2295, Japan
- Juntendo Institute of Mental Health, 700-1 Fukuroyama Koshigaya-shi Saitama 343-0032, Japan
| | - Shoji Tanaka
- Department of Information and Communication Sciences, Sophia University, 7-1 Kioi-cho Chiyoda-ku Tokyo 102-8554, Japan
| | - Chie Usui
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Rie Inami
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Reiichi Inoue
- Juntendo Institute of Mental Health, 700-1 Fukuroyama Koshigaya-shi Saitama 343-0032, Japan
| | - Aki Hattori
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
- Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode Urayasu-shi Chiba 279-0013, Japan
| |
Collapse
|
7
|
Fedorenko E, Ivanova AA, Regev TI. The language network as a natural kind within the broader landscape of the human brain. Nat Rev Neurosci 2024; 25:289-312. [PMID: 38609551 DOI: 10.1038/s41583-024-00802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/14/2024]
Abstract
Language behaviour is complex, but neuroscientific evidence disentangles it into distinct components supported by dedicated brain areas or networks. In this Review, we describe the 'core' language network, which includes left-hemisphere frontal and temporal areas, and show that it is strongly interconnected, independent of input and output modalities, causally important for language and language-selective. We discuss evidence that this language network plausibly stores language knowledge and supports core linguistic computations related to accessing words and constructions from memory and combining them to interpret (decode) or generate (encode) linguistic messages. We emphasize that the language network works closely with, but is distinct from, both lower-level - perceptual and motor - mechanisms and higher-level systems of knowledge and reasoning. The perceptual and motor mechanisms process linguistic signals, but, in contrast to the language network, are sensitive only to these signals' surface properties, not their meanings; the systems of knowledge and reasoning (such as the system that supports social reasoning) are sometimes engaged during language use but are not language-selective. This Review lays a foundation both for in-depth investigations of these different components of the language processing pipeline and for probing inter-component interactions.
Collapse
Affiliation(s)
- Evelina Fedorenko
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- The Program in Speech and Hearing in Bioscience and Technology, Harvard University, Cambridge, MA, USA.
| | - Anna A Ivanova
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Tamar I Regev
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
8
|
Malik-Moraleda S, Jouravlev O, Taliaferro M, Mineroff Z, Cucu T, Mahowald K, Blank IA, Fedorenko E. Functional characterization of the language network of polyglots and hyperpolyglots with precision fMRI. Cereb Cortex 2024; 34:bhae049. [PMID: 38466812 PMCID: PMC10928488 DOI: 10.1093/cercor/bhae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
How do polyglots-individuals who speak five or more languages-process their languages, and what can this population tell us about the language system? Using fMRI, we identified the language network in each of 34 polyglots (including 16 hyperpolyglots with knowledge of 10+ languages) and examined its response to the native language, non-native languages of varying proficiency, and unfamiliar languages. All language conditions engaged all areas of the language network relative to a control condition. Languages that participants rated as higher proficiency elicited stronger responses, except for the native language, which elicited a similar or lower response than a non-native language of similar proficiency. Furthermore, unfamiliar languages that were typologically related to the participants' high-to-moderate-proficiency languages elicited a stronger response than unfamiliar unrelated languages. The results suggest that the language network's response magnitude scales with the degree of engagement of linguistic computations (e.g. related to lexical access and syntactic-structure building). We also replicated a prior finding of weaker responses to native language in polyglots than non-polyglot bilinguals. These results contribute to our understanding of how multiple languages coexist within a single brain and provide new evidence that the language network responds more strongly to stimuli that more fully engage linguistic computations.
Collapse
Affiliation(s)
- Saima Malik-Moraleda
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA 02114, United States
| | - Olessia Jouravlev
- Department of Cognitive Science, Carleton University, Ottawa K1S 5B6, Canada
| | - Maya Taliaferro
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Zachary Mineroff
- Eberly Center, Carnegie Mellon University, Pittsburgh, PA 15289, United States
| | - Theodore Cucu
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15289, United States
| | - Kyle Mahowald
- Department of Linguistics, The University of Texas at Austin, Austin, TX 78712, United States
| | - Idan A Blank
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA 02114, United States
| |
Collapse
|
9
|
Peterson M, Floris DL, Nielsen JA. Parsing Brain Network Specialization: A Replication and Expansion of Wang et al. (2014). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580153. [PMID: 38405819 PMCID: PMC10888742 DOI: 10.1101/2024.02.13.580153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
One organizing principle of the human brain is hemispheric specialization, or the dominance of a specific function or cognitive process in one hemisphere or the other. Previously, Wang et al. (2014) identified networks putatively associated with language and attention as being specialized to the left and right hemispheres, respectively; and a dual-specialization of the executive control network. However, it remains unknown which networks are specialized when specialization is examined within individuals using a higher resolution parcellation, as well as which connections are contributing the most to a given network's specialization. In the present study, we estimated network specialization across three datasets using the autonomy index and a novel method of deconstructing network specialization. After examining the reliability of these methods as implemented on an individual level, we addressed two hypotheses. First, we hypothesized that the most specialized networks would include those associated with language, visuospatial attention, and executive control. Second, we hypothesized that within-network contributions to specialization would follow a within-between network gradient or a specialization gradient. We found that the majority of networks exhibited greater within-hemisphere connectivity than between-hemisphere connectivity. Among the most specialized networks were networks associated with language, attention, and executive control. Additionally, we found that the greatest network contributions were within-network, followed by those from specialized networks.
Collapse
Affiliation(s)
- Madeline Peterson
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
| | - Dorothea L Floris
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jared A Nielsen
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
- Neuroscience Center, Brigham Young University, Provo, UT, 84604, USA
| |
Collapse
|
10
|
Lai B, Yi A, Zhang F, Wang S, Xin J, Li S, Yu L. Atypical brain lateralization for speech processing at the sublexical level in autistic children revealed by fNIRS. Sci Rep 2024; 14:2776. [PMID: 38307983 PMCID: PMC10837203 DOI: 10.1038/s41598-024-53128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Autistic children often exhibit atypical brain lateralization of language processing, but it is unclear what aspects of language contribute to this phenomenon. This study employed functional near-infrared spectroscopy to measure hemispheric lateralization by estimating hemodynamic responses associated with processing linguistic and non-linguistic auditory stimuli. The study involved a group of autistic children (N = 20, mean age = 5.8 years) and a comparison group of nonautistic peers (N = 20, mean age = 6.5 years). The children were presented with stimuli with systematically decreasing linguistic relevance: naturalistic native speech, meaningless native speech with scrambled word order, nonnative speech, and music. The results revealed that both groups showed left lateralization in the temporal lobe when listening to naturalistic native speech. However, the distinction emerged between autism and nonautistic in terms of processing the linguistic hierarchy. Specifically, the nonautistic comparison group demonstrated a systematic reduction in left lateralization as linguistic relevance decreased. In contrast, the autism group displayed no such pattern and showed no lateralization when listening to scrambled native speech accompanied by enhanced response in the right hemisphere. These results provide evidence of atypical neural specialization for spoken language in preschool- and school-age autistic children and shed new light on the underlying linguistic correlates contributing to such atypicality at the sublexical level.
