1
|
Muensterer OJ. Magnets in Paediatric Surgery. J Pediatr Surg 2025; 60:162042. [PMID: 39489680 DOI: 10.1016/j.jpedsurg.2024.162042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Magnetism, recognized in ancient Greece and China, is a fundamental physical force influencing numerous domains, including medicine and surgery. Historically, the medical use of magnets dates back over two millennia. As proof, the ancient Sanskrit medical textbook Sushruta Samhita describes the removal of a metallic arrow lodged in the flesh with a magnet. Modern uses span from diagnostic to therapeutic applications, including in paediatric surgery. High-field magnetism, utilized in Magnetic Resonance Imaging and Transcranial Magnetic Stimulation (TMS), shows promise for various medical conditions, including depression and neurodegenerative diseases. Despite controversy surrounding low-field magnetism, its potential remains a topic of interest. One of the applications in paediatric surgery that has been evaluated in a randomized controlled trial is magnetic acupuncture for supplementary treatment of postoperative pain. As most paediatric surgeons are well aware, the use of magnets also poses risks, particularly in children, where ingested magnets can cause severe gastrointestinal complications. Regulations have tightened in response to increasing cases of magnet ingestion-related injuries but more needs to be done to avoid injury. Currently, magnets play crucial roles in a variety of medical applications, including magnetic cell sorting and therapeutic devices. Notably, magnetic compression anastomosis, which uses magnets to facilitate luminal tissue joining, have seen significant advancements. Innovations include devices for oesophageal atresia repair, with recent studies showing promising results in animal models and early clinical trials. Future research should focus on optimizing magnetic devices, expanding their applications, and ensuring safety. The continued exploration of magnetism's effects on living tissues and the development of new magnetic technologies could revolutionize medical and surgical practices, particularly in paediatric care.
Collapse
Affiliation(s)
- Oliver J Muensterer
- Department of Paediatric Surgery, Dr. von Hauner Children's Hospital, LMU University Hospital, Lindwurmstrasse 4, 80337 Munich, Germany.
| |
Collapse
|
2
|
Henshaw DL, Philips A. A mechanistic understanding of human magnetoreception validates the phenomenon of electromagnetic hypersensitivity (EHS). Int J Radiat Biol 2024; 101:186-204. [PMID: 39652433 DOI: 10.1080/09553002.2024.2435329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Human electromagnetic hypersensitivity (EHS) or electrosensitivity (ES) symptoms in response to anthropogenic electromagnetic fields (EMFs) at levels below current international safety standards are generally considered to be nocebo effects by conventional medical science. In the wider field of magnetoreception in biology, our understanding of mechanisms and processes of magnetic field (MF) interactions is more advanced. METHODS We consulted a range of publication databases to identify the key advances in understanding of magnetoreception across the wide animal kingdom of life. RESULTS We examined primary MF/EMF sensing and subsequent coupling to the nervous system and the brain. Magnetite particles in our brains and other tissues can transduce MFs/EMFs, including at microwave frequencies. The radical pair mechanism (RPM) is accepted as the main basis of the magnetic compass in birds and other species, acting via cryptochrome protein molecules in the eye. In some cases, extraordinary sensitivity is observed, several thousand times below that of the geomagnetic field. Bird compass disorientation by radio frequency (RF) EMFs is known. CONCLUSIONS Interdisciplinary research has established that all forms of life can respond to MFs. Research shows that human cryptochromes exhibit magnetosensitivity. Most existing provocation studies have failed to confirm EHS as an environmental illness. We attribute this to a fundamental lack of understanding of the mechanisms and processes involved, which have resulted in the design of inappropriate and inadequate tests. We conclude that future research into EHS needs a quantum mechanistic approach on the basis of existing biological knowledge of the magnetosensitivity of living organisms.
Collapse
Affiliation(s)
- Denis L Henshaw
- Atmospheric Chemistry Group, School of Chemistry, University of Bristol, Bristol, UK
| | - Alasdair Philips
- Independent Scientist, Brambling, Beeswing, Dumfries, Scotland, UK
| |
Collapse
|
3
|
Yang CY, Meng Z, Yang K, He Z, Hou Z, Yang J, Lu J, Cao Z, Yang S, Chai Y, Zhao H, Zhao L, Sun X, Wang G, Wang X. External magnetic field non-invasively stimulates spinal cord regeneration in rat via a magnetic-responsive aligned fibrin hydrogel. Biofabrication 2023; 15:035022. [PMID: 37279745 DOI: 10.1088/1758-5090/acdbec] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023]
Abstract
Magnetic stimulation is becoming an attractive approach to promote neuroprotection, neurogenesis, axonal regeneration, and functional recovery in both the central nervous system and peripheral nervous system disorders owing to its painless, non-invasive, and deep penetration characteristics. Here, a magnetic-responsive aligned fibrin hydrogel (MAFG) was developed to import and amplify the extrinsic magnetic field (MF) locally to stimulate spinal cord regeneration in combination with the beneficial topographical and biochemical cues of aligned fibrin hydrogel (AFG). Magnetic nanoparticles (MNPs) were embedded uniformly in AFG during electrospinning to endow it magnetic-responsive feature, with saturation magnetization of 21.79 emu g-1. It is found that the MNPs under the MF could enhance cell proliferation and neurotrophin secretion of PC12 cellsin vitro. The MAFG that was implanted into a rat with 2 mm complete transected spinal cord injury (SCI) effectively enhanced neural regeneration and angiogenesis in the lesion area, thus leading to significant recovery of motor function under the MF (MAFG@MF). This study suggests a new multimodal tissue engineering strategy based on multifunctional biomaterials that deliver multimodal regulatory signals with the integration of aligned topography, biochemical cues, and extrinsic MF stimulation for spinal cord regeneration following severe SCI.
Collapse
Affiliation(s)
- Chun-Yi Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhe Meng
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Kaiyuan Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Zhijun He
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Zhaohui Hou
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jia Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jingsong Lu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zheng Cao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shuhui Yang
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yi Chai
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - He Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Guihuai Wang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
4
|
Gorobets S, Gorobets O, Sharai I, Polyakova T, Zablotskii V. Gradient Magnetic Field Accelerates Division of E. coli Nissle 1917. Cells 2023; 12:315. [PMID: 36672251 PMCID: PMC9857180 DOI: 10.3390/cells12020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Cell-cycle progression is regulated by numerous intricate endogenous mechanisms, among which intracellular forces and protein motors are central players. Although it seems unlikely that it is possible to speed up this molecular machinery by applying tiny external forces to the cell, we show that magnetic forcing of magnetosensitive bacteria reduces the duration of the mitotic phase. In such bacteria, the coupling of the cell cycle to the splitting of chains of biogenic magnetic nanoparticles (BMNs) provides a biological realization of such forcing. Using a static gradient magnetic field of a special spatial configuration, in probiotic bacteria E. coli Nissle 1917, we shortened the duration of the mitotic phase and thereby accelerated cell division. Thus, focused magnetic gradient forces exerted on the BMN chains allowed us to intervene in the processes of division and growth of bacteria. The proposed magnetic-based cell division regulation strategy can improve the efficiency of microbial cell factories and medical applications of magnetosensitive bacteria.
Collapse
Affiliation(s)
- Svitlana Gorobets
- Faculty of Biotechnology and Biotechnics, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 03056 Kyiv, Ukraine
| | - Oksana Gorobets
- Faculty of Physics and Mathematics, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 03056 Kyiv, Ukraine
- Institute of Magnetism of the National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, 03142 Kyiv, Ukraine
| | - Iryna Sharai
- Faculty of Physics and Mathematics, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 03056 Kyiv, Ukraine
- Institute of Magnetism of the National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, 03142 Kyiv, Ukraine
| | - Tatyana Polyakova
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 00 Prague, Czech Republic
| | - Vitalii Zablotskii
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 00 Prague, Czech Republic
- International Magnetobiology Frontier Research Center (iMFRC), Science Island, Hefei 230000, China
| |
Collapse
|
5
|
Fleming CL, Golzan M, Gunawan C, McGrath KC. Systematic and Bibliometric Analysis of Magnetite Nanoparticles and Their Applications in (Biomedical) Research. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200009. [PMID: 36618105 PMCID: PMC9818080 DOI: 10.1002/gch2.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/09/2022] [Indexed: 06/17/2023]
Abstract
Recent reports show air pollutant magnetite nanoparticles (MNPs) in the brains of people with Alzheimer's disease (AD). Considering various field applications of MNPs because of developments in nanotechnology, the aim of this study is to identify major trends and data gaps in research on magnetite to allow for relevant environmental and health risk assessment. Herein, a bibliometric and systematic analysis of the published magnetite literature (n = 31 567) between 1990 to 2020 is completed. Following appraisal, publications (n = 244) are grouped into four time periods with the main research theme identified for each as 1990-1997 "oxides," 1998-2005 "ferric oxide," 2006-2013 "pathology," and 2014-2020 "animal model." Magnetite formation and catalytic activity dominate the first two time periods, with the last two focusing on the exploitation of nanoparticle engineering. Japan and China have the highest number of citations for articles published. Longitudinal analysis indicates that magnetite research for the past 30 years shifted from environmental and industrial applications, to biomedical and its potential toxic effects. Therefore, whilst this study presents the research profile of different countries, the development in research on MNPs, it also reveals that further studies on the effects of MNPs on human health is much needed.
