1
|
Guimarães-Ervilha LO, Assis MQ, Bento IPDS, Lopes IDS, Iasbik-Lima T, Carvalho RPR, Machado-Neves M. Exploring the endocrine-disrupting potential of atrazine for male reproduction: A systematic review and meta-analysis. Reprod Biol 2024; 25:100989. [PMID: 39708576 DOI: 10.1016/j.repbio.2024.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Atrazine is an herbicide widely used on plantations worldwide. Experimental studies suggest that the herbicide impairs male reproductive function in mammals. This systematic review and meta-analysis aimed to evaluate the impact of atrazine exposure on the levels of hormones from the hypothalamic-pituitary-testicular axis using murine as the animal model. After an extensive literature search, we selected 25 articles for the systematic review. Bias analysis and methodological quality assessments were examined using the SYRCLE Risk of Bias tool. Moreover, 20 out of the 25 studies were eligible for performing a meta-analysis to evaluate the intensity of atrazine damage on the levels of intratesticular testosterone and serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, estradiol, and progesterone. The meta-analysis revealed that atrazine exposure decreased serum FSH, LH, and testosterone levels, besides increased serum estradiol and progesterone levels. Atrazine also caused a reduction in intratesticular testosterone levels. Exposure to atrazine in high concentrations (≥ 100 mg Kg-1) was the main cause of endocrine disruption, regardless of the exposure time. None of the studies have tested doses relevant to human health risk. Oxidative stress and inflammation are involved in atrazine toxicity, impairing the gonadotropin release by the pituitary, disturbing steroidogenesis, and affecting the male hormone regulatory system. We may conclude that hormone disturbances lead to a failure in testicular steroidogenesis, with possible implications for male reproductive function. The registration number on the Prospero platform is CRD42024495626.
Collapse
Affiliation(s)
| | | | | | | | - Thainá Iasbik-Lima
- Universidade Federal de Viçosa, Departamento de Biologia Geral, Vicosa, Brasil
| | | | | |
Collapse
|
2
|
Meng J, Xiao L, Li Q, Gong L, Luo P, Zhao Y, Wang S. Di-(2-ethylhexyl) phthalate exposure induces ferroptosis by regulating the Nrf2-mediated signaling pathway in mouse ovaries. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117104. [PMID: 39321527 DOI: 10.1016/j.ecoenv.2024.117104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), an endocrine-disrupting chemical present in plasticized products, exerts strong modulation on the anatomy and function of the female reproductive system. However, the potential mechanisms underlying DEHP-induced regulation of prepubertal female reproductive toxicity have not yet been elucidated. Therefore, this study was designed to elucidate the molecular mechanism of ovarian injury induced by DEHP exposure in mice. Elevated serum mono-2-ethylhexyl phthalate (MEHP) concentrations, decreased levels of ovarian hormones (E2 and P4), and observed ovarian injury were found after DEHP exposure. Ovarian transcriptome analysis revealed significant alterations in ferroptosis-associated gene expression, with potential regulation by Nrf2. Subsequent analysis of ferrous iron, malondialdehyde (MDA), Western blotting, and immunofluorescence of the ovaries confirmed the RNA-seq findings. Transcriptome analysis of granulosa cells revealed a direct or indirect regulatory relationship between Nrf2 and downstream ferroptosis-related proteins following MEHP exposure. Further experiments demonstrated that ferrostatin-1 attenuated MEHP-induced ferroptosis in granulosa cells. Additionally, Nrf2 stabilization and accumulation in the nucleus of granulosa cells were observed following MEHP treatment. RNAi-mediated knockdown of Nrf2 exacerbated MEHP-induced ferroptosis in granulosa cells. This evidence indicates that DEHP exposure induces ferroptosis through regulation of the Nrf2-mediated signaling pathway in mouse ovaries, laying the groundwork for future studies aiming to develop therapeutic strategies against DEHP toxicity.
Collapse
Affiliation(s)
- Jinzhu Meng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China; Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, China
| | - Lilin Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Qiuye Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Ling Gong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Ping Luo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yuanyuan Zhao
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, China.
| | - Shuilian Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
3
|
Ramani T, Wange RL, Manetz TS, Kruzich PJ, Laffan SB, Compton DR. Weight of Evidence: Is an Animal Study Warranted? Assessments for Carcinogenicity, Drug Abuse Liability, and Pediatric Safety. Int J Toxicol 2024; 43:435-455. [PMID: 39031995 DOI: 10.1177/10915818241259794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Nonclinical safety studies are typically conducted to establish a toxicity profile of a new pharmaceutical in clinical development. Such a profile may encompass multiple differing types of animal studies, or not! Some types of animal studies may not be warranted for a specific program or may only require a limited evaluation if scientifically justified. The goal of this course was to provide a practical perspective on regulatory writing of a dossier(s) using the weight of evidence (WOE) approach for carcinogenicity, drug abuse liability and pediatric safety assessments. These assessments are typically done after some clinical data are available and are highly bespoke to the pharmaceutical being developed. This manuscript will discuss key data elements to consider and strategy options with some case studies and examples. Additionally, US FDA experience with dossier(s) including WOE arguments is discussed.
Collapse
Affiliation(s)
- Thulasi Ramani
- Pre-Clinical Development, PTC Therapeutics, Warren, NJ, USA
| | - Ronald L Wange
- US Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - T Scott Manetz
- Clinical Pharmacology & Safety Sciences, Respiratory & Immunology, Neuroscience, Vaccines & Immune Therapies Safety, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Paul J Kruzich
- Pre-Clinical Development, PTC Therapeutics, Warren, NJ, USA
| | - Susan B Laffan
- Translational Safety & Bioanalytical Sciences, Amgen, Thousand Oaks, CA, USA
| | | |
Collapse
|
4
|
Soto-Heras S, Reinacher L, Wang B, Oh JE, Bunnell M, Park CJ, Hess RA, Ko CJ. Cryptorchidism and testicular cancer in the dog: unresolved questions and challenges in translating insights from human studies†. Biol Reprod 2024; 111:269-291. [PMID: 38738783 DOI: 10.1093/biolre/ioae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024] Open
Abstract
Cryptorchidism, the failure of one or both testes to descend into the scrotum, and testicular cancer show a strong correlation in both dogs and humans. Yet, long-standing medical debates persist about whether the location of undescended testes directly causes testicular cancer in humans or if both conditions stem from a common origin. Although testicular cancer is a prevalent disease in dogs, even less is known about its cause and correlation with testicular descent in this species. This review investigates the relation between these two disorders in dogs, drawing insights from human studies, and examines key biomarkers identified thus far. In addition, it explores potential causal links, including the impact of temperature on maturing testicular cells and a potential shared genetic origin. Notably, this literature review reveals significant differences between men and dogs in reproductive development, histological and molecular features of testicular tumors, and the prevalence of specific tumor types, such as Sertoli cell tumors in cryptorchid dogs and germ cell tumors in humans. These disparities caution against using dogs as models for human testicular cancer research and underscore the limitations when drawing comparisons between species. The paper concludes by suggesting specific research initiatives to enhance our understanding of the complex interplay between cryptorchidism and testicular cancer in dogs.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
| | - Lindsey Reinacher
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
| | - Bensen Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Ji Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Chan Jin Park
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Rex A Hess
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - CheMyong Jay Ko
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
5
|
Ngema M, Xulu ND, Ngubane PS, Khathi A. Pregestational Prediabetes Induces Maternal Hypothalamic-Pituitary-Adrenal (HPA) Axis Dysregulation and Results in Adverse Foetal Outcomes. Int J Mol Sci 2024; 25:5431. [PMID: 38791468 PMCID: PMC11122116 DOI: 10.3390/ijms25105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Maternal type 2 diabetes mellitus (T2DM) has been shown to result in foetal programming of the hypothalamic-pituitary-adrenal (HPA) axis, leading to adverse foetal outcomes. T2DM is preceded by prediabetes and shares similar pathophysiological complications. However, no studies have investigated the effects of maternal prediabetes on foetal HPA axis function and postnatal offspring development. Hence, this study investigated the effects of pregestational prediabetes on maternal HPA axis function and postnatal offspring development. Pre-diabetic (PD) and non-pre-diabetic (NPD) female Sprague Dawley rats were mated with non-prediabetic males. After gestation, male pups born from the PD and NPD groups were collected. Markers of HPA axis function, adrenocorticotropin hormone (ACTH) and corticosterone, were measured in all dams and pups. Glucose tolerance, insulin and gene expressions of mineralocorticoid (MR) and glucocorticoid (GR) receptors were further measured in all pups at birth and their developmental milestones. The results demonstrated increased basal concentrations of ACTH and corticosterone in the dams from the PD group by comparison to NPD. Furthermore, the results show an increase basal ACTH and corticosterone concentrations, disturbed MR and GR gene expression, glucose intolerance and insulin resistance assessed via the Homeostasis Model Assessment (HOMA) indices in the pups born from the PD group compared to NPD group at all developmental milestones. These observations reveal that pregestational prediabetes is associated with maternal dysregulation of the HPA axis, impacting offspring HPA axis development along with impaired glucose handling.
Collapse
Affiliation(s)
| | | | | | - Andile Khathi
- School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Westville, Private Bag X54001, Durban 4041, KwaZulu Natal, South Africa; (M.N.); (N.D.X.); (P.S.N.)
| |
Collapse
|
6
|
Reyes-Cruz E, Rojas-Castañeda JC, Landero-Huerta DA, Hernández-Jardón N, Reynoso-Robles R, Juárez-Mosqueda MDL, Medrano A, Vigueras-Villaseñor RM. Disruption of gonocyte development following neonatal exposure to di (2-ethylhexyl) phthalate. Reprod Biol 2024; 24:100877. [PMID: 38461794 DOI: 10.1016/j.repbio.2024.100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/15/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
Pre- and/or post-natal administrations of di(2-ethylhexyl) phthalate (DEHP) in experimental animals cause alterations in the spermatogenesis. However, the mechanism by which DEHP affects fertility is unknown and could be through alterations in the survival and differentiation of the gonocytes. The aim of the present study was to evaluate the effect of a single administration of DEHP in newborn mice on gonocytic proliferation, differentiation and survival and its long-term effects on seminiferous epithelium and sperm quality. BALB/c mice distributed into Control and DEHP groups were used. Each animal in the DEHP group was given a single dose of 500 mg/Kg at birth. The animals were analyzed at 1, 2, 4, 6, 8, 10 and 70 days postpartum (dpp). Testicular tissues were processed for morphological analysis to determine the different types of gonocytes, differentiation index, seminiferous epithelial alterations, and immunoreactivity to Stra8, Pcna and Vimentin proteins. Long-term evaluation of the seminiferous epithelium and sperm quality were carried out at 70 dpp. The DEHP animal group presented gonocytic degeneration with delayed differentiation, causing a reduction in the population of spermatogonia (Stra8 +) in the cellular proliferation (Pcna+) and disorganization of Vimentin filaments. These events had long-term repercussions on the quality of the seminiferous epithelium and semen. Our study demonstrates that at birth, there is a period that the testes are extremely sensitive to DEHP exposure, which leads to gonocytic degeneration and delay in their differentiation. This situation can have long-term repercussions or permanent effects on the quality of the seminiferous epithelium and sperm parameters.