Collapse
Affiliation(s)
- Baojun Lai
- Center for Autism Research, School of Education, Guangzhou University, Guangzhou, China
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Tiyudong Road Primary School (Xingguo), Guangzhou, China
| | - Aiwen Yi
- Department of Obstetrics and Gynecology, Department of Pediatrics; Guangdong Provincial Key Laboratory of Major 0bstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Laboratory of Maternal-Fetal Joint Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fen Zhang
- VITO Health, Flemish Institute for Technological Research, Mol, Belgium
| | - Suiping Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
| | - Jing Xin
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Suping Li
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Luodi Yu
- Center for Autism Research, School of Education, Guangzhou University, Guangzhou, China.
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
11
|
Villar-Rodríguez E, Cano-Melle C, Marin-Marin L, Parcet MA, Avila C. What happens to the inhibitory control functions of the right inferior frontal cortex when this area is dominant for language? eLife 2024; 12:RP86797. [PMID: 38236206 PMCID: PMC10945575 DOI: 10.7554/elife.86797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
A low number of individuals show an atypical brain control of language functions that differs from the typical lateralization in the left cerebral hemisphere. In these cases, the neural distribution of other cognitive functions is not fully understood. Although there is a bias towards a mirrored brain organization consistent with the Causal hypothesis, some individuals are found to be exceptions to this rule. However, no study has focused on what happens to the homologous language areas in the right frontal inferior cortex. Using an fMRI-adapted stop-signal task in a healthy non right-handed sample (50 typically lateralized and 36 atypically lateralized for language production), our results show that atypical lateralization is associated with a mirrored brain organization of the inhibitory control network in the left hemisphere: inferior frontal cortex, presupplementary motor area, and subthalamic nucleus. However, the individual analyses revealed a large number of cases with a noteworthy overlap in the inferior frontal gyrus, which shared both inhibitory and language functions. Further analyses showed that atypical lateralization was associated with stronger functional interhemispheric connectivity and larger corpus callosum. Importantly, we did not find task performance differences as a function of lateralization, but there was an association between atypical dominance in the inferior frontal cortex and higher scores on schizotypy and autistic spectrum traits, as well as worse performance on a reading accuracy test. Together, these results partially support the Causal hypothesis of hemispheric specialization and provide further evidence of the link between atypical hemispheric lateralization and increased interhemispheric transfer through the corpus callosum.
Collapse
Affiliation(s)
| | - Cristina Cano-Melle
- Neuropsychology and Functional Neuroimaging; Jaume I UniversityCastellón de la PlanaSpain
| | - Lidón Marin-Marin
- Neuropsychology and Functional Neuroimaging; Jaume I UniversityCastellón de la PlanaSpain
| | - Maria Antònia Parcet
- Neuropsychology and Functional Neuroimaging; Jaume I UniversityCastellón de la PlanaSpain
| | - César Avila
- Neuropsychology and Functional Neuroimaging; Jaume I UniversityCastellón de la PlanaSpain
| |
Collapse
|
12
|
Peterson M, Prigge MBD, Floris DL, Bigler ED, Zielinski B, King JB, Lange N, Alexander AL, Lainhart JE, Nielsen JA. Reduced Lateralization of Multiple Functional Brain Networks in Autistic Males. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571928. [PMID: 38187671 PMCID: PMC10769214 DOI: 10.1101/2023.12.15.571928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Background Autism spectrum disorder has been linked to a variety of organizational and developmental deviations in the brain. One such organizational difference involves hemispheric lateralization, which may be localized to language-relevant regions of the brain or distributed more broadly. Methods In the present study, we estimated brain hemispheric lateralization in autism based on each participant's unique functional neuroanatomy rather than relying on group-averaged data. Additionally, we explored potential relationships between the lateralization of the language network and behavioral phenotypes including verbal ability, language delay, and autism symptom severity. We hypothesized that differences in hemispheric asymmetries in autism would be limited to the language network, with the alternative hypothesis of pervasive differences in lateralization. We tested this and other hypotheses by employing a cross-sectional dataset of 118 individuals (48 autistic, 70 neurotypical). Using resting-state fMRI, we generated individual network parcellations and estimated network asymmetries using a surface area-based approach. A series of multiple regressions were then used to compare network asymmetries for eight significantly lateralized networks between groups. Results We found significant group differences in lateralization for the left-lateralized Language (d = -0.89), right-lateralized Salience/Ventral Attention-A (d = 0.55), and right-lateralized Control-B (d = 0.51) networks, with the direction of these group differences indicating less asymmetry in autistic individuals. These differences were robust across different datasets from the same participants. Furthermore, we found that language delay stratified language lateralization, with the greatest group differences in language lateralization occurring between autistic individuals with language delay and neurotypical individuals. Limitations The generalizability of our findings is restricted due to the male-only sample and greater representation of individuals with high verbal and cognitive performance. Conclusions These findings evidence a complex pattern of functional lateralization differences in autism, extending beyond the Language network to the Salience/Ventral Attention-A and Control-B networks, yet not encompassing all networks, indicating a selective divergence rather than a pervasive one. Furthermore, a differential relationship was identified between Language network lateralization and specific symptom profiles (namely, language delay) of autism.
Collapse
Affiliation(s)
- Madeline Peterson
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
| | - Molly B. D. Prigge
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84108, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dorothea L. Floris
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Erin D. Bigler
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
- Neuroscience Center, Brigham Young University, Provo, UT, 84604, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, 84108, USA
- Department of Neurology, University of California-Davis, Davis, CA, USA
| | - Brandon Zielinski
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84108, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, 84108, USA
- Department of Pediatrics, University of Utah, Salt Lake City, UT, 84108, USA
- Division of Pediatric Neurology, Departments of Pediatrics, Neurology, and Neuroscience, College of Medicine, University of Florida, FL, 32610, United States
| | - Jace B. King
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84108, USA
| | - Nicholas Lange
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew L. Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Janet E. Lainhart
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Jared A. Nielsen
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
- Neuroscience Center, Brigham Young University, Provo, UT, 84604, USA
| |
Collapse
|
13
|
Bang P, Igelström K. Modality-specific associations between sensory differences and autistic traits. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2023; 27:2158-2172. [PMID: 36802917 PMCID: PMC10504810 DOI: 10.1177/13623613231154349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
LAY ABSTRACT Sensory symptoms are a major source of distress for many autistic people, causing anxiety, stress, and avoidance. Sensory problems are thought to be passed on genetically together with other autistic characteristics, such as social preferences. This means that people who report cognitive rigidity and autistic-like social function are more likely to suffer from sensory issues. We do not know what role the individual senses, such as vision, hearing, smell, or touch, play in this relationship, because sensory processing is generally measured with questionnaires that target general, multisensory issues. This study aimed to investigate the individual importance of the different senses (vision, hearing, touch, smell, taste, balance, and proprioception) in the correlation with autistic traits. To ensure the results were replicable, we repeated the experiment in two large groups of adults. The first group contained 40% autistic participants, whereas the second group resembled the general population. We found that problems with auditory processing were more strongly predictive of general autistic characteristics than were problems with the other senses. Problems with touch were specifically related to differences in social interaction, such as avoiding social settings. We also found a specific relationship between proprioceptive differences and autistic-like communication preferences. The sensory questionnaire had limited reliability, so our results may underestimate the contribution of some senses. With that reservation in mind, we conclude that auditory differences are dominant over other modalities in predicting genetically based autistic traits and may therefore be of special interest for further genetic and neurobiological studies.
