1
|
Mitchell SE, Simpson M, Coulet L, Gouedard S, Hambly C, Morimoto J, Allison DB, Speakman JR. Reproduction has immediate effects on female mortality, but no discernible lasting physiological impacts: A test of the disposable soma theory. Proc Natl Acad Sci U S A 2024; 121:e2408682121. [PMID: 39374394 PMCID: PMC11494338 DOI: 10.1073/pnas.2408682121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/24/2024] [Indexed: 10/09/2024] Open
Abstract
The disposable soma theory (DST) posits that organisms age and die because of a direct trade-off in resource allocation between reproduction and somatic maintenance. DST predicts that investments in reproduction accentuate somatic damage which increase senescence and shortens lifespan. Here, we directly tested DST predictions in breeding and nonbreeding female C57BL/6J mice. We measured reproductive outputs, body composition, daily energy expenditure, and oxidative stress at peak lactation and over lifetime. We found that reproduction had an immediate and negative effect on survival due to problems encountered during parturition for some females. However, there was no statistically significant residual effect on survival once breeding had ceased, indicating no trade-off with somatic maintenance. Instead, higher mortality appeared to be a direct consequence of reproduction without long-term physiological consequences. Reproduction did not elevate oxidative stress. Our findings do not provide support for the predictions of the DST.
Collapse
Affiliation(s)
- Sharon E. Mitchell
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, Scotland, United Kingdom
| | - Megan Simpson
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, Scotland, United Kingdom
| | - Lena Coulet
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, Scotland, United Kingdom
- L'Institut Agro Dijon, Dijon Cedex21079, France
| | - Solenn Gouedard
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, Scotland, United Kingdom
- L'Institut Agro Dijon, Dijon Cedex21079, France
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, Scotland, United Kingdom
| | - Juliano Morimoto
- Institute of Mathematics, School of Natural and Computer Sciences, University of Aberdeen, AberdeenAB24 3UE, Scotland, United Kingdom
- Programa de Pós-Graduação em Ecologia e Conservação, Department of Ecology, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná81531-980, Brazil
| | - David B. Allison
- School of Public Health, Indiana University-Bloomington, Bloomington, IN47405
| | - John R. Speakman
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, Scotland, United Kingdom
- Shenzhen key laboratory of metabolic health, Center for Energy metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong province1068, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Institute of Health Sciences, China Medical University, Liaoning Province, Shenyang110052, China
| |
Collapse
|
2
|
Pithan JB, Rinehart JP, Greenlee KJ, López-Martínez G. Effects of age on oxidative stress and locomotion in the pollinator, Megachile rotundata. JOURNAL OF INSECT PHYSIOLOGY 2024; 157:104666. [PMID: 38969333 DOI: 10.1016/j.jinsphys.2024.104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
Despite numerous aging studies, the relationship between oxidative stress, aging, and decline in functions such as locomotion is still debated. Insects offer a promising model for analyzing the relationship between oxidative stress and aging, because they exhibit vast differences in lifespan that may be affected by the environment, social factors, levels of activity, and aging interventions. In this study, we explore the effects of aging on oxidative stress and locomotion using the pollinator, Megachile rotundata, a species that is very mobile and active in the adult stage. Across the adult lifespan of M. rotundata, we assessed changes in walking, flight, oxidative damage, and antioxidant defenses. Our results suggest that M. rotundata experience age-related declines in flight, but not walking. Additionally, we found that oxidative damage and antioxidant capacity initially increase with age and physical activity, but then levels are maintained. Overall, these data show that M. rotundata, like some other organisms, may not perfectly follow the free radical theory of aging.
Collapse
|
3
|
Viblanc VA, Pardonnet S, Tamian A, McCaw LK, Dobson FS, Boonstra R. Down-regulating the stress axis: Living in the present while preparing for the future. Gen Comp Endocrinol 2024; 354:114541. [PMID: 38685390 DOI: 10.1016/j.ygcen.2024.114541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The measurement of glucocorticoid (GC) hormones provides us with a window into the stress physiology of vertebrates and the adaptative responses they use to cope with predictable and unpredictable changes in the environment. Baseline GCs inform us about the metabolic demands they are subject to at that point in their yearly life-history stage, whereas GC changes (often increases) in response to acute challenges inform us on their capacity to cope with more immediate environmental challenges. However, baseline GC levels and the kinetics of GC responses to acute stressors can vary substantially among and within species, depending on individual characteristics (age, sex, condition, life-history stage). In addition, a thorough understanding of the stress status of an animal requires moving beyond the measurement of GCs alone by focusing on downstream measures of metabolic activation, such as oxidative stress. Here, we evaluated the changes in blood cortisol and oxidative stress markers in wild adult Columbian ground squirrels (Urocitellus columbianus), following a 30-min capture-handling stress performed in mid-late June. Measurements were taken when males were post-reproductive and preparing for hibernation and adult females were weaning litters. We found three key results. First, the time-course of GC increase was markedly slower (by an order of magnitude) than what is currently reported in the literature for most species of mammals, birds and reptiles. Second, there were marked differences in the male and female response, linked to differences in life-history stage: females close to weaning had abolished GC responses, whereas post-reproductive males did not. Third, there were mild to moderate increases in oxidative damage and decreases in oxidative defenses in response to our short-term challenge, consistent with the idea that short-term acute metabolic activation may carry physiological costs. However, these changes were not correlated to the changes in GCs, a novel result suggesting a disconnect between the hormonal stress response and oxidative damage.
Collapse
Affiliation(s)
- Vincent A Viblanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.
| | - Sylvia Pardonnet
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Anouch Tamian
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Laura K McCaw
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - F Stephen Dobson
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France; Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Rudy Boonstra
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
4
|
Song Y, Liu D, Xie J, Xie J, Chen Y, Chen X, Hu X, Yu Q. Protective effects of EGCG on acrolein-induced Caenorhabditis elegans and its mechanism of life extension. Food Funct 2024; 15:5855-5867. [PMID: 38687276 DOI: 10.1039/d3fo05394f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In this study, it was found that epigallocatechin-3-gallate (EGCG) could extend the lifespan of Caenorhabditis elegans (C. elegans) induced by 100 μM acrolein (ACR) at all test concentrations (300, 400, 500, 600, and 700 μM). Notably, 500 μM EGCG exhibited the most significant mean lifespan extension, increasing it by approximately 32.5%. Furthermore, 500 μM EGCG effectively reduced elevated levels of reactive oxygen species (ROS) and lipofuscin production caused by acrolein. It also bolstered the activity of antioxidant enzymes and mitigated malondialdehyde (MDA) levels compared to the ACR-only group. These effects appeared independent of dietary restrictions. Additionally, qPCR results revealed different changes in the transcription levels of 11 genes associated with antioxidative and anti-aging functions following EGCG treatment. At the expression level, GST-4::GFP, SOD-3::GFP and HSP-16.2::GFP exhibited an initial increase with ACR treatment followed by a decrease with EGCG treatment, while the expression pattern of these three GFPs remained consistent with the enzyme activity and transcription regulation level. EGCG treatment also reduced the nuclear localization of SKN-1 and DAF-16 in the MAPK and IIS pathways that were enhanced by ACR. Moreover, the longevity-promoting effects of EGCG were diminished or absent in 13 longevity gene-deletion mutants. In conclusion, EGCG demonstrates protective effects on ACR-induced C. elegans, with the IIS and MAPK pathways playing a critical role in enhancing resilience to ACR.
Collapse
Affiliation(s)
- Yiming Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Danyang Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jiayan Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Xinyi Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
5
|
Miller WB, Baluška F, Reber AS, Slijepčević P. Why death and aging ? All memories are imperfect. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:21-35. [PMID: 38316274 DOI: 10.1016/j.pbiomolbio.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/02/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Recent papers have emphasized the primary role of cellular information management in biological and evolutionary development. In this framework, intelligent cells collectively measure environmental cues to improve informational validity to support natural cellular engineering as collaborative decision-making and problem-solving in confrontation with environmental stresses. These collective actions are crucially dependent on cell-based memories as acquired patterns of response to environmental stressors. Notably, in a cellular self-referential framework, all biological information is ambiguous. This conditional requirement imposes a previously unexplored derivative. All cellular memories are imperfect. From this atypical background, a novel theory of aging and death is proposed. Since cellular decision-making is memory-dependent and biology is a continuous natural learning system, the accumulation of previously acquired imperfect memories eventually overwhelms the flexibility cells require to react adroitly to contemporaneous stresses to support continued cellular homeorhetic balance. The result is a gradual breakdown of the critical ability to efficiently measure environmental information and effect cell-cell communication. This age-dependent accretion governs senescence, ultimately ending in death as an organism-wide failure of cellular networking. This approach to aging and death is compatible with all prior theories. Each earlier approach illuminates different pertinent cellular signatures of this ongoing, obliged, living process.
Collapse
Affiliation(s)
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Germany.
| | - Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - Predrag Slijepčević
- Department of Life Sciences, College of Health, Medicine and Life Sciences, University of Brunel, UK.
| |
Collapse
|
6
|
Borowiec BG, McDonald AE, Wilkie MP. Upstream migrant sea lamprey (Petromyzon marinus) show signs of increasing oxidative stress but maintain aerobic capacity with age. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111503. [PMID: 37586606 DOI: 10.1016/j.cbpa.2023.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Following the parasitic juvenile phase of their life cycle, sea lamprey (Petromyzon marinus) mature into a reproductive but rapidly aging and deteriorating adult, and typically die shortly after spawning in May or June. However, pre-spawning upstream migrant sea lamprey can be maintained for several months beyond their natural lifespan when held in cold water (∼4-8 °C) under laboratory conditions. We exploited this feature to investigate the interactions between senescence, oxidative stress, and metabolic function in this phylogenetically ancient fish. We investigated how life history traits and mitochondria condition, as indicated by markers of oxidative stress (catalase activity, lipid peroxidation) and aerobic capacity (citrate synthase activity), changed in adult sea lamprey from June to December after capture during their upstream spawning migration. Body mass but not liver mass declined with age, resulting in an increase in hepatosomatic index. Both effects were most pronounced in males, which also tended to have larger livers than females. Lamprey experienced greater oxidative stress with age, as reflected by increasing activity of the antioxidant enzyme catalase and increasing levels of lipid peroxidation in liver mitochondrial isolates over time. Surprisingly, the activity of citrate synthase also increased with age in both sexes. These observations implicate mitochondrial dysfunction and oxidative stress in the senescence of sea lamprey. Due to their unique evolutionary position and the technical advantage of easily delaying the onset of senescence in lampreys using cold water, these animals could represent an evolutionary unique and tractable model to investigate senescence in vertebrates.