Collapse
Affiliation(s)
- Charlotte L. Fleming
- School of Life SciencesFaculty of ScienceUniversity of Technology SydneySydneyNSW2008Australia
| | - Mojtaba Golzan
- Vision Science GroupGraduate School of HealthUniversity of Technology SydneySydneyNSW2008Australia
| | - Cindy Gunawan
- Australian Institute for Microbiology and InfectionUniversity of Technology SydneySydneyNSW2008Australia
| | - Kristine C. McGrath
- School of Life SciencesFaculty of ScienceUniversity of Technology SydneySydneyNSW2008Australia
| |
Collapse
|
6
|
Makinistian L, Zastko L, Tvarožná A, Días LE, Belyaev I. Static magnetic fields from earphones: Detailed measurements plus some open questions. ENVIRONMENTAL RESEARCH 2022; 214:113907. [PMID: 35870506 DOI: 10.1016/j.envres.2022.113907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Earphones (EP) are a worldwide, massively adopted product, assumed to be innocuous provided the recommendations on sound doses limits are followed. Nevertheless, sound is not the only physical stimulus that derives from EP use, since they include a built-in permanent magnet from which a static magnetic field (SMF) originates. We performed 2D maps of the SMF at several distances from 6 models of in-ear EP, showing that they produce an exposure that spans from ca. 20 mT on their surface down to tens of μT in the inner ear. The numerous reports of bioeffects elicited by SMF in that range of intensities (applied both acutely and chronically), together with the fact that there is no scientific consensus over the possible mechanisms of interaction with living tissues, suggest that caution could be recommendable. In addition, more research is warranted on the possible effects of the combination of SMF with extremely low frequency and radiofrequency fields, which has so far been scarcely studied. Overall, while several open questions about bioeffects of SMF remain to be addressed by the scientific community, we find sensible to suggest that the use of air-tube earphones is probably the more conservative, cautious choice.
Collapse
Affiliation(s)
- L Makinistian
- Department of Physics, Universidad Nacional de San Luis (UNSL), San Luis, Argentina; Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis (UNSL)-CONICET, San Luis, Argentina.
| | - L Zastko
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Laboratory Medicine, Faculty of Health Care, Catholic University in Ružomberok, Ružomberok, Slovakia
| | - A Tvarožná
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - L E Días
- Department of Physics, Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - I Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
7
|
Belpomme D, Irigaray P. Why electrohypersensitivity and related symptoms are caused by non-ionizing man-made electromagnetic fields: An overview and medical assessment. ENVIRONMENTAL RESEARCH 2022; 212:113374. [PMID: 35537497 DOI: 10.1016/j.envres.2022.113374] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Much of the controversy over the cause of electrohypersensitivity (EHS) lies in the absence of recognized clinical and biological criteria for a widely accepted diagnosis. However, there are presently sufficient data for EHS to be acknowledged as a distinctly well-defined and objectively characterized neurologic pathological disorder. Because we have shown that 1) EHS is frequently associated with multiple chemical sensitivity (MCS) in EHS patients, and 2) that both individualized disorders share a common pathophysiological mechanism for symptom occurrence; it appears that EHS and MCS can be identified as a unique neurologic syndrome, regardless their causal origin. In this overview we distinguish the etiology of EHS itself from the environmental causes that trigger pathophysiological changes and clinical symptoms after EHS has occurred. Contrary to present scientifically unfounded claims, we indubitably refute the hypothesis of a nocebo effect to explain the genesis of EHS and its presentation. We as well refute the erroneous concept that EHS could be reduced to a vague and unproven "functional impairment". To the contrary, we show here there are objective pathophysiological changes and health effects induced by electromagnetic field (EMF) exposure in EHS patients and most of all in healthy subjects, meaning that excessive non-thermal anthropogenic EMFs are strongly noxious for health. In this overview and medical assessment we focus on the effects of extremely low frequencies, wireless communications radiofrequencies and microwaves EMF. We discuss how to better define and characterize EHS. Taken into consideration the WHO proposed causality criteria, we show that EHS is in fact causally associated with increased exposure to man-made EMF, and in some cases to marketed environmental chemicals. We therefore appeal to all governments and international health institutions, particularly the WHO, to urgently consider the growing EHS-associated pandemic plague, and to acknowledge EHS as a mainly new real EMF causally-related pathology.
Collapse
Affiliation(s)
- Dominique Belpomme
- Medical Oncology Department, Paris University, Paris, France; European Cancer and Environment Research Institute (ECERI), Brussels, Belgium.
| | - Philippe Irigaray
- European Cancer and Environment Research Institute (ECERI), Brussels, Belgium
| |
Collapse
|
8
|
Ribeiro LW, Pietri M, Ardila-Osorio H, Baudry A, Boudet-Devaud F, Bizingre C, Arellano-Anaya ZE, Haeberlé AM, Gadot N, Boland S, Devineau S, Bailly Y, Kellermann O, Bencsik A, Schneider B. Titanium dioxide and carbon black nanoparticles disrupt neuronal homeostasis via excessive activation of cellular prion protein signaling. Part Fibre Toxicol 2022; 19:48. [PMID: 35840975 PMCID: PMC9284759 DOI: 10.1186/s12989-022-00490-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background Epidemiological emerging evidence shows that human exposure to some nanosized materials present in the environment would contribute to the onset and/or progression of Alzheimer’s disease (AD). The cellular and molecular mechanisms whereby nanoparticles would exert some adverse effects towards neurons and take part in AD pathology are nevertheless unknown. Results Here, we provide the prime evidence that titanium dioxide (TiO2) and carbon black (CB) nanoparticles (NPs) bind the cellular form of the prion protein (PrPC), a plasma membrane protein well known for its implication in prion diseases and prion-like diseases, such as AD. The interaction between TiO2- or CB-NPs and PrPC at the surface of neuronal cells grown in culture corrupts PrPC signaling function. This triggers PrPC-dependent activation of NADPH oxidase and subsequent production of reactive oxygen species (ROS) that alters redox equilibrium. Through PrPC interaction, NPs also promote the activation of 3-phosphoinositide-dependent kinase 1 (PDK1), which in turn provokes the internalization of the neuroprotective TACE α-secretase. This diverts TACE cleavage activity away from (i) TNFα receptors (TNFR), whose accumulation at the plasma membrane augments the vulnerability of NP-exposed neuronal cells to TNFα -associated inflammation, and (ii) the amyloid precursor protein APP, leading to overproduction of neurotoxic amyloid Aβ40/42 peptides. The silencing of PrPC or the pharmacological inhibition of PDK1 protects neuronal cells from TiO2- and CB-NPs effects regarding ROS production, TNFα hypersensitivity, and Aβ rise. Finally, we show that dysregulation of the PrPC-PDK1-TACE pathway likely occurs in the brain of mice injected with TiO2-NPs by the intra-cerebro-ventricular route as we monitor a rise of TNFR at the cell surface of several groups of neurons located in distinct brain areas. Conclusion Our in vitro and in vivo study thus posits for the first time normal cellular prion protein PrPC as being a neuronal receptor of TiO2- and CB-NPs and identifies PrPC-coupled signaling pathways by which those nanoparticles alter redox equilibrium, augment the intrinsic sensitivity of neurons to neuroinflammation, and provoke a rise of Aβ peptides. By identifying signaling cascades dysregulated by TiO2- and CB-NPs in neurons, our data shed light on how human exposure to some NPs might be related to AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00490-x.
Collapse
Affiliation(s)
- Luiz W Ribeiro
- INSERM, UMR-S 1124, 75006, Paris, France.,UMR-S 1124, Université Paris Cité, 75006, Paris, France
| | - Mathéa Pietri
- INSERM, UMR-S 1124, 75006, Paris, France.,UMR-S 1124, Université Paris Cité, 75006, Paris, France
| | - Hector Ardila-Osorio
- INSERM, UMR-S 1124, 75006, Paris, France.,UMR-S 1124, Université Paris Cité, 75006, Paris, France
| | - Anne Baudry
- INSERM, UMR-S 1124, 75006, Paris, France.,UMR-S 1124, Université Paris Cité, 75006, Paris, France
| | - François Boudet-Devaud
- INSERM, UMR-S 1124, 75006, Paris, France.,UMR-S 1124, Université Paris Cité, 75006, Paris, France
| | - Chloé Bizingre
- INSERM, UMR-S 1124, 75006, Paris, France.,UMR-S 1124, Université Paris Cité, 75006, Paris, France
| | - Zaira E Arellano-Anaya
- INSERM, UMR-S 1124, 75006, Paris, France.,UMR-S 1124, Université Paris Cité, 75006, Paris, France
| | - Anne-Marie Haeberlé
- Institut Des Neurosciences Cellulaires Et Intégratives, CNRS UPR 3212, Université de Strasbourg, 67084, Strasbourg, France
| | - Nicolas Gadot
- Plateforme Anatomopathologie Recherche, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, Université de Lyon, 69373, Lyon, France
| | - Sonja Boland
- CNRS UMR 8251, Unité de Biologie Fonctionnelle Et Adaptative, Université Paris Cité, 75013, Paris, France
| | - Stéphanie Devineau
- CNRS UMR 8251, Unité de Biologie Fonctionnelle Et Adaptative, Université Paris Cité, 75013, Paris, France
| | - Yannick Bailly
- Institut Des Neurosciences Cellulaires Et Intégratives, CNRS UPR 3212, Université de Strasbourg, 67084, Strasbourg, France
| | - Odile Kellermann
- INSERM, UMR-S 1124, 75006, Paris, France.,UMR-S 1124, Université Paris Cité, 75006, Paris, France
| | - Anna Bencsik
- ANSES Laboratoire de Lyon, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Claude Bernard Lyon 1, 69364, Lyon, France
| | - Benoit Schneider
- INSERM, UMR-S 1124, 75006, Paris, France. .,UMR-S 1124, Université Paris Cité, 75006, Paris, France.
| |
Collapse
|
9
|
Zastko L, Makinistian L, Tvarožná A, Ferreyra FL, Belyaev I. Mapping of static magnetic fields near the surface of mobile phones. Sci Rep 2021; 11:19002. [PMID: 34561477 PMCID: PMC8463716 DOI: 10.1038/s41598-021-98083-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022] Open
Abstract
Whether the use of mobile phones (MP) represents a health hazard is still under debate. As part of the attempts to resolve this uncertainty, there has been an extensive characterization of the electromagnetic fields MP emit and receive. While the radiofrequencies (RF) have been studied exhaustively, the static magnetic fields (SMF) have received much less attention, regardless of the fact there is a wealth of evidence demonstrating their biological effects. We performed 2D maps of the SMF at several distances from the screen of 5 MP (models between 2013 and 2018) using a tri-axis magnetometer. We built a mathematical model to fit our measurements, extrapolated them down to the phones' screen, and calculated the SMF on the skin of a 3D head model, showing that exposure is in the µT to mT range. Our literature survey prompts the need of further research not only on the biological effects of SMF and their gradients, but also on their combination with extremely low frequency (ELF) and RF fields. The study of combined fields (SMF, ELF, and RF) as similar as possible to the ones that occur in reality should provide a more sensible assessment of potential risks.