Collapse
|
14
|
Wan B, Hong SJ, Bethlehem RAI, Floris DL, Bernhardt BC, Valk SL. Diverging asymmetry of intrinsic functional organization in autism. Mol Psychiatry 2023; 28:4331-4341. [PMID: 37587246 PMCID: PMC10827663 DOI: 10.1038/s41380-023-02220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Autism is a neurodevelopmental condition involving atypical sensory-perceptual functions together with language and socio-cognitive deficits. Previous work has reported subtle alterations in the asymmetry of brain structure and reduced laterality of functional activation in individuals with autism relative to non-autistic individuals (NAI). However, whether functional asymmetries show altered intrinsic systematic organization in autism remains unclear. Here, we examined inter- and intra-hemispheric asymmetry of intrinsic functional gradients capturing connectome organization along three axes, stretching between sensory-default, somatomotor-visual, and default-multiple demand networks, to study system-level hemispheric imbalances in autism. We observed decreased leftward functional asymmetry of language network organization in individuals with autism, relative to NAI. Whereas language network asymmetry varied across age groups in NAI, this was not the case in autism, suggesting atypical functional laterality in autism may result from altered developmental trajectories. Finally, we observed that intra- but not inter-hemispheric features were predictive of the severity of autistic traits. Our findings illustrate how regional and patterned functional lateralization is altered in autism at the system level. Such differences may be rooted in atypical developmental trajectories of functional organization asymmetry in autism.
Collapse
Affiliation(s)
- Bin Wan
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom), Leipzig, Germany.
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
| | - Seok-Jun Hong
- Centre for Neuroscience Imaging Research, Institute for Basic Science, Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | | | - Dorothea L Floris
- Department of Psychology, University of Zürich, Zürich, Switzerland
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Sofie L Valk
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
15
|
Labache L, Ge T, Yeo BTT, Holmes AJ. Language network lateralization is reflected throughout the macroscale functional organization of cortex. Nat Commun 2023; 14:3405. [PMID: 37296118 PMCID: PMC10256741 DOI: 10.1038/s41467-023-39131-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Hemispheric specialization is a fundamental feature of human brain organization. However, it is not yet clear to what extent the lateralization of specific cognitive processes may be evident throughout the broad functional architecture of cortex. While the majority of people exhibit left-hemispheric language dominance, a substantial minority of the population shows reverse lateralization. Using twin and family data from the Human Connectome Project, we provide evidence that atypical language dominance is associated with global shifts in cortical organization. Individuals with atypical language organization exhibit corresponding hemispheric differences in the macroscale functional gradients that situate discrete large-scale networks along a continuous spectrum, extending from unimodal through association territories. Analyses reveal that both language lateralization and gradient asymmetries are, in part, driven by genetic factors. These findings pave the way for a deeper understanding of the origins and relationships linking population-level variability in hemispheric specialization and global properties of cortical organization.
Collapse
Affiliation(s)
- Loïc Labache
- Department of Psychology, Yale University, New Haven, CT, 06520, US.
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, US
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, US
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, 02142, US
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, Centre for Sleep and Cognition, National University of Singapore, Singapore, SG, 119077, Singapore
- Department of Electrical and Computer Engineering, Centre for Translational Magnetic Resonance Research, National University of Singapore, Singapore, SG, 119077, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore, SG, 119077, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, US
- National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, SG, 119077, Singapore
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT, 06520, US.
- Department of Psychiatry, Yale University, New Haven, CT, 06520, US.
- Wu Tsai Institute, Yale University, New Haven, CT, 06520, US.
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, US.
| |
Collapse
|
16
|
Chen X, Affourtit J, Ryskin R, Regev TI, Norman-Haignere S, Jouravlev O, Malik-Moraleda S, Kean H, Varley R, Fedorenko E. The human language system, including its inferior frontal component in "Broca's area," does not support music perception. Cereb Cortex 2023; 33:7904-7929. [PMID: 37005063 PMCID: PMC10505454 DOI: 10.1093/cercor/bhad087] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 04/04/2023] Open
Abstract
Language and music are two human-unique capacities whose relationship remains debated. Some have argued for overlap in processing mechanisms, especially for structure processing. Such claims often concern the inferior frontal component of the language system located within "Broca's area." However, others have failed to find overlap. Using a robust individual-subject fMRI approach, we examined the responses of language brain regions to music stimuli, and probed the musical abilities of individuals with severe aphasia. Across 4 experiments, we obtained a clear answer: music perception does not engage the language system, and judgments about music structure are possible even in the presence of severe damage to the language network. In particular, the language regions' responses to music are generally low, often below the fixation baseline, and never exceed responses elicited by nonmusic auditory conditions, like animal sounds. Furthermore, the language regions are not sensitive to music structure: they show low responses to both intact and structure-scrambled music, and to melodies with vs. without structural violations. Finally, in line with past patient investigations, individuals with aphasia, who cannot judge sentence grammaticality, perform well on melody well-formedness judgments. Thus, the mechanisms that process structure in language do not appear to process music, including music syntax.
Collapse
Affiliation(s)
- Xuanyi Chen
- Department of Cognitive Sciences, Rice University, TX 77005, United States
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Josef Affourtit
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Rachel Ryskin
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Cognitive & Information Sciences, University of California, Merced, Merced, CA 95343, United States
| | - Tamar I Regev
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Samuel Norman-Haignere
- Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States
| | - Olessia Jouravlev
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Cognitive Science, Carleton University, Ottawa, ON, Canada
| | - Saima Malik-Moraleda
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- The Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02138, United States
| | - Hope Kean
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Rosemary Varley
- Psychology & Language Sciences, UCL, London, WCN1 1PF, United Kingdom
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- The Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
17
|
English MCW, Maybery MT, Visser TAW. A review of behavioral evidence for hemispheric asymmetry of visuospatial attention in autism. Autism Res 2023. [PMID: 37243312 DOI: 10.1002/aur.2956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
Most individuals show a small bias towards visual stimuli presented in their left visual field (LVF) that reflects right-hemispheric specialization of visuospatial functions. Moreover, this bias is altered by some neurodevelopmental disorders, suggesting they may be linked to changes in hemispheric asymmetry. To examine whether autism potentially alters hemispheric asymmetry, we conducted a systematic search of scientific databases to review existing literature on the link between autism and alterations in visuospatial bias. This search identified 13 publications that had explored this issue using a wide range of experimental designs and stimuli. Evidence of reduced LVF bias associated with autism was most consistent for studies examining attentional bias or preference measured using tasks such as line bisection. Findings for studies examining attentional performance (e.g., reaction time) were more equivocal. Further investigation is called for, and we make several recommendations for how this avenue of research can be extended.