Collapse
Affiliation(s)
| | - Allison E McDonald
- Department of Biology, Wilfrid Laurier University, Waterloo, Canada. https://twitter.com/AEMcDonaldWLU
| | - Michael P Wilkie
- Department of Biology, Wilfrid Laurier University, Waterloo, Canada
| |
Collapse
|
7
|
Chen X, Zhou X, Li S, Zhang H, Liu Z. Effects of tea residues-fermented feed on production performance, egg quality, antioxidant capacity, caecal microbiota, and ammonia emissions of laying hens. Front Vet Sci 2023; 10:1195074. [PMID: 37426079 PMCID: PMC10325031 DOI: 10.3389/fvets.2023.1195074] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
This study was to assess the effects of tea residues-fermented feed (TR-fermented feed) on production performance, egg quality, serum antioxidant capacity, caecal microbiota, and ammonia emissions of laying hens. A total of 1,296 Lohmann laying hens have randomly distributed four groups with six parallels and fed with diets TR-fermented feed at the rates of 0 (control), 1, 3, and 5%. The inclusion of 1% (TR)-fermented feed resulted in a significant increase in egg-laying rate and average egg weight of birds, and a reduction in the feed-to-egg ratio when compared to the control group (p < 0.05). The addition of 1 and 3% of (TR)-fermented feed significantly improved the Haugh unit of eggs (p < 0.05). The eggshell thickness was observed to increase by almost one-fold upon the inclusion of 3 and 5% (TR)-fermented feed in the basal diet (p < 0.05). The supplementation of 3% (TR)-fermented feed significantly increased the content of methionine, tyrosine, proline, essential amino acids (EAA), alpha linoleic acid (C18:3n6), docosanoic acid (C22:0), docosahexaenoic acid (C22:6n3), twenty-three carbonic acids (C23:0), ditetradecenoic acid (C24:1) and total omega-3 polyunsaturated fatty acids (∑ω-3 PUFA) in the eggs (p < 0.05). The addition of a certain amount of (TR)-fermented feed can enhance the activity of glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD) in chicken serum, and reduce the level of malondialdehyde (MDA) (p < 0.05). The ammonia concentration in the hen house of laying hens in the treatment groups decreased significantly (p < 0.05). Bacteroidetes and Firmicutes, the main phyla in the cecal bacterial community, were differentially abundant in each group, comprising greater than 55 and 33%, respectively. Collectively, this research indicates that (TR)-fermented feed supplementation improves the performance of laying hens and reduces ammonia emissions and can be used in industry-scale layer production.
Collapse
Affiliation(s)
- Xianxin Chen
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Xinhong Zhou
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Shiyi Li
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Huaidan Zhang
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Zhenkun Liu
- Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Wanzhou, China
| |
Collapse
|
8
|
Langroudi FE, Narani MS, Kheirollahi A, Vatannejad A, Shokrpoor S, Alizadeh S. Effect of L-serine on oxidative stress markers in the kidney of streptozotocin-induced diabetic mice. Amino Acids 2023:10.1007/s00726-023-03270-9. [PMID: 37156853 DOI: 10.1007/s00726-023-03270-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
Oxidative stress is critical in the occurrence and development of diabetes and its related complications. L-serine has recently been shown to reduce oxidative stress, the incidence of autoimmune diabetes and improve glucose homeostasis. The aim of this study was to investigate the effects of daily L-serine administration on blood glucose, renal function and oxidative stress markers in the kidney of streptozotocin-induced diabetic mice. Eighteen C57BL/6 male mice were randomly divided into three groups (n = 6 per group). Streptozotocin was used to induce diabetes and a group of diabetic mice was treated with 280 mg/day of L-serine dissolved in drinking water for 4 weeks. The level of blood glucose, biochemical markers of renal function (total protein, urea, creatinine and albumin) and oxidative stress markers (protein carbonyls, malondialdehyde, glutathione peroxidase, superoxide dismutase and catalase) were measured using spectrophotometry. The results indicated that L-serine significantly decreased the glucose level in diabetic mice (188.6 ± 22.69 mg/dL, P = 0.02). Moreover, treatment of diabetic mice with L-serine reduced protein carbonyls (3.249 ± 0.9165 nmol/mg protein, P < 0.05) and malondialdehyde levels (1.891 ± 0.7696 μM/mg protein, P = 0.051). However, L-serine showed no significant effects on renal function, and a slight reduction in histopathological changes was observed in mice receiving L-serine. This study revealed that L-serine effectively ameliorates oxidative stress in kidney tissue and reduces the blood glucose concentration in diabetic mice.
Collapse
Affiliation(s)
- Farzaneh Ershad Langroudi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahshad Sheikhi Narani
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Asma Kheirollahi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Akram Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sara Shokrpoor
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Samira Alizadeh
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
9
|
Xuan C, Ding W, Zhan L, Xiong Y, Yu X, Cao W, Luo Y. Potential Mechanisms of Yiqi Jiedu Huayu Decoction in the Treatment of Diabetic Microvascular Complications Based on Network Analysis, Molecular Docking, and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5034687. [PMID: 39281806 PMCID: PMC11401727 DOI: 10.1155/2023/5034687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 09/18/2024]
Abstract
Background Diabetic microvascular complications are the main causes of organ dysfunction and even death in diabetic patients. Our previous studies confirmed the beneficial effects of Yiqi Jiedu Huayu Decoction (YJHD) on diabetic cardiomyopathy and diabetic nephropathy. It is not clear whether YJHD can treat multiple diabetic microvascular complications including diabetic retinopathy, diabetic cardiomyopathy, and diabetic nephropathy through some common mechanisms. Methods TCMSP, SymMap, STITCH, Swiss Target Prediction, and SEA databases were used to collect and analyze the components and targets of YJHD. GeneCards, DrugBank, DisGeNET, OMIM, and GEO databases were used to obtain target genes for diabetic retinopathy, diabetic cardiomyopathy, and diabetic nephropathy. The GO and KEGG enrichment analyses were performed on the DAVID and STRING platforms. Molecular docking was used to evaluate the binding sites and affinities of compounds and target proteins. Animal experiments were designed to validate the network pharmacology results. Results Through network pharmacological analysis, oxidative stress, inflammatory response, and apoptosis were identified as key pathological phenotypes for the treatment of diabetic microvascular complications with YJHD. In addition, JNK, p38, and ERK1/2 were predicted as key targets of YJHD in regulating the abovementioned pathological phenotypes. The results of animal experiments showed that YJHD could ameliorate retinal pathological changes of diabetes rats. YJHD can inhibit oxidative stress and inflammation in heart and kidney of diabetic rats. Molecular docking showed strong binding between compounds and JNK, p38, and ERK1/2. Berlambine may play a key role in the treatment process and is considered as a promising regulator of MAPK protein family. The regulatory effects of YJHD on JNK, p38, and ERK1/2 were demonstrated in animal experiments. Conclusions YJHD may play a therapeutic role in diabetic microvascular complications by regulating oxidative stress, inflammatory response, and apoptosis. The regulation of JNK, p38, and ERK1/2 phosphorylation may be the key to its therapeutic effect.
Collapse
Affiliation(s)
- Chen Xuan
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Weisen Ding
- Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Ling Zhan
- Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Yanying Xiong
- Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Xiao Yu
- Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Wenfu Cao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yan Luo
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| |
Collapse
|
10
|
Han J, Hayashi S, Takahashi RU, Hirohata R, Kurokawa T, Tashiro M, Yamamoto Y, Okada M, Tahara H. Leukocyte Telomeric G-Tail Length Shortening Is Associated with Esophageal Cancer Recurrence. J Clin Med 2022; 11:jcm11247385. [PMID: 36556001 PMCID: PMC9784295 DOI: 10.3390/jcm11247385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Despite significant advances in therapeutics for esophageal cancer (ESC) in the past decade, it remains the sixth most fatal malignancy, with a poor 5-year survival rate (approximately 10%). There is an urgent need to improve the timely diagnosis to aid the prediction of the therapeutic response and prognosis of patients with ESC. The telomeric G-tail plays an important role in the chromosome protection. However, aging and age-related diseases lead to its shortening. Therefore, the G-tail length has been proposed as a novel potential biomarker. In the present study, to examine the possibility of G-tail shortening in patients with ESC, we measured the leukocyte telomere length (LTL) and the G-tail length using a hybridization protection assay in 147 patients with ESC and 170 age-matched healthy controls. We found that the G-tail length in patients with ESC was shorter than that in the healthy controls (p = 0.02), while the LTL shortening was not correlated with the ESC incidence and recurrence. Our results suggest that the G-tail length reflects the physiological status of patients with ESC and is a promising biomarker for the diagnosis and prognosis of ESC.
Collapse
Affiliation(s)
- Jiayan Han
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Soichiro Hayashi
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ryou-u Takahashi
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ryosuke Hirohata
- Department of Surgical Oncology, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | - Tomoaki Kurokawa
- Department of Surgical Oncology, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | - Mizuki Tashiro
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yuki Yamamoto
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- Correspondence: ; Tel.: +81-08-2257-5290 (ext. 5290)
| |
Collapse
|
11
|
Yap KN, Wong HS, Ramanathan C, Rodriguez-Wagner CA, Roberts MD, Freeman DA, Buffenstein R, Zhang Y. Naked mole-rat and Damaraland mole-rat exhibit lower respiration in mitochondria, cellular and organismal levels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148582. [PMID: 35667393 DOI: 10.1016/j.bbabio.2022.148582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Naked mole-rats (NMR) and Damaraland mole-rats (DMR) exhibit extraordinary longevity for their body size, high tolerance to hypoxia and oxidative stress and high reproductive output; these collectively defy the concept that life-history traits should be negatively correlated. However, when life-history traits share similar underlying physiological mechanisms, these may be positively associated with each other. We propose that one such potential common mechanism might be the bioenergetic properties of mole-rats. Here, we aim to characterize the bioenergetic properties of two African mole-rats. We adopted a top-down perspective measuring the bioenergetic properties at the organismal, cellular, and molecular level in both species and the biological significance of these properties were compared with the same measures in Siberian hamsters and C57BL/6 mice, chosen for their similar body size to the mole-rat species. We found mole-rats shared several bioenergetic properties that differed from their comparison species, including low basal metabolic rates, a high dependence on glycolysis rather than on oxidative phosphorylation for ATP production, and low proton conductance across the mitochondrial inner membrane. These shared mole-rat features could be a result of evolutionary adaptation to tolerating variable oxygen atmospheres, in particular hypoxia, and may in turn be one of the molecular mechanisms underlying their extremely long lifespans.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, United States of America; Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Hoi Shan Wong
- Calico Life Sciences LLC, South San Francisco, CA 94080, United States of America
| | - Chidambaram Ramanathan
- College of Health Sciences, University of Memphis, Memphis, TN 38152, United States of America
| | | | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, United States of America
| | - David A Freeman
- Department of Biological Science, University of Memphis, Memphis, TN 38152, United States of America
| | - Rochelle Buffenstein
- Calico Life Sciences LLC, South San Francisco, CA 94080, United States of America.
| | - Yufeng Zhang
- College of Health Sciences, University of Memphis, Memphis, TN 38152, United States of America.