Collapse
Affiliation(s)
- Estefanía Reyes-Cruz
- Programa Doctorado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Norma Hernández-Jardón
- Programa Doctorado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rafael Reynoso-Robles
- Laboratorio de Morfología Celular y Tisular, Instituto Nacional de Pediatría, SS, Mexico City, Mexico
| | - María de Lourdes Juárez-Mosqueda
- Departamento de Morfología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Medrano
- Laboratorio de Reproducción Animal, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | | |
Collapse
|
7
|
Jorge BC, Reis ACC, Stein J, Paschoalini BR, Bueno JN, da Silva Moreira S, Godoi AR, Fioravante VC, Martinez FE, Pinheiro PFF, Arena AC. A low dose of benzo(a)pyrene during prepuberty in male rats generated immediate oxidative stress in the testes and compromised steroidogenic enzymes/proteins. Reprod Toxicol 2024; 124:108549. [PMID: 38278498 DOI: 10.1016/j.reprotox.2024.108549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
The prepubertal period is crucial for sexual development and any alterations can interfere with the reproductive system in adulthood. The aim of this study was to evaluate how Benzo(a)pyrene (BaP) can affect the testes during the prepubertal period. Juvenile male Wistar rats were divided into a control (corn oil + DMSO) and a BaP-group (0.1 μg/kg/day), exposed to BaP for 31 days (gavage), and all parameters were evaluated on postnatal day (PND) 54. Leukocyte counts were decreased. Histological analyses of the testes revealed that height and seminiferous tubules diameters (STDs) were reduced, tubular dynamics were altered, and Leydig cell atrophy was evident in the BaP-group. The testosterone concentration was decreased while FSH levels increased within the BaP-exposed group. Steroidogenic enzymes in the testes were decreased, but steroidogenic acute regulatory protein was not altered. The expression of gstp1 and ckit enzymes was decreased. Reduced glutathione (GSH) and superoxide dismutase (SOD) were increased, whereas malondialdehyde (MDA) was decreased in the testes. In conclusion, BaP or its metabolites causes low systemic toxicity; however, it adversely influences testicular function by disrupting the hormonal axis, unbalancing testicular antioxidative, and blocking the action of the steroidogenic mechanisms.
Collapse
Affiliation(s)
- Bárbara C Jorge
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, University Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil.
| | - Ana C C Reis
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, University Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Julia Stein
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, University Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Beatriz R Paschoalini
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, University Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Jéssica N Bueno
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, University Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Suyane da Silva Moreira
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, University Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Alana R Godoi
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, University Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Vanessa C Fioravante
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, University Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Francisco E Martinez
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, University Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Patrícia F F Pinheiro
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, University Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Arielle C Arena
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, University Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil; Information and Toxicological Assistance Center (CIATOX), Institute of Biosciences of Botucatu, University Estadual Paulista (UNESP), Botucatu, São Paulo State, Brazil
| |
Collapse
|
8
|
Stein J, Jorge BC, Nagaoka LT, Reis ACC, Manoel BDM, Godoi AR, Fioravante VC, Martinez FE, Pinheiro PFF, Pupo AS, Arena AC. Can exposure to lisdexamfetamine dimesylate from juvenile period to peripubertal compromise male reproductive parameters in adult rats? Toxicol Appl Pharmacol 2024; 484:116867. [PMID: 38378049 DOI: 10.1016/j.taap.2024.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Lisdexamfetamine (LDX) is a d-amphetamine prodrug used to treat attention deficit and hyperactivity disorder, a common neurodevelopmental disorder in children and adolescents. Due to its action mediated by elevated levels of catecholamines, mainly dopamine and noradrenaline, which influence hormonal regulation and directly affect the gonads, this drug may potentially disrupt reproductive performance. This study evaluated the effects of exposure to LDX from the juvenile to peripubertal period (critical stages of development) on systemic and reproductive toxicity parameters in male rats. Male Wistar rats (23 days old) were treated with 0; 5.2; 8.6 or 12.1 mg/kg/day of LDX from post-natal day (PND) 23 to 53, by gavage. LDX treatment led to reduced daily food and water consumption, as well as a decrease in social behaviors. The day of preputial separation remained unaltered, although the treated animals exhibited reduced weight. At PND 54, the treated animals presented signs of systemic toxicity, evidenced by a reduction in body weight gain, increase in the relative weight of the liver, spleen, and seminal gland, reduction in erythrocyte and leukocyte counts, reduced total protein levels, and disruptions in oxidative parameters. In adulthood, there was an increase in immobile sperm, reduced sperm count, morphometric changes in the testis, and altered oxidative parameters, without compromising male sexual behavior and fertility. These findings showed that LDX-treatment during the juvenile and peripubertal periods induced immediate systemic toxicity and adversely influenced reproductive function in adult life, indicating that caution is necessary when prescribing this drug during the peripubertal phase.
Collapse
Affiliation(s)
- Julia Stein
- Department of Structural and Functional Biology, Morphology sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bárbara Campos Jorge
- Department of Structural and Functional Biology, Morphology sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lívia Trippe Nagaoka
- Department of Structural and Functional Biology, Morphology sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Ana Carolina Casali Reis
- Department of Structural and Functional Biology, Morphology sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Beatriz de Matos Manoel
- Department of Structural and Functional Biology, Morphology sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Alana Rezende Godoi
- Department of Structural and Functional Biology, Anatomy sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Vanessa Caroline Fioravante
- Department of Structural and Functional Biology, Anatomy sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Francisco Eduardo Martinez
- Department of Structural and Functional Biology, Anatomy sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Patrícia Fernanda Felipe Pinheiro
- Department of Structural and Functional Biology, Anatomy sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - André Sampaio Pupo
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Morphology sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil; Center of Information and Toxicological Assistance (CIATOX), Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
9
|
Gong T, Mu Q, Xu Y, Wang W, Meng L, Feng X, Liu W, Ao Z, Zhang Y, Chen X, Xu H. Expression of the umami taste receptor T1R1/T1R3 in porcine testis of: Function in regulating testosterone synthesis and autophagy in Leydig cells. J Steroid Biochem Mol Biol 2024; 236:106429. [PMID: 38035949 DOI: 10.1016/j.jsbmb.2023.106429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
Testosterone is a vital male hormone responsible for male sexual characteristics. The taste receptor family 1 subunit 3 (T1R3) regulates testosterone synthesis and autophagy in non-taste cells, and the links with the taste receptor family 1 subunit 1 (T1R1) for umami perception. However, little is known about these mechanisms. Thus, we aimed to determine the relationship between the umami taste receptor (T1R1/T1R3) and testosterone synthesis or autophagy in testicular Leydig cells of the Xiang pig. There was a certain proportion of spermatogenic tubular dysplasia in the Xiang pig at puberty, in which autophagy was enhanced, and the testosterone level was increased with a weak expression of T1R3. Silenced T1R3 decreased testosterone level and intracellular cyclic adenosine monophosphate (cAMP) content and inhibited the messenger RNA (mRNA) expression levels of testosterone synthesis enzyme genes [steroidogenic acute regulatory protein (StAR), hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (3β-HSD1), cytochrome P450 family 17 subfamily A member 1 (CYP17A1) and hydroxysteroid 17-beta dehydrogenase 3 (17β-HSD3)]. In addition, T1R3 increased the number of acidic autophagy bubbles and upregulated the expression levels of autophagy markers [Microtubule-associated protein 1 A/1B-light chain 3 (LC3) and Beclin-1] in testicular Leydig cells of the Xiang pig. Using an umami tasting agonist (10 mM L-glutamate for 6 h), the activation of T1R1/T1R3 enhanced the testosterone synthesis ability by increasing the intracellular cAMP level and upregulated the expression levels of StAR, 3β-HSD1, CYP17A1 and 17β-HSD3 in Leydig cells. Furthermore, the number of acidic autophagy bubbles decreased in the T1R1/T1R3-activated group with the downregulation of the expression levels of the autophagy markers, including LC3 and Beclin-1. These data suggest that the function of T1R1/T1R3 expressed in testicular Leydig cells of the Xiang pig is related to testosterone synthesis and autophagy.
Collapse
Affiliation(s)
- Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China.
| | - Qi Mu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Yongjian Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Qiannan Buyi and Miao Autonomous Prefecture Bureau of Agriculture and Rural Affairs, PR China
| | - Weiyong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Lijie Meng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Xianzhou Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Wenjiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| |
Collapse
|
10
|
Jang S, Yun C, Kim B, Kang S, Lee J, Jeong S, Cho Y, Kim SH, Lee CM, Moon C, Kim JS. Immunohistochemical analysis of extracellular signal-regulated kinase expression in mature and immature bulls' testes and epididymides. VET MED-CZECH 2023; 68:231-237. [PMID: 37982001 PMCID: PMC10581511 DOI: 10.17221/34/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/13/2023] [Indexed: 11/21/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK) has been implicated in mammalian testicular and epididymal development. This study aimed to investigate ERK expression in the immature and mature testes and epididymides of bulls. We evaluated ERK expression using immunoblot analysis and immunohistochemistry. Immunoblot analysis revealed that immature bull testes and epididymides had higher phosphorylated ERK (pERK) expression than mature bull testes and epididymides. pERK immunoreactivity was higher in immature epididymides than in immature testes. pERK was localised mostly in spermatogonia, undifferentiated sustentacular (Sertoli) cells, and interstitial (Leydig) cells in immature testes, as well as in some spermatocytes and spermatids in mature testes. In immature epididymides, the body and tail had higher pERK expression than the head, whereas pERK was broadly distributed throughout the stereocilia, basal cells, and connective tissues. pERK distribution in the head of mature epididymides was similar to that in immature epididymides, whereas few connective tissue cells were expressed in the body and tail of mature epididymides. Collectively, these results suggest that ERK is expressed in the testis and epididymis of immature and mature bulls with varying intensities, and the role of ERK in male reproductive organs may include the specific function of its development.
Collapse
Affiliation(s)
- Sungwoong Jang
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
- Sungwoong Jang and Changjin Yun contributed equally to this work
| | - Changjin Yun
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
- Sungwoong Jang and Changjin Yun contributed equally to this work
| | - Bohye Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Sohi Kang
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Jeongmin Lee
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Sohee Jeong
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Yongho Cho
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Sung-Ho Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Chang-Min Lee
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Joong-Sun Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| |
Collapse
|
11
|
Souza ACF, Bastos DSS, Couto-Santos F, Guimarães-Ervilha LO, Araújo LS, Souza PHCA, Coimbra JLP, Oliveira LL, Guimarães SEF, Machado-Neves M. Long-term reproductive effects in male rats prenatally exposed to sodium arsenite. ENVIRONMENTAL TOXICOLOGY 2023; 38:1162-1173. [PMID: 36757007 DOI: 10.1002/tox.23756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Arsenic is an environmental toxicant known to be a carcinogen and endocrine disruptor. Maternal exposure to arsenic has been associated with fetus malformation and reproductive disorders in male offspring. However, it is unclear the extent to which those effects remain during postnatal development and adulthood. Therefore, this study aimed to investigate the long-term effects of prenatal arsenic exposure on reproductive parameters of male offspring at peripubertal and adult periods. Pregnant female Wistar rats were exposed to 0 or 10 mg/L sodium arsenite in drinking water from gestational day 1 (GD 1) until GD 21 and male pups were analyzed at postnatal day 44 (PND 44) and PND 70. We observed that some reproductive parameters were affected differently by arsenic exposure at each age evaluated. The body and reproductive organs weights, as well as testicular and epididymal morphology were strongly affected in peripubertal animals and recovered at adult period. On the other hand, the antioxidant genes expression (SOD1, SOD2, CAT and GSTK1) and the endogenous antioxidant system were affected in the testes and epididymides from both peripubertal and adult rats. Finally, an impairment in daily sperm production and in sperm parameters was observed in adult animals. Taken together, our findings show that prenatal arsenic exposure affected reproductive parameters of peripubertal and adult male rats mainly due to oxidative stress. Collectively, those alterations may be affecting fertility potential of adult animals.