Collapse
Affiliation(s)
- L Zastko
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - L Makinistian
- Department of Physics, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, CP5700, San Luis, San Luis, Argentina. .,Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis (UNSL-CONICET), San Luis, Argentina.
| | - A Tvarožná
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - F L Ferreyra
- Department of Physics, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, CP5700, San Luis, San Luis, Argentina
| | - I Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
10
|
Serrano G, Miranda-Ostojic C, Ferrada P, Wulff-Zotelle C, Maureira A, Fuentealba E, Gallardo K, Zapata M, Rivas M. Response to Static Magnetic Field-Induced Stress in Scenedesmus obliquus and Nannochloropsis gaditana. Mar Drugs 2021; 19:md19090527. [PMID: 34564189 PMCID: PMC8468276 DOI: 10.3390/md19090527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 01/20/2023] Open
Abstract
Magnetic fields in biological systems is a promising research field; however, their application for microalgae has not been fully exploited. This work aims to measure the enzymatic activity and non-enzymatic activity of two microalgae species in terms of superoxide dismutase (SOD), catalase (CAT), and carotenoids, respectively, in response to static magnetic fields-induced stress. Two magnet configurations (north and south) and two exposure modes (continuous and pulse) were applied. Two microalgae species were considered, the Scenedesmus obliquus and Nannochloropsis gaditana. The SOD activity increased by up to 60% in S. obliquus under continuous exposure. This trend was also found for CAT in the continuous mode. Conversely, under the pulse mode, its response was hampered as the SOD and CAT were reduced. For N. gaditana, SOD increased by up to 62% with the south configuration under continuous exposure. In terms of CAT, there was a higher activity of up to 19%. Under the pulsed exposure, SOD activity was up to 115%. The CAT in this microalga was increased by up to 29%. For N. gaditana, a significant increase of over 40% in violaxanthin production was obtained compared to the control, when the microalgae were exposed to SMF as a pulse. Depending on the exposure mode and species, this methodology can be used to produce oxidative stress and obtain an inhibitory or enhanced response in addition to the significant increase in the production of antioxidant pigments.
Collapse
Affiliation(s)
- Génesis Serrano
- Laboratorio de Biotecnología Ambiental Aplicada, Departamento de Biotecnología, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1270300, Chile; (G.S.); (C.M.-O.); (A.M.); (M.Z.)
| | - Carol Miranda-Ostojic
- Laboratorio de Biotecnología Ambiental Aplicada, Departamento de Biotecnología, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1270300, Chile; (G.S.); (C.M.-O.); (A.M.); (M.Z.)
| | - Pablo Ferrada
- Centro de Desarrollo Energético Antofagasta, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1270300, Chile;
- Correspondence: (P.F.); (M.R.)
| | - Cristian Wulff-Zotelle
- Laboratorio de Biología Celular, Molecular y Genética, Departamento Biomédico, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1270300, Chile;
| | - Alejandro Maureira
- Laboratorio de Biotecnología Ambiental Aplicada, Departamento de Biotecnología, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1270300, Chile; (G.S.); (C.M.-O.); (A.M.); (M.Z.)
| | - Edward Fuentealba
- Centro de Desarrollo Energético Antofagasta, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1270300, Chile;
| | - Karem Gallardo
- Centro de Investigación Tecnológica de Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Av. Angamos 0610, Antofagasta 1270709, Chile;
| | - Manuel Zapata
- Laboratorio de Biotecnología Ambiental Aplicada, Departamento de Biotecnología, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1270300, Chile; (G.S.); (C.M.-O.); (A.M.); (M.Z.)
| | - Mariella Rivas
- Laboratorio de Biotecnología Ambiental Aplicada, Departamento de Biotecnología, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1270300, Chile; (G.S.); (C.M.-O.); (A.M.); (M.Z.)
- Correspondence: (P.F.); (M.R.)
| |
Collapse
|
11
|
Gárate-Vélez L, Escudero-Lourdes C, Salado-Leza D, González-Sánchez A, Alvarado-Morales I, Bahena D, Labrada-Delgado GJ, Rodríguez-López JL. Anthropogenic Iron Oxide Nanoparticles Induce Damage to Brain Microvascular Endothelial Cells Forming the Blood-Brain Barrier. J Alzheimers Dis 2021; 76:1527-1539. [PMID: 32716353 DOI: 10.3233/jad-190929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Iron nanoparticles, mainly in magnetite phase (Fe3O4 NPs), are released to the environment in areas with high traffic density and braking frequency. Fe3O4 NPs were found in postmortem human brains and are assumed to get directly into the brain through the olfactory nerve. However, these pollution-derived NPs may also translocate from the lungs to the bloodstream and then, through the blood-brain barrier (BBB), into the brain inducing oxidative and inflammatory responses that contribute to neurodegeneration. OBJECTIVE To describe the interaction and toxicity of pollution-derived Fe3O4 NPs on primary rat brain microvascular endothelial cells (rBMECs), main constituents of in vitro BBB models. METHODS Synthetic bare Fe3O4 NPs that mimic the environmental ones (miFe3O4) were synthesized by co-precipitation and characterized using complementary techniques. The rBMECs were cultured in Transwell® plates. The NPs-cell interaction was evaluated through transmission electron microscopy and standard colorimetric in vitro assays. RESULTS The miFe3O4 NPs, with a mean diameter of 8.45±0.14 nm, presented both magnetite and maghemite phases, and showed super-paramagnetic properties. Results suggest that miFe3O4 NPs are internalized by rBMECs through endocytosis and that they are able to cross the cells monolayer. The lowest miFe3O4 NPs concentration tested induced mid cytotoxicity in terms of 1) membrane integrity (LDH release) and 2) metabolic activity (MTS transformation). CONCLUSION Pollution-derived Fe3O4 NPs may interact and cross the microvascular endothelial cells forming the BBB and cause biological damage.
Collapse
Affiliation(s)
- Lorena Gárate-Vélez
- Advanced Materials Department, IPICYT, A.C., San Luis Potosí, S.L.P., México
| | - Claudia Escudero-Lourdes
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Centro de Investigación y Estudios de Posgrado (CIEP), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., México
| | - Daniela Salado-Leza
- Cátedras CONACYT, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., México
| | | | - Ildemar Alvarado-Morales
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Centro de Investigación y Estudios de Posgrado (CIEP), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., México
| | - Daniel Bahena
- Laboratorio Avanzado de Nanoscopía Electrónica, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Gustavo A. Madero, México
| | - Gladis Judith Labrada-Delgado
- Advanced Materials Department, IPICYT, A.C., San Luis Potosí, S.L.P., México.,National Laboratory Research for Nanoscience and Nanotechnology (LINAN), IPICYT, A.C., San Luis Potosí, S.L.P., México
| | | |
Collapse
|
12
|
Calderón-Garcidueñas L, González-Maciel A, Reynoso-Robles R, Hammond J, Kulesza R, Lachmann I, Torres-Jardón R, Mukherjee PS, Maher BA. Quadruple abnormal protein aggregates in brainstem pathology and exogenous metal-rich magnetic nanoparticles (and engineered Ti-rich nanorods). The substantia nigrae is a very early target in young urbanites and the gastrointestinal tract a key brainstem portal. ENVIRONMENTAL RESEARCH 2020; 191:110139. [PMID: 32888951 DOI: 10.1016/j.envres.2020.110139] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Fine particulate air pollution (PM2.5) exposures are linked with Alzheimer's and Parkinson's diseases (AD,PD). AD and PD neuropathological hallmarks are documented in children and young adults exposed lifelong to Metropolitan Mexico City air pollution; together with high frontal metal concentrations (especially iron)-rich nanoparticles (NP), matching air pollution combustion- and friction-derived particles. Here, we identify aberrant hyperphosphorylated tau, ɑ synuclein and TDP-43 in the brainstem of 186 Mexico City 27.29 ± 11.8y old residents. Critically, substantia nigrae (SN) pathology seen in mitochondria, endoplasmic reticulum and neuromelanin (NM) is co-associated with the abundant presence of exogenous, Fe-, Al- and Ti-rich NPs.The SN exhibits early and progressive neurovascular unit damage and mitochondria and NM are associated with metal-rich NPs including exogenous engineered Ti-rich nanorods, also identified in neuroenteric neurons. Such reactive, cytotoxic and magnetic NPs may act as catalysts for reactive oxygen species formation, altered cell signaling, and protein misfolding, aggregation and fibril formation. Hence, pervasive, airborne and environmental, metal-rich and magnetic nanoparticles may be a common denominator for quadruple misfolded protein neurodegenerative pathologies affecting urbanites from earliest childhood. The substantia nigrae is a very early target and the gastrointestinal tract (and the neuroenteric system) key brainstem portals. The ultimate neural damage and neuropathology (Alzheimer's, Parkinson's and TDP-43 pathology included) could depend on NP characteristics and the differential access and targets achieved via their portals of entry. Thus where you live, what air pollutants you are exposed to, what you are inhaling and swallowing from the air you breathe,what you eat, how you travel, and your occupational longlife history are key. Control of NP sources becomes critical.