Collapse
Affiliation(s)
- Michael C W English
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - Murray T Maybery
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - Troy A W Visser
- School of Psychological Science, University of Western Australia, Perth, Australia
| |
Collapse
|
18
|
Wu H, Peng D, Yan H, Yang Y, Xu M, Zeng W, Chang C, Wang N. Occupation-modulated language networks and its lateralization: A resting-state fMRI study of seafarers. Front Hum Neurosci 2023; 17:1095413. [PMID: 36992794 PMCID: PMC10040660 DOI: 10.3389/fnhum.2023.1095413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionStudies have revealed that the language network of Broca’s area and Wernicke’s area is modulated by factors such as disease, gender, aging, and handedness. However, how occupational factors modulate the language network remains unclear.MethodsIn this study, taking professional seafarers as an example, we explored the resting-state functional connectivity (RSFC) of the language network with seeds (the original and flipped Broca’s area and Wernicke’s area).ResultsThe results showed seafarers had weakened RSFC of Broca’s area with the left superior/middle frontal gyrus and left precentral gyrus, and enhanced RSFC of Wernicke’s area with the cingulate and precuneus. Further, seafarers had a less right-lateralized RSFC with Broca’s area in the left inferior frontal gyrus, while the controls showed a left-lateralized RSFC pattern in Broca’s area and a right-lateralized one in Wernicke’s area. Moreover, seafarers displayed stronger RSFC with the left seeds of Broca’s area and Wernicke’s area.DiscussionThese findings suggest that years of working experience significantly modulates the RSFC of language networks and their lateralization, providing rich insights into language networks and occupational neuroplasticity.
Collapse
Affiliation(s)
- Huijun Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Deyuan Peng
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Hongjie Yan
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
- Hongjie Yan,
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Min Xu
- Center for Brain Disorders and Cognitive Science, Shenzhen University, Shenzhen, China
| | - Weiming Zeng
- Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
- Chunqi Chang,
| | - Nizhuan Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
- *Correspondence: Nizhuan Wang,
| |
Collapse
|
19
|
Perez DC, Dworetsky A, Braga RM, Beeman M, Gratton C. Hemispheric Asymmetries of Individual Differences in Functional Connectivity. J Cogn Neurosci 2023; 35:200-225. [PMID: 36378901 PMCID: PMC10029817 DOI: 10.1162/jocn_a_01945] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resting-state fMRI studies have revealed that individuals exhibit stable, functionally meaningful divergences in large-scale network organization. The locations with strongest deviations (called network "variants") have a characteristic spatial distribution, with qualitative evidence from prior reports suggesting that this distribution differs across hemispheres. Hemispheric asymmetries can inform us on constraints guiding the development of these idiosyncratic regions. Here, we used data from the Human Connectome Project to systematically investigate hemispheric differences in network variants. Variants were significantly larger in the right hemisphere, particularly along the frontal operculum and medial frontal cortex. Variants in the left hemisphere appeared most commonly around the TPJ. We investigated how variant asymmetries vary by functional network and how they compare with typical network distributions. For some networks, variants seemingly increase group-average network asymmetries (e.g., the group-average language network is slightly bigger in the left hemisphere and variants also appeared more frequently in that hemisphere). For other networks, variants counter the group-average network asymmetries (e.g., the default mode network is slightly bigger in the left hemisphere, but variants were more frequent in the right hemisphere). Intriguingly, left- and right-handers differed in their network variant asymmetries for the cingulo-opercular and frontoparietal networks, suggesting that variant asymmetries are connected to lateralized traits. These findings demonstrate that idiosyncratic aspects of brain organization differ systematically across the hemispheres. We discuss how these asymmetries in brain organization may inform us on developmental constraints of network variants and how they may relate to functions differentially linked to the two hemispheres.
Collapse
Affiliation(s)
| | | | | | | | - Caterina Gratton
- Northwestern University, Evanston, IL
- Florida State University, Tallahassee
| |
Collapse
|
20
|
Karavallil Achuthan S, Coburn KL, Beckerson ME, Kana RK. Amplitude of low frequency fluctuations during resting state fMRI in autistic children. Autism Res 2023; 16:84-98. [PMID: 36349875 DOI: 10.1002/aur.2846] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Resting state fMRI (rs-fMRI) provides an excellent platform for examining the amplitude of low frequency fluctuations (ALFF) and fractional amplitude of low frequency fluctuations (fALFF), which are key indices of brain functioning. However, ALFF and fALFF have been used only sporadically to study autism. rs-fMRI data from 69 children (40 autistic, mean age = 8.47 ± 2.20 years; age range: 5.2 to 13.2; and 29 non-autistic, mean age = 9.02 ± 1.97 years; age range 5.9 to 12.9) were obtained from the Autism Brain Imaging Data Exchange (ABIDE II). ALFF and fALFF were measured using CONN connectivity toolbox and SPM12, at whole-brain & network-levels. A two-sampled t-test and a 2 Group (autistic, non-autistic) × 7 Networks ANOVA were conducted to test group differences in ALFF and fALFF. The whole-brain analysis identified significantly reduced ALFF values for autistic participants in left parietal opercular cortex, precuneus, and right insula. At the network level, there was a significant effect of diagnostic group and brain network on ALFF values, and only significant effect of network, not group, on fALFF values. Regression analyses indicated a significant effect of age on ALFF values of certain networks in autistic participants. Such intrinsically different network-level responses in autistic participants may have implications for task-level recruitment and synchronization of brain areas, which may in turn impact optimal cognitive functioning. Moreover, differences in low frequency fluctuations of key networks, such as the DMN and SN, may underlie alterations in brain responses in autism that are frequently reported in the literature.
Collapse
Affiliation(s)
- Smitha Karavallil Achuthan
- Department of Psychology & The Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, Alabama, USA
| | - Kelly L Coburn
- Department of Speech-Language Pathology & Audiology, Towson University, Towson, Maryland, USA
| | - Meagan E Beckerson
- Department of Psychology & The Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, Alabama, USA
| | - Rajesh K Kana
- Department of Psychology & The Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
21
|
Complementary hemispheric lateralization of language and social processing in the human brain. Cell Rep 2022; 41:111617. [DOI: 10.1016/j.celrep.2022.111617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/10/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
|
22
|
Lipkin B, Tuckute G, Affourtit J, Small H, Mineroff Z, Kean H, Jouravlev O, Rakocevic L, Pritchett B, Siegelman M, Hoeflin C, Pongos A, Blank IA, Struhl MK, Ivanova A, Shannon S, Sathe A, Hoffmann M, Nieto-Castañón A, Fedorenko E. Probabilistic atlas for the language network based on precision fMRI data from >800 individuals. Sci Data 2022; 9:529. [PMID: 36038572 PMCID: PMC9424256 DOI: 10.1038/s41597-022-01645-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Two analytic traditions characterize fMRI language research. One relies on averaging activations across individuals. This approach has limitations: because of inter-individual variability in the locations of language areas, any given voxel/vertex in a common brain space is part of the language network in some individuals but in others, may belong to a distinct network. An alternative approach relies on identifying language areas in each individual using a functional 'localizer'. Because of its greater sensitivity, functional resolution, and interpretability, functional localization is gaining popularity, but it is not always feasible, and cannot be applied retroactively to past studies. To bridge these disjoint approaches, we created a probabilistic functional atlas using fMRI data for an extensively validated language localizer in 806 individuals. This atlas enables estimating the probability that any given location in a common space belongs to the language network, and thus can help interpret group-level activation peaks and lesion locations, or select voxels/electrodes for analysis. More meaningful comparisons of findings across studies should increase robustness and replicability in language research.