Collapse
Affiliation(s)
- Ana Cláudia F Souza
- Department of Animal Biology, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel S S Bastos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Felipe Couto-Santos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Larissa S Araújo
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Pedro H C A Souza
- Institute of Veterinary Medicine, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - John L P Coimbra
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Brazil
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leandro L Oliveira
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | |
Collapse
|
12
|
Hassine MBH, Venditti M, Rhouma MB, Minucci S, Messaoudi I. Combined effect of polystyrene microplastics and cadmium on rat blood-testis barrier integrity and sperm quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56700-56712. [PMID: 36928700 DOI: 10.1007/s11356-023-26429-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The harmful effects of microplastics and Cd on the testicular activity of sexually mature rats are here documented. Oral treatment with both substances caused testicular impairment that was evidenced by histological and biomolecular alterations, such as MP accumulation in the seminiferous epithelium, imbalance of oxidative status, and reduced sperm quality. Importantly, the cytoarchitecture of the blood-testis barrier was compromised, as revealed by the down-regulation of protein levels of structural occludin, Van Gogh-like protein 2, and connexin 43 and activation of regulative kinases proto-oncogene tyrosine-protein kinase and focal adhesion kinase. Interestingly, for the first time, MPs are reported to activate the autophagy pathway in germ cells, to reduce damaged organelles and molecules, probably in an attempt to avoid apoptosis. Surprisingly, the results obtained with the simultaneous Cd + MPs treatment showed more harmful effects than those produced by MPs alone but less severe than with Cd alone. This might be due to the different ways of administration to rats (oral gavage for MPs and in drinking water for Cd), which might favor the adsorption, in the gastrointestinal tract, of Cd by MPs, which, by exploiting the Trojan horse effect, reduces the bioavailability of Cd.
Collapse
Affiliation(s)
- Majida Ben Hadj Hassine
- Laboratoire LR11ES41 Génétique Biodiversité Et Valorisation Des Bio-Ressourcés, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Rue Taher Haddad, 5000, Monastir, Tunisia
| | - Massimo Venditti
- Dipartimento Di Medicina Sperimentale, Sez. Fisiologia Umana E Funzioni Biologiche Integrate "F. Bottazzi, Università Degli Studi Della Campania "Luigi Vanvitelli,", Via Costantinopoli, 16, 80138, Naples, NA, Italy
| | - Mariem Ben Rhouma
- Laboratoire LR11ES41 Génétique Biodiversité Et Valorisation Des Bio-Ressourcés, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Rue Taher Haddad, 5000, Monastir, Tunisia
| | - Sergio Minucci
- Dipartimento Di Medicina Sperimentale, Sez. Fisiologia Umana E Funzioni Biologiche Integrate "F. Bottazzi, Università Degli Studi Della Campania "Luigi Vanvitelli,", Via Costantinopoli, 16, 80138, Naples, NA, Italy.
| | - Imed Messaoudi
- Laboratoire LR11ES41 Génétique Biodiversité Et Valorisation Des Bio-Ressourcés, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Rue Taher Haddad, 5000, Monastir, Tunisia
| |
Collapse
|
13
|
Venditti M, Ben Hadj Hassine M, Messaoudi I, Minucci S. The simultaneous administration of microplastics and cadmium alters rat testicular activity and changes the expression of PTMA, DAAM1 and PREP. Front Cell Dev Biol 2023; 11:1145702. [PMID: 36968197 PMCID: PMC10033688 DOI: 10.3389/fcell.2023.1145702] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
This paper confirms the damaging effects produced by MP and Cd on testicular activity in the rat. Oral treatment with both chemicals resulted in testicular damage, documented by biomolecular and histological alterations, particularly by impaired morphometric parameters, increased apoptosis, reduced testosterone synthesis, and downregulation of the steroidogenic enzyme 3β-HSD. We also demonstrated, for the first time, that both MP and Cd can affect the protein level of PTMA, a small peptide that regulates germ cell proliferation and differentiation. Interestingly, the cytoarchitecture of testicular cells was also altered by the treatments, as evidenced by the impaired expression and localization of DAAM1 and PREP, two proteins involved in actin- and microtubule-associated processes, respectively, during germ cells differentiation into spermatozoa, impairing normal spermatogenesis. Finally, we showed that the effect of simultaneous treatment with MP and Cd were more severe than those produced by MP alone and less harmful than those of Cd alone. This could be due to the different ways of exposure of the two substances to rats (in drinking water for Cd and in oral gavage for MP), since being the first contact in the animals’ gastrointestinal tract, MP can adsorb Cd, reducing its bioavailability through the Trojan-horse effect.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
- *Correspondence: Massimo Venditti, ; Sergio Minucci,
| | - Majida Ben Hadj Hassine
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressourcés, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Imed Messaoudi
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressourcés, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
- *Correspondence: Massimo Venditti, ; Sergio Minucci,
| |
Collapse
|
14
|
Pan X, Liu Y, Bao Y, Gao Y. Changes of development from childhood to late adulthood in rats tracked by urinary proteome. Mol Cell Proteomics 2023; 22:100539. [PMID: 37004987 DOI: 10.1016/j.mcpro.2023.100539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/25/2023] [Accepted: 02/18/2023] [Indexed: 04/03/2023] Open
Abstract
To date, studies of development have mainly focused on the embryonic stage and a short time thereafter. There has been little research on the whole life of an individual from childhood to aging and death. For the first time, we used non-invasive urinary proteome technology to track changes in several important developmental timepoints in a group of rats, covering 10 timepoints from childhood, adolescence, young adulthood, middle adulthood, and near death in old age. Similar to previous studies on puberty, proteins were detected involved in sexual or reproductive maturation, mature spermatozoa in seminiferous tubules (first seen), gonadal hormones, decline of oestradiol, brain growth, and central nervous system myelination, and our differential protein enrichment pathways also included reproductive system development, tube development, response to hormone, response to oestradiol, brain development, and neuron development. Similar to previous studies in young adults, proteins were detected involved in musculoskeletal maturity, peak bone mass, development of the immune system, and growth and physical development, and our differential protein enrichment pathways also included skeletal system development, bone regeneration, system development, immune system processes, myeloid leukocyte differentiation, growth, and developmental growth. Studies on aging-related changes in neurons and neurogenesis have been reported, and we also found relevant pathways in aged rats, such as regulation of neuronal synaptic plasticity and positive regulation of long-term neuronal synaptic plasticity. However, at all timepoints throughout life, there were many biological pathways revealed by differential urinary protein enrichment involving multiple organs, tissues, systems, etc., that have not been mentioned in existing studies. This study shows comprehensive and detailed changes in rat lifetime development through the urinary proteome, helping to fill the gap in development research. Moreover, it provides a new approach to monitoring changes in human health and diseases of aging using the urinary proteome.
Collapse
Affiliation(s)
- Xuanzhen Pan
- Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China 100875
| | - Yongtao Liu
- Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China 100875
| | - Yijin Bao
- Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China 100875
| | - Youhe Gao
- Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China 100875.
| |
Collapse
|
15
|
Li X, Santos R, Bernal JE, Li DD, Hargaden M, Khan NK. Biology and postnatal development of organ systems of cynomolgus monkeys (Macaca fascicularis). J Med Primatol 2023; 52:64-78. [PMID: 36300896 PMCID: PMC10092073 DOI: 10.1111/jmp.12622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/29/2022] [Accepted: 08/13/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The cynomolgus macaque has become the most used non-human primate species in nonclinical safety assessment during the past decades. METHODS This review summarizes the biological data and organ system development milestones of the cynomolgus macaque available in the literature. RESULTS The cynomolgus macaque is born precocious relative to humans in some organ systems (e.g., nervous, skeletal, respiratory, and gastrointestinal). Organ systems develop, refine, and expand at different rates after birth. In general, the respiratory, gastrointestinal, renal, and hematopoietic systems mature at approximately 3 years of age. The female reproductive, cardiovascular and hepatobiliary systems mature at approximately 4 years of age. The central nervous, skeletal, immune, male reproductive, and endocrine systems complete their development at approximately 5 to 9 years of age. CONCLUSIONS The cynomolgus macaque has no meaningful developmental differences in critical organ systems between 2 and 3 years of age for use in nonclinical safety assessment.
Collapse
Affiliation(s)
- Xiantang Li
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| | - Rosemary Santos
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| | - Jan E. Bernal
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| | - Dingzhou D. Li
- Early Clinical DevelopmentPfizer, IncGrotonConnecticutUSA
| | - Maureen Hargaden
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| | - Nasir K. Khan
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| |
Collapse
|
16
|
Godoi AR, Fioravante VC, Santos BM, Martinez FE, Pinheiro PFF. Maternal exposure of rats to sodium saccharin during gestation and lactation on male offspring†. Biol Reprod 2023; 108:98-106. [PMID: 36219170 DOI: 10.1093/biolre/ioac190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/29/2022] [Accepted: 10/06/2022] [Indexed: 01/20/2023] Open
Abstract
We investigated the effects of fetal programming in Sprague-Dawley rats through the maternal consumption of sodium saccharin on the testicular structure and function in male offspring. Feed intake and efficiency, organ and fat weight, quantification and expression of androgen receptor (AR), and proliferating cell nuclear antigen (PCNA) proteins, sperm count, and hormone levels were determined. Consumption alterations were found in the final weeks of the experiment. Decreases in AR and PCNA expression and quantification, tubular diameter, and luminal volume, and increases in epithelial and interstitial relative volumes were observed. Lower sperm count and transit, and lower estradiol concentration were also found. Sodium saccharin consumption by dams programmed male offspring by affecting the hypothalamic-pituitary-gonad axis with alterations in the Sertoli cell population, in spermatogonia proliferation, the expression and quantification of AR, and in sperm count. We hypothesized that these changes may be due to an estradiol reduction that caused the loosening of adhesion junctions of the blood-testis barrier, causing cell losses during spermatogenesis, also reflected by a decrease in tubular diameter with an increase in epithelial volume and consequent decrease in luminal volume. We conclude that maternal sodium saccharin consumption during pregnancy and lactation programmed alterations in the reproductive parameters of male offspring, thus influencing spermatogenesis.
Collapse
Affiliation(s)
- Alana Rezende Godoi
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Vanessa Caroline Fioravante
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Beatriz Melo Santos
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Francisco Eduardo Martinez
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | | |
Collapse
|
17
|
Figueiredo TM, de Barros JWF, Dos Santos Borges C, Pacheco TL, de Lima Rosa J, Anselmo-Franci JA, Kempinas WDG. Reproductive outcomes of neonatal exposure to betamethasone in male and female rats. J Appl Toxicol 2022; 43:752-763. [PMID: 36511433 DOI: 10.1002/jat.4423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Betamethasone (BM) is the drug of choice for antenatal corticosteroid therapy for women at risk of preterm delivery because it induces fetal lung maturation and enhances survival after birth. However, our group reported evidence of fetal programming and impaired reproductive development and function in rats exposed during the critical window of genital system development. Therefore, we aimed to investigate the effects of BM on the sexual development of rats in the period that corresponds to antenatal corticosteroid therapy in humans. Male and female rats were exposed subcutaneously to BM at 0.1 μg/g of pups' body weight or to a NaCl 0.9% solution (control) on postnatal days 1-3. It was observed that neonatal exposure to BM decreased body weight and weight gain in male and female rats during treatment. The estrous cycle was deregulated and LH level was decreased in female rats. In male rats, the sperm concentration in the caput-corpus of the epididymis was decreased, whereas the sperm transit time and sperm concentration in the cauda of the epididymis were increased. Our results demonstrated that neonatal exposure to BM impaired body growth of male and female rats, deregulated the estrous cycle of female rats, and altered sperm quality of male rats. Therefore, BM exposure from postnatal days 1 to 3 corroborated results previously observed after prenatal exposure to this drug. Despite the recognized importance of human antenatal corticosteroid therapy, the findings of this study should encourage further studies in order to minimize possible adverse postnatal effects.