| |
Collapse
|
12
|
Li X, Wu H, Huo H, Ma F, Zhao M, Han Q, Hu L, Li Y, Zhang H, Pan J, Tang Z, Guo J. N-acetylcysteine combined with insulin alleviates the oxidative damage of cerebrum via regulating redox homeostasis in type 1 diabetic mellitus canine. Life Sci 2022; 308:120958. [PMID: 36108767 DOI: 10.1016/j.lfs.2022.120958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/27/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
Neurodegenerative diseases are one of the major complications of type 1 diabetes mellitus (T1DM). The effect of insulin monotherapy on controlling blood glucose and neurodegeneration associated with diabetes is unsatisfactory. It is revealed that oxidative stress is a key element in T1DM. Therefore, N-acetylcysteine (NAC) was used together with insulin to investigate the therapeutic effect on neuronal damage in T1DM in this study. A total of 40 beagles were randomly divided into 5 groups (control group, DM group, insulin monotherapy group, NAC combined with insulin group, and NAC monotherapy group) to explore the effects of NAC on alleviating the oxidative damage in cerebrum. Our results showed that the contents of H2O2, 8-OHdg and MDA were apparently increased in DM group, while DNA and lipid oxidative damage was alleviated by the treatment of NAC and insulin. Histopathology revealed the sparse of neurofibrils and vacuolar degeneration in DM group. Additionally, compared with the control group, the mRNA expression levels of HO-1, nqo1, GCLC and GSTM1 were significantly decreased in DM group, while the opposite trend could be shown under NAC combined with insulin treatment. Meanwhile, the tight junction proteins of ZO-1, occludin and Claudin-1 were up-regulated with the treatment of NAC combined with insulin. Additionally, NAC further alleviated oxidative damage by enhancing the activity of GSH, Trx and TrxR and reducing the activity of catalase, GSSG and Grx to maintain redox homeostasis. These results demonstrated that NAC combined with insulin exerted protective effects against T1DM-induced cerebral injury via maintaining cerebral redox homeostasis.
Collapse
Affiliation(s)
- Xinrun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Haitong Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Haihua Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Menglong Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
13
|
Lemonnier C, Bize P, Boonstra R, Dobson FS, Criscuolo F, Viblanc VA. Effects of the social environment on vertebrate fitness and health in nature: Moving beyond the stress axis. Horm Behav 2022; 145:105232. [PMID: 35853411 DOI: 10.1016/j.yhbeh.2022.105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/04/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
Social interactions are a ubiquitous feature of the lives of vertebrate species. These may be cooperative or competitive, and shape the dynamics of social systems, with profound effects on individual behavior, physiology, fitness, and health. On one hand, a wealth of studies on humans, laboratory animal models, and captive species have focused on understanding the relationships between social interactions and individual health within the context of disease and pathology. On the other, ecological studies are attempting an understanding of how social interactions shape individual phenotypes in the wild, and the consequences this entails in terms of adaptation. Whereas numerous studies in wild vertebrates have focused on the relationships between social environments and the stress axis, much remains to be done in understanding how socially-related activation of the stress axis coordinates other key physiological functions related to health. Here, we review the state of our current knowledge on the effects that social interactions may have on other markers of vertebrate fitness and health. Building upon complementary findings from the biomedical and ecological fields, we identify 6 key physiological functions (cellular metabolism, oxidative stress, cellular senescence, immunity, brain function, and the regulation of biological rhythms) which are intimately related to the stress axis, and likely directly affected by social interactions. Our goal is a holistic understanding of how social environments affect vertebrate fitness and health in the wild. Whereas both social interactions and social environments are recognized as important sources of phenotypic variation, their consequences on vertebrate fitness, and the adaptive nature of social-stress-induced phenotypes, remain unclear. Social flexibility, or the ability of an animal to change its social behavior with resulting changes in social systems in response to fluctuating environments, has emerged as a critical underlying factor that may buffer the beneficial and detrimental effects of social environments on vertebrate fitness and health.
Collapse
Affiliation(s)
- Camille Lemonnier
- Ecole Normale Supérieur de Lyon, 69342 Lyon, France; Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France.
| | - Pierre Bize
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK; Swiss Institute of Ornithology, Sempach, Switzerland
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - F Stephen Dobson
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | | | - Vincent A Viblanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| |
Collapse
|
14
|
Niveditha S, Shivanandappa T. Potentiation of paraquat toxicity by inhibition of the antioxidant defenses and protective effect of the natural antioxidant, 4-hydroxyisopthalic acid in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2022; 259:109399. [PMID: 35753646 DOI: 10.1016/j.cbpc.2022.109399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/23/2022] [Accepted: 06/19/2022] [Indexed: 11/25/2022]
Abstract
Exposure to pesticides such as paraquat (PQ) is known to induce oxidative stress-mediated damage, which is implicated in neurodegenerative diseases. The antioxidant enzymes are part of the endogenous defense mechanisms capable of protecting against oxidative damage, and down-regulation of these enzymes results in elevated oxidative stress. In this study, we have evaluated the protective action of 4-hydroxyisophthalic acid (DHA-I), a novel bioactive molecule from the roots of D. hamiltonii, against PQ toxicity and demonstrated the protective role of endogenous antioxidant enzymes under the condition of oxidative stress using Drosophila model. The activity of the major antioxidant enzymes, superoxide dismutase 1 (SOD1) and catalase, was suppressed either by RNAi-mediated post transcriptional gene silencing or chemical inhibition. With the decreased in vivo activity of either SOD1 or catalase, Drosophila exhibited hypersensitivity to PQ toxicity, demonstrating the essential role of antioxidant enzymes in the mechanism of defense against PQ-induced oxidative stress. Dietary supplementation of DHA-I increased the resistance of Drosophila depleted in either SOD1 or catalase to PQ toxicity. Enhanced survival of flies against PQ toxicity indicates the protective role of DHA-I against oxidative stress-mediated damage under the condition of compromised antioxidant defenses.
Collapse
Affiliation(s)
- S Niveditha
- Neurobiology laboratory, Department of Zoology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - T Shivanandappa
- Neurobiology laboratory, Department of Zoology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India.
| |
Collapse
|
15
|
Salmón P, Millet C, Selman C, Monaghan P, Dawson NJ. Tissue-specific reductions in mitochondrial efficiency and increased ROS release rates during ageing in zebra finches, Taeniopygia guttata. GeroScience 2022; 45:265-276. [PMID: 35986126 PMCID: PMC9886749 DOI: 10.1007/s11357-022-00624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial dysfunction and oxidative damage have long been suggested as critically important mechanisms underlying the ageing process in animals. However, conflicting data exist on whether this involves increased production of mitochondrial reactive oxygen species (ROS) during ageing. We employed high-resolution respirometry and fluorometry on flight muscle (pectoralis major) and liver mitochondria to simultaneously examine mitochondrial function and ROS (H2O2) release rates in young (3 months) and old (4 years) zebra finches (Taeniopygia guttata). Respiratory capacities for oxidative phosphorylation did not differ between the two age groups in either tissue. Respiratory control ratios (RCR) of liver mitochondria also did not differ between the age classes. However, RCR in muscle mitochondria was 55% lower in old relative to young birds, suggesting that muscle mitochondria in older individuals are less efficient. Interestingly, this observed reduction in muscle RCR was driven almost entirely by higher mitochondrial LEAK-state respiration. Maximum mitochondrial ROS release rates were found to be greater in both flight muscle (1.3-fold) and the liver (1.9-fold) of old birds. However, while maximum ROS (H2O2) release rates from mitochondria increased with age across both liver and muscle tissues, the liver demonstrated a proportionally greater age-related increase in ROS release than muscle. This difference in age-related increases in ROS release rates between muscle and liver tissues may be due to increased mitochondrial leakiness in the muscle, but not the liver, of older birds. This suggests that age-related changes in cellular function seem to occur in a tissue-specific manner in zebra finches, with flight muscle exhibiting signs of minimising age-related increase in ROS release, potentially to reduce damage to this crucial tissue in older individuals.
Collapse
Affiliation(s)
- Pablo Salmón
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK.
| | - Caroline Millet
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ UK
| | - Colin Selman
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ UK
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ UK
| | - Neal J. Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ UK
| |
Collapse
|
16
|
Wang D, Zhang Y, Xu M, Sun X, Cui X, Wang X, Liu D. Dietary Bacillus licheniformis improves the effect of Astragalus membranaceus extract on blood glucose by regulating antioxidation activity and intestinal microbiota in InR[E19]/TM2 Drosophila melanogaster. PLoS One 2022; 17:e0271177. [PMID: 35830425 PMCID: PMC9278782 DOI: 10.1371/journal.pone.0271177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/24/2022] [Indexed: 11/22/2022] Open
Abstract
Background The diabetes mellitus prevalence is rapidly increasing in most parts of the world and has become a vital health problem. Probiotic and herbal foods are valuable in the treatment of diabetes. Methods and performance In this study, Bacillus licheniformis (BL) and Astragalus membranaceus extract (AE) were given with food to InR[E19]/TM2 Drosophila melanogaster, and the blood glucose, antioxidation activity and intestinal microbiota were investigated. The obtained results showed that BA (BL and AE combination) supplementation markedly decreased the blood glucose concentration compared with the standard diet control group, accompanied by significantly increased enzymatic activities of catalase (CAT), decreased MDA levels and prolonged lifespan of InR[E19]/TM2 D. melanogaster. The treatments with BL, AE and BA also ameliorated intestinal microbiota equilibrium by increasing the population of Lactobacillus and significantly decreasing the abundance of Wolbachia. In addition, clearly different evolutionary clusters were found among the control, BL, AE and BA-supplemented diets, and the beneficial microbiota, Lactobacillaceae and Acetobacter, were found to be significantly increased in male flies that were fed BA. These results indicated that dietary supplementation with AE combined with BL not only decreased blood glucose but also extended the lifespan, with CAT increasing, MDA decreasing, and intestinal microbiota improving in InR[E19]/TM2 D. melanogaster. Conclusion The obtained results showed that dietary supplementation with BL and AE, under the synergistic effect of BL and AE, not only prolonged the lifespan of InR[E19]/TM2 D. melanogaster, increased body weight, and improved the body’s antiaging enzyme activity but also effectively improved the types and quantities of beneficial bacteria in the intestinal flora of InR[E19]/TM2 D. melanogaster to improve the characteristics of diabetes symptoms. This study provides scientific evidence for a safe and effective dietary therapeutic method for diabetes mellitus.