Collapse
Affiliation(s)
- Benjamin Lipkin
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Greta Tuckute
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Josef Affourtit
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hannah Small
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| | - Zachary Mineroff
- Human-computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Hope Kean
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olessia Jouravlev
- Department of Cognitive Science, Carleton University, Ottawa, ON, Canada
| | - Lara Rakocevic
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brianna Pritchett
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Caitlyn Hoeflin
- Harris School of Public Policy, University of Chicago, Chicago, IL, USA
| | - Alvincé Pongos
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Idan A Blank
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Melissa Kline Struhl
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Ivanova
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven Shannon
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aalok Sathe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Malte Hoffmann
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Cambridge, MA, USA
| | - Alfonso Nieto-Castañón
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Speech, Hearing, Bioscience, and Technology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
23
|
Li M, Wang Y, Tachibana M, Rahman S, Kagitani-Shimono K. Atypical structural connectivity of language networks in autism spectrum disorder: A meta-analysis of diffusion tensor imaging studies. Autism Res 2022; 15:1585-1602. [PMID: 35962721 PMCID: PMC9546367 DOI: 10.1002/aur.2789] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
Patients with autism spectrum disorder (ASD) often show pervasive and complex language impairments that are closely associated with aberrant structural connectivity of language networks. However, the characteristics of white matter connectivity in ASD have remained inconclusive in previous diffusion tensor imaging (DTI) studies. The current meta‐analysis aimed to comprehensively elucidate the abnormality in language‐related white matter connectivity in individuals with ASD. We searched PubMed, Web of Science, Scopus, and Medline databases to identify relevant studies. The standardized mean difference was calculated to measure the pooled difference in DTI metrics in each tract between the ASD and typically developing (TD) groups. The moderating effects of age, sex, language ability, and symptom severity were investigated using subgroup and meta‐regression analysis. Thirty‐three DTI studies involving 831 individuals with ASD and 836 TD controls were included in the meta‐analysis. ASD subjects showed significantly lower fractional anisotropy or higher mean diffusivity across language‐associated tracts than TD controls. These abnormalities tended to be more prominent in the left language networks than in the right. In addition, children with ASD exhibit more pronounced and pervasive disturbances in white matter connectivity than adults. These results support the under‐connectivity hypothesis and demonstrate the widespread abnormal microstructure of language‐related tracts in patients with ASD. Otherwise, white matter abnormalities in the autistic brain could vary depending on the developmental stage and hemisphere.
Collapse
Affiliation(s)
- Min Li
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Yide Wang
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Masaya Tachibana
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Shafiur Rahman
- Department of Child Development, United Graduate School of Child Development, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan.,Research Center for Child Mental Development, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Kuriko Kagitani-Shimono
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
24
|
Larson C, Rivera-Figueroa K, Thomas HR, Fein D, Stevens MC, Eigsti IM. Structural language impairment in Autism Spectrum Disorder versus Loss of Autism Diagnosis: Behavioral and neural characteristics. Neuroimage Clin 2022; 34:103043. [PMID: 35567947 PMCID: PMC9112023 DOI: 10.1016/j.nicl.2022.103043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/14/2022] [Accepted: 05/08/2022] [Indexed: 02/02/2023]
Abstract
This study probed for structural language impairment using behavioral and functional neuroimaging methods in individuals with Autism Spectrum Disorder (ASD) and those diagnosed with ASD in childhood who no longer meet criteria for ASD, referred to as Loss of Autism Diagnosis (LAD1). Participants were drawn from Fein et al. (2013): ASD (n = 35), LAD (n = 31), and Neurotypical (NT; n = 34). Criteria for structural language impairment were: Scores ≤ 82 on Clinical Evaluation of Language Fundamentals-4 (CELF) Core Language, an omnibus measure of language; and scores ≤ 7 on CELF Recalling Sentences, a clinical marker of structural language impairment. Task-based fMRI examined lateralization of significantly activated language-related brain regions in groups with structural language impairment (LI2) versus normal-range language (LN3), collapsed across ASD, LAD1, and NT status. Results showed no ASD versus LAD group differences in the proportion of participants with structural language impairment according to either metric (Recalling Sentences or Core Language). Functional MRI results indicated greater left hemisphere lateralization within significantly activated regions in the LI2 group. Structural language abilities were not meaningfully associated with either social abilities or lifetime ADHD symptoms in LI2 subgroups, further suggesting the presence of structural language impairment. Findings indicate the presence of persistent structural language difficulty even in the absence of ASD symptoms in some individuals within the LAD1 group and unique patterns of language-related neural specialization for language function in LI2 relative to LN3.
Collapse
Affiliation(s)
- Caroline Larson
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,CT Institute for the Brain and Cognitive Sciences, Storrs, CT, USA,Corresponding author at: Department of Psychological Sciences, Unit 1020, 406 Babbidge Rd, Storrs, CT 06269, USA.
| | | | - Hannah R. Thomas
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Deborah Fein
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,Department of Pediatrics, University of Connecticut, Farmington, CT, USA
| | - Michael C. Stevens
- Olin Neuropsychiatry Research Center at the Institute of Living, Hartford, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Inge-Marie Eigsti
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,CT Institute for the Brain and Cognitive Sciences, Storrs, CT, USA
| |
Collapse
|
25
|
Sha Z, van Rooij D, Anagnostou E, Arango C, Auzias G, Behrmann M, Bernhardt B, Bolte S, Busatto GF, Calderoni S, Calvo R, Daly E, Deruelle C, Duan M, Duran FLS, Durston S, Ecker C, Ehrlich S, Fair D, Fedor J, Fitzgerald J, Floris DL, Franke B, Freitag CM, Gallagher L, Glahn DC, Haar S, Hoekstra L, Jahanshad N, Jalbrzikowski M, Janssen J, King JA, Lazaro L, Luna B, McGrath J, Medland SE, Muratori F, Murphy DGM, Neufeld J, O'Hearn K, Oranje B, Parellada M, Pariente JC, Postema MC, Remnelius KL, Retico A, Rosa PGP, Rubia K, Shook D, Tammimies K, Taylor MJ, Tosetti M, Wallace GL, Zhou F, Thompson PM, Fisher SE, Buitelaar JK, Francks C. Subtly altered topological asymmetry of brain structural covariance networks in autism spectrum disorder across 43 datasets from the ENIGMA consortium. Mol Psychiatry 2022; 27:2114-2125. [PMID: 35136228 PMCID: PMC9126820 DOI: 10.1038/s41380-022-01452-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/23/2021] [Accepted: 01/14/2022] [Indexed: 12/30/2022]
Abstract
Small average differences in the left-right asymmetry of cerebral cortical thickness have been reported in individuals with autism spectrum disorder (ASD) compared to typically developing controls, affecting widespread cortical regions. The possible impacts of these regional alterations in terms of structural network effects have not previously been characterized. Inter-regional morphological covariance analysis can capture network connectivity between different cortical areas at the macroscale level. Here, we used cortical thickness data from 1455 individuals with ASD and 1560 controls, across 43 independent datasets of the ENIGMA consortium's ASD Working Group, to assess hemispheric asymmetries of intra-individual structural covariance networks, using graph theory-based topological metrics. Compared with typical features of small-world architecture in controls, the ASD sample showed significantly altered average asymmetry of networks involving the fusiform, rostral middle frontal, and medial orbitofrontal cortex, involving higher randomization of the corresponding right-hemispheric networks in ASD. A network involving the superior frontal cortex showed decreased right-hemisphere randomization. Based on comparisons with meta-analyzed functional neuroimaging data, the altered connectivity asymmetry particularly affected networks that subserve executive functions, language-related and sensorimotor processes. These findings provide a network-level characterization of altered left-right brain asymmetry in ASD, based on a large combined sample. Altered asymmetrical brain development in ASD may be partly propagated among spatially distant regions through structural connectivity.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
| | - Daan van Rooij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital and Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Gregorio Maran General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Universit, CNRS, Marseille, France
| | - Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Sven Bolte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Geraldo F Busatto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sara Calderoni
- IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rosa Calvo
- Department of Child and Adolescent Psychiatry and Psychology Hospital Clinic, Psychiatry Unit, Department of Medicine, 2017SGR881, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience King's College London, London, UK
| | - Christine Deruelle
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Universit, CNRS, Marseille, France
| | - Meiyu Duan
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China
| | - Fabio Luis Souza Duran
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sarah Durston
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
- The Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry & Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Damien Fair
- Institute of Child Development, Department of Pediatrics, Masonic Institute of the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Jennifer Fedor
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jacqueline Fitzgerald
- Department of Psychiatry, School of Medicine, Trinity College, Dublin, Ireland
- The Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Dorothea L Floris
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College, Dublin, Ireland
- The Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115-5724, USA
- Olin Neuropsychiatric Research Center, Hartford, CT, USA
| | - Shlomi Haar
- Department of Brain Sciences, Imperial College London, London, UK
| | - Liesbeth Hoekstra
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joost Janssen
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Gregorio Maran General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Joseph A King
- Department of Child and Adolescent Psychiatry & Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and Psychology Hospital Clinic, Psychiatry Unit, Department of Medicine, 2017SGR881, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jane McGrath
- Department of Psychiatry, School of Medicine, Trinity College, Dublin, Ireland
- The Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Filippo Muratori
- IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Declan G M Murphy
- The Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Behavioural Genetics Clinic, Adult Autism Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley Foundation NHS Trust, London, UK
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Kirsten O'Hearn
- Department of Physiology and Pharmacology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Bob Oranje
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mara Parellada
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Gregorio Maran General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Jose C Pariente
- Magnetic Resonance Image Core Facility, IDIBAPS (Institut d'Investigacions Biomdiques August Pi i Sunyer), Barcelona, Spain
| | - Merel C Postema
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Karl Lundin Remnelius
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Alessandra Retico
- National Institute for Nuclear Physics, Pisa Division, Largo B. Pontecorvo 3, Pisa, Italy
| | - Pedro Gomes Penteado Rosa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Katya Rubia
- Institute of Psychiatry, King's College London, London, UK
| | - Devon Shook
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kristiina Tammimies
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region, Stockholm, Sweden
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Womens and Childrens Health, Karolinska Institutet and Child and Adolescent Psychiatry, Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Margot J Taylor
- Diagnostic Imaging, The Hospital for Sick Children, and Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | | | - Gregory L Wallace
- Department of Speech, Language, and Hearing Sciences, The George Washington University, Washington, DC, USA
| | - Fengfeng Zhou
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - Simon E Fisher
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Clyde Francks
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
26
|
Friedrich P, Patil KR, Mochalski LN, Li X, Camilleri JA, Kröll JP, Wiersch L, Eickhoff SB, Weis S. Is it left or is it right? A classification approach for investigating hemispheric differences in low and high dimensionality. Brain Struct Funct 2022; 227:425-440. [PMID: 34882263 PMCID: PMC8844166 DOI: 10.1007/s00429-021-02418-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 10/18/2021] [Indexed: 11/09/2022]
Abstract
Hemispheric asymmetries, i.e., differences between the two halves of the brain, have extensively been studied with respect to both structure and function. Commonly employed pairwise comparisons between left and right are suitable for finding differences between the hemispheres, but they come with several caveats when assessing multiple asymmetries. What is more, they are not designed for identifying the characterizing features of each hemisphere. Here, we present a novel data-driven framework-based on machine learning-based classification-for identifying the characterizing features that underlie hemispheric differences. Using voxel-based morphometry data from two different samples (n = 226, n = 216), we separated the hemispheres along the midline and used two different pipelines: First, for investigating global differences, we embedded the hemispheres into a two-dimensional space and applied a classifier to assess if the hemispheres are distinguishable in their low-dimensional representation. Second, to investigate which voxels show systematic hemispheric differences, we employed two classification approaches promoting feature selection in high dimensions. The two hemispheres were accurately classifiable in both their low-dimensional (accuracies: dataset 1 = 0.838; dataset 2 = 0.850) and high-dimensional (accuracies: dataset 1 = 0.966; dataset 2 = 0.959) representations. In low dimensions, classification of the right hemisphere showed higher precision (dataset 1 = 0.862; dataset 2 = 0.894) compared to the left hemisphere (dataset 1 = 0.818; dataset 2 = 0.816). A feature selection algorithm in the high-dimensional analysis identified voxels that most contribute to accurate classification. In addition, the map of contributing voxels showed a better overlap with moderate to highly lateralized voxels, whereas conventional t test with threshold-free cluster enhancement best resembled the LQ map at lower thresholds. Both the low- and high-dimensional classifiers were capable of identifying the hemispheres in subsamples of the datasets, such as males, females, right-handed, or non-right-handed participants. Our study indicates that hemisphere classification is capable of identifying the hemisphere in their low- and high-dimensional representation as well as delineating brain asymmetries. The concept of hemisphere classifiability thus allows a change in perspective, from asking what differs between the hemispheres towards focusing on the features needed to identify the left and right hemispheres. Taking this perspective on hemispheric differences may contribute to our understanding of what makes each hemisphere special.
Collapse
Affiliation(s)
- Patrick Friedrich
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany.
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lisa N Mochalski
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Xuan Li
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Julia A Camilleri
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jean-Philippe Kröll
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lisa Wiersch
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Susanne Weis
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
27
|
Zekelman LR, Zhang F, Makris N, He J, Chen Y, Xue T, Liera D, Drane DL, Rathi Y, Golby AJ, O'Donnell LJ. White matter association tracts underlying language and theory of mind: An investigation of 809 brains from the Human Connectome Project. Neuroimage 2022; 246:118739. [PMID: 34856375 PMCID: PMC8862285 DOI: 10.1016/j.neuroimage.2021.118739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
Language and theory of mind (ToM) are the cognitive capacities that allow for the successful interpretation and expression of meaning. While functional MRI investigations are able to consistently localize language and ToM to specific cortical regions, diffusion MRI investigations point to an inconsistent and sometimes overlapping set of white matter tracts associated with these two cognitive domains. To further examine the white matter tracts that may underlie these domains, we use a two-tensor tractography method to investigate the white matter microstructure of 809 participants from the Human Connectome Project. 20 association white matter tracts (10 in each hemisphere) are uniquely identified by leveraging a neuroanatomist-curated automated white matter tract atlas. The fractional anisotropy (FA), mean diffusivity (MD), and number of streamlines (NoS) are measured for each white matter tract. Performance on neuropsychological assessments of semantic memory (NIH Toolbox Picture Vocabulary Test, TPVT) and emotion perception (Penn Emotion Recognition Test, PERT) are used to measure critical subcomponents of the language and ToM networks, respectively. Regression models are constructed to examine how structural measurements of left and right white matter tracts influence performance across these two assessments. We find that semantic memory performance is influenced by the number of streamlines of the left superior longitudinal fasciculus III (SLF-III), and emotion perception performance is influenced by the number of streamlines of the right SLF-III. Additionally, we find that performance on both semantic memory & emotion perception is influenced by the FA of the left arcuate fasciculus (AF). The results point to multiple, overlapping white matter tracts that underlie the cognitive domains of language and ToM. Results are discussed in terms of hemispheric dominance and concordance with prior investigations.