Collapse
Affiliation(s)
- Thamiris Moreira Figueiredo
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Jorge Willian Franco de Barros
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Cibele Dos Santos Borges
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Tainá Louise Pacheco
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Josiane de Lima Rosa
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Janete Aparecida Anselmo-Franci
- Department of Morphology, Stomatology and Physiology, Dental School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Wilma De Grava Kempinas
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
18
|
Abou-Elghait AT, Elgamal DA, Abd el-Rady NM, Hosny A, Abd El-Samie EZAA, Ali FE. Novel protective effect of diosmin against cisplatin-induced prostate and seminal vesicle damage: Role of oxidative stress and apoptosis. Tissue Cell 2022; 79:101961. [PMID: 36327569 DOI: 10.1016/j.tice.2022.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
19
|
Hernández-Jardón N, Rojas-Castañeda JC, Landero-Huerta D, Reyes-Cruz E, Reynoso-Robles R, Juárez-Mosqueda MDL, Medrano A, Reyes-Delgado F, Vigueras-Villaseñor RM. Cryptorchidism: The dog as a study model. Front Vet Sci 2022; 9:935307. [PMID: 36176705 PMCID: PMC9514118 DOI: 10.3389/fvets.2022.935307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Cryptorchidism (CO) or undescended testicle is an abnormality of male gonadal development that can generate long-term repercussions in men, such as infertility and germ cell neoplasia in situ (GCNIS). The origin of these alterations in humans is not completely clear, due to the absence of an animal model with similar testicular development as in humans with CO. This work intends to describe the testicular histological development of dogs with congenital CO, and determine whether the species could adequately serve as a study model for this pathology in humans. The study was carried out with 36 dogs, equally distributed in two groups: healthy control (CTRL) and CO groups. The contralateral testis to the undescended one in CO group of the animals was considered and analyzed. Each group was subdivided in three stages of development: (1) peripubertal stage (6–8 months), (2) young adult (9–48 months) and (3) senile (49–130 months). Histological development, the presence of cells with gonocyte morphology, cell proliferation, testicular lipoperoxidation and hormonal concentrations of testosterone, estradiol, FSH and LH were evaluated and described. In the cryptorchid testes, the first histological alterations appeared from the first stage of development and were maintained until the senile stage. A pronounced testicular lipoperoxidation occurred only in the second stage of development. The histological alterations due to CO were markedly evident in the young adult stage. Testosterone concentrations witnessed a decrease starting from in the second stage and kept on until the last stage. The contralateral testes of the CO animals showed alterations that positioned them between the control and CO testes. Testicular development of dogs with CO is similar to that of humans. The results of the study suggest that this species could serve as a suitable model for the study of CO in humans.
Collapse
Affiliation(s)
- Norma Hernández-Jardón
- Programa Doctorado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Julio César Rojas-Castañeda
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Pediatría, SS, Mexico City, Mexico
- Julio César Rojas-Castañeda
| | - Daniel Landero-Huerta
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Pediatría, SS, Mexico City, Mexico
| | - Estefanía Reyes-Cruz
- Programa Doctorado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rafael Reynoso-Robles
- Laboratorio de Morfología Celular y Tisular, Instituto Nacional de Pediatría, SS, Mexico City, Mexico
| | - María del Lourdes Juárez-Mosqueda
- Departamento de Morfología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Medrano
- Laboratorio de Reproducción Animal, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Fausto Reyes-Delgado
- Banfield Pet Hospital-Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosa María Vigueras-Villaseñor
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Pediatría, SS, Mexico City, Mexico
- *Correspondence: Rosa María Vigueras-Villaseñor
| |
Collapse
|
20
|
Oliveira JM, Oliveira IM, Sleiman HK, Dal Forno GO, Romano MA, Romano RM. Consumption of soy isoflavones during the prepubertal phase delays puberty and causes hypergonadotropic hypogonadism with disruption of hypothalamic-pituitary gonadotropins regulation in male rats. Toxicol Lett 2022; 369:1-11. [PMID: 35963426 DOI: 10.1016/j.toxlet.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Isoflavones are phytoestrogens with recognized estrogenic activity but may also affect testosterone, corticosterone and thyroid hormone levels in experimental models. However, the molecular mechanisms involved in these alterations are still unclear. Isoflavones are present in soy-based infant formula, in breast milk after the consumption of soy by the mother and are widely used for the preparation of beverages consumed by toddlers and teenagers. In this sense, we proposed to investigate the effects of soy isoflavone exposure during the prepubertal period, a recognized window of sensitivity for endocrine disruption, over the hypothalamic-pituitary-testicular (HPT) axis. For this, 42 3-week-old male Wistar rats were exposed to 0.5, 5 or 50 mg of soy isoflavones/kg from postnatal day (PND) 23 to PND60. We evaluated body growth, age at puberty, serum concentrations of LH, FSH, testosterone and estradiol, and the expression of the transcripts (mRNA) of genes encoding key genes controlling the hypothalamic-pituitary-testicular (HPT) axis. In the hypothalamus, we observed an increase in Esr1 mRNA expression (0.5 and 5 mg). In the pituitary, we observed an increase in Gnrhr mRNA expression (50 mg), a reduction in Lhb mRNA expression (0.5 mg), and a reduction in Ar mRNA expression. In the testis, we observed an increase in Lhcgr mRNA expression (50 mg) and a reduction in Star mRNA expression (0.5 and 5 mg). The serum levels of LH (5 and 50 mg) and FSH (0.5 mg) were increased, while testosterone and estradiol were reduced. Puberty was delayed in all groups. Taken together, these results suggest that prepubertal consumption of relevant levels of soy isoflavones disrupts the HPT axis, causing hypergonadotropic hypogonadism and altered expression levels of key genes regulating the axis.
Collapse
Affiliation(s)
- Jeane Maria Oliveira
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Isabela Medeiros Oliveira
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Hanan Khaled Sleiman
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Gonzalo Ogliari Dal Forno
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Marco Aurelio Romano
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Renata Marino Romano
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| |
Collapse
|
21
|
LIN28 Family in Testis: Control of Cell Renewal, Maturation, Fertility and Aging. Int J Mol Sci 2022; 23:ijms23137245. [PMID: 35806250 PMCID: PMC9266904 DOI: 10.3390/ijms23137245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/12/2022] Open
Abstract
Male reproductive development starts early in the embryogenesis with somatic and germ cell differentiation in the testis. The LIN28 family of RNA-binding proteins promoting pluripotency has two members—LIN28A and LIN28B. Their function in the testis has been investigated but many questions about their exact role based on the expression patterns remain unclear. LIN28 expression is detected in the gonocytes and the migrating, mitotically active germ cells of the fetal testis. Postnatal expression of LIN28 A and B showed differential expression, with LIN28A expressed in the undifferentiated spermatogonia and LIN28B in the elongating spermatids and Leydig cells. LIN28 interferes with many signaling pathways, leading to cell proliferation, and it is involved in important testicular physiological processes, such as cell renewal, maturation, fertility, and aging. In addition, aberrant LIN28 expression is associated with testicular cancer and testicular disorders, such as hypogonadotropic hypogonadism and Klinefelter’s syndrome. This comprehensive review encompasses current knowledge of the function of LIN28 paralogs in testis and other tissues and cells because many studies suggest LIN28AB as a promising target for developing novel therapeutic agents.
Collapse
|
22
|
Schmitt G, Barrow P. Considerations for and against dosing rodent pups before 7 days of age in juvenile toxicology studies. Reprod Toxicol 2022; 112:77-87. [PMID: 35772686 DOI: 10.1016/j.reprotox.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
This review focuses on preweaning ontogenic and developmental processes that can influence the selection of the appropriate age at which to start dosing rodent pups in juvenile animal studies (JAS). The ICH S11 guideline on 'Nonclinical Safety Testing in Support of Development of Paediatric Medicines' highlights the need to adapt the age from which animals are dosed according to the stage of development in the target organs/tissues of concern in the youngest pediatric patients. Rodents (rat or mouse) are the most common species for JAS. Despite previous practices, based on comparative ontogeny, it is rarely necessary to dose rodents younger than one week of age since postnatal day (PND)7 is appropriate to address concern for the vast majority of organs. In exceptional cases, earlier dosing (e.g., PND4) can be appropriate to address specific concern in preterm neonates and when a tissue of concern has a particularly early developmental trajectory in the rodent compared to humans. The comparative development of the CNS is particularly complex. While exposure of rodents from PND10 covers most CNS development stages relevant to human neonates, a later dosing start (yet, not later than PND14) can sometimes be appropriate to reflect specific aspects (e.g., transformation of GABAergic transmission). An extended study design including subsets of several ages can be helpful to address multiple concerns within a preweaning JAS. Such design can allow for individual assessment of each concern, whilst minimizing (potentially irrelevant) signals from tissues exposed at a developmental stage that do not match the human situation.
Collapse
Affiliation(s)
- Georg Schmitt
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH 4070 Basel, Switzerland.
| | - Paul Barrow
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH 4070 Basel, Switzerland
| |
Collapse
|
23
|
Cavariani MM, de Mello Santos T, Chuffa LGDA, Pinheiro PFF, Scarano WR, Domeniconi RF. Maternal Protein Restriction Alters the Expression of Proteins Related to the Structure and Functioning of the Rat Offspring Epididymis in an Age-Dependent Manner. Front Cell Dev Biol 2022; 10:816637. [PMID: 35517501 PMCID: PMC9061959 DOI: 10.3389/fcell.2022.816637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Nutrition is an environmental factor able to activate physiological interactions between fetus and mother. Maternal protein restriction is able to alter sperm parameters associated with epididymal functions. Since correct development and functioning of the epididymides are fundamental for mammalian reproductive success, this study investigated the effects of maternal protein restriction on epididymal morphology and morphometry in rat offspring as well as on the expression of Src, Cldn-1, AR, ER, aromatase p450, and 5α-reductase in different stages of postnatal epididymal development. For this purpose, pregnant females were allocated to normal-protein (NP—17% protein) and low-protein (LP—6% protein) groups that received specific diets during gestation and lactation. After weaning, male offspring was provided only normal-protein diet until the ages of 21, 44, and 120 days, when they were euthanized and their epididymides collected. Maternal protein restriction decreased genital organs weight as well as crown-rump length and anogenital distance at all ages. Although the low-protein diet did not change the integrity of the epididymal epithelium, we observed decreases in tubular diameter, epithelial height and luminal diameter of the epididymal duct in 21-day-old LP animals. The maternal low-protein diet changed AR, ERα, ERβ, Src 416, and Src 527 expression in offspring epididymides in an age-dependent manner. Finally, maternal protein restriction increased Cldn-1 expression throughout the epididymides at all analyzed ages. Although some of these changes did not remain until adulthood, the insufficient supply of proteins in early life altered the structure and functioning of the epididymis in important periods of postnatal development.
Collapse
|
24
|
de Matos Manoel B, da Silva Moreira S, Zampieri GM, Machado Pinheiro L, Jorge BC, Casali Reis AC, Leite Kassuya CA, Arena AC. Can maternal exposure to tamoxifen compromise sperm and behavioural parameters of male rat offspring? Reprod Toxicol 2022; 108:1-9. [PMID: 34974146 DOI: 10.1016/j.reprotox.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022]
Abstract
Tamoxifen, a selective non-steroidal estrogen receptor modulator, is the standard adjuvant endocrine treatment for breast cancer. Since information on the risk of using tamoxifen during pregnancy is still scarce, this study evaluated whether the in utero and lactational treatment with this drug could compromise reproductive and behavioural parameters in male offspring. Pregnant Wistar rats were exposed to three doses of tamoxifen (0.12; 0.6; 3 μg/kg), by gavage, from gestational day 15 to lactational day 20. Tamoxifen exposure did not alter the anogenital distance in the male offspring; however, there was a significant increase in the body weight in the 0.12 μg/kg dose and a decrease in the 0.6 μg/kg dose. The male offspring treated with the highest dose exhibited a delay in the onset of puberty, evidenced by an increase in the age of preputial separation. Regarding sperm parameters, there was an increase in the sperm count in the cauda epididymis in the intermediate and highest dose groups, in addition to an increase in the number of static sperm and a decrease in the progressive sperm in the same groups. Moreover, an increase in the number of hyperplasia of the epithelial clear cells was observed in the epididymis. In conclusion, the present study demonstrated that maternal exposure to tamoxifen compromised the installation of puberty of the male offspring and the maturation of the epididymis, affecting sperm storage and motility in the adult life.