Collapse
Affiliation(s)
| | | | | | - Jessica Hammond
- Centre for Environmental Magnetism and Paleomagnetism, Lancaster Environment Centre, University of Lancaster, Lancaster, LA1 4YQ, UK
| | - Randy Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, UNAM, Mexico City, 04510, Mexico
| | | | - Barbara A Maher
- Centre for Environmental Magnetism and Paleomagnetism, Lancaster Environment Centre, University of Lancaster, Lancaster, LA1 4YQ, UK
| |
Collapse
|
13
|
Maher BA, González-Maciel A, Reynoso-Robles R, Torres-Jardón R, Calderón-Garcidueñas L. Iron-rich air pollution nanoparticles: An unrecognised environmental risk factor for myocardial mitochondrial dysfunction and cardiac oxidative stress. ENVIRONMENTAL RESEARCH 2020; 188:109816. [PMID: 32593898 PMCID: PMC7306213 DOI: 10.1016/j.envres.2020.109816] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/14/2020] [Accepted: 06/09/2020] [Indexed: 05/24/2023]
Abstract
Exposure to particulate air pollution is a major environmental risk factor for cardiovascular mortality and morbidity, on a global scale. Both acute and chronic cardiovascular impacts have so far been attributed to particulate-mediated oxidative stress in the lung and/or via 'secondary' pathways, including endothelial dysfunction, and inflammation. However, increasing evidence indicates the translocation of inhaled nanoparticles to major organs via the circulation. It is essential to identify the composition and intracellular targets of such particles, since these are likely to determine their toxicity and consequent health impacts. Of potential major concern is the abundant presence of iron-rich air pollution nanoparticles, emitted from a range of industry and traffic-related sources. Bioreactive iron can catalyse formation of damaging reactive oxygen species, leading to oxidative stress and cell damage or death. Here, we identify for the first time, in situ, that exogenous nanoparticles (~15-40 nm diameter) within myocardial mitochondria of young, highly-exposed subjects are dominantly iron-rich, and co-associated with other reactive metals including aluminium and titanium. These rounded, electrodense nanoparticles (up to ~ 10 x more abundant than in lower-pollution controls) are located within abnormal myocardial mitochondria (e.g. deformed cristae; ruptured membranes). Measurements of an oxidative stress marker, PrPC and an endoplasmic reticulum stress marker, GRP78, identify significant ventricular up-regulation in the highly-exposed vs lower-pollution controls. In shape/size/composition, the within-mitochondrial particles are indistinguishable from the iron-rich, combustion- and friction-derived nanoparticles prolific in roadside/urban environments, emitted from traffic/industrial sources. Incursion of myocardial mitochondria by inhaled iron-rich air pollution nanoparticles thus appears associated with mitochondrial dysfunction, and excess formation of reactive oxygen species through the iron-catalyzed Fenton reaction. Ventricular oxidative stress, as indicated by PrPC and GRP78 up-regulation, is evident even in children/young adults with minimal risk factors and no co-morbidities. These new findings indicate that myocardial iron overload resulting from inhalation of airborne, metal-rich nanoparticles is a plausible and modifiable environmental risk factor for cardiac oxidative stress and cardiovascular disease, on an international scale.
Collapse
Affiliation(s)
- B A Maher
- Centre for Environmental Magnetism and Palaeomagnetism, Lancaster Environment Centre, University of Lancaster, LA1 4YQ, UK.
| | | | | | - R Torres-Jardón
- Centro de Ciencias de La Atmósfera, Universidad Nacional Autónoma de México,04310, Ciudad de México, Mexico
| | - L Calderón-Garcidueñas
- The University of Montana, Missoula, MT, 59812, USA; Universidad Del Valle de México, 14370, Mexico
| |
Collapse
|
14
|
Farcas CG, Macasoi I, Pinzaru I, Chirita M, Chirita Mihaila MC, Dehelean C, Avram S, Loghin F, Mocanu L, Rotaru V, Ieta A, Ercuta A, Coricovac D. Controlled Synthesis and Characterization of Micrometric Single Crystalline Magnetite With Superparamagnetic Behavior and Cytocompatibility/Cytotoxicity Assessments. Front Pharmacol 2020; 11:410. [PMID: 32317973 PMCID: PMC7147350 DOI: 10.3389/fphar.2020.00410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
A new class of magnetite (Fe3O4) particles, coined as “Single Crystalline Micrometric Iron Oxide Particles” (SCMIOPs), were obtained by hydrothermal synthesis. Both the single Fe3O4 phase content and the particle sizes range, from 1 µm to 30 µm, can be controlled by synthesis. The notable finding states that these particles exhibit vanishing remanent magnetization (σr=0.28 emu/g) and coercive force (Hc=1.5 Oe), which indicate a superparamagnetic-like behavior (unexpected at micrometric particles size), and remarkably high saturation magnetization (σs=95.5 emu/g), what ensures strong magnetic response, and the lack of agglomeration after the magnetic field removal. These qualities make such particles candidates for biomedical applications, to be used instead of magnetic nanoparticles which inevitably involve some drawbacks like aglommeration and insufficient magnetic response. In this sense, cytocompatibility/cytotoxicity tests were performed on human cells, and the results have clearly indicated that SCMIOPs are cytocompatible for healthy cell lines HaCaT (human keratinocytes) and HEMa (primary epidermal melanocytes) and cytotoxic for neoplastic cell lines A375 (human melanoma) and B164A5 (murine melanoma) in a dose-dependent manner.
Collapse
Affiliation(s)
- Claudia Geanina Farcas
- Department of Toxicology, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Ioana Macasoi
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Marius Chirita
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Marius Constantin Chirita Mihaila
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Max F. Prutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Vienna, Austria.,Quantum Optics, Quantum Nanophysics and Quantum Information, Faculty of Physics, University of Vienna, Vienna, Austria
| | - Cristina Dehelean
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Stefana Avram
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Liviu Mocanu
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Virgil Rotaru
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Adrian Ieta
- Electrical and Computer Science Department SUNY Oswego, Oswego, NY, United States
| | - Aurel Ercuta
- Faculty of Physics, West University of Timisoara, Timisoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
15
|
Murros K, Wasiljeff J, Macías-Sánchez E, Faivre D, Soinne L, Valtonen J, Pohja M, Saari P, Pesonen LJ, Salminen JM. Magnetic Nanoparticles in Human Cervical Skin. Front Med (Lausanne) 2019; 6:123. [PMID: 31245375 PMCID: PMC6563768 DOI: 10.3389/fmed.2019.00123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/16/2019] [Indexed: 01/18/2023] Open
Abstract
Magnetic iron oxide nanoparticles, magnetite/maghemite, have been identified in human tissues, including the brain, meninges, heart, liver, and spleen. As these nanoparticles may play a role in the pathogenesis of neurodegenerative diseases, a pilot study explored the occurrence of these particles in the cervical (neck) skin of 10 patients with Parkinson's disease and 10 healthy controls. Magnetometry and transmission electron microscopy analyses revealed magnetite/maghemite nanoparticles in the skin samples of every study participant. Regarding magnetite/maghemite concentrations of the single-domain particles, no significant between-group difference was emerged. In low-temperature magnetic measurement, a magnetic anomaly at ~50 K was evident mainly in the dermal samples of the Parkinson group. This anomaly was larger than the effect related to the magnetic ordering of molecular oxygen. The temperature range of the anomaly, and the size-range of magnetite/maghemite, both refute the idea of magnetic ordering of any iron phase other than magnetite. We propose that the explanation for the finding is interaction between clusters of superparamagnetic and single-domain-sized nanoparticles. The source and significance of these particles remains speculative.
Collapse
Affiliation(s)
- Kari Murros
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Joonas Wasiljeff
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Elena Macías-Sánchez
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,CEA, CNRS, BIAM, Aix-Marseille University, Cadarache, France
| | - Lauri Soinne
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Jussi Valtonen
- Department of Plastic Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Marjatta Pohja
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Pekka Saari
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Lauri J Pesonen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Johanna M Salminen
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.,Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Khan S, Cohen D. Using the magnetoencephalogram to noninvasively measure magnetite in the living human brain. Hum Brain Mapp 2018; 40:1654-1665. [PMID: 30457688 PMCID: PMC6587731 DOI: 10.1002/hbm.24477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 12/03/2022] Open
Abstract
During the past several decades there has been much interest in the existence of magnetite particles in the human brain and their accumulation with age. These particles also appear to play an important role in neurodegenerative diseases of the brain. However, up to now the amount and distribution of these particles has been measured only in post‐mortem brain tissue. Although in‐vivo MRI measurements do show iron compounds generally, MRI cannot separate them according to their magnetic phases, which are associated with their chemical interactions. In contrast, we here offer a new noninvasive, in‐vivo method which is selectively sensitive only to particles which can be strongly magnetized. We magnetize these particles with a strong magnetic field through the head, and then measure the resulting magnetic fields, using the dcMagnetoencephalogram (dcMEG). From these data, the mass and locations of the particles can be estimated, using a distributed inverse solution. To test the method, we measured 11 healthy male subjects (ages 19–89 year). Accumulation of magnetite, in the hippocampal formation or nearby structures, was observed in the older men. These in‐vivo findings agree with reports of post‐mortem measurements of their locations, and of their accumulation with age. Thus, our findings allow in‐vivo measurement of magnetite in the human brain, and possibly open the door for new studies of neurodegenerative diseases of the brain.