Collapse
Affiliation(s)
- Denghui Wang
- School of Life Science, Northeast Normal University, Changchun, PR China
| | - Yaxin Zhang
- School of Life Science, Northeast Normal University, Changchun, PR China
| | - Meiling Xu
- School of Life Science, Northeast Normal University, Changchun, PR China
| | - Xiaoling Sun
- School of Food Technology and Biotechnology, Changchun Vocational Institute of Technology, Changchun, PR China
| | - Xiulin Cui
- School of Life Science, Northeast Normal University, Changchun, PR China
| | - Xiuran Wang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, PR China
- * E-mail: (XW); (DL)
| | - Dongbo Liu
- School of Life Science, Northeast Normal University, Changchun, PR China
- * E-mail: (XW); (DL)
| |
Collapse
|
17
|
Lunghi E, Bilandžija H. Longevity in Cave Animals. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.874123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An extraordinary longevity has been observed in some cave species, and this raised the hypothesis that a longer lifespan may be considered one of the characteristic traits of these animals. However, only a few cave species have been studied thus far, and a firm conclusion remains to be drawn. Here we review the available knowledge on the longevity of subterranean species, point out the limitations of previous studies, and provide suggestions for future studies to answer important questions regarding the longevity in cave animals, its adaptive value and the related promoting factors. We also argue that studying the longevity in cave animals will contribute to the field of aging, especially to understanding the evolution of this phenomenon.
Collapse
|
18
|
Zhuang C, Yuan J, Du Y, Zeng J, Sun Y, Wu Y, Gao XH, Chen HD. Effects of Oral Carotenoids on Oxidative Stress: A Systematic Review and Meta-Analysis of Studies in the Recent 20 Years. Front Nutr 2022; 9:754707. [PMID: 35571897 PMCID: PMC9094493 DOI: 10.3389/fnut.2022.754707] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/28/2022] [Indexed: 01/09/2023] Open
Abstract
Carotenoids protect organs, tissues, and cells from the damaging action of singlet oxygen, oxygen radicals, and lipid peroxides. This systematic review was sought to evaluate the influence of oral carotenoids on antioxidant/oxidative markers, blood carotenoids levels, and lipid/lipoprotein parameters in human subjects. A comprehensive review of relevant literature was conducted in PubMed, Web of Sciences, and the Cochrane library, from 2000 to December 2020. Randomized controlled trials, case-controlled trials, or controlled trials were identified. A total of eighteen trials were included, with the target populations being healthy subjects in 16 studies, athletes in 1 study, and pregnant women in 1 study. The meta-analysis results showed that carotenoids complex supplementation significantly increased the levels of antioxidative parameters ferric-reducing ability of plasma (FRAP) and oxygen radical absorbance capacity (ORAC) [standardized mean difference (SMD) = 0.468; 95% CI: 0.159-0.776, p = 0.003; SMD = 0.568; 95% CI: 0.190-0.947, p = 0.003] and decreased the blood triglyceride (TG) level (SMD = -0.410, 95% CI: -0.698 to -0.122, p = 0.005). Oral carotenoids supplement significantly increased the blood levels of β-carotene (SMD = 0.490, 95% CI: 0.123-0.858, p = 0.009), α-tocopherol (SMD = 0.752, 95%CI: 0.020-1.485, p = 0.044), and the intaking durations were 8 weeks. The levels of antioxidative enzymes and other lipid/lipoprotein parameters were not different between subjects receiving carotenoids and controls (p > 0.05). In conclusion, our systematic review showed that the carotenoids complex is beneficial for alleviating potential oxidative stress via interacting with free radicals or decreasing blood TG levels. The intaking duration of carotenoids should be 8 weeks to reach enough concentration for function.
Collapse
Affiliation(s)
- Chengfei Zhuang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Jinping Yuan
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yimei Du
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Jing Zeng
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Yan Sun
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Hong-Duo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Zagkle E, Martinez-Vidal PA, Bauchinger U, Sadowska ET. Manipulation of Heat Dissipation Capacity Affects Avian Reproductive Performance and Output. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.866182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal life requires hard work but the ability to endure such workload appears to be limited. Heat dissipation limit (HDL) hypothesis proposes that the capacity to dissipate the excess of body heat during hard work may limit sustained energy use. Experimental facilitations of heat loss rate via feather-clipping in free-living birds seem to support HDL hypothesis but testing of HDL through laboratory experiments under controlled conditions is not reported. We employed a two-factorial experimental design to test HDL hypothesis by manipulating the capacity to dissipate heat through exposure of captive zebra finches (Taeniopygia guttata) to a cold and warm ambient temperature (14°C and 25°C), and through manipulation of the insulating layer of feathers around the brood patch in females (clipped and unclipped). To simulate foraging costs encountered in the wild we induced foraging effort by employing a feeding system that necessitated hovering to access food, which increased energetic costs of reproduction despite ad libitum conditions in captivity. We quantified the outcome of reproductive performance at the level of both parents, females, and offspring. Thermal limitations due to warm temperature appeared at the beginning of reproduction for both parents with lower egg-laying success, smaller clutch size and lower egg mass, compared to the cold. After hatching, females with an enhanced ability to dissipate heat through feather-clipping revealed higher body mass compared to unclipped females, and these clipped females also raised heavier and bigger nestlings. Higher levels for oxidative stress in plasma of females were detected prior to reproduction in warm conditions than in the cold. However, oxidative stress biomarkers of mothers were neither affected by temperature nor by feather-clipping during the reproductive activities. We document upregulation of antioxidant capacity during reproduction that seems to prevent increased levels of oxidative stress possibly due to the cost of female body condition and offspring growth. Our study on reproduction under laboratory-controlled conditions corroborates evidence in line with the HDL hypothesis. The link between temperature-constrained sustained performance and reproductive output in terms of quality and quantity is of particular interest in light of the current climate change, and illustrates the emerging risks to avian populations.
Collapse
|
20
|
Escala A. Universal relation for life-span energy consumption in living organisms: Insights for the origin of aging. Sci Rep 2022; 12:2407. [PMID: 35190571 PMCID: PMC8861023 DOI: 10.1038/s41598-022-06390-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
Metabolic energy consumption has long been thought to play a major role in the aging process (Pearl, The rate of living. University of London Press, London, 1928). Across species, a gram of tissue expends approximately the same amount of energy during the lifespan on average (Speakman, J Exp Biol 208:1717–1730, 2005). Energy restriction has also been shown to increase the maximum lifespan (McCay et al. J Nutr 10:63–79, 1935) and to retard age-associated changes (Weindruch and Walford, The retardation of aging and disease by dietary restriction. CC Thomas, Springfield, 1988). However, there are significant exceptions to universal energy consumption during the lifespan, mainly found by interclass comparison (Ramsey et al. Free Rad Biol Med 29:946–968, 2000; Atanasov, Trakia J Sci 10(3):1–14, 2012). Here, we present a universal relation that relates lifespan energy consumption to several physiological variables, such as body mass, temperature and the ratio of heart rate to respiratory rate, which have been shown to be valid for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim 300$$\end{document}∼300 species representing different classes of living organisms, from unicellular organisms to the largest mammals. This relation has an average scattered pattern restricted to factors of 2, with 95% (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2-\sigma$$\end{document}2-σ) of the organisms having departures of less than a factor of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi$$\end{document}π from the relation, despite the difference of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim 20$$\end{document}∼20 orders of magnitude in body mass, reducing any possible interclass variation in the relation to only a geometrical factor. This result can be interpreted as supporting evidence for the existence of an approximately constant total number \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{N}}_{{\mathrm{r}}} \sim 10^8$$\end{document}Nr∼108 of respiration cycles per lifetime for all organisms studied, effectively predetermining the extension of life through the basic energetics of respiration (quantified by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{t}}_{{\mathrm{life}}} = \mathrm{N}_\mathrm{r}/\mathrm{f}_{{\mathrm{resp}}}$$\end{document}tlife=Nr/fresp); this is an incentive to conduct future studies on the relation of such a constant number \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{N}}_{\mathrm{r}}$$\end{document}Nr of cycles per lifetime due to the production rates of free radicals and oxidants or alternative mechanisms, which may yield definite constraints on the origin of aging.
Collapse
Affiliation(s)
- Andrés Escala
- Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile.
| |
Collapse
|
21
|
Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP, Chang CM. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules 2022; 27:molecules27041326. [PMID: 35209118 PMCID: PMC8878429 DOI: 10.3390/molecules27041326] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
The use of F. religiosa might be beneficial in inflammatory illnesses and can be used for a variety of health conditions. In this article, we studied the identification of antioxidants using (DPPH) 2,2-Diphenyl-1-picrylhydrazylradical scavenging activity in Ficus religiosa, as F. religiosa is an important herbal plant, and every part of it has various medicinal properties such as antibacterial properties that can be used by the researchers in the development and design of various new drugs. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) is a popular, quick, easy, and affordable approach for the measurement of antioxidant properties that includes the use of the free radicals used for assessing the potential of substances to serve as hydrogen providers or free-radical scavengers (FRS). The technique of DPPH testing is associated with the elimination of DPPH, which would be a stabilized free radical. The free-radical DPPH interacts with an odd electron to yield a strong absorbance at 517 nm, i.e., a purple hue. An FRS antioxidant, for example, reacts to DPPH to form DPPHH, which has a lower absorbance than DPPH because of the lower amount of hydrogen. It is radical in comparison to the DPPH-H form, because it causes decolorization, or a yellow hue, as the number of electrons absorbed increases. Decolorization affects the lowering capacity significantly. As soon as the DPPH solutions are combined with the hydrogen atom source, the lower state of diphenylpicrylhydrazine is formed, shedding its violet color. To explain the processes behind the DPPH tests, as well as their applicability to Ficus religiosa (F. religiosa) in the manufacture of metal oxide nanoparticles, in particular MgO, and their influence on antioxidants, a specimen from the test was chosen for further study. According to our findings, F. religiosa has antioxidant qualities and may be useful in the treatment of disorders caused by free radicals.
Collapse
Affiliation(s)
- Siddartha Baliyan
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, Haryana, India; (S.B.); (R.M.); (A.P.); (A.V.); (A.G.)
| | - Riya Mukherjee
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, Haryana, India; (S.B.); (R.M.); (A.P.); (A.V.); (A.G.)
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan
| | - Anjali Priyadarshini
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, Haryana, India; (S.B.); (R.M.); (A.P.); (A.V.); (A.G.)
| | - Arpana Vibhuti
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, Haryana, India; (S.B.); (R.M.); (A.P.); (A.V.); (A.G.)
| | - Archana Gupta
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, Haryana, India; (S.B.); (R.M.); (A.P.); (A.V.); (A.G.)
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, Haryana, India; (S.B.); (R.M.); (A.P.); (A.V.); (A.G.)
- Correspondence: (R.P.P.); (C.-M.C.)