Collapse
Affiliation(s)
- Leo R Zekelman
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, USA.
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Nikos Makris
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, USA; Center for Morphometric Analysis, Department of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Psychiatric Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Jianzhong He
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Institution of Information Processing and Automation, Zhejiang University of Technology, Hangzhou, China
| | - Yuqian Chen
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; School of Computer Science, University of Sydney, NSW, Australia
| | - Tengfei Xue
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; School of Computer Science, University of Sydney, NSW, Australia
| | | | - Daniel L Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, University of Washington School of Medicine, Seattle, WA, US
| | - Yogesh Rathi
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
28
|
McFayden TC, Kennison SM, Bowers JM. Echolalia from a transdiagnostic perspective. AUTISM & DEVELOPMENTAL LANGUAGE IMPAIRMENTS 2022; 7:23969415221140464. [PMID: 36451974 PMCID: PMC9703477 DOI: 10.1177/23969415221140464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Background & aims Echolalia, the repetition of one's or others' utterances, is a behavior present in typical development, autism spectrum disorder, aphasias, Tourette's, and other clinical groups. Despite the broad range of conditions in which echolalia can occur, it is considered primarily through a disorder-specific lens, which limits a full understanding of the behavior. Method Empirical and review papers on echolalia across disciplines and etiologies were considered for this narrative review. Literatures were condensed into three primary sections, including echolalia presentations, neural mechanisms, and treatment approaches. Main contribution Echolalia, commonly observed in autism and other developmental conditions, is assessed, observed, and treated in a siloed fashion, which reduces our collective knowledge of this communication difference. Echolalia should be considered as a developmental, transdiagnostic, and communicative phenomenon. Echolalia is commonly considered as a communicative behavior, but little is known about its neural etiologies or efficacious treatments. Conclusions This review is the first to synthesize echolalia from a transdiagnostic perspective, which allows for the direct comparisons across and within clinical groups to inform assessment, treatment, conceptualization, and research recommendations. Implications Considering echolalia transdiagnostically highlights the lack of consensus on operationalization and measurement across and within disorders. Clinical and research future directions need to prioritize consistent definitions of echolalia, which can be used to derive accurate prevalence estimates. Echolalia should be considered as a communication strategy, used similarly across developmental and clinical groups, with recommended strategies of shaping to increase its effectiveness.
Collapse
|
29
|
Structure, Function, and Genetics of the Cerebellum in Autism. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2022; 7:e220008. [PMID: 36425354 PMCID: PMC9683352 DOI: 10.20900/jpbs.20220008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autism spectrum disorders are common neurodevelopmental disorders that are defined by core behavioral symptoms but have diverse genetic and environmental risk factors. Despite its etiological heterogeneity, several unifying theories of autism have been proposed, including a central role for cerebellar dysfunction. The cerebellum follows a protracted course of development that culminates in an exquisitely crafted brain structure containing over half of the neurons in the entire brain densely packed into a highly organized structure. Through its complex network of connections with cortical and subcortical brain regions, the cerebellum acts as a sensorimotor regulator and affects changes in executive and limbic processing. In this review, we summarize the structural, functional, and genetic contributions of the cerebellum to autism.
Collapse
|
30
|
Peterson M, Prigge MBD, Bigler ED, Zielinski B, King JB, Lange N, Alexander A, Lainhart JE, Nielsen JA. Evidence for normal extra-axial cerebrospinal fluid volume in autistic males from middle childhood to adulthood. Neuroimage 2021; 240:118387. [PMID: 34260891 PMCID: PMC8485737 DOI: 10.1016/j.neuroimage.2021.118387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 07/01/2021] [Accepted: 07/10/2021] [Indexed: 12/03/2022] Open
Abstract
Autism spectrum disorder has long been associated with a variety of organizational and developmental abnormalities in the brain. An increase in extra-axial cerebrospinal fluid volume in autistic individuals between the ages of 6 months and 4 years has been reported in recent studies. Increased extra-axial cerebrospinal fluid volume was predictive of the diagnosis and severity of the autistic symptoms in all of them, irrespective of genetic risk for developing the disorder. In the present study, we explored the trajectory of extra-axial cerebrospinal fluid volume from childhood to adulthood in both autism and typical development. We hypothesized that an elevated extra-axial cerebrospinal fluid volume would be found in autism persisting throughout the age range studied. We tested the hypothesis by employing an accelerated, multi-cohort longitudinal data set of 189 individuals (97 autistic, 92 typically developing). Each individual had been scanned between 1 and 5 times, with scanning sessions separated by 2-3 years, for a total of 439 T1-weighted MRI scans. A linear mixed-effects model was used to compare developmental, age-related changes in extra-axial cerebrospinal fluid volume between groups. Inconsistent with our hypothesis, we found no group differences in extra-axial cerebrospinal fluid volume in this cohort of individuals 3 to 42 years of age. Our results suggest that extra-axial cerebrospinal fluid volume in autistic individuals is not increased compared with controls beyond four years of age.
Collapse
Affiliation(s)
- Madeline Peterson
- Department of Psychology, Brigham Young University, Provo, UT, 84602, United States
| | - Molly B D Prigge
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84108, United States; Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Erin D Bigler
- Department of Psychology, Brigham Young University, Provo, UT, 84602, United States; Neuroscience Center, Brigham Young University, Provo, UT, 84604, United States; Department of Neurology, University of Utah, Salt Lake City, UT, 84108, United States; Department of Neurology, University of California-Davis, Davis, CA United States
| | - Brandon Zielinski
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84108, United States; Department of Neurology, University of Utah, Salt Lake City, UT, 84108, United States; Department of Pediatrics, University of Utah, Salt Lake City, UT, 84108, United States
| | - Jace B King
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84108, United States
| | - Nicholas Lange
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, United States
| | - Andrew Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, United States; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, United States; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Janet E Lainhart
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, United States; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, United States
| | - Jared A Nielsen
- Department of Psychology, Brigham Young University, Provo, UT, 84602, United States; Neuroscience Center, Brigham Young University, Provo, UT, 84604, United States.
| |
Collapse
|
31
|
Bishop J, Zhou C, Antolovic K, Grebe L, Hwang KH, Imaezue G, Kistanova E, Lee KE, Paulino K, Zhang S. Brief Report: Autistic Traits Predict Spectral Correlates of Vowel Intelligibility for Female Speakers. J Autism Dev Disord 2021; 52:2344-2349. [PMID: 34041683 DOI: 10.1007/s10803-021-05087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 11/26/2022]
Abstract
A growing body of research finds that neurotypical autistic traits are predictive of speech perception and language comprehension patterns, but considerably less is known about the influence of these traits on speech production. In this brief report, we present an analysis of vowel productions from 74 American English speakers who participated in a communicative speaking task. Results show higher autistic trait load to be broadly and inversely related to spectral correlates of vowel intelligibility. However, the statistical significance of this relationship is specific to autistic traits along the pragmatic communication dimension, and limited to female speakers.