Collapse
Affiliation(s)
- Sheraz Khan
- Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts
| | - David Cohen
- Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts.,Francis Bitter Magnet Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
17
|
Zhang H, Chen Z, Wu J, Chen N, Xu W, Li T, Liu S. Laser stimulating ST36 with optical fiber induce blood component changes in mice: a Raman spectroscopy study. JOURNAL OF BIOPHOTONICS 2018; 11:e201700262. [PMID: 29446873 DOI: 10.1002/jbio.201700262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
ST36 is a commonly-used acupoint in traditional Chinese medicine (TCM) for treatment of inflammations, pains and gastrointestinal disturbs. For decades, the low power laser acupuncture has been widely applied as an alternative therapy to traditional metal needle acupuncture and achieved relatively fine therapeutic effect for ST36-related symptoms with reduction of uncomfortableness and infection risks. However its disadvantages of low penetrativity and lack of manipulation skills limit its potential performance. An optical fiber laser acupuncture introduced by the previous study combines traditional needling acupuncture and the laser stimulation together, making a stronger therapeutic effect and showing a potential value in clinical application. To evaluate its acupunctural effect on blood, mice are taken as experimental model and Raman spectroscopic technique is used to analysis the changes of blood components after stimulating on ST36. The results show that both the traditional needling acupuncture and optical fiber acupuncture could lead to some spectral changes of blood in mice. This study explores the optical fiber acupuncture's effect on blood in mice using Raman spectroscopy technique for mechanism of acupuncture therapy.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Zhenyi Chen
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Jiping Wu
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Na Chen
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Wenjie Xu
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Taihao Li
- Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing, China
| | - Shupeng Liu
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| |
Collapse
|
18
|
Goychuk I. Sensing Magnetic Fields with Magnetosensitive Ion Channels. SENSORS (BASEL, SWITZERLAND) 2018; 18:E728. [PMID: 29495645 PMCID: PMC5877195 DOI: 10.3390/s18030728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/23/2022]
Abstract
[-15]Magnetic nanoparticles are met across many biological species ranging from magnetosensitive bacteria, fishes, bees, bats, rats, birds, to humans. They can be both of biogenetic origin and due to environmental contamination, being either in paramagnetic or ferromagnetic state. The energy of such naturally occurring single-domain magnetic nanoparticles can reach up to 10-20 room k B T in the magnetic field of the Earth, which naturally led to supposition that they can serve as sensory elements in various animals. This work explores within a stochastic modeling framework a fascinating hypothesis of magnetosensitive ion channels with magnetic nanoparticles serving as sensory elements, especially, how realistic it is given a highly dissipative viscoelastic interior of living cells and typical sizes of nanoparticles possibly involved.
Collapse
Affiliation(s)
- Igor Goychuk
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
19
|
Gorobets O, Gorobets S, Koralewski M. Physiological origin of biogenic magnetic nanoparticles in health and disease: from bacteria to humans. Int J Nanomedicine 2017; 12:4371-4395. [PMID: 28652739 PMCID: PMC5476634 DOI: 10.2147/ijn.s130565] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The discovery of biogenic magnetic nanoparticles (BMNPs) in the human brain gives a strong impulse to study and understand their origin. Although knowledge of the subject is increasing continuously, much remains to be done for further development to help our society fight a number of pathologies related to BMNPs. This review provides an insight into the puzzle of the physiological origin of BMNPs in organisms of all three domains of life: prokaryotes, archaea, and eukaryotes, including humans. Predictions based on comparative genomic studies are presented along with experimental data obtained by physical methods. State-of-the-art understanding of the genetic control of biomineralization of BMNPs and their properties are discussed in detail. We present data on the differences in BMNP levels in health and disease (cancer, neurodegenerative disorders, and atherosclerosis), and discuss the existing hypotheses on the biological functions of BMNPs, with special attention paid to the role of the ferritin core and apoferritin.
Collapse
Affiliation(s)
- Oksana Gorobets
- National Technical University of Ukraine (Igor Sikorsky Kyiv Polytechnic Institute)
- Institute of Magnetism, National Academy of Sciences, Kiev, Ukraine
| | - Svitlana Gorobets
- National Technical University of Ukraine (Igor Sikorsky Kyiv Polytechnic Institute)
| | | |
Collapse
|
20
|
Scholkmann F, Miscio G, Tarquini R, Bosi A, Rubino R, di Mauro L, Mazzoccoli G. The circadecadal rhythm of oscillation of umbilical cord blood parameters correlates with geomagnetic activity - An analysis of long-term measurements (1999-2011). Chronobiol Int 2016; 33:1136-1147. [PMID: 27409251 DOI: 10.1080/07420528.2016.1202264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recently, we have shown that the contents of total nucleated cells (TNCs) and CD34+ hematopoietic stem and progenitor cells (CD34+ HSPCs) as well as the cord blood volume (CBV) in umbilical cord blood (UCB) show a circadecadal (~10 years) rhythm of oscillation. This observation was based on an analysis of 17,936 cord blood donations collected during 1999-2011. The aim of the present study was to investigate whether this circadecadal rhythm of oscillation in TNCs, CD34+ HSPCs and CBV is related to geomagnetic activity. For the analysis, the yearly averages of TNCs, CD34+ HSPCs and CBV in UCB were correlated with geomagnetic activity (Dcx index). Our analysis revealed that (i) all three UCB parameters were statistically significantly correlated with the level of geomagnetic activity, (ii) CBV showed a linear correlation with the Dcx index (r = 0.5290), (iii) the number of TNCs and CD34+ HSPCs were quadratic inversely correlated with the Dcx index (r = -0.5343 and r = -0.7749, respectively). Furthermore, (iv) CBV and the number of TNCs were not statistically significantly correlated with the number of either modest or intense geomagnetic storms per year, but (v) the number of CD34+ HSPCs was statistically significantly correlated with the number of modest (r = 0.9253) as well as intense (r = 0.8683) geomagnetic storms per year. In conclusion, our study suggests that UCB parameters correlate with the state of the geomagnetic field (GMF) modulated by solar activity. Possible biophysical mechanisms underlying this observation, as well as the outcome of these findings, are discussed.
Collapse
Affiliation(s)
- Felix Scholkmann
- a Research Office for Complex Physical and Biological Systems (ROCoS) , Zurich , Switzerland
| | - Giuseppe Miscio
- b Apulia Cord Blood Bank , IRCCS "Casa Sollievo della Sofferenza" , S. Giovanni Rotondo (FG) , Italy
| | - Roberto Tarquini
- c Department of Clinical and Experimental Medicine, School of Medicine , University of Florence , Florence , Italy.,d Interinstitutional Department for Continuity of Care of Empoli, School of Medicine , University of Florence , Florence , Italy
| | - Alberto Bosi
- e Department of Clinical and Experimental Medicine, Unit of Haematology, School of Medicine , University of Florence , Florence , Italy
| | - Rosa Rubino
- f Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit , IRCCS "Casa Sollievo della Sofferenza" , S. Giovanni Rotondo (FG) , Italy
| | - Lazzaro di Mauro
- b Apulia Cord Blood Bank , IRCCS "Casa Sollievo della Sofferenza" , S. Giovanni Rotondo (FG) , Italy
| | - Gianluigi Mazzoccoli
- f Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit , IRCCS "Casa Sollievo della Sofferenza" , S. Giovanni Rotondo (FG) , Italy
| |
Collapse
|
21
|
Silkstone G, Wilson MT. A Further Investigation of the Effects of Extremely Low Frequency Magnetic Fields on Alkaline Phosphatase and Acetylcholinesterase. PLoS One 2016; 11:e0148369. [PMID: 26963611 PMCID: PMC4786325 DOI: 10.1371/journal.pone.0148369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/18/2016] [Indexed: 11/19/2022] Open
Abstract
Using a custom build spectrophotometer equipped with Helmholtz coils and designed to study the effects of magnetic fields on enzyme reactions in real-time we have investigated the influence of fields, from 100 μT to 10 mT and at a variety of field frequencies, on the membrane bound enzymes alkaline phosphatase and acetylcholinesterase. We have also employed other methods to apply a magnetic field, e.g. Biostim. In contrast to earlier reports we have been unable to detect any field effects on these enzymes under any field/frequency regime. We discuss possible reasons for the discrepancy between this and earlier work and note the particularly complex influence of small temperature changes that may confound analysis.
Collapse
Affiliation(s)
- Gary Silkstone
- School of Biology, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, United Kingdom
| | - Michael T. Wilson
- School of Biology, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, United Kingdom
| |
Collapse
|
22
|
Bevington M. Lunar biological effects and the magnetosphere. PATHOPHYSIOLOGY 2015; 22:211-22. [DOI: 10.1016/j.pathophys.2015.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/12/2015] [Accepted: 08/28/2015] [Indexed: 12/24/2022] Open
|
23
|
Dielectric properties of bentonite water pastes used for stable loads in microwave thermal processing systems. J FOOD ENG 2015. [DOI: 10.1016/j.jfoodeng.2015.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Szemerszky R, Gubányi M, Árvai D, Dömötör Z, Köteles F. Is There a Connection Between Electrosensitivity and Electrosensibility? A Replication Study. Int J Behav Med 2015; 22:755-63. [DOI: 10.1007/s12529-015-9477-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
David G, Fundueanu G, Pinteala M, Minea B, Dascalu A, Simionescu BC. Polymer engineering for drug/gene delivery: from simple towards complex architectures and hybrid materials. PURE APPL CHEM 2014. [DOI: 10.1515/pac-2014-0708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The paper summarizes the history of the drug/gene delivery domain, pointing on polymers as a solution to specific challenges, and outlines the current situation in the field – focusing on the newest strategies intended to improve systems effectiveness and responsiveness (design keys, preparative approaches). Some recent results of the authors are briefly presented.