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan
- Correspondence: (R.P.P.); (C.-M.C.)
| |
Collapse
|
22
|
Iheagwam FN, Batiha GES, Ogunlana OO, Chinedu SN. Terminalia catappa Extract Palliates Redox Imbalance and Inflammation in Diabetic Rats by Upregulating Nrf-2 Gene. Int J Inflam 2021; 2021:9778486. [PMID: 34956587 PMCID: PMC8702315 DOI: 10.1155/2021/9778486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
This study aims at evaluating the ameliorative role of Terminalia catappa aqueous leaf extract (TCA) on hyperglycaemia-induced oxidative stress and inflammation in a high-fat, low dose streptozotocin-induced type 2 diabetic rat model. Experimental rats were treated orally with 400 and 800 mg/kg bw TCA daily for four weeks. Antioxidant enzyme activities, plasma glucose concentration, protein concentration, oxidative stress, and inflammation biomarkers were assayed using standard methods. Hepatic relative expressions of tumour necrosis factor-alpha (TNF-α), interleukin-six (IL-6), and nuclear factor-erythroid 2 related factor 2 (Nrf-2) were also assessed. Molecular docking and prediction of major TCA phytoconstituents' biological activity related to T2DM-induced oxidative stress were evaluated in silico. Induction of diabetes significantly (p < 0.05) reduced superoxide dismutase, glutathione-S-transferase, and peroxidase activities. Glutathione and protein stores were significantly (p < 0.05) depleted, while glucose, MDA, interleukin-six (IL-6), and tumour necrosis factor-α (TNF-α) concentrations were significantly (p < 0.05) increased. A significant (p < 0.05) upregulation of hepatic TNF-α and IL-6 expression and downregulation (p < 0.05) of Nrf-2 expression were observed during diabetes onset. TCA treatment significantly (p < 0.05) modulated systemic diabetic-induced oxidative stress and inflammation, mRNA expression dysregulation, and dysregulated macromolecule metabolism. However, only 800 mg/kg TCA treatment significantly (p < 0.05) downregulated hepatic TNF-α expression. 9-Oxabicyclo[3.3.1]nonane-2,6-diol and 1,2,3-Benzenetriol bound comparably to glibenclamide in Nrf-2, IL-6, and TNF-α binding pockets. They were predicted to be GST A and M substrate, JAK2 expression, ribulose-phosphate 3-epimerase, NADPH peroxidase, and glucose oxidase inhibitors. These results suggest that TCA ameliorates hyperglycaemia-induced oxidative stress and inflammation by activating Nrf-2 gene.
Collapse
Affiliation(s)
- Franklyn Nonso Iheagwam
- Department of Biochemistry, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | - Shalom Nwodo Chinedu
- Department of Biochemistry, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| |
Collapse
|
23
|
Romero-Haro AÁ, Pérez-Rodríguez L, Tschirren B. Intergenerational Costs of Oxidative Stress: Reduced Fitness in Daughters of Mothers That Experienced High Levels of Oxidative Damage during Reproduction. Physiol Biochem Zool 2021; 95:1-14. [PMID: 34812695 DOI: 10.1086/717614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractParental condition transfer effects occur when the parents' physiological state during reproduction affects offspring performance. Oxidative damage may mediate such effects, yet evidence that oxidative damage experienced by parents during reproduction negatively affects offspring fitness is scarce and limited to early life stages. We show in Japanese quail (Coturnix japonica) that maternal levels of oxidative damage, measured during reproduction, negatively predict the number of offspring produced by daughters. This maternal effect on daughters' reproductive success was mediated by an effect on hatching success rather than on the number of eggs laid by daughters. We also observed a negative association between fathers' oxidative damage levels and the number of eggs laid by daughters but a positive association between fathers' oxidative damage levels and the hatching success of those eggs. These opposing paternal effects canceled each other out, resulting in no overall effect on the number of offspring produced by daughters. No significant association between a female's own level of oxidative damage during reproduction and her reproductive success was observed. Our results suggest that oxidative damage experienced by parents is a better predictor of an individual's reproductive performance than oxidative damage experienced by the individual itself. Although the mechanisms underlying these parental condition transfer effects are currently unknown, changes in egg composition or (epi)genetic alterations of gametes may play a role. These findings highlight the importance of an intergenerational perspective when quantifying costs of physiological stress.
Collapse
|
24
|
Genetic repression of the antioxidant enzymes reduces the lifespan in Drosophila melanogaster. J Comp Physiol B 2021; 192:1-13. [PMID: 34625818 DOI: 10.1007/s00360-021-01412-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022]
Abstract
Aging is a biological process associated with gradual loss of function caused by cellular and molecular damages ultimately leading to mortality. Free radicals are implicated in oxidative damage which affects the longevity of organisms. Natural cellular defenses involving antioxidant enzymes delay or prevent oxidative damage and, therefore, influence the aging process and longevity has been shown in many species including Drosophila. We and others have shown that oxidative resistance is an important mechanism in the aging process in Drosophila. Therefore, we hypothesized that repressing endogenous antioxidant defenses shortens longevity in Drosophila. To study the influence of natural defense mechanisms against oxidative stress in aging, we have investigated the effect of genetic repression of the antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), on longevity in Drosophila using transgenic RNAi flies and in vivo inhibition of the enzymes with chemical inhibitors. RNAi lines of Drosophila viz., UAS-sod1-IR and UAS-cat-IR, are driven ubiquitously using Act5C-Gal4 and Tubulin-Gal4 to achieve the suppression of SOD1 and CAT activities, respectively. We show that genetic repression of SOD1 and CAT by RNAi in transgenic flies led to drastically reduced longevity (SOD1, 77%; CAT, 83%), presenting the evidence for the role of endogenous antioxidant defenses in lifespan extension in Drosophila. Further, our study shows that the enzyme inhibitors, diethyldithiocarbamate and 3-amino-1,2,4-triazole, although lower the enzyme activities in vivo in flies, but did not affect longevity, which could be attributed to the factors such as bioavailability and metabolism of the inhibitors and adaptive mechanisms involving de novo synthesis of the enzymes. Our study of genetic repression using transgenic RNAi provides experimental evidence that extended longevity is associated with endogenous antioxidant defenses and aging is correlated with oxidative stress resistance.
Collapse
|
25
|
|
26
|
Kumar SA, Albrecht T, Kauzál O, Tomášek O. No Evidence for Trade-Offs Between Lifespan, Fecundity, and Basal Metabolic Rate Mediated by Liver Fatty Acid Composition in Birds. Front Cell Dev Biol 2021; 9:638501. [PMID: 33869185 PMCID: PMC8045231 DOI: 10.3389/fcell.2021.638501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/23/2021] [Indexed: 01/03/2023] Open
Abstract
The fatty acid composition of biological membranes has been hypothesised to be a key molecular adaptation associated with the evolution of metabolic rates, ageing, and life span – the basis of the membrane pacemaker hypothesis (MPH). MPH proposes that highly unsaturated membranes enhance cellular metabolic processes while being more prone to oxidative damage, thereby increasing the rates of metabolism and ageing. MPH could, therefore, provide a mechanistic explanation for trade-offs between longevity, fecundity, and metabolic rates, predicting that short-lived species with fast metabolic rates and higher fecundity would have greater levels of membrane unsaturation. However, previous comparative studies testing MPH provide mixed evidence regarding the direction of covariation between fatty acid unsaturation and life span or metabolic rate. Moreover, some empirical studies suggest that an n-3/n-6 PUFA ratio or the fatty acid chain length, rather than the overall unsaturation, could be the key traits coevolving with life span. In this study, we tested the coevolution of liver fatty acid composition with maximum life span, annual fecundity, and basal metabolic rate (BMR), using a recently published data set comprising liver fatty acid composition of 106 avian species. While statistically controlling for the confounding effects of body mass and phylogeny, we found no support for long life span evolving with low fatty acid unsaturation and only very weak support for fatty acid unsaturation acting as a pacemaker of BMR. Moreover, our analysis provided no evidence for the previously reported links between life span and n-3 PUFA/total PUFA or MUFA proportion. Our results rather suggest that long life span evolves with long-chain fatty acids irrespective of their degree of unsaturation as life span was positively associated with at least one long-chain fatty acid of each type (i.e., SFA, MUFA, n-6 PUFA, and n-3 PUFA). Importantly, maximum life span, annual fecundity, and BMR were associated with different fatty acids or fatty acid indices, indicating that longevity, fecundity, and BMR coevolve with different aspects of fatty acid composition. Therefore, in addition to posing significant challenges to MPH, our results imply that fatty acid composition does not pose an evolutionary constraint underpinning life-history trade-offs at the molecular level.
Collapse
Affiliation(s)
- Sampath A Kumar
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Tomáš Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Ondřej Kauzál
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Oldřich Tomášek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
27
|
John CM, Arockiasamy S. 3,5-Dimethoxy-4-benzoic acid (syringic acid) a natural phenolic acid reduces reactive oxygen species in differentiated 3T3-L1 adipocytes. In Vitro Cell Dev Biol Anim 2021; 57:386-394. [PMID: 33772407 DOI: 10.1007/s11626-021-00549-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/12/2021] [Indexed: 01/11/2023]
Abstract
Preadipocytes under nutrient excess mature to lipid-laden adipocytes that are hotspots for generation of reactive oxygen species (ROS) imbalance and oxidative stress. Syringic acid (SA), a natural phenolic acid, was evaluated for its in vitro antioxidant and ROS modulation during in matured 3T3-L1 adipocytes. Following 10 d, the SA-treated adipocytes were evaluated for the levels of glutathione (GSH) and antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT). The levels of peroxides in mature adipocytes were estimated using dichlorofluorescein (DCF) cleavage fluorescence. The level of NADPH oxidase 4 (NOX4) expression was also investigated following 10-d differentiation period. SA significantly improved the levels of GSH, SOD, and CAT in matured adipocytes. Reduction in ROS production levels was also witnessed by decrease in DCF cleavage. SA showed concentration-dependent inhibition of NOX4 by day 7 of adipogenesis when compared with differentiated and undifferentiated cells. Moreover, SA exhibited effective antioxidant and anti-radical scavenging activity. These results suggest that SA in addition to inhibiting adipogenesis can strongly reduce ROS stress in mature adipocytes by upregulating levels of intracellular antioxidants and decreasing levels of NOX4 in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Cordelia Mano John
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Sumathy Arockiasamy
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India.
| |
Collapse
|
28
|
Zhang Y, Wong HS. Are mitochondria the main contributor of reactive oxygen species in cells? J Exp Biol 2021; 224:224/5/jeb221606. [PMID: 33707189 DOI: 10.1242/jeb.221606] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Physiologists often assume that mitochondria are the main producers of reactive oxygen species (ROS) in cells. Consequently, in biomedicine, mitochondria are considered as important targets for therapeutic treatments, and in evolutionary biology, they are considered as mediators of life-history tradeoffs. Surprisingly, data supporting such an assumption are lacking, at least partially due to the technical difficulties in accurately measuring the level of ROS produced by different subcellular compartments in intact cells. In this Commentary, we first review three potential reasons underlying the misassumption of mitochondrial dominance in the production of cellular ROS. We then introduce some other major sites/enzymes responsible for cellular ROS production. With the use of a recently developed cell-based assay, we further discuss the contribution of mitochondria to the total rate of ROS release in cell lines and primary cells of different species. In these cells, the contribution of mitochondria varies between cell types but mitochondria are never the main source of cellular ROS. This indicates that although mitochondria are one of the significant sources of cellular ROS, they are not necessarily the main contributor under normal conditions. Intriguingly, similar findings were also observed in cells under a variety of stressors, life-history strategies and pathological stages, in which the rates of cellular ROS production were significantly enhanced. Finally, we make recommendations for designing future studies. We hope this paper will encourage investigators to carefully consider non-mitochondrial sources of cellular ROS in their study systems or models.