Collapse
Affiliation(s)
- Beatriz de Matos Manoel
- Faculty of Health Sciences, Universidade Federal da Grande Dourados - UFGD, Dourados, MS, Brazil
| | - Suyane da Silva Moreira
- Departamet of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista - UNESP, Botucatu, SP, Brazil
| | - Gabriela Morelli Zampieri
- Departamet of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista - UNESP, Botucatu, SP, Brazil
| | - Luísa Machado Pinheiro
- Departamet of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista - UNESP, Botucatu, SP, Brazil
| | - Bárbara Campos Jorge
- Departamet of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista - UNESP, Botucatu, SP, Brazil
| | - Ana Carolina Casali Reis
- Departamet of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista - UNESP, Botucatu, SP, Brazil
| | | | - Arielle Cristina Arena
- Departamet of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista - UNESP, Botucatu, SP, Brazil; Center of Toxicological Assistance (CEATOX), Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil.
| |
Collapse
|
25
|
Ghasemi A, Jeddi S, Kashfi K. The laboratory rat: Age and body weight matter. EXCLI JOURNAL 2021; 20:1431-1445. [PMID: 34737685 PMCID: PMC8564917 DOI: 10.17179/excli2021-4072] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022]
Abstract
Animal experimentation helps us to understand human biology. Rodents and, in particular, rats are among the most common animals used in animal experiments. Reporting data on animal age, animal body weight, and animal postnatal developmental stages is not consistent, which can cause the failure to translate animal data to humans. This review summarizes age-related postnatal developmental stages in rats by addressing age-related changes in their body weights. The age and body weight of animals can affect drug metabolism, gene expression, metabolic parameters, and other dependent variables measured in animal studies. In addition, considering the age and the body weight of the animals is of particular importance in animal modeling of human diseases. Appropriate reporting of age, body weight, and the developmental stage of animals used in studies can improve animal to human translation.
Collapse
Affiliation(s)
- Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA
| |
Collapse
|
26
|
Jorgensen A, Svingen T, Miles H, Chetty T, Stukenborg JB, Mitchell RT. Environmental Impacts on Male Reproductive Development: Lessons from Experimental Models. Horm Res Paediatr 2021; 96:190-206. [PMID: 34607330 DOI: 10.1159/000519964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/11/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Male reproductive development in mammals can be divided into a gonadal formation phase followed by a hormone-driven differentiation phase. Failure of these processes may result in Differences in Sex Development (DSD), which may include abnormalities of the male reproductive tract, including cryptorchidism, hypospadias, infertility, and testicular germ cell cancer (TGCC). These disorders are also considered to be part of a testicular dysgenesis syndrome (TDS) in males. Whilst DSDs are considered to result primarily from genetic abnormalities, the development of TDS disorders is frequently associated with environmental factors. SUMMARY In this review, we will discuss the development of the male reproductive system in relation to DSD and TDS. We will also describe the experimental systems, including studies involving animals and human tissues or cells that can be used to investigate the role of environmental factors in inducing male reproductive disorders. We will discuss recent studies investigating the impact of environmental chemicals (e.g., phthalates and bisphenols), lifestyle factors (e.g., smoking) and pharmaceuticals (e.g., analgesics) on foetal testis development. Finally, we will describe the evidence, involving experimental and epidemiologic approaches, for a role of environmental factors in the development of specific male reproductive disorders, including cryptorchidism, hypospadias, and TGCC. Key Messages: Environmental exposures can impact the development and function of the male reproductive system in humans. Epidemiology studies and experimental approaches using human tissues are important to translate findings from animal studies and account for species differences in response to environmental exposures.
Collapse
Affiliation(s)
- Anne Jorgensen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Harriet Miles
- Royal Hospital for Children and Young People, Edinburgh, United Kingdom
| | - Tarini Chetty
- Royal Hospital for Children and Young People, Edinburgh, United Kingdom
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Rod T Mitchell
- Royal Hospital for Children and Young People, Edinburgh, United Kingdom.,MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
27
|
Development of a putative adverse outcome pathway network for male rat reproductive tract abnormalities with specific considerations for the androgen sensitive window of development. Curr Res Toxicol 2021; 2:254-271. [PMID: 34401750 PMCID: PMC8350458 DOI: 10.1016/j.crtox.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Structured approaches like the adverse outcome pathway (AOP) framework offer great potential for depicting complex toxicological processes in a manner that can facilitate informed integration of mechanistic information in regulatory decisions. While this concept provides a structure for organizing evidence and facilitates consistency in evidence integration; the process, inputs, and manner in which AOPs and AOP networks are developed is still evolving. Following the OECD guiding principles of AOP development, we propose three AOPs for male reproductive tract abnormalities and derive a putative AOP network. The AOPs were developed using a fundamental understanding of the developmental biology of the organs of interest, paying close attention to the gestational timing of key events (KEs) to very specifically inform the domain of life stage applicability for the key event relationships (KERs). Chemical stressor data primarily from studies on low molecular weight phthalates (LMWPs) served to 'bound' the pathways of focus in this dynamic period of development and were integrated with the developmental biology data through an iterative process to define KEs and conclude on the extent of evidence in support of the KERs. The AOPs developed describe the linkage between 1) a decrease in Insl3 gene expression and cryptorchidism, 2) the sustained expression of Coup-tfII and hypospadias and 3) the sustained expression of Coup-tfII and altered Wolffian duct development/ epididymal agenesis. A putative AOP network linking AOP2 and AOP3 through decreased steroidogenic biosynthetic protein expression and converging of all AOPS at the population level impaired fertility adverse outcome is proposed. The network depiction specifies and displays the KEs aligned with their occurrence in gestational time. The pathways and network described herein are intended to catalyze collaborative initiatives for expansion into a larger network to enable effective data collection and inform alternative approaches for identifying stressors impacting this sensitive period of male reproductive tract development.
Collapse
Key Words
- AGD, Anogenital distance
- AO, Adverse Outcome
- AOP, Adverse Outcome Pathway
- Adverse outcome pathway
- Adverse outcome pathway network
- DBP, Dibutyl phthalate
- DEHP, Di(2-ethylhexyl)phthalate
- DHT, 5α-dihydrotestosterone
- DPP, Dipentyl phthalate
- E, Embryonic day (ED1=GD1 gestational day 1)
- GD, Gestational day (GD1=ED1 embryonic day 1)
- KE, Key event
- KER, Key event relationship
- LMWP, low molecular weight phthalate straight chain length of the esterified alcohols between 3 and 6 carbon atoms
- MPW, male programming window
- Male programming window
- Phthalate
Collapse
|
28
|
Oliveira CAP, Rocha GS, Fernandes-Santos C, Sampaio FJB, Gregorio BM. Prostatic alterations associated to early weaning and its relation with cocoa powder supplementation. Experimental study in adult wistar rats. Int Braz J Urol 2021; 47:1020-1029. [PMID: 34115453 PMCID: PMC8321461 DOI: 10.1590/s1677-5538.ibju.2020.1114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Early weaning can predispose the offspring to greater risk of developing chronic diseases in adulthood. It is believed that the consumption of functional foods is able to prevent these effects. The aim of this study is to evaluate the effects of maternal and postnatal cocoa powder supplementation on body mass, metabolism, and morphology of the prostate of early weaned Wistar rats. The animals were divided into four experimental groups according to lactation time (21 or 18 days, n=6, each) as follows: control group (C), cocoa control group (CCa), early weaning group (EW), and cocoa early weaning group (EWCa). The animals were euthanized at 90 days of age. Serum biochemical analysis and prostate histomorphometric evaluation were performed. The animals supplemented with cocoa powder were heavier than their respective controls (p <0.05), although with no difference in food intake among the groups. Likewise, these same groups showed a reduction in the serum glucose in relation to C and EW groups (p <0.0001). With respect to the prostate, there was no difference in smooth muscle and lumen area densities, while the EW group had a lower epithelial height and a higher percentage of mast cells than the C group (p <0.05). On the other hand, the EWCa group managed to reverse these parameters, leveling with the controls. Early weaning resulted in hyperglycemia and important morphological changes in the prostate. In contrast, dietary supplementation with cocoa powder attenuated these effects on the metabolism and prostatic histoarchitecture, proving to be a good nutritional treatment strategy.
Collapse
Affiliation(s)
- Carolina Alves Procópio Oliveira
- Departamento de Anatomia, Unidade de Pesquisa Urogenital, Universidade do Estado do Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brasil
| | - Gabrielle Souza Rocha
- Departamento de Nutrição e Dietética, Faculdade de Nutrição Emília de Jesus Ferreiro, Universidade Federal Fluminense, UFF, Niterói, RJ, Brasil
| | - Caroline Fernandes-Santos
- Departamento de Ciências Básicas, Laboratório Multiusuário de Pesquisa Biomédica, Universidade Federal Fluminense, UFF, Nova Friburgo, RJ, Brasil
| | - Francisco José Barcellos Sampaio
- Departamento de Anatomia, Unidade de Pesquisa Urogenital, Universidade do Estado do Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brasil
| | - Bianca Martins Gregorio
- Departamento de Anatomia, Unidade de Pesquisa Urogenital, Universidade do Estado do Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
29
|
Couto-Santos F, Viana AGDA, Souza ACF, Dutra AADA, Mendes TADO, Ferreira ATDS, Aguilar JEP, Oliveira LL, Machado-Neves M. Prepubertal arsenic exposure alters phosphoproteins profile, quality, and fertility of epididymal spermatozoa in sexually mature rats. Toxicology 2021; 460:152886. [PMID: 34352348 DOI: 10.1016/j.tox.2021.152886] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/20/2022]
Abstract
Arsenic intoxication affects male reproductive parameters of prepubertal rats. Besides, morphological and functional alterations in their testis and epididymis may remain after withdrawal of arsenic insult, causing potential impairment in male fertility during adulthood. In this study, we aimed at analyzing the effect of prepubertal arsenic exposure on the fecundity of epididymal sperm from sexually mature Wistar rats, assessing fertility indexes, sperm parameters, and sperm phosphoproteins content. Male pups on postnatal day (PND) 21 received filtered water (controls, n = 10) and 10 mg L-1 arsenite (n = 10) daily for 30 days. From PND52 to PND81, rats from both groups received filtered water. During this period, the males mated with non-exposed females between PND72 and PND75. Our results showed that sexually mature rats presented low sperm production, epididymal sperm count, motility, and quality after prepubertal arsenic exposure. These findings possibly contributed to the low fertility potential and high preimplantation loss. Epididymal sperm proteome detected 268 proteins, which 170 were found in animals from both control and arsenic groups, 27 proteins were detected only in control animals and 71 proteins only in arsenic-exposed rats. In these animals, SPATA 18 and other five proteins were upregulated, whereas keratin type II cytoskeletal 1 was downregulated (q < 0.1). The results of KEGG pathway analysis demonstrated an enrichment of pathways related to dopaminergic response, adrenergic signaling, protein degradation, and oocyte meiosis in arsenic-exposed animals. Moreover, 26 proteins were identified by phosphoproteomic with different phosphorylation pattern in animals from both groups, but SPATA18 was phosphorylated only in arsenic-exposed animals. We concluded that prepubertal exposure to arsenic is deleterious to sperm quality and male fertility, altering the sperm phosphoproteins profile.