Collapse
|
26
|
Cokic I, Kali A, Wang X, Yang HJ, Tang RLQ, Thajudeen A, Shehata M, Amorn AM, Liu E, Stewart B, Bennett N, Harlev D, Tsaftaris SA, Jackman WM, Chugh SS, Dharmakumar R. Iron deposition following chronic myocardial infarction as a substrate for cardiac electrical anomalies: initial findings in a canine model. PLoS One 2013; 8:e73193. [PMID: 24066038 PMCID: PMC3774668 DOI: 10.1371/journal.pone.0073193] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/17/2013] [Indexed: 12/02/2022] Open
Abstract
Purpose Iron deposition has been shown to occur following myocardial infarction (MI). We investigated whether such focal iron deposition within chronic MI lead to electrical anomalies. Methods Two groups of dogs (ex-vivo (n = 12) and in-vivo (n = 10)) were studied at 16 weeks post MI. Hearts of animals from ex-vivo group were explanted and sectioned into infarcted and non-infarcted segments. Impedance spectroscopy was used to derive electrical permittivity () and conductivity (). Mass spectrometry was used to classify and characterize tissue sections with (IRON+) and without (IRON-) iron. Animals from in-vivo group underwent cardiac magnetic resonance imaging (CMR) for estimation of scar volume (late-gadolinium enhancement, LGE) and iron deposition (T2*) relative to left-ventricular volume. 24-hour electrocardiogram recordings were obtained and used to examine Heart Rate (HR), QT interval (QT), QT corrected for HR (QTc) and QTc dispersion (QTcd). In a fraction of these animals (n = 5), ultra-high resolution electroanatomical mapping (EAM) was performed, co-registered with LGE and T2* CMR and were used to characterize the spatial locations of isolated late potentials (ILPs). Results Compared to IRON- sections, IRON+ sections had higher, but no difference in. A linear relationship was found between iron content and (p<0.001), but not (p = 0.34). Among two groups of animals (Iron (<1.5%) and Iron (>1.5%)) with similar scar volumes (7.28%±1.02% (Iron (<1.5%)) vs 8.35%±2.98% (Iron (>1.5%)), p = 0.51) but markedly different iron volumes (1.12%±0.64% (Iron (<1.5%)) vs 2.47%±0.64% (Iron (>1.5%)), p = 0.02), QT and QTc were elevated and QTcd was decreased in the group with the higher iron volume during the day, night and 24-hour period (p<0.05). EAMs co-registered with CMR images showed a greater tendency for ILPs to emerge from scar regions with iron versus without iron. Conclusion The electrical behavior of infarcted hearts with iron appears to be different from those without iron. Iron within infarcted zones may evolve as an arrhythmogenic substrate in the post MI period.
Collapse
Affiliation(s)
- Ivan Cokic
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Avinash Kali
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Biomedical Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Xunzhang Wang
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles California, United States of America
| | - Hsin-Jung Yang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Biomedical Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Richard L. Q. Tang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Radiology, Northwestern University, Chicago, Illinois, United States of America
| | - Anees Thajudeen
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles California, United States of America
| | - Michael Shehata
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles California, United States of America
| | - Allen M. Amorn
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles California, United States of America
| | - Enzhao Liu
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles California, United States of America
| | - Brian Stewart
- Rhythmia Medical, Burlington, Massachusetts, United States of America
| | - Nathan Bennett
- Rhythmia Medical, Burlington, Massachusetts, United States of America
| | - Doron Harlev
- Rhythmia Medical, Burlington, Massachusetts, United States of America
| | - Sotirios A. Tsaftaris
- Institutions Markets Technologies, Institute for Advanced Studies Lucca, Piazza S. Ponziano, Lucca, Italy
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois, United States of America
- Department of Radiology, Northwestern University, Chicago, Illinois, United States of America
| | - Warren M. Jackman
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Sumeet S. Chugh
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles California, United States of America
- Department of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Rohan Dharmakumar
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Radiology, Northwestern University, Chicago, Illinois, United States of America
- Department of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Dadras A, Riazi GH, Afrasiabi A, Naghshineh A, Ghalandari B, Mokhtari F. In vitro study on the alterations of brain tubulin structure and assembly affected by magnetite nanoparticles. J Biol Inorg Chem 2013; 18:357-69. [DOI: 10.1007/s00775-013-0980-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/18/2013] [Indexed: 11/28/2022]
|
28
|
Javaheri H, Barbiellini B, Noubir G. Energy transfer performance of mechanical nanoresonators coupled with electromagnetic fields. NANOSCALE RESEARCH LETTERS 2012; 7:572. [PMID: 23075029 PMCID: PMC3561270 DOI: 10.1186/1556-276x-7-572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/06/2012] [Indexed: 06/01/2023]
Abstract
: We study the energy transfer performance in electrically and magnetically coupled mechanical nanoresonators. Using the resonant scattering theory, we show that magnetically coupled resonators can achieve the same energy transfer performance as for their electrically coupled counterparts or even outperform them within the scale of interest. Magnetic and electric coupling are compared in the nanotube radio, a realistic example of a nano-scale mechanical resonator. The energy transfer performance is also discussed for a newly proposed bio-nanoresonator composed of magnetosomes coated with a net of protein fibers.
Collapse
Affiliation(s)
- Hooman Javaheri
- College of Computer and Information Science, Northeastern University, Boston, MA, USA
| | | | - Guevara Noubir
- College of Computer and Information Science, Northeastern University, Boston, MA, USA
| |
Collapse
|
29
|
Sajedi SA, Abdollahi F. Geomagnetic disturbances may be environmental risk factor for multiple sclerosis: an ecological study of 111 locations in 24 countries. BMC Neurol 2012; 12:100. [PMID: 22998435 PMCID: PMC3488506 DOI: 10.1186/1471-2377-12-100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 09/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We noticed that a hypothesis based on the effect of geomagnetic disturbances (GMD) has the ability to explain special features of multiple sclerosis (MS). Areas around geomagnetic 60 degree latitude (GM60L) experience the greatest amount of GMD. The easiest way to evaluate our hypothesis was to test the association of MS prevalence (MSP) with angular distance to geomagnetic 60 degree latitude (AMAG60) and compare it with the known association of MS with geographical latitude (GL). We did the same with angular distance to geographic 60 degree latitude (AGRAPH60) as a control. METHODS English written papers with MSP keywords, done in Europe (EUR), North America (NA) or Australasia (AUS) were retrieved from the PubMed. Geomagnetic coordinates were determined for each location and AMAG60 was calculated as absolute value of numerical difference between its geomagnetic latitude from GM60L. By an ecological study with using meta-regression analyses, the relationship of MSP with GL, AMAG60 and AGRAPH60 were evaluated separately. MSP data were weighted by square root of number of prevalent cases. Models were compared by their adjusted R square (AR2) and standard error of estimate (SEE). RESULTS 111 MSP data were entered in the study. In each continent, AMAG60 had the best correlation with MSP, the largest AR2 (0.47, 0.42 and 0.84 for EUR, NA and AUS, respectively) and the least SEE. Merging both hemispheres data, AMAG60 explained 56% of MSP variations with the least SEE (R = 0.75, AR2 = 0.56, SEE = 57), while GL explained 17% (R = 0.41, AR2 = 0.17, SEE = 78.5) and AGRAPH60 explained 12% of that variations with the highest SEE (R = 0.35, AR2 = 0.12, SEE = 80.5). CONCLUSIONS Our results confirmed that AMAG60 is the best describer of MSP variations and has the strongest association with MSP distribution. They clarified that the well-known latitudinal gradient of MSP may be actually a gradient related to GM60L. Moreover, the location of GM60L can elucidate why MSP has parabolic and linear gradient in the north and south hemisphere, respectively. This preliminary evaluation supported that GMD can be the mysterious environmental risk factor for MS. We believe that this hypothesis deserves to be considered for further validation studies.
Collapse
Affiliation(s)
- Seyed Aidin Sajedi
- Neurology Department, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | | |
Collapse
|
30
|
Köteles F, Szemerszky R, Gubányi M, Körmendi J, Szekrényesi C, Lloyd R, Molnár L, Drozdovszky O, Bárdos G. Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) and electrosensibility (ES) - are they connected? Int J Hyg Environ Health 2012; 216:362-70. [PMID: 22698789 DOI: 10.1016/j.ijheh.2012.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/11/2012] [Accepted: 05/11/2012] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The tendency of experiencing unpleasant symptoms in the proximity of working electric devices is called idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF). Evidence about psychophysiological backgrounds of the phenomenon (i.e., detection ability and mechanisms of symptom generation) is not yet conclusive. METHODS Participants of the provocation experiment were 29 individuals with self-reported IEI-EMF and 42 control persons. Participants completed questionnaires (symptom expectations, somatosensory amplification - SSAS, modern health worries radiation subscale - MHW-R), and attempted to detect the presence of 50 Hz 0.5 mT magnetic field (MF) directed to their right arm in 20 subsequent 1-min sessions. Heart rate was also recorded and various indices of heart rate variability (HF, LF/HF, SDNN) were calculated. RESULTS Using the methodology of the signal detection theory, individuals with IEI-EMF as opposed to the control group showed a higher than random detection performance (d' differed slightly but statistically significantly from zero), and they used a significantly lower criterion (β value) when deciding about the presence of the MF. Detection sessions followed by correct decisions (hits or correct rejections) were characterized by higher HRV (SDNN and HF indices) than periods followed by errors (misses or false alarms). Previous expectations and affiliation to the IEI-EMF group were significant predictors of symptoms reported following exposure. IEI-EMF was closely related to MHW-R and SSAS scores. CONCLUSION Detection of MF might be possible for people with IEI-EMF to some extent. Although heightened sensibility to MFs may play a role in the development and/or in the perpetuance of the IEI-EMF phenomenon, symptoms attributed to the MF seem to be mainly of psychogenic origin.