Collapse
Affiliation(s)
- Yufeng Zhang
- College of Health Sciences, The University of Memphis, Memphis, TN 38152, USA
| | - Hoi Shan Wong
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| |
Collapse
|
29
|
Yue Y, Wang M, Feng Z, Zhu Y, Chen J. Antiaging effects of rice protein hydrolysates on Drosophila melanogaster. J Food Biochem 2021; 45:e13602. [PMID: 33587316 DOI: 10.1111/jfbc.13602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022]
Abstract
Rice protein hydrolysates (RPH) prepared by enzymatic hydrolysis have plenty of bioactive functions. Herein, we investigated the antiaging effect of RPH on Drosophila melanogaster (fruit fly) and its mechanisms. According to the results, fruit flies reared on 0.2% and 3.2% RP-supplement diet prolonged their average lifespan, 50% survival days, and the maximum lifespan, together with increasing superoxide dismutase, manganese superoxide dismutase, and catalase activity compared to those reared on basal diet. Further studies showed the lifespan extending effect of RPH was regulated by the cooperation with the intrinsic stress protection system (Nrf2/Keap1), age-related signaling pathway (TOR, S6K) and the expression of longevity genes (methuselah). In conclusion, the lifespan extending effect of RPH makes it possible to be applied in food and healthcare industry. PRACTICAL APPLICATIONS: In previous studies, rice protein hydrolysates (RPH) have been found to have strong antioxidant properties. But so far, most researches focused on the preparation, identification and in vitro antioxidant experiments of RPH, and there is still a lack of researches on its effect on the antioxidant system of fruit flies and the antiaging of fruit flies. This report showed that RPH enhanced the antioxidant system and prolonged the lifespan of Drosophila, which might help us rationally use rice peptides in functional foods.
Collapse
Affiliation(s)
- Yang Yue
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Mengting Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhangping Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yanyun Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jianchu Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Wang H, Dou S, Zhu J, Shao Z, Wang C, Cheng B. Regulatory effects of ghrelin on endoplasmic reticulum stress, oxidative stress, and autophagy: Therapeutic potential. Neuropeptides 2021; 85:102112. [PMID: 33333485 DOI: 10.1016/j.npep.2020.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Ghrelin is a regulatory peptide that is the endogenous ligand of the growth hormone secretagogue 1a (GHS-R1a) which belongs to the G protein-coupled receptor family. Ghrelin and GHS-R1a are widely expressed in the central and peripheral tissues and play therapeutic potential roles in the cytoprotection of many internal organs. Endoplasmic reticulum stress (ERS), oxidative stress, and autophagy dysfunction, which are involved in various diseases. In recent years, accumulating evidence has suggested that ghrelin exerts protective effects by regulating ERS, oxidative stress, and autophagy in diverse diseases. This review article summarizes information about the roles of the ghrelin system on ERS, oxidative stress, and autophagy in multiple diseases. It is suggested that ghrelin positively affects the treatment of diseases and may be considered as a therapeutic drug in many illnesses.
Collapse
Affiliation(s)
- Huiqing Wang
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Shanshan Dou
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Junge Zhu
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Ziqi Shao
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, 272067 Jining, China.
| |
Collapse
|
31
|
Brown TJ, Hammers M, Taylor M, Dugdale HL, Komdeur J, Richardson DS. Hematocrit, age, and survival in a wild vertebrate population. Ecol Evol 2021; 11:214-226. [PMID: 33437424 PMCID: PMC7790625 DOI: 10.1002/ece3.7015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
Understanding trade-offs in wild populations is difficult, but important if we are to understand the evolution of life histories and the impact of ecological variables upon them. Markers that reflect physiological state and predict future survival would be of considerable benefit to unraveling such trade-offs and could provide insight into individual variation in senescence. However, currently used markers often yield inconsistent results. One underutilized measure is hematocrit, the proportion of blood comprising erythrocytes, which relates to the blood's oxygen-carrying capacity and viscosity, and to individual endurance. Hematocrit has been shown to decline with age in cross-sectional studies (which may be confounded by selective appearance/disappearance). However, few studies have tested whether hematocrit declines within individuals or whether low hematocrit impacts survival in wild taxa. Using longitudinal data from the Seychelles warbler (Acrocephalus sechellensis), we demonstrated that hematocrit increases with age in young individuals (<1.5 years) but decreases with age in older individuals (1.5-13 years). In breeders, hematocrit was higher in males than females and varied relative to breeding stage. High hematocrit was associated with lower survival in young individuals, but not older individuals. Thus, while we did not find support for hematocrit as a marker of senescence, high hematocrit is indicative of poor condition in younger individuals. Possible explanations are that these individuals were experiencing dehydration and/or high endurance demands prior to capture, which warrants further investigation. Our study demonstrates that hematocrit can be an informative metric for life-history studies investigating trade-offs between survival, longevity, and reproduction.
Collapse
Affiliation(s)
- Thomas J. Brown
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Martijn Hammers
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Martin Taylor
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Hannah L. Dugdale
- School of BiologyFaculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - David S. Richardson
- School of Biological SciencesUniversity of East AngliaNorwichUK
- Nature SeychellesVictoriaMahéSeychelles
| |
Collapse
|
32
|
Seo AY, Speakman JR, Selman C. Metabolic rate through the life-course: From the organism to the organelle. Exp Gerontol 2020; 140:111059. [PMID: 32853835 DOI: 10.1016/j.exger.2020.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Arnold Y Seo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - John R Speakman
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Shenzhen, China; Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
33
|
Malod K, Roets PD, Oosthuizen C, Blount JD, Archer CR, Weldon CW. Selection on age of female reproduction in the marula fruit fly, Ceratitis cosyra (Walker) (Diptera: Tephritidae), decreases total antioxidant capacity and lipid peroxidation. JOURNAL OF INSECT PHYSIOLOGY 2020; 125:104084. [PMID: 32634434 DOI: 10.1016/j.jinsphys.2020.104084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The oxidative damage caused to cells by Reactive Oxygen Species (ROS) is one of several factors implicated in causing ageing. Oxidative damage may also be a proximate cost of reproductive effort that mediates the trade-off often observed between reproduction and survival. However, how the balance between oxidative damage and antioxidant protection affects life-history strategies is not fully understood. To improve our understanding, we selected on female reproductive age in the marula fruit fly, Ceratitis cosyra, and quantified the impact of selection on female and male mortality risk, female fecundity, male sperm transfer, calling and mating. Against expectations, upward-selected lines lived shorter lives and experienced some reductions in reproductive performance. Selection affected oxidative damage to lipids and total antioxidant protection, but not in the direction predicted; longer lives were associated with elevated oxidative damage, arguing against the idea that accumulated oxidative damage reduces lifespan. Greater reproductive effort was also associated with elevated oxidative damage, suggesting that oxidative damage may be a cost of reproduction, although one that did not affect survival. Our results add to a body of data showing that the relationship between lifespan, reproduction and oxidative damage is more complex than predicted by existing theories.
Collapse
Affiliation(s)
- Kevin Malod
- Department of Zoology and Entomology, University of Pretoria, Private bag X20, Hatfield 0028, South Africa.
| | - Petrus D Roets
- Department of Zoology and Entomology, University of Pretoria, Private bag X20, Hatfield 0028, South Africa
| | - Carel Oosthuizen
- Department of Zoology and Entomology, University of Pretoria, Private bag X20, Hatfield 0028, South Africa
| | - Jonathan D Blount
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - C Ruth Archer
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Christopher W Weldon
- Department of Zoology and Entomology, University of Pretoria, Private bag X20, Hatfield 0028, South Africa
| |
Collapse
|
34
|
Balázs G, Vörös J, Lewarne B, Herczeg G. A new non-invasive in situ underwater DNA sampling method for estimating genetic diversity. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10053-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractDNA-based methods form the cornerstone of contemporary evolutionary biology and they are highly valued tools in conservation biology. The development of non-invasive sampling methods can be crucial for both gathering sample sizes needed for robust ecological inference and to avoid a negative impact on small and/or endangered populations. Such sampling is particularly challenging in working with aquatic organisms, if the goal is to minimize disturbance and to avoid even temporary removal of individuals from their home range. We developed an in situ underwater method of DNA sampling and preservation that can be applied during diving in less than a minute of animal handling. We applied the method on a Herzegovinian population of olm (Proteus anguinus, Caudata), an endangered aquatic cave-dwelling vertebrate, which makes it an excellent model to test the method under the harshest conditions. We sampled 22 adults during cave-diving and extracted sufficient quantity and quality of DNA from all individuals. We amplified 10 species-specific microsatellite loci, with PCR success varying between 6 and 10 loci (median: 7 loci). Fragment length analyses on 9 loci revealed a single allele at all loci across all individuals. This is in stark contrast to four Croatian populations studied with the same 10 loci previously that showed high within-population genetic variation. Our population and the four Croatian populations were genetically highly divergent. We propose that our method can be widely used to sample endangered aquatic populations, or in projects where the disturbance of individuals must be kept minimal for conservation and scientific purposes.
Collapse
|
35
|
Tüzün N, Debecker S, Stoks R. Strong species differences in life history do not predict oxidative stress physiology or sensitivity to an environmental oxidant. J Anim Ecol 2020; 89:1711-1721. [PMID: 32271951 DOI: 10.1111/1365-2656.13235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/30/2020] [Indexed: 11/26/2022]
Abstract
Species typically align along a fast-slow life-history continuum, yet it is not clear to what extent oxidative stress physiology can be integrated with this continuum to form a 'pace-of-life syndrome', especially so in invertebrates. This is important, given the assumed role of oxidative stress in mediating life-history trade-offs, and the prediction that species with a faster pace should be more vulnerable to oxidative stress. We tested whether a species' life-history pace, here represented by its growth rate, can predict species-level differentiation in physiology and sensitivity to oxidative stress. Therefore, we exposed four species of Ischnura damselflies that strongly align along a fast-slow life-history continuum to different levels of ultraviolet (UV) radiation. We measured an extended set of physiological traits linked to the pace-of-life: standard metabolic rate, oxidative stress physiology (antioxidant enzymes and oxidative damage) and defence/condition traits (investment in immune function, energy storage and structural defence). Despite strong species differences in growth rate and physiology, growth rate did not predict species-level differentiation in physiology. Hence there was no support for the integration of metabolic rate, oxidative stress physiology or defence/condition traits into a species-level syndrome. Ultraviolet exposure affected nearly all traits: it reduced growth rate and increased metabolic rate, affected all oxidative stress physiology traits and increased the two defence traits (immune function, and melanin content). Nevertheless, the pace-of-life based on growth rate did not predict sensitivity to UV. Instead, the observed pattern of investment in structural UV defence (melanin) might have reduced the need for enzymatic antioxidant defence, this way potentially decoupling the covariation between the life-history pace and oxidative stress physiology. The absence of an integrated axis of life-history and physiological variation indicates no major constraints for the evolution of these traits among the studied damselfly species. Our study highlights that ecological differences between species may decouple covariation between species' life-history pace and their physiology, as well as their sensitivity to environmental stressors.