Collapse
Affiliation(s)
- Felipe Couto-Santos
- Programa de Pós-Graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Arabela Guedes de Azevedo Viana
- Programa de Pós-Graduação em Medicina Veterinária, Departamento de Medicina Veterinária, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Ana Cláudia Ferreira Souza
- Departamento de Biologia Animal, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 7, 23897-000, Seropédica, Rio de Janeiro, Brazil.
| | - Alexandre Augusto de Assis Dutra
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rua Cruzeiro 1, Jardim São Paulo, 39803-371, Teófilo Otoni, Minas Gerais, Brazil.
| | - Tiago Antônio de Oliveira Mendes
- Departamento de Bioquímca e Biologia Molecular, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| | | | - Jonas Enrique Perales Aguilar
- Laboratório de Toxinologia/Plataforma de Proteômica, FIOCRUZ, Av. Brasil 4365, Manguinhos, 21040-900, Rio de Janeiro, Brazil.
| | - Leandro Licursi Oliveira
- Programa de Pós-Graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Mariana Machado-Neves
- Programa de Pós-Graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil; Programa de Pós-Graduação em Medicina Veterinária, Departamento de Medicina Veterinária, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
30
|
Voigt AL, Kondro DA, Powell D, Valli-Pulaski H, Ungrin M, Stukenborg JB, Klein C, Lewis IA, Orwig KE, Dobrinski I. Unique metabolic phenotype and its transition during maturation of juvenile male germ cells. FASEB J 2021; 35:e21513. [PMID: 33811704 DOI: 10.1096/fj.202002799r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/06/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022]
Abstract
Human male reproductive development has a prolonged prepubertal period characterized by juvenile quiescence of germ cells with immature spermatogonial stem cell (SSC) precursors (gonocytes) present in the testis for an extended period of time. The metabolism of gonocytes is not defined. We demonstrate with mitochondrial ultrastructure studies via TEM and IHC and metabolic flux studies with UHPLC-MS that a distinct metabolic transition occurs during the maturation to SSCs. The mitochondrial ultrastructure of prepubertal human spermatogonia is shared with prepubertal pig spermatogonia. The metabolism of early prepubertal porcine spermatogonia (gonocytes) is characterized by the reliance on OXPHOS fuelled by oxidative decarboxylation of pyruvate. Interestingly, at the same time, a high amount of the consumed pyruvate is also reduced and excreted as lactate. With maturation, prepubertal spermatogonia show a metabolic shift with decreased OXHPOS and upregulation of the anaerobic metabolism-associated uncoupling protein 2 (UCP2). This shift is accompanied with stem cell specific promyelocytic leukemia zinc finger protein (PLZF) protein expression and glial cell-derived neurotropic factor (GDNF) pathway activation. Our results demonstrate that gonocytes differently from mature spermatogonia exhibit unique metabolic demands that must be attained to enable their maintenance and growth in vitro.
Collapse
Affiliation(s)
- Anna Laura Voigt
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Douglas Andrew Kondro
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Diana Powell
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Hanna Valli-Pulaski
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark Ungrin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
| | - Claudia Klein
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ian A Lewis
- Department of Biological Sciences, Faculty of Sciences, University of Calgary, Calgary, AB, Canada
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
31
|
Sleiman HK, de Oliveira JM, Langoni de Freitas GB. Isoflavones alter male and female fertility in different development windows. Biomed Pharmacother 2021; 140:111448. [PMID: 34130202 DOI: 10.1016/j.biopha.2021.111448] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Isoflavones are a group of secondary metabolites found in plants belonging to the class of phytoestrogens. These, because they have a chemical structure similar to the endogenous hormone 17β-estradiol, act as endocrine disruptors over the different development window periods. This study aimed to evaluate male and female reproductive systems' responses when exposed to isoflavones during the development window. It is characterized as a bibliographic review, built after analyzing clinical and preclinical articles indexed in English, Portuguese, and Spanish published in the last ten years. The isoflavones, aglycone or glucosides, have essential therapeutic properties in the relief of postmenopausal symptoms in women, reduce the proliferation of cancers, in addition to being antioxidants. On the other hand, they can still behave in a similar way to 17β-estradiol, binding to hormone receptors and acting as endocrine disruptors over the gestational period until pre-puberty, negatively affecting the development of the reproductive system. The effects on reproduction are not dose-response but are influenced by the type of isoflavone and period. There are variations in the serum concentration of hormones and action on their negative feedback on the hypothalamic-pituitary-testicular axis in males. Reproductive functions are also affected by spermatogenesis, such as decreased sperm count, lower reproductive performance, reduced litter size, low sperm production, and reduced seminal vesicle size. In females, puberty is reached later, irregular estrous cycle, reduced weight of the ovary, uterus, lower serum levels of estradiol and progesterone, reduced fertility, or interrupted fertility. At the end of the analysis of the selected publications, it can be concluded that despite the beneficial therapeutic effects in the face of pathologies, the unknown consumption of doses and types of isoflavones in food can damage the development and reproduction of individuals. Therefore, further studies must be carried out to elucidate the usual safe doses of the analyzed phytoestrogen. Greater control over insertion in foods targeted at pediatric consumers should be implemented until we have adequate safety.
Collapse
Affiliation(s)
| | - Jeane Maria de Oliveira
- Laboratory of Medicinal Chemistry and Biotechnology (LaQuiMB), Department of Biochemistry and Pharmacology, Federal University of Piauí, Piauí, Brazil
| | - Guilherme Barroso Langoni de Freitas
- Department of Pharmacy, State University of Centro-Oeste, Parana, Brazil; Program in Biotechnology in Human and Animal Health - (PPGBiotec), State University of Ceará, Ceará, Brazil.
| |
Collapse
|
32
|
Robic A, Cerutti C, Kühn C, Faraut T. Comparative Analysis of the Circular Transcriptome in Muscle, Liver, and Testis in Three Livestock Species. Front Genet 2021; 12:665153. [PMID: 34040640 PMCID: PMC8141914 DOI: 10.3389/fgene.2021.665153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs have been observed in a large number of species and tissues and are now recognized as a clear component of the transcriptome. Our study takes advantage of functional datasets produced within the FAANG consortium to investigate the pervasiveness of circular RNA transcription in farm animals. We describe here the circular transcriptional landscape in pig, sheep and bovine testicular, muscular and liver tissues using total 66 RNA-seq datasets. After an exhaustive detection of circular RNAs, we propose an annotation of exonic, intronic and sub-exonic circRNAs and comparative analyses of circRNA content to evaluate the variability between individuals, tissues and species. Despite technical bias due to the various origins of the datasets, we were able to characterize some features (i) (ruminant) liver contains more exonic circRNAs than muscle (ii) in testis, the number of exonic circRNAs seems associated with the sexual maturity of the animal. (iii) a particular class of circRNAs, sub-exonic circRNAs, are produced by a large variety of multi-exonic genes (protein-coding genes, long non-coding RNAs and pseudogenes) and mono-exonic genes (protein-coding genes from mitochondrial genome and small non-coding genes). Moreover, for multi-exonic genes there seems to be a relationship between the sub-exonic circRNAs transcription level and the linear transcription level. Finally, sub-exonic circRNAs produced by mono-exonic genes (mitochondrial protein-coding genes, ribozyme, and sno) exhibit a particular behavior. Caution has to be taken regarding the interpretation of the unannotated circRNA proportion in a given tissue/species: clusters of circRNAs without annotation were characterized in genomic regions with annotation and/or assembly problems of the respective animal genomes. This study highlights the importance of improving genome annotation to better consider candidate circRNAs and to better understand the circular transcriptome. Furthermore, it emphasizes the need for considering the relative “weight” of circRNAs/parent genes for comparative analyses of several circular transcriptomes. Although there are points of agreement in the circular transcriptome of the same tissue in two species, it will be not possible to do without the characterization of it in both species.
Collapse
Affiliation(s)
- Annie Robic
- INRAE, ENVT, GenPhySE, Université de Toulouse, Castanet-Tolosan, France
| | - Chloé Cerutti
- INRAE, ENVT, GenPhySE, Université de Toulouse, Castanet-Tolosan, France
| | - Christa Kühn
- Institute Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Thomas Faraut
- INRAE, ENVT, GenPhySE, Université de Toulouse, Castanet-Tolosan, France
| |
Collapse
|
33
|
Walker C, Garza S, Papadopoulos V, Culty M. Impact of endocrine-disrupting chemicals on steroidogenesis and consequences on testicular function. Mol Cell Endocrinol 2021; 527:111215. [PMID: 33657436 DOI: 10.1016/j.mce.2021.111215] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/26/2022]
Abstract
Testicular steroidogenesis is a tightly regulated process that produces the androgens important for the development, maintenance and function of the male reproductive system. These androgens are also essential for overall health, and well-being. Disruptions in the ability of the testis to form steroids can result in developmental abnormalities, dysfunction, and infertility. Endocrine-disrupting chemicals (EDCs) can interfere with the intricate signaling and metabolizing networks that produce androgens and promote their dysfunction. These chemicals are found ubiquitously in our environment, as they are integral components of products that are used every day. The effects of EDCs, such as bisphenols, phthalates, and alkyl chemicals, have been studied independently, revealing deleterious effects; but the combined influence of these structures on steroidogenesis has yet to be completely elucidated. This manuscript presents an updated review on EDC mixtures and their impact on testicular function and fertility, highlighting new findings that illustrate the anti-androgenic capabilities of EDC mixtures.
Collapse
Affiliation(s)
- Casandra Walker
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Samuel Garza
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
34
|
Abstract
Organoids are 3-dimensional (3D) structures grown in vitro that emulate the cytoarchitecture and functions of true organs. Therefore, testicular organoids arise as an important model for research on male reproductive biology. These organoids can be generated from different sources of testicular cells, but most studies to date have used immature primary cells for this purpose. The complexity of the mammalian testicular cytoarchitecture and regulation poses a challenge for working with testicular organoids, because, ideally, these 3D models should mimic the organization observed in vivo. In this review, we explore the characteristics of the most important cell types present in the testicular organoid models reported to date and discuss how different factors influence the regulation of these cells inside the organoids and their outcomes. Factors such as the developmental or maturational stage of the Sertoli cells, for example, influence organoid generation and structure, which affect the use of these 3D models for research. Spermatogonial stem cells have been a focus recently, especially in regard to male fertility preservation. The regulation of the spermatogonial stem cell niche inside testicular organoids is discussed in the present review, as this research area may be positively affected by recent progress in organoid generation and tissue engineering. Therefore, the testicular organoid approach is a very promising model for male reproductive biology research, but more studies and improvements are necessary to achieve its full potential.
Collapse
Affiliation(s)
- Nathalia de Lima e Martins Lara
- Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sadman Sakib
- Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ina Dobrinski
- Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Correspondence: Ina Dobrinski, DrMedVet, MVSc, PhD, Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 404 HMRB, 3300 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
35
|
Vidal JD, Colman K, Bhaskaran M, de Rijk E, Fegley D, Halpern W, Jacob B, Kandori H, Manickam B, McKeag S, Parker GA, Regan KS, Sefing B, Thibodeau M, Vemireddi V, Werner J, Zalewska A. Scientific and Regulatory Policy Committee Best Practices: Documentation of Sexual Maturity by Microscopic Evaluation in Nonclinical Safety Studies. Toxicol Pathol 2021; 49:977-989. [PMID: 33661059 DOI: 10.1177/0192623321990631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sexual maturity status of animals in nonclinical safety studies can have a significant impact on the microscopic assessment of the reproductive system, the interpretation of potential test article-related findings, and ultimately the assessment of potential risk to humans. However, the assessment and documentation of sexual maturity for animals in nonclinical safety studies is not conducted in a consistent manner across the pharmaceutical and chemical industries. The Scientific and Regulatory Policy Committee of the Society of Toxicologic Pathology convened an international working group of pathologists and nonclinical safety scientists with expertise in the reproductive system, pathology nomenclature, and Standard for Exchange of Nonclinical Data requirements. This article describes the best practices for documentation of the light microscopic assessment of sexual maturity in males and females for both rodent and nonrodent nonclinical safety studies. In addition, a review of the microscopic features of the immature, peripubertal, and mature male and female reproductive system and general considerations for study types and reporting are provided to aid the study pathologist tasked with documentation of sexual maturity.