Collapse
Affiliation(s)
- Jason Bishop
- Program in Speech-Language-Hearing Sciences, City University of New York-Graduate, Center, 365 5th Ave., New York, NY, 10016, USA.
- Program in Linguistics, City University of New York-Graduate Center, New York, NY, USA.
- Linguistics Program, City University of New York-College of Staten Island, New York, NY, USA.
| | - Chen Zhou
- Program in Linguistics, City University of New York-Graduate Center, New York, NY, USA
| | - Katarina Antolovic
- Program in Speech-Language-Hearing Sciences, City University of New York-Graduate, Center, 365 5th Ave., New York, NY, 10016, USA
| | - Lauren Grebe
- Program in Speech-Language-Hearing Sciences, City University of New York-Graduate, Center, 365 5th Ave., New York, NY, 10016, USA
| | | | - Gerald Imaezue
- Program in Speech-Language-Hearing Sciences, City University of New York-Graduate, Center, 365 5th Ave., New York, NY, 10016, USA
| | - Ekaterina Kistanova
- Program in Linguistics, City University of New York-Graduate Center, New York, NY, USA
| | - Kyung Eun Lee
- Program in Speech-Language-Hearing Sciences, City University of New York-Graduate, Center, 365 5th Ave., New York, NY, 10016, USA
| | - Katherine Paulino
- Program in Speech-Language-Hearing Sciences, City University of New York-Graduate, Center, 365 5th Ave., New York, NY, 10016, USA
| | - Sichen Zhang
- Teachers College, Columbia University, New York, NY, USA
| |
Collapse
|
32
|
DiNicola LM, Buckner RL. Precision Estimates of Parallel Distributed Association Networks: Evidence for Domain Specialization and Implications for Evolution and Development. Curr Opin Behav Sci 2021; 40:120-129. [PMID: 34263017 DOI: 10.1016/j.cobeha.2021.03.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Humans can reason about other minds, comprehend language and imagine. These abilities depend on association regions that exhibit evolutionary expansion and prolonged postnatal development. Precision maps within individuals reveal these expanded zones are populated by multiple specialized networks that each possess a spatially distributed motif but remain anatomically separated throughout the cortex for language, social and mnemonic / spatial functions. Rather than converge on multi-domain regions or hubs, these networks include distinct regions within rostral prefrontal and temporal association zones. To account for these observations, we propose the expansion-fractionation-specialization (EFS) hypothesis: evolutionary expansion of human association cortex may have allowed for an archetype distributed network to fractionate into multiple specialized networks. Human development may recapitulate fractionation and specialization when these abilities emerge.
Collapse
Affiliation(s)
- Lauren M DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138 USA
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138 USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129 USA.,Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129 USA
| |
Collapse
|
33
|
Park BY, Hong SJ, Valk SL, Paquola C, Benkarim O, Bethlehem RAI, Di Martino A, Milham MP, Gozzi A, Yeo BTT, Smallwood J, Bernhardt BC. Differences in subcortico-cortical interactions identified from connectome and microcircuit models in autism. Nat Commun 2021; 12:2225. [PMID: 33850128 PMCID: PMC8044226 DOI: 10.1038/s41467-021-21732-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 02/05/2021] [Indexed: 01/14/2023] Open
Abstract
The pathophysiology of autism has been suggested to involve a combination of both macroscale connectome miswiring and microcircuit anomalies. Here, we combine connectome-wide manifold learning with biophysical simulation models to understand associations between global network perturbations and microcircuit dysfunctions in autism. We studied neuroimaging and phenotypic data in 47 individuals with autism and 37 typically developing controls obtained from the Autism Brain Imaging Data Exchange initiative. Our analysis establishes significant differences in structural connectome organization in individuals with autism relative to controls, with strong between-group effects in low-level somatosensory regions and moderate effects in high-level association cortices. Computational models reveal that the degree of macroscale anomalies is related to atypical increases of recurrent excitation/inhibition, as well as subcortical inputs into cortical microcircuits, especially in sensory and motor areas. Transcriptomic association analysis based on postmortem datasets identifies genes expressed in cortical and thalamic areas from childhood to young adulthood. Finally, supervised machine learning finds that the macroscale perturbations are associated with symptom severity scores on the Autism Diagnostic Observation Schedule. Together, our analyses suggest that atypical subcortico-cortical interactions are associated with both microcircuit and macroscale connectome differences in autism.
Collapse
Affiliation(s)
- Bo-Yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
- Department of Data Science, Inha University, Incheon, South Korea.
| | - Seok-Jun Hong
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
- Center for the Developing Brain, Child Mind Institute, New York City, NY, USA
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Sofie L Valk
- Forschungszentrum, Julich, Germany
- Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Oualid Benkarim
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Richard A I Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Adriana Di Martino
- Center for the Developing Brain, Child Mind Institute, New York City, NY, USA
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York City, NY, USA
| | - Alessandro Gozzi
- Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, Rovereto, Italy
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), National University of Singapore, Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
| | - Jonathan Smallwood
- Department of Psychology, York Neuroimaging Centre, University of York, York, UK
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
34
|
Jouravlev O, Mineroff Z, Blank IA, Fedorenko E. The Small and Efficient Language Network of Polyglots and Hyper-polyglots. Cereb Cortex 2021; 31:62-76. [PMID: 32820332 DOI: 10.1093/cercor/bhaa205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 11/13/2022] Open
Abstract
Acquiring a foreign language is challenging for many adults. Yet certain individuals choose to acquire sometimes dozens of languages and often just for fun. Is there something special about the minds and brains of such polyglots? Using robust individual-level markers of language activity, measured with fMRI, we compared native language processing in polyglots versus matched controls. Polyglots (n = 17, including nine "hyper-polyglots" with proficiency in 10-55 languages) used fewer neural resources to process language: Their activations were smaller in both magnitude and extent. This difference was spatially and functionally selective: The groups were similar in their activation of two other brain networks-the multiple demand network and the default mode network. We hypothesize that the activation reduction in the language network is experientially driven, such that the acquisition and use of multiple languages makes language processing generally more efficient. However, genetic and longitudinal studies will be critical to distinguish this hypothesis from the one whereby polyglots' brains already differ at birth or early in development. This initial characterization of polyglots' language network opens the door to future investigations of the cognitive and neural architecture of individuals who gain mastery of multiple languages, including changes in this architecture with linguistic experiences.
Collapse
Affiliation(s)
- Olessia Jouravlev
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Cognitive Science, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Zachary Mineroff
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Idan A Blank
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Evelina Fedorenko
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|