Collapse
Affiliation(s)
- Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Sara Debecker
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Malod K, Archer CR, Karsten M, Cruywagen R, Howard A, Nicolson SW, Weldon CW. Exploring the role of host specialisation and oxidative stress in interspecific lifespan variation in subtropical tephritid flies. Sci Rep 2020; 10:5601. [PMID: 32221391 PMCID: PMC7101423 DOI: 10.1038/s41598-020-62538-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/12/2020] [Indexed: 11/28/2022] Open
Abstract
In herbivorous insects, the degree of host specialisation may be one ecological factor that shapes lifespan. Because host specialists can only exploit a limited number of plants, their lifecycle should be synchronised with host phenology to allow reproduction when suitable hosts are available. For species not undergoing diapause or dormancy, one strategy to achieve this could be evolving long lifespans. From a physiological perspective, oxidative stress could explain how lifespan is related to degree of host specialisation. Oxidative stress caused by Reactive Oxygen Species (ROS) might help underpin ageing (the Free Radical Theory of Aging (FRTA)) and mediate differences in lifespan. Here, we investigated how lifespan is shaped by the degree of host specialisation, phylogeny, oxidative damage accumulation and antioxidant protection in eight species of true fruit flies (Diptera: Tephritidae). We found that lifespan was not constrained by species relatedness or oxidative damage (arguing against the FRTA); nevertheless, average lifespan was positively associated with antioxidant protection. There was no lifespan difference between generalist and specialist species, but most of the tephritids studied had long lifespans in comparison with other dipterans. Long lifespan may be a trait under selection in fruit-feeding insects that do not use diapause.
Collapse
Affiliation(s)
- Kévin Malod
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - C Ruth Archer
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Minette Karsten
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Ruben Cruywagen
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Alexandra Howard
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Susan W Nicolson
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Christopher W Weldon
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
| |
Collapse
|
37
|
Lenzhofer N, Ohrnberger SA, Valencak TG. n-3 polyunsaturated fatty acids as modulators of thermogenesis in Ames dwarf mice. GeroScience 2020; 42:897-907. [PMID: 32065332 DOI: 10.1007/s11357-019-00148-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/13/2019] [Indexed: 01/19/2023] Open
Abstract
Lipids, commonly split into saturated and mono- and polyunsaturated fatty acids, are key constituents of all biological membranes, and their exact proportions in different tissues were previously shown to be related to lifespan in mammals. As a mechanism, it was put forward that long-chain and highly unsaturated n-3 fatty acids may act as "pacemakers" in membranes while the n-6 fatty acid class may act as a counterbalance. Previously, long-lived Ames dwarf mice (Prop1 df/df) were found to have lower n-3 fatty acids and higher n-6 throughout their tissues. We exposed 32 adult (8 months old) Ames dwarf mice to three isocaloric diets differing in their fatty acid composition (saturated vs. rich in n-3 and n-6) for 2 months while measuring their body masses, subcutaneous body temperatures and finally membrane fatty acid profiles. Prominently, we found that individuals from all three groups quickly increased their body masses by ca. 20% and had 0.45 °C higher subcutaneous body temperatures than at baseline (F1,12,16 = 22.27; p < 0.001). Conceivably, experimental diets also largely reflected lipid composition found in the tissues with over 50% n-3 fatty acids in heart phospholipids from animals from the n-3-enriched feeding group. Our study indicates that fatty acid-enriched diets well affected body mass, subcutaneous body temperature and membrane fatty acid composition in Ames dwarf mice with no visible adverse effects on their health. Experimental feeding increased subcutaneous body fat and insulation, most likely explaining the higher subcutaneous temperatures.
Collapse
Affiliation(s)
- Nadine Lenzhofer
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, A-1160, Vienna, Austria
| | - Sarah A Ohrnberger
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Teresa G Valencak
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, A-1160, Vienna, Austria. .,Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Veterinärplatz 1, A-1210, Vienna, Austria. .,College of Animal Sciences, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
38
|
Balázs G, Lewarne B, Herczeg G. Extreme site fidelity of the olm (
Proteus anguinus
) revealed by a long‐term capture–mark–recapture study. J Zool (1987) 2020. [DOI: 10.1111/jzo.12760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- G. Balázs
- Behavioural Ecology Group Department of Systematic Zoology and Ecology Eötvös Loránd University Budapest Hungary
| | - B. Lewarne
- The Devon Karst Research Society, Library & Office Plymouth Devon UK
| | - G. Herczeg
- Behavioural Ecology Group Department of Systematic Zoology and Ecology Eötvös Loránd University Budapest Hungary
| |
Collapse
|
39
|
Majumder P, Blacker TS, Nolan LS, Duchen MR, Gale JE. Multiphoton NAD(P)H FLIM reveals metabolic changes in individual cell types of the intact cochlea upon sensorineural hearing loss. Sci Rep 2019; 9:18907. [PMID: 31827194 PMCID: PMC6906381 DOI: 10.1038/s41598-019-55329-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022] Open
Abstract
An increasing volume of data suggests that changes in cellular metabolism have a major impact on the health of tissues and organs, including in the auditory system where metabolic alterations are implicated in both age-related and noise-induced hearing loss. However, the difficulty of access and the complex cyto-architecture of the organ of Corti has made interrogating the individual metabolic states of the diverse cell types present a major challenge. Multiphoton fluorescence lifetime imaging microscopy (FLIM) allows label-free measurements of the biochemical status of the intrinsically fluorescent metabolic cofactors NADH and NADPH with subcellular spatial resolution. However, the interpretation of NAD(P)H FLIM measurements in terms of the metabolic state of the sample are not completely understood. We have used this technique to explore changes in metabolism associated with hearing onset and with acquired (age-related and noise-induced) hearing loss. We show that these conditions are associated with altered NAD(P)H fluorescence lifetimes, use a simple cell model to confirm an inverse relationship between τbound and oxidative stress, and propose such changes as a potential index of oxidative stress applicable to all mammalian cell types.
Collapse
Affiliation(s)
- Paromita Majumder
- UCL Ear Institute, University College London, Grays Inn Road, London, WC1X 8EE, UK.
| | - Thomas S Blacker
- Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK. .,Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK. .,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Lisa S Nolan
- UCL Ear Institute, University College London, Grays Inn Road, London, WC1X 8EE, UK
| | - Michael R Duchen
- Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jonathan E Gale
- UCL Ear Institute, University College London, Grays Inn Road, London, WC1X 8EE, UK.,Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
40
|
|
41
|
Abstract
The free radical theory of ageing (FRTA), presented by Denham Harman in 1950s, proposed that aerobic organisms age due to reactive oxygen species (ROS)/free radical induced damage that accumulates in cells over time. Since antioxidants can neutralize free radicals by electron donation, the most logical approach was to use them as supplements in order to prevent ageing. In this chapter, we will discuss the inability of antioxidant supplementation to improve health and longevity.Although many antioxidants are efficient free radical quenchers in vitro, their in vivo effects are less clear. Recent evidence from human trials implies that antioxidant supplements do not increase lifespan and can even increase the incidence of diseases. Synthetic antioxidants were unable to consistently prevent ROS-induced damage in vivo, possibly as dietary antioxidants may not act only as ROS scavengers. Antioxidants can have dichotomous roles on ROS production. They are easily oxidized and can act as oxidants to induce damage when present in large concentrations. In appropriate amounts, they can modulate cellular metabolism by induction of cell stress responses and/or activate cell damage repair and maintenance systems. Therefore, the antioxidants' beneficial role may be reversed/prevented by excessive amounts of antioxidant supplements. On the other hand, ROS are also involved in many important physiological processes in humans, such as induction of stress responses, pathogen defence, and systemic signalling. Thus, both "anti-oxidative or reductive stress" (the excess of antioxidants) as well as oxidative stress (the excess of ROS) can be damaging and contribute to the ageing processes.
Collapse
|
42
|
Erjingwan Extracts Exert Antiaging Effects of Skin through Activating Nrf2 and Inhibiting NF-κB. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5976749. [PMID: 31186662 PMCID: PMC6521471 DOI: 10.1155/2019/5976749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/26/2019] [Accepted: 02/24/2019] [Indexed: 12/23/2022]
Abstract
In oriental medicine, mixtures of medical plants are always used as prescriptions for diseases. Natural products extracted from herbs have great potential antiaging effects. Previous studies and clinical trials have shown several critical functions of Erjingwan (EJW), such as nourishing Yin, kidney tonifying and aging-resistance. We assumed that EJW extracts exerted the antiaging effects through nourishing Yin. We examined the antiaging effects of EJW extracts on healthy human skin by noninvasive measurements. Then we estimated the cell proliferation and DPPH radical scavenging rate. Western blotting analysis was used to determine the expressions of matrix metalloproteinase-1 (MMP-1), type I collagen (COL1A2), p-NF-κB, NF-κB, p-IκBα, IκBα, p-Nrf2, and HO-1. EJW extracts did not affect moisture content, TEWL and skin chroma, while it significantly improved skin glossiness and skin elasticity. Moreover, EJW extracts could downregulate the MMP1 expression and upregulate the COL1A2 expression. In addition, it promoted the Nrf2 pathway while it inhibited the NF-κB pathway. With the application of cream containing EJW extracts, the skin aging state was significantly improved. Furthermore, in vitro studies showed that EJW extracts contributed to the repair of skin after injury. Taken together, the antiaging effects of EJW extracts were related to its antioxidant and anti-inflammatory abilities.
Collapse
|
43
|
Zhou DR, Eid R, Boucher E, Miller KA, Mandato CA, Greenwood MT. Stress is an agonist for the induction of programmed cell death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:699-712. [DOI: 10.1016/j.bbamcr.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/17/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
|
44
|
Intrinsic activation of cell growth and differentiation in ex vivo cultured human hair follicles by a transient endogenous production of ROS. Sci Rep 2019; 9:4509. [PMID: 30872609 PMCID: PMC6418192 DOI: 10.1038/s41598-019-39992-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/07/2019] [Indexed: 02/06/2023] Open
Abstract
The emerging variety of signalling roles for ROS in eukaryotic cells and tissues is currently a matter of intense research. Here we make use of ex vivo cultured single human hair follicles as an experimental model to demonstrate that a transient production of non-lethal endogenous ROS levels in these mini-organs promotes efficiently the entry into the growth phase (anagen). The stimulatory process implicates the specific activation of the hair follicle stem cell niche, encompassing the induction of stem cell differentiation markers (Ck15), overall cell proliferation and sustained growth of the tissue associated with expression of gen targets (Ccnd1) concomitant with the inhibition of Wnt signaling antagonists and repressors (Dkk1, Gsk3β) of Wnt signaling. As a whole, this observation indicates that, once activated, ROS signalling is an intrinsic mechanism regulating the hair follicle stem cell niche independently of any external signal.