Collapse
Affiliation(s)
| | - Karyn Colman
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | | | - Eveline de Rijk
- 26135Charles River Laboratories, Hertogenbosch, the Netherlands
| | | | | | - Binod Jacob
- 331129Merck & Co, Inc, West Point, Pennsylvania, PA, USA
| | - Hitoshi Kandori
- 561471Axcelead Drug Discovery Partners, Fujisawa, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Voigt AL, Thiageswaran S, de Lima e Martins Lara N, Dobrinski I. Metabolic Requirements for Spermatogonial Stem Cell Establishment and Maintenance In Vivo and In Vitro. Int J Mol Sci 2021; 22:1998. [PMID: 33670439 PMCID: PMC7922219 DOI: 10.3390/ijms22041998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
The spermatogonial stem cell (SSC) is a unique adult stem cell that requires tight physiological regulation during development and adulthood. As the foundation of spermatogenesis, SSCs are a potential tool for the treatment of infertility. Understanding the factors that are necessary for lifelong maintenance of a SSC pool in vivo is essential for successful in vitro expansion and safe downstream clinical usage. This review focused on the current knowledge of prepubertal testicular development and germ cell metabolism in different species, and implications for translational medicine. The significance of metabolism for cell biology, stem cell integrity, and fate decisions is discussed in general and in the context of SSC in vivo maintenance, differentiation, and in vitro expansion.
Collapse
Affiliation(s)
| | | | | | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (A.L.V.); (S.T.); (N.d.L.e.M.L.)
| |
Collapse
|
37
|
Jorge BC, Reis ACC, Sterde ÉT, Balin PDS, Scarano WR, Hisano H, Arena AC. Exposure to benzo(a)pyrene from juvenile period to peripubertal impairs male reproductive parameters in adult rats. CHEMOSPHERE 2021; 263:128016. [PMID: 33297042 DOI: 10.1016/j.chemosphere.2020.128016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 06/12/2023]
Abstract
Benzo(a)pyrene (BaP) is a persistent organic pollutant and endocrine disruptor that can compromise the steroidogenesis process by interacting with the StAR protein, causing adverse effects on male reproduction. However, consequences of prepubertal BaP exposure and its impacts on adult life are yet unknown. This study investigated the effects of BaP exposure from the juvenile period to peripubertal on reproductive parameters in adult male rats. Males were exposed to 0; 0.1; 1 or 10 μg/kg/day of BaP from post-natal (PND) 23 to PND 53 (by gavage). The lowest dose of BaP was able to compromise the male copulatory behavior, as evidenced by the delay in the first mount, intromission and ejaculation. Furthermore, BaP-treated groups showed lower sperm quality (disrupted motility and morphology) and quantity, reduced relative weights of the thyroid and seminal gland. Serum testosterone levels and the Leydig cells nuclei volume were decreased by BaP exposure whereas the StAR expression was increased. Histopathological changes in the testis also were detected in the males exposed to BaP. These results showed that prepubertal BaP-exposure adversely influenced the male reproductive system in the adult life, indicating that a comprehensive risk assessment of BaP-exposure on prepubertal period is necessary.
Collapse
Affiliation(s)
- Bárbara Campos Jorge
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil
| | - Ana Carolina Casali Reis
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil
| | - Érika Tissiana Sterde
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil
| | - Paola da Silva Balin
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil
| | | | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil; Center of Toxicological Assistance (CEATOX), Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil.
| |
Collapse
|
38
|
Posobiec LM, Laffan SB. Dose range finding approach for rodent preweaning juvenile animal studies. Birth Defects Res 2020; 113:409-426. [PMID: 33314670 DOI: 10.1002/bdr2.1856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/12/2020] [Accepted: 12/01/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Strategies for conducting juvenile dose ranging studies before definitive toxicity juvenile animal studies (JAS) have evolved, but the aim of demonstrating study design robustness and efficient animal use remains the same. The objective of dose selection is to identify a strategy to achieve consistent systemic exposure for the duration of the JAS while maintaining exposure separation between dose groups. For preweaning rodents this can prove challenging, as these studies typically treat animals over a broad period of considerable organ development. MATERIALS AND METHODS In our experience, over 45 rodent juvenile studies (dose range, definitive or investigative) were conducted over 20 years to support pediatric medicine development. In most cases (86%, 12/14), preweaning rodents required decreased doses of test articles than adult rodents; the majority (83%, 10/12) were due to increased systemic exposures in immature animals at the same doses. Thus, extrapolating tolerability and exposure data from adults is not ideal and should not take the place of well-designed juvenile dose range studies. RESULTS/DISCUSSION/CONCLUSION We propose a phased dose-range-finding approach by first conducting a tolerability phase with a few animals at a starting age corresponding to the youngest clinical starting age, spanning a wide range of doses, then a dose range phase with larger group sizes and fewer doses; both phases incorporate toxicokinetics. Often, exposure was higher in preweaning animals and decreased as animals matured postweaning (postnatal day, PND 21 and older), supporting an age-based dose adjustment strategy. Case studies demonstrate dose adjustment approaches incorporating dose increases or decreases or changes in dose frequency.
Collapse
Affiliation(s)
- Lorraine M Posobiec
- In Vivo/In Vitro Translation, Nonclinical Safety, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Susan B Laffan
- In Vivo/In Vitro Translation, Nonclinical Safety, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| |
Collapse
|
39
|
Souza ACF, Machado-Neves M, Bastos DSS, Couto Santos F, Guimarães Ervilha LO, Coimbra JLDP, Araújo LDS, Oliveira LLD, Guimarães SEF. Impact of prenatal arsenic exposure on the testes and epididymides of prepubertal rats. Chem Biol Interact 2020; 333:109314. [PMID: 33171135 DOI: 10.1016/j.cbi.2020.109314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023]
Abstract
Arsenic is a pollutant widely found in the environment due to natural and anthropogenic sources. Exposure to arsenic forms in drinking water has been related with male reproductive dysfunctions in humans and experimental animals at adult age. However, the impact of this pollutant on postnatal reproductive development of male offspring exposed in utero to arsenic is still unknown. Therefore, this study aimed to investigate the effects of prenatal arsenic exposure on the postnatal development of the testes and epididymides of rats, during prepuberty. For this purpose, pregnant female Wistar rats were provided drinking water containing 0 or 10 mg/L sodium arsenite (AsNaO2) from gestational day 1 (GD 1) until GD 21 and the male offspring was evaluated in different periods of prepuberty. Our results showed that prenatal arsenic exposure affected the initial sexual development of male pups, reducing their body weight and relative anogenital distance at postnatal day 1. At different periods of prepuberty, male pups from arsenic exposed dams showed a reduction of body and reproductive organs weights, testosterone levels and testis morphometric parameters. Moreover, these pups presented changes in the expression of SOD1, SOD2, CAT and GSTK1 genes and in the activity of superoxide dismutase, catalase and glutathione s-transferase in the testes and epididymides during prepuberty. Taken together, our results show that prenatal arsenic exposure provoked reproductive disorders in prepubertal male rats, probably due to reproductive reprograming and oxidative stress induced by this pollutant.
Collapse
Affiliation(s)
- Ana Cláudia Ferreira Souza
- Department of Animal Biology, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil; Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Mariana Machado-Neves
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Felipe Couto Santos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Couto-Santos F, Souza ACF, Bastos DSS, Ervilha LOG, Dias FCR, Araújo LDS, Guimarães SEF, Oliveira LLD, Machado-Neves M. Prepubertal exposure to arsenic alters male reproductive parameters in pubertal and adult rats. Toxicol Appl Pharmacol 2020; 409:115304. [PMID: 33127376 DOI: 10.1016/j.taap.2020.115304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Arsenic induces reproductive disorders in pubertal males after prepubertal exposure. However, it is unclear the extent to which those effects remain in testis and epididymis of sexually mature rats after arsenic insult. This study evaluated the effects of prepubertal arsenic exposure in male organs of pubertal rats, and their reversibility in adult rats. Male pups of Wistar rats on postnatal day (PND) 21 were divided into two groups (n = 20/group): Control animals received filtered water and exposed rats received 10 mg L--1 arsenic from PND 21 to PND 51. At PND 52, testis and epididymis of ten animals per group were examined for toxic effects under morphological, functional, and molecular approaches. The other animals were kept alive under free arsenic conditions until PND 82, and further analyzed for the same parameters. Pubertal rats overexpressed mRNA levels of SOD1, SOD2, CAT, GSTK1, and MT1 in their testis and SOD1, CAT, and GSTK1 in their epididymis. In those organs, catalase activity was altered, generating byproducts of oxidative stress. The antioxidant gene expression was unchanged in adult rats in contrast to the altered activity of antioxidant enzymes. Histological alterations of testis and epididymis tissues were observed in pubertal and adult rats. Interestingly, only adult rats exhibited a remarkable decrease in serum testosterone levels. Prepubertal exposure to arsenic caused morphological and functional alterations in male reproductive organs of pubertal rats. In adult rats, these damages disappeared, remained, get worsened, or recovered depending on the parameter analyzed, indicating potential male fertility disorders during adulthood.
Collapse
Affiliation(s)
- Felipe Couto-Santos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ana Cláudia Ferreira Souza
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil; Department of Animal Biology, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | - Mariana Machado-Neves
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
41
|
Fetal programming by high-fat diet promoted the decreased of the prostate in adult Wistar albino rats. Mech Dev 2020; 164:103649. [PMID: 33022371 DOI: 10.1016/j.mod.2020.103649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 01/22/2023]
Abstract
We investigated the effect of a high-fat diet on body metabolism and ventral prostate morphology in 4-months-old offspring. The mother was fed with a control (C) or a high-fat (HF) diet during gestation and lactation. At weaning, the offspring diet remained the same (C/C, n = 8; HF/HF, n = 8) or it was switched (C/HF, n = 8; HF/C, n = 9). Biometry, blood pressure (BP), glucose, lipid metabolism and ventral prostate were evaluated. Triacylglycerol of HF/C increased, and the C/HF group had decreased HDL-c levels (P = 0.0005 and P = 0.0100, respectively). All groups on the HF diet presented hyperglycemia (P = 0.0064). Serum testosterone diminished in the C/HF group (P = 0.0218). The HF diet, regardless of the period, reduced prostatic acinar area (P < 0.0001). The epithelium height was smaller in HF/C and HF/HF groups compared with C/C and C/HF (P < 0.0001), and the volume density of epithelium was lower in HF/C group compared with the C/C and C/HF (P = 0.0024). The volume density of smooth muscle cells diminished in C/HF and HF/C (P = 0.0013), and the volume density of connective tissue was reduced in HF/C and HF/HF (P < 0.0001). High-fat diet intake during prenatal and postnatal life leads to prostatic atrophy, which may impair prostate secretory activity and contractility, and thus disturb reproductive function in adulthood.
Collapse
|
42
|
da Rosa LA, Escott GM, Simonetti RB, da Silva JCD, Werlang ICR, Goldani MZ, de Fraga LS, Loss EDS. Role of non-classical effects of testosterone and epitestosterone on AMH balance and testicular development parameters. Mol Cell Endocrinol 2020; 511:110850. [PMID: 32387527 DOI: 10.1016/j.mce.2020.110850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/02/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Testosterone (T) and its 17-α epimer, epitestosterone (EpiT), are described as having non-classical effects in addition to their classical androgen actions via the intracellular androgen receptor (iAR). The actions of these androgens play an essential role in triggering factors that shift Sertoli cells from the proliferation phase to the maturation phase. This process is essential for successful spermatogenesis and normal fertility. The aim of this work was to investigate the difference between T and EpiT effects in normal and in chemically castrated Wistar rats. We also tested the effects of these hormones when the iAR-dependent pathways were inhibited by the antiandrogen flutamide. Rats were chemically castrated on postnatal day (pnd) 5 using EDS, a cytotoxic agent that promotes apoptosis of Leydig cells, reducing androgen levels. Then, animals received replacement with T or EpiT and were treated or not with flutamide from pnd 6 to pnd 13 or 20 and were euthanized on pnd 14 and 21. Animals treated with EpiT and flutamide had lower body weight overall. Epididymis weight was also reduced in animals treated with EpiT and flutamide. Flutamide per se reduced epididymis weight at both ages (pnd 14 and 21). Testicular weight and the testicular/body weight ratio were reduced in EDS animals, and flutamide further reduced this weight in animals which received T replacement. EDS administration reduced mRNA levels of both AMH (anti-Müllerian hormone) and its receptor, AMHR2, at pnd 14. In the testes of flutamide-treated animals, EpiT reduced AMH, and both T and EpiT replacement diminished AMHR2 mRNA expression also on pnd 14. EDS decreased iAR expression, and androgen replacement did not change this effect on pnd 21. In rats receiving flutamide, only those also receiving T and EpiT replacement exhibited decreased iAR expression. An increase in connexin 43 expression was observed in animals treated with EpiT without flutamide, whereas in rats treated with flutamide, both hormones were ineffective to increase connexin 43 expression reduced by EDS. Our results suggest that EpiT has an antiandrogen effect on androgen-sensitive tissues such as the epididymis. Nonetheless, the effects of T and EpiT on testicular development parameters are similar. Both hormones may act through their iAR-independent non-classical pathway, regulating AMH and AMHR2, as well as iAR expression.