Collapse
Affiliation(s)
- Ferenc Köteles
- Institute for Health Promotion and Sport Sciences, Eötvös Loránd University, Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S. Effect of Nanoparticles on the Cell Life Cycle. Chem Rev 2011; 111:3407-32. [DOI: 10.1021/cr1003166] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Morteza Mahmoudi
- National Cell Bank, Pasteur Institute of Iran, Tehran, 1316943551 Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kayhan Azadmanesh
- Virology Department, Pasteur Institute of Iran, Tehran, 1316943551 Iran
| | | | - W. Shane Journeay
- Nanotechnology Toxicology Consulting & Training, Inc., Nova Scotia, Canada
- Faculty of Medicine, Dalhousie Medical School, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sophie Laurent
- Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium
| |
Collapse
|
33
|
Hänninen O, Huttunen P, Ekman R. Electromagnetic irradiation exposure and its bioindication--an overview. J Environ Sci (China) 2011; 23:1409-1414. [PMID: 22432274 DOI: 10.1016/s1001-0742(10)60600-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Man made electromagnetic irradiation and fields cover now the globe due to the recent extensive propagation of mobile telephony. The increased load affects animals and also plants. Especially birds have been studied. Humans are also sensitive. They are good bioindicators as epidemiological methods are available. Humans can also report symptoms which cannot be directly measured with presently available technologies. The nonionizing irradiation can as the ionizing one break the DNA, damage proteins, even increase the blood brain barrier permeability, disturb the night rest, cause fatigue and hormonal disturbances. An increase of the tumours of human head has been described in correlation with the long-term mobile phone use and on that side more exposed. The regulations covering mobile telephony are already about two decades old and need re-evaluation. The multitude of irradiation and the interaction of the different wavelength exposures, i.e., frequency sensitivity is poorly known at present. We should not forget the comparative studies of different species especially those which rely in their lives on electromagnetic orientation physiology. Some countries have issued warnings on the exposures of children. The producers of mobile technology have recently warned the users not to keep those devices in active stage in skin contact.
Collapse
Affiliation(s)
- Osmo Hänninen
- Department of Physiology, Kuopio Campus, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland.
| | | | | |
Collapse
|
34
|
Cifra M, Fields JZ, Farhadi A. Electromagnetic cellular interactions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 105:223-46. [PMID: 20674588 DOI: 10.1016/j.pbiomolbio.2010.07.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 07/21/2010] [Indexed: 12/14/2022]
Abstract
Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating.
Collapse
Affiliation(s)
- Michal Cifra
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | |
Collapse
|
35
|
Long-term memory in brain magnetite. Med Hypotheses 2010; 74:254-7. [DOI: 10.1016/j.mehy.2009.09.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 09/11/2009] [Indexed: 11/21/2022]
|
36
|
Iskusnykh I, Popova T. The role of magnetosomes in cellular homeostasis disorder and development of pathology. ACTA ACUST UNITED AC 2010; 56:530-9. [DOI: 10.18097/pbmc20105605530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Literature data on magnitosomes, the nanocrystals formed during natural biomineralization have been summarized. Special attention is paid to magnitosome effect on physiological and biochemical processes, impairments of cell homeostasis and development of various pathologies. It is suggested that the increase in quantity and sizes of magnetosomes, spatial rearrangement, and modification of their crystalline substance exert substantial effect on development of pathological processes.
Collapse
|
37
|
Häfeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP, Bardenstein D. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm 2009; 6:1417-28. [PMID: 19445482 DOI: 10.1021/mp900083m] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetic targeting is useful for intravascular or intracavitary drug delivery, including tumor chemotherapy or intraocular antiangiogenic therapy. For all such in vivo applications, the magnetic drug carrier must be biocompatible and nontoxic. In this work, we investigated the toxic properties of magnetic nanoparticles coated with polyethylenoxide (PEO) triblock copolymers. Such coatings prevent the aggregation of magnetic nanoparticles and guarantee consistent magnetic and nonmagnetic flow properties. It was found that the PEO tail block length inversely correlates with toxicity. The nanoparticles with the shortest 0.75 kDa PEO tails were the most toxic, while particles coated with the 15 kDa PEO tail block copolymers were the least toxic. Toxicity responses of the tested prostate cancer cell lines (PC3 and C4-2), human umbilical vein endothelial cells (HUVECs), and human retinal pigment epithelial cells (HRPEs) were similar. Furthermore, all cell types took up the coated magnetic nanoparticles. It is concluded that magnetite nanoparticles coated with triblock copolymers containing PEO tail lengths of above 2 kDa are biocompatible and appropriate for in vivo application.
Collapse
Affiliation(s)
- Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | | | | | | | | | | | | |
Collapse
|
38
|
Pan W, Chen C, Wang X, Ma Q, Jiang W, Lv J, Wu LF, Song T. Effects of pulsed magnetic field on the formation of magnetosomes in the Magnetospirillum sp. strain AMB-1. Bioelectromagnetics 2009; 31:246-51. [PMID: 19780093 DOI: 10.1002/bem.20549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Magnetotactic bacteria are a diverse group of microorganisms which possess one or more chains of magnetosomes and are endowed with the ability to use geomagnetic fields for direction sensing, thus providing a simple and excellent model for the study of magnetite-based magnetoreception. In this study, a 50 Hz, 2 mT pulsed magnetic field (PMF) was applied to study the effects on the formation of magnetosomes in Magnetospirillum sp. strain AMB-1. The results showed that the cellular magnetism (R(mag)) of AMB-1 culture significantly increased while the growth of cells remained unaffected after exposure. The number of magnetic particles per cell was enhanced by about 15% and slightly increased ratios of magnetic particles of superparamagnetic property (size <20 nm) and mature magnetosomes (size >50 nm) were observed after exposure to PMF. In addition, the intracellular iron accumulation slightly increased after PMF exposure. Therefore, it was concluded that 50 Hz, 2 mT PMF enhances the formation of magnetosomes in Magnetospirillum sp. strain AMB-1. Our results suggested that lower strength of PMF has no significant effects on the bacterial cell morphologies but could affect crystallization process of magnetosomes to some extent.
Collapse
Affiliation(s)
- Weidong Pan
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bókkon I, Salari V. Information storing by biomagnetites. J Biol Phys 2009; 36:109-20. [PMID: 19728122 DOI: 10.1007/s10867-009-9173-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Accepted: 08/13/2009] [Indexed: 11/26/2022] Open
Abstract
Since the discovery of the presence of biogenic magnetites in living organisms, there have been speculations on the role that these biomagnetites play in cellular processes. It seems that the formation of biomagnetite crystals is a universal phenomenon and not an exception in living cells. Many experimental facts show that features of organic and inorganic processes could be indistinguishable at nanoscale levels. Living cells are quantum "devices" rather than simple electronic devices utilizing only the charge of conduction electrons. In our opinion, due to their unusual biophysical properties, special biomagnetites must have a biological function in living cells in general and in the brain in particular. In this paper, we advance a hypothesis that while biomagnetites are developed jointly with organic molecules and cellular electromagnetic fields in cells, they can record information about the Earth's magnetic vector potential of the entire flight in migratory birds.
Collapse
|
40
|
McKay BE, Persinger MA. COMPLEX MAGNETIC FIELDS ENABLE STATIC MAGNETIC FIELD CUE USE FOR RATS IN RADIAL MAZE TASKS. Int J Neurosci 2009; 115:625-48. [PMID: 15823929 DOI: 10.1080/00207450590523945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Male Wistar rats were trained in an eight-arm radial maze task (two sessions per day, delayed-non-matching-to-sample) that included an intramaze static magnetic field "cue" (185 microT) specific to the entrance point of one of the arms. Rats were exposed daily for 60 min to a complex magnetic field waveform (theta-burst pattern, 200-500 nT), presented with several different interstimulus intervals (ISIs), either immediately following training sessions or immediately preceding testing sessions. Application of the theta-burst stimulus with a 4000 ms ISI significantly improved the rats' memory for the arm of the radial maze whose position was indicated by the presence of a static magnetic field cue. Reference memory errors were homogeneously distributed among all eight arms of the maze for sham-exposed rats, and among the other seven arms of the maze for complex magnetic field-treated rats. These results suggest that static magnetic field cues may be salient orienting cues even in a microenvironment such as a radial maze, but their use as a cue during maze learning in rats is dependent on whole-body application of a specific time-varying complex magnetic field.