Collapse
|
45
|
Hood WR, Austad SN, Bize P, Jimenez AG, Montooth KL, Schulte PM, Scott GR, Sokolova I, Treberg JR, Salin K. The Mitochondrial Contribution to Animal Performance, Adaptation, and Life-History Variation. Integr Comp Biol 2019; 58:480-485. [PMID: 30239783 PMCID: PMC8502431 DOI: 10.1093/icb/icy089] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Animals display tremendous variation in their rates of growth, reproductive output, and longevity. While the physiological and molecular mechanisms that underlie this variation remain poorly understood, the performance of the mitochondrion has emerged as a key player. Mitochondria not only impact the performance of eukaryotes via their capacity to produce ATP, but they also play a role in producing heat and reactive oxygen species and function as a major signaling hub for the cell. The papers included in this special issue emerged from a symposium titled "Inside the Black Box: The Mitochondrial Basis of Life-history Variation and Animal Performance." Based on studies of diverse animal taxa, three distinct themes emerged from these papers. (1) When linking mitochondrial function to components of fitness, it is crucial that mitochondrial assays are performed in conditions as close as the intracellular conditions experienced by the mitochondria in vivo. (2) Functional plasticity allows mitochondria to retain their performance, as well as that of their host, over a range of exogenous conditions, and selection on mitochondrial and nuclear-derived proteins can optimize the match between the environment and the bioenergetic capacity of the mitochondrion. Finally, (3) studies of wild and wild-derived animals suggest that mitochondria play a central role in animal performance and life history strategy. Taken as a whole, we hope that these papers will foster discussion and inspire new hypotheses and innovations that will further our understanding of the mitochondrial processes that underlie variation in life history traits and animal performance.
Collapse
Affiliation(s)
- Wendy R Hood
- Department of Biological Sciences, Auburn University, AL 36849, USA
| | - Steven N Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA
| | - Pierre Bize
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Ana Gabriela Jimenez
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock 18055, Germany.,Department of the Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock 18055, Germany
| | - Jason R Treberg
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2.,Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2.,Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Karine Salin
- Ifremer, Unité de Physiologie Fonctionnelle des Organismes Marins-LEMAR UMR 6530, Plouzané 29280, France
| |
Collapse
|
46
|
Antioxidant capacity is repeatable across years but does not consistently correlate with a marker of peroxidation in a free-living passerine bird. J Comp Physiol B 2019; 189:283-298. [DOI: 10.1007/s00360-019-01211-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/22/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023]
|
47
|
Foley HB, Sun PY, Ramirez R, So BK, Venkataraman YR, Nixon EN, Davies KJA, Edmands S. Sex-specific stress tolerance, proteolysis, and lifespan in the invertebrate Tigriopus californicus. Exp Gerontol 2019; 119:146-156. [PMID: 30738921 DOI: 10.1016/j.exger.2019.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/04/2019] [Accepted: 02/06/2019] [Indexed: 11/30/2022]
Abstract
Because stress tolerance and longevity are mechanistically and phenotypically linked, the sex with higher acute stress tolerance might be expected to also live longer. On the other hand, the association between stress tolerance and lifespan may be complicated by tradeoffs between acute tolerance and long-term survival. Here we use the copepod Tigriopus californicus to test for sex differences in stress resistance, proteolytic activity and longevity. Unlike many model organisms, this species does not have sex chromosomes. However, substantial sex differences were still observed. Females were found to have superior tolerance to a range of acute stressors (high temperature, high salinity, low salinity, copper and bisphenol A (BPA)) across a variety of treatments including different populations, pure vs. hybrid crosses, and different shading environments. Upregulation of proteolytic capacity - one molecular mechanism for responding to acute stress - was also found to be sexually dimorphic. In the combined stress treatment of chronic copper exposure followed by acute heat exposure, proteolytic capacity was suppressed for males. Females, however, maintained a robust proteolytic stress response. While females consistently showed greater tolerance to short-term stress, lifespan was largely equivalent between the two sexes under both benign conditions and mild thermal stress. Our findings indicate that short-term stress tolerance does not predict long-term survival under relatively mild conditions.
Collapse
Affiliation(s)
- Helen B Foley
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Patrick Y Sun
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Rocio Ramirez
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Brandon K So
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Yaamini R Venkataraman
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Emily N Nixon
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089, USA; Molecular & Computational Biology Division, Department of Biological Sciences, College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089, USA
| | - Suzanne Edmands
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
48
|
Andersson MN, Nilsson J, Nilsson JÅ, Isaksson C. Diet and ambient temperature interact to shape plasma fatty acid composition, basal metabolic rate and oxidative stress in great tits. ACTA ACUST UNITED AC 2018; 221:jeb.186759. [PMID: 30361459 DOI: 10.1242/jeb.186759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/17/2018] [Indexed: 11/20/2022]
Abstract
Diet and ambient temperature affect animal physiology, survival and reproductive success. However, knowledge of how these environmental factors interact to shape physiological processes and life-history traits of birds and other animals is largely lacking. By exposing adult great tits (Parus major) to two contrasting diets (saturated or unsaturated fatty acids; SFAs and UFAs, respectively) and ambient temperatures (3°C versus 20°C) that the birds encounter in nature, we investigated the effects of these two factors on several physiological parameters. Our results show that diet and ambient temperature interact to affect the composition of plasma fatty acids, basal metabolic rate (BMR) and oxidative stress, which are thought to affect the life-history and survival of individuals. Specifically, birds provided the SFA-rich diet had higher mass-specific BMR and oxidative stress (levels of lipid peroxidation) after exposure to low compared with high ambient temperature, whereas the opposite pattern was evident for birds with a UFA-rich diet. Surprisingly, birds on the SFA diet had higher relative levels of monounsaturated fatty acids compared with the UFA-fed birds at low ambient temperature, whereas the opposite, and expected, pattern was found at the high temperature. Although the present study focuses on the physiological implications of the diet×temperature interaction, our results might also be important for the leading theories of ageing, which currently do not take interactions between environmental factors into account. In addition, the present results are important for wildlife management, especially with regards to anthropogenic feeding of wild animals across variable and changing climatic conditions.
Collapse
Affiliation(s)
| | - Johan Nilsson
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
| | - Jan-Åke Nilsson
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
| | | |
Collapse
|
49
|
Burraco P, Iglesias-Carrasco M, Cabido C, Gomez-Mestre I. Eucalypt leaf litter impairs growth and development of amphibian larvae, inhibits their antipredator responses and alters their physiology. CONSERVATION PHYSIOLOGY 2018; 6:coy066. [PMID: 30546907 PMCID: PMC6287674 DOI: 10.1093/conphys/coy066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/16/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Consequences of human actions like global warming, spread of exotic species or resource consumption are pushing species to extinction. Even species considered to be at low extinction risk often show signs of local declines. Here, we evaluate the impact of eucalypt plantations, the best-known exotic tree species worldwide and its interaction with temperature and predators on amphibian development, growth, antipredator responses and physiology. For this purpose, we applied a fully factorial experiment crossing two types of leaf litter (native oak or eucalypt), two temperatures (15 and 20°C) and presence/absence of native predators. We found that leachates of eucalypt leaf litter reduced amphibian development and growth, compromised their antipredator responses and altered their metabolic rate. Increased temperature itself also posed serious alterations on development, growth, antioxidant ability and the immune status of tadpoles. However, the combined effects of eucalypt leaf litter and increased temperature were additive, not synergistic. Therefore, we show that non-lethal levels of a globally spread disruptor such as leachates from eucalypt leaf litter can seriously impact the life history and physiology of native amphibian populations. This study highlights the need to evaluate the status of wild populations exposed to human activities even if not at an obvious immediate risk of extinction, based on reliable stress markers, in order to anticipate demographic declines that may be hard to reverse once started. Replacing eucalypt plantations with native trees in protected areas would help improving the health of local amphibian larvae. In zones of economic interest, we would recommend providing patches of native vegetation around ponds and removing eucalypt leaf litter from pond basins during their dry phase.
Collapse
Affiliation(s)
- Pablo Burraco
- Ecology, Evolution and Development Group, Doñana Biological Station (CSIC), C/ Americo Vespucio 26, Sevilla, Spain
- Evolutionary Biology Centre, Uppsala University Norbyvägen 18 D, Uppsala, Sweden
| | - Maider Iglesias-Carrasco
- Department of Evolutionary Ecology, National Museum of Natural History (CSIC), Calle de José Gutiérrez Abascal, 2, Madrid, Spain
- Department of Herpetology, Aranzadi Society of Sciences, Zorroagagaina, 11, San Sebastian, Spain
- Research School of Biology, Australian National University, 134, Linnaeus Way, Acton ACT Canberra, ACT, Australia
| | - Carlos Cabido
- Department of Herpetology, Aranzadi Society of Sciences, Zorroagagaina, 11, San Sebastian, Spain
| | - Ivan Gomez-Mestre
- Ecology, Evolution and Development Group, Doñana Biological Station (CSIC), C/ Americo Vespucio 26, Sevilla, Spain
| |
Collapse
|
50
|
Gil D, Alfonso-Iñiguez S, Pérez-Rodríguez L, Muriel J, Monclús R. Harsh conditions during early development influence telomere length in an altricial passerine: Links with oxidative stress and corticosteroids. J Evol Biol 2018; 32:111-125. [PMID: 30387533 DOI: 10.1111/jeb.13396] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022]
Abstract
Stress during early development can induce substantial long-term effects in organisms. In the case of birds, despite growth compensations, nestlings reared under harsh conditions typically show reduced survival chances in adulthood. It has been proposed that environmental early-life stressors could affect longevity via effects on telomere length, possibly mediated through oxidative stress. However, the link between these processes is not clear. In this study, we experimentally manipulated brood size in spotless starlings (Sturnus unicolor) to test the causal relationship between early stress, oxidative and corticosterone-mediated stress and telomere shortening. Our results show that experimentally enlarged brood sizes led to a reduction in morphometric development on nestlings, the effect being stronger for females than males. Additionally, basal corticosterone levels increased with increasing brood size in female nestlings. Neither plasma antioxidant status nor malondialdehyde levels (a marker of lipid peroxidation) were affected by experimental brood size, although the levels of a key intracellular antioxidant (glutathione) decreased with increasing brood size. We found that the treatment showed a quadratic effect on nestling telomere lengths: these were shortened either by increases or by decreases in the original brood size. Our study provides experimental evidence for a link between developmental stress and telomere length, but does not support a direct causal link of this reduction with corticosterone or oxidative stress. We suggest that future studies should focus on how telomere length responds to additional markers of allostatic load.
Collapse
Affiliation(s)
- Diego Gil
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Sergio Alfonso-Iñiguez
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Lorenzo Pérez-Rodríguez
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Jaime Muriel
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Badajoz, Spain
| | - Raquel Monclús
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|