Collapse
Affiliation(s)
- Luciana Abreu da Rosa
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Pediatria Translacional/Núcleo de Estudos em Saúde da Criança e do Adolescente (NESCA)/Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Gustavo Monteiro Escott
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Rajla Bressan Simonetti
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Jessica Caroline Dias da Silva
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Isabel Cristina Ribas Werlang
- Laboratório de Pediatria Translacional/Núcleo de Estudos em Saúde da Criança e do Adolescente (NESCA)/Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Marcelo Zubaran Goldani
- Laboratório de Pediatria Translacional/Núcleo de Estudos em Saúde da Criança e do Adolescente (NESCA)/Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Luciano Stürmer de Fraga
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Eloísa da Silveira Loss
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
43
|
Camacho L, Latendresse JR, Muskhelishvili L, Law CD, Delclos KB. Effects of intravenous and oral di(2-ethylhexyl) phthalate (DEHP) and 20% Intralipid vehicle on neonatal rat testis, lung, liver, and kidney. Food Chem Toxicol 2020; 144:111497. [PMID: 32540476 DOI: 10.1016/j.fct.2020.111497] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 01/09/2023]
Abstract
The highest human exposures to the plasticizer di(2-ethylhexyl) phthalate (DEHP) occur through intravenous (iv) exposure from medical procedures. Rodent toxicity studies, mainly using oral exposures, have identified male reproductive toxicity after developmental exposure to DEHP as the primary concern. Other organs are also affected by DEHP and route may influence the degree of target organ involvement. Cammack et al. (2003) reported a critical study focused on testicular toxicity using oral and iv exposures of neonatal Sprague-Dawley rats to 60, 300, or 600 mg/kg body weight/day DEHP in Intralipid vehicle. The present study followed the same dosing paradigm and included assessment of additional organs to evaluate the potential utility of this design for DEHP alternatives. Reduction of testis weight was observed in all DEHP treatment groups and germ cell and Sertoli cell toxicity was observed at the two highest doses with both routes. Lung granulomas occurred in all iv DEHP groups, possibly related to increased fat particle size in DEHP lipid emulsions. Lung alveolar development was inhibited after both oral and iv high dose DEHP. Toxicity of oral Intralipid vehicle was observed in germ and Sertoli cells. The lack of such effects after iv vehicle exposure suggested that this may be a gut-mediated effect.
Collapse
Affiliation(s)
- Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | | | | | - Charles D Law
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - K Barry Delclos
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA.
| |
Collapse
|
44
|
Amstislavsky SY, Brusentsev EY, Petrova OM, Naprimerov VA, Levinson AL. Development and Aging of the Mammalian Reproductive System. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Hou X, Hu H, Xiagedeer B, Wang P, Kang C, Zhang Q, Meng Q, Hao W. Effects of chlorocholine chloride on pubertal development and reproductive functions in male rats. Toxicol Lett 2020; 319:1-10. [DOI: 10.1016/j.toxlet.2019.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/29/2019] [Accepted: 10/27/2019] [Indexed: 01/21/2023]
|
46
|
Maternal energy insufficiency affects testicular development of the offspring in a swine model. Sci Rep 2019; 9:14533. [PMID: 31601864 PMCID: PMC6787339 DOI: 10.1038/s41598-019-51041-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
We determined the effects of insufficient maternal energy on testicular development in offspring in a swine model. Thirty-six sows were divided into control (CON) and low-energy diet (LE) groups during gestation. We observed that the number of Sertoli, germ, and Leydig cells in the offspring of the CON group were significantly higher than those in the LE group at 28 and 120 d after birth. Furthermore, the percentage of apoptotic testis cells was significantly higher in the offspring of the LE group than in the CON group. Transcriptome analysis of differentially expressed mRNAs and long noncoding RNAs in offspring testes indicated that these RNAs were mainly involved in lipid metabolism, apoptosis, cell proliferation, and some pivotal regulatory pathways. Results revealed that AMPK-PI3K-mTOR, MAPK, and oxidative phosphorylation signaling pathways play an important role in mediating the programming effect of insufficient maternal energy on testicular development, and that this effect occurs mainly at an early stage in life. mRNA and protein expression analyses confirmed the importance of certain signaling pathways in the regulation of testicular development. This study provides insights into the influence and possible mechanism underlying the effect of inadequate maternal energy intake on testicular development in the offspring.
Collapse
|
47
|
Souza NP, Arnold LL, Pennington KL, Nascimento E Pontes MG, Miot HA, de Camargo JLV, Cohen SM. Isolation and molecular characterization of spermatogonia from male Sprague-Dawley rats exposed in utero and postnatally to dibutyl phthalate or acrylamide. Toxicol Mech Methods 2019; 29:488-498. [PMID: 31050326 DOI: 10.1080/15376516.2019.1611981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The increased incidence of testicular disorders in young men and the possible influence of environmental chemicals, such as dibutyl phthalate (DBP) and acrylamide (AA), requires experimental models for identifying modes of action. Most published reproductive toxicologic studies use RNA samples from the total testis to evaluate testicular gene expression; however, analyses of isolated cell types could provide a more specific tool. Among testicular germ cells, spermatogonia are critical since they represent the onset of spermatogenesis. This study aimed, (1) to establish a technique for spermatogonia isolation; (2) to apply this isolation technique to verify possible gene expression alterations (Pou5f1, Kitlg, Mki-67, Bak1 and Spry4) in prepubertal post-natal day, (PND24) and pubertal (PND45) testes after in utero and postnatal exposure to DBP or AA. The technique was efficient for isolation of a majority of spermatogonia. In utero DBP exposure led to reduced litter body weight at birth, reduced anogenital distance of male pups on PND4, and increased frequency of male nipple retention on PND14 compared to controls. DBP-exposed relative testes weights were reduced only at PND24 compared to control but they did not differ at PND45. DBP-exposed animals showed reduced expression levels of Pou5f1 and Mki67 on PND24, and reduced expression of Pou5f1 and Spry4 on PND45. AA exposure reduced expression of Pou5f1, Mki67, and Spry4 at PND45 although not significantly. Our results suggest that DBP acts by reducing cell proliferation and impairing differentiation in prepubertal and pubertal testes.
Collapse
Affiliation(s)
- Nathália P Souza
- a Sao Paulo State University (UNESP), Botucatu Medical School, Botucatu Campus, Department of Pathology, Center for the Evaluation of the Environmental Impact on Human Health (TOXICAM) , Botucatu , Brazil
| | - Lora L Arnold
- b Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Karen L Pennington
- b Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Merielen G Nascimento E Pontes
- a Sao Paulo State University (UNESP), Botucatu Medical School, Botucatu Campus, Department of Pathology, Center for the Evaluation of the Environmental Impact on Human Health (TOXICAM) , Botucatu , Brazil
| | - Helio A Miot
- a Sao Paulo State University (UNESP), Botucatu Medical School, Botucatu Campus, Department of Pathology, Center for the Evaluation of the Environmental Impact on Human Health (TOXICAM) , Botucatu , Brazil
| | - João Lauro V de Camargo
- a Sao Paulo State University (UNESP), Botucatu Medical School, Botucatu Campus, Department of Pathology, Center for the Evaluation of the Environmental Impact on Human Health (TOXICAM) , Botucatu , Brazil
| | - Samuel M Cohen
- b Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , NE , USA.,c Havlik - Wall Professor of Oncologyan endowed chair at the University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
48
|
Maternal protein restriction differentially alters the expression of AQP1, AQP9 and VEGFr-2 in the epididymis of rat offspring. Int J Mol Sci 2019; 20:ijms20030469. [PMID: 30678254 PMCID: PMC6387270 DOI: 10.3390/ijms20030469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 01/13/2023] Open
Abstract
Background: Maternal protein restriction causes sperm alterations in the offspring, most of which are associated with epididymal functions. Because fluid reabsorption/secretion dynamics in the epididymal environment play important roles in the process of sperm maturation and concentration, we investigated the effects of maternal protein restriction on the expression of aquaporins (AQP1 and AQP9), vascular endothelial growth factor (VEGFa), and its receptor VEGFr-2 in different stages of postnatal epididymal development. Methods: Pregnant rats were divided into groups that received normoprotein (17% protein) and low-protein diets (6% protein) during gestation and lactation. After weaning, male rats only received the standard diet and were euthanized at the predetermined ages of 21, 44 and 120 days. Results: Maternal protein restriction decreased AQP1 and AQP9 expression in the initial segment and caput epididymis compared to the increased expression of these proteins observed in the corpus and cauda at all ages. Although protein restriction reduced the microvasculature density (MVD) on postnatal day (PND) 21 and 44, the MVD was unaltered on PND 120. Conclusions: Maternal protein restriction changed the structure or function of the offspring’s epididymis, specifically by affecting fluid dynamics and vasculogenesis in important stages of epididymis development.
Collapse
|
49
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Fürst P, Håkansson H, Halldorsson T, Lundebye AK, Pohjanvirta R, Rylander L, Smith A, van Loveren H, Waalkens-Berendsen I, Zeilmaker M, Binaglia M, Gómez Ruiz JÁ, Horváth Z, Christoph E, Ciccolallo L, Ramos Bordajandi L, Steinkellner H, Hoogenboom LR. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J 2018; 16:e05333. [PMID: 32625737 PMCID: PMC7009407 DOI: 10.2903/j.efsa.2018.5333] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of dioxins (PCDD/Fs) and DL-PCBs in feed and food. The data from experimental animal and epidemiological studies were reviewed and it was decided to base the human risk assessment on effects observed in humans and to use animal data as supportive evidence. The critical effect was on semen quality, following pre- and postnatal exposure. The critical study showed a NOAEL of 7.0 pg WHO2005-TEQ/g fat in blood sampled at age 9 years based on PCDD/F-TEQs. No association was observed when including DL-PCB-TEQs. Using toxicokinetic modelling and taking into account the exposure from breastfeeding and a twofold higher intake during childhood, it was estimated that daily exposure in adolescents and adults should be below 0.25 pg TEQ/kg bw/day. The CONTAM Panel established a TWI of 2 pg TEQ/kg bw/week. With occurrence and consumption data from European countries, the mean and P95 intake of total TEQ by Adolescents, Adults, Elderly and Very Elderly varied between, respectively, 2.1 to 10.5, and 5.3 to 30.4 pg TEQ/kg bw/week, implying a considerable exceedance of the TWI. Toddlers and Other Children showed a higher exposure than older age groups, but this was accounted for when deriving the TWI. Exposure to PCDD/F-TEQ only was on average 2.4- and 2.7-fold lower for mean and P95 exposure than for total TEQ. PCDD/Fs and DL-PCBs are transferred to milk and eggs, and accumulate in fatty tissues and liver. Transfer rates and bioconcentration factors were identified for various species. The CONTAM Panel was not able to identify reference values in most farm and companion animals with the exception of NOAELs for mink, chicken and some fish species. The estimated exposure from feed for these species does not imply a risk.
Collapse
|
50
|
Xu XY, Wu D, Xu SY, Che LQ, Fang ZF, Feng B, Li J, Wu CM, Lin Y. Comparison of microRNA transcriptomes reveals differential regulation of microRNAs in different-aged boars. Theriogenology 2018; 119:105-113. [DOI: 10.1016/j.theriogenology.2018.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
|