Collapse
Affiliation(s)
- B E McKay
- Behavioral Neuroscience Laboratory, Laurentian University, Sudbury, Ontario, Canada
| | | |
Collapse
|
41
|
Lahijani MS, Nojooshi SE, Siadat SF. Light and Electron Microscope Studies of Effects of 50 Hz Electromagnetic Fields on Preincubated Chick Embryo. Electromagn Biol Med 2009; 26:83-98. [PMID: 17613036 DOI: 10.1080/15368370601185888] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We investigated the effects of an electromagnetic field (EMF) of 50 Hz, 1.33-7.32 mT on sections of preincubated white leghorn chicken embryos using light, SEM and TEM microscopes. Five hundred healthy, fresh, and fertilized eggs (55-65 g) were divided into three groups of experimental (n = 18-20), control (n = 60), and sham (n = 50). Experimental eggs (inside the coil) were exposed to 15 different intensities (1.33-7.32 mT) for morphological surveys and to the known most effective intensities for light, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) studies. Sham groups were located inside the same coil with no exposure for 24 h before incubation. Control, sham, and experimental groups were then incubated in an incubator (38 +/- 0.5 degrees C, 60% humidity) for 4 days. At the end of this period, embryos were removed from their shells, prepared for morphometric, light, and SEM/TEM studies. Results of light microscopic studies (serial sections, 6mu) and morphometric data showed significant differences between different groups (P < 0.005). Larger and abnormal brain cavities, spina bifida, monophthalmia, microphthalmia, anophthalmia, and growth retardation were shown on SEM. TEM sections demonstrated that the nucleus was condensed, the nuclear envelope disappeared, and mitochondria degenerated. Golgi apparatus and endoplasmic reticulum were the least affected organelles. The Telencephlon was the most affected region, and the retina was altered more than the lens. We conclude that EMFs affect the brain, especially the Telencephalon and eye of preincubated-exposed chick embryo at the morphological and cellular level, nuclei are the most affected part, and our data agrees with "Ubeda's windows effects" of EMFs on preincubated chick embryos.
Collapse
Affiliation(s)
- M Shams Lahijani
- Department of Biology, University of Shahid - Beheshti, Tehran, Iran.
| | | | | |
Collapse
|
42
|
Abstract
There is increasing interest in using permanent magnets for therapeutic purposes encouraged by basic science publications and clinical reports. Magnetotherapy provides a non invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and other types of disease. The physiological bases for the use of magnetic fields for tissue repair as well as physical principles of dosimetry and application of various magnetic fields are subjects of this review. Analysis of the magnetic and electromagnetic stimulation is followed by a discussion of the advantage of magnetic field stimulation compared with electric current and electric field stimulation.
Collapse
|
43
|
Belton M, Prato FS, Rozanski C, Carson JJL. Effect of 100 mT homogeneous static magnetic field on [Ca2+]c response to ATP in HL-60 cells following GSH depletion. Bioelectromagnetics 2009; 30:322-9. [PMID: 19204977 DOI: 10.1002/bem.20475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Calcium is an important molecule in a number of biological systems. Often these systems are signal transduction cascades involving molecules such as ATP. ATP activates second messengers which can interact with ion channels on the endoplasmic/sarcoplasmic reticulum resulting in the emptying of the intracellular calcium stores and an increase in cytosolic free calcium concentration ([Ca2+]c). Changes in [Ca2+]c can be influenced by external factors such as a static magnetic field (SMF). One hypothesis suggests that a SMF affects the cells through the radical pair mechanism. By reducing the number of antioxidant molecules like glutathione (GSH), the proportion of free radicals in the cells is increased and may lead to a greater probability of a biological response to a SMF. The purpose of this study was to determine if the [Ca2+]c response to ATP was affected by depletion of GSH by diethylmaleate (DEM) and the absence or presence of a 100 mT homogeneous SMF. Undifferentiated HL-60 cells were loaded with fura-2 AM. [Ca2+]c was measured in real time using a ratiometric fluorescence spectroscopy system. Various (DEM) ranging from 1 to 15 mM were added to deplete GSH. Cells were either exposed to sham or magnetic field (100 mT) for 13 min (780 s) and challenged with 1 microM ATP. The data show that [Ca2+]c was elevated following treatment with DEM with greater [Ca2+]c at higher [DEM]. The [Ca2+]c response to ATP was decreased as the DEM concentration increased. However, there was no effect of a 100 mT SMF on the average [Ca2+]c peak following ATP activation or the full width at half maximum (FWHM) of the [Ca2+]c response and recovery after ATP activation.
Collapse
Affiliation(s)
- Michelle Belton
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | |
Collapse
|
44
|
Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. Proc Natl Acad Sci U S A 2009; 106:5708-13. [PMID: 19299504 DOI: 10.1073/pnas.0811194106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Resting and grazing cattle and deer tend to align their body axes in the geomagnetic North-South direction. The mechanism(s) that underlie this behavior remain unknown. Here, we show that extremely low-frequency magnetic fields (ELFMFs) generated by high-voltage power lines disrupt alignment of the bodies of these animals with the geomagnetic field. Body orientation of cattle and roe deer was random on pastures under or near power lines. Moreover, cattle exposed to various magnetic fields directly beneath or in the vicinity of power lines trending in various magnetic directions exhibited distinct patterns of alignment. The disturbing effect of the ELFMFs on body alignment diminished with the distance from conductors. These findings constitute evidence for magnetic sensation in large mammals as well as evidence of an overt behavioral reaction to weak ELFMFs in vertebrates. The demonstrated reaction to weak ELFMFs implies effects at the cellular and molecular levels.
Collapse
|
45
|
Forbes Z, Yellen B, Halverson D, Fridman G, Barbee K, Friedman G. Validation of High Gradient Magnetic Field Based Drug Delivery to Magnetizable Implants Under Flow. IEEE Trans Biomed Eng 2008; 55:643-9. [DOI: 10.1109/tbme.2007.899347] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Abdelmelek H, Molnar A, Servais S, Cottet-Emard JM, Pequignot JM, Favier R, Sakly M. Skeletal muscle HSP72 and norepinephrine response to static magnetic field in rat. J Neural Transm (Vienna) 2005; 113:821-7. [PMID: 16252069 DOI: 10.1007/s00702-005-0364-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 08/28/2005] [Indexed: 10/25/2022]
Abstract
The present work was undertaken in order to investigate the noradrenergic system and skeletal muscle heat shock protein 72 (HSP72) response to static magnetic field (MF) in male rats. At thermoneutrality (25 degrees C), the exposition of rats 1 hour/day for 5 consecutive days to MF of 128 mT (m tesla) induced an increase in norepinephrine content in gastrocnemius muscle (+25%, p < 0.05) but had no effect at 67 mT (+1%, p > 0.05), indicating a stimulatory effect of sub-acute MF exposure on the noradrenergic system activity. Moreover, exposed rats to MF displayed a non-significant increase of HSP72 levels in gastrocnemius muscles (+29%, p > 0.05). The results indicate that noradrenergic systems in rat's gastrocnemius muscles are affected by MF exposure. Interestingly, sub-acute exposure insufficiency increased HSP72 levels in gastrocnemius muscles.
Collapse
Affiliation(s)
- H Abdelmelek
- Laboratoire de Physiologie Animale, Faculté des Sciences de Bizerte, Jarzouna, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
47
|
Brem F, Hirt AM, Simon C, Wieser HG, Dobson J. Low temperature magnetic analysis in the identification of iron compounds from human brain tumour tissue. ACTA ACUST UNITED AC 2005. [DOI: 10.1088/1742-6596/17/1/010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
|
49
|
Wieraszko A. Amplification of evoked potentials recorded from mouse hippocampal slices by very low repetition rate pulsed magnetic fields. Bioelectromagnetics 2005; 25:537-44. [PMID: 15376238 DOI: 10.1002/bem.20044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The influence of low repetition rate pulsed magnetic fields (LRMF) on the evoked potential (population spike) recorded from mouse hippocampal slices was investigated. LRMF were applied according to two protocols. In protocol A, LRMF applied with a constant strength (15 mT) and frequency ranging from 0.03 to 0.5 Hz resulted in an amplification of the potential. Although the frequency of 0.16 Hz was the most effective, enhancing the population spike by over 280%, it also caused an increase in spontaneous activity, seizures, and cessation of neuronal activity in 50% of the slices. In protocol B, LRMF were applied with a variable intensity (9-15 mT) and in cycles of different duration ranging from 5 to 20 min. While an increase in the amplitude of the population spike was observed in all slices exposed to LRMF applied according to protocol B, the longest exposure was the most effective. Neither seizures nor an increase in the spontaneous activity were observed in this group of the slices. These results support and extend our previous data and characterize further the relation between the pattern of applied magnetic fields and their influence on the nervous system.
Collapse
Affiliation(s)
- Andrzej Wieraszko
- Department of Biology/Program in Neuroscience, The College of Staten Island/CUNY, Staten Island, NY 10314, USA.
| |
Collapse
|
50
|
Binhi VN. Stochastic dynamics of magnetosomes and a mechanism of biological orientation in the geomagnetic field. Bioelectromagnetics 2005; 27:58-63. [PMID: 16283662 DOI: 10.1002/bem.20178] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The rotations of nanoscopic magnetic particles, magnetosomes, embedded into the cytoskeleton are considered. Under the influence of thermal disturbances, a great number of magnetosomes are shown to move chaotically between two stable equilibrium positions, in which their magnetic moments are neither parallel nor antiparallel to the static Earth's magnetic field (MF). The random rotations attain the value of order of a radian. The rate of the transitions and the probability of magnetosomes to be in the different states depend on the MF direction with respect to an averaged magnetosome's orientation. This effect explains the ability of migratory animals to orient themselves faultlessly in long term passages in the absence of the direct visibility of optical reference points. The sensitivity to deviation from an "ideal" orientation is estimated to be 2-4 degrees. Possible involvement of the stochastic dynamics of magnetosomes in biological magnetic navigation is discussed.
Collapse
Affiliation(s)
- V N Binhi
- A.M. Prokhorov General Physics Institute RAS, Moscow, Russia.
| |
Collapse
|