1
|
Kapila R, Mehra U, Kaur J, Verma Y, Jakar S, Datta K. Insights into Mtg3-mitochondrial ribosome association in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2024; 737:150502. [PMID: 39180962 DOI: 10.1016/j.bbrc.2024.150502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
Ribosome biogenesis is a highly regulated multistep process aided by energy-consuming auxiliary factors. GTPases form the largest class of auxiliary factors used by bacterial, cytosolic, and mitochondrial ribosomes for their maturation. Mtg3, a circularly permuted YqeH family of GTPase, is implicated in the mitoribosome small subunit biogenesis. However, its precise mechanistic role has yet to be characterized. Mtg3 is likely to bind precursor mitoribosome molecules during subunit maturation in vivo. However, this interaction has yet to be observed with mitoribosomes biochemically. In this study, we delineate the specific conditions necessary for preserving the association of Mtg3 with mitoribosomes on a sucrose density gradient. We show that the C-terminal domain of Mtg3 is required for robust binding to the mitoribosome. Furthermore, point mutants likely to abrogate GTP/GDP binding and GTPase activity compromise protein function in vivo. Surprisingly, the association with the mitoribosome was not compromised in mutants likely to be deficient for nucleotide binding/hydrolysis. Thus, our finding supports a model wherein Mtg3 binds to a precursor mitoribosome through its C-terminus to facilitate a conformational change or validate a folding intermediate driven by the GTP/GDP binding and hydrolysis cycle.
Collapse
Affiliation(s)
- Ritika Kapila
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Upasana Mehra
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Jaswinder Kaur
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Yash Verma
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Shweta Jakar
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Kaustuv Datta
- Department of Genetics, University of Delhi South Campus, New Delhi, India.
| |
Collapse
|
2
|
Mrnjavac N, Martin WF. GTP before ATP: The energy currency at the origin of genes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149514. [PMID: 39326542 PMCID: PMC7616719 DOI: 10.1016/j.bbabio.2024.149514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Life is an exergonic chemical reaction. Many individual reactions in metabolism entail slightly endergonic steps that are coupled to free energy release, typically as ATP hydrolysis, in order to go forward. ATP is almost always supplied by the rotor-stator ATP synthase, which harnesses chemiosmotic ion gradients. Because the ATP synthase is a protein, it arose after the ribosome did. What was the energy currency of metabolism before the origin of the ATP synthase and how (and why) did ATP come to be the universal energy currency? About 27 % of a cell's energy budget is consumed as GTP during translation. The universality of GTP-dependence in ribosome function indicates that GTP was the ancestral energy currency of protein synthesis. The use of GTP in translation and ATP in small molecule synthesis are conserved across all lineages, representing energetic compartments that arose in the last universal common ancestor, LUCA. And what came before GTP? Recent findings indicate that the energy supporting the origin of LUCA's metabolism stemmed from H2-dependent CO2 reduction along routes that strongly resemble the reactions and transition metal catalysts of the acetyl-CoA pathway.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - William F Martin
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
3
|
Wang L, Chen B, Ma B, Wang Y, Wang H, Sun X, Tan BC. Maize Dek51 encodes a DEAD-box RNA helicase essential for pre-rRNA processing and seed development. Cell Rep 2024; 43:114673. [PMID: 39196780 DOI: 10.1016/j.celrep.2024.114673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 08/30/2024] Open
Abstract
Pre-rRNA processing is essential to ribosome biosynthesis. However, the processing mechanism is not fully understood in plants. Here, we report a DEAD-box RNA helicase DEK51 that mediates the 3' end processing of 18S and 5.8S pre-rRNA in maize (Zea mays L.). DEK51 is localized in the nucleolus, and loss of DEK51 arrests maize seed development and blocks the 3' end processing of 18S and 5.8S pre-rRNA. DEK51 interacts with putative key factors in nuclear RNA exosome-mediated pre-rRNA processing, including ZmMTR4, ZmSMO4, ZmRRP44A, and ZmRRP6L2. This suggests that DEK51 facilitates pre-rRNA processing by interacting with the exosome. Loss of ZmMTR4 function arrests seed development and blocks the 3' end processing of 18S and 5.8S pre-rRNA, similar to dek51. DEK51 also interacts with endonucleases ZmUTP24 and ZmRCL1, suggesting that it may also be involved in the cleavage at site A2. These results show the critical role of DEK51 in promoting 3' end processing of pre-rRNA.
Collapse
Affiliation(s)
- Le Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Baoyin Chen
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bing Ma
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Hongqiu Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaotong Sun
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
4
|
Schmid LM, Manavski N, Chi W, Meurer J. Chloroplast Ribosome Biogenesis Factors. PLANT & CELL PHYSIOLOGY 2024; 65:516-536. [PMID: 37498958 DOI: 10.1093/pcp/pcad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
The formation of chloroplasts can be traced back to an ancient event in which a eukaryotic host cell containing mitochondria ingested a cyanobacterium. Since then, chloroplasts have retained many characteristics of their bacterial ancestor, including their transcription and translation machinery. In this review, recent research on the maturation of rRNA and ribosome assembly in chloroplasts is explored, along with their crucial role in plant survival and their implications for plant acclimation to changing environments. A comparison is made between the ribosome composition and auxiliary factors of ancient and modern chloroplasts, providing insights into the evolution of ribosome assembly factors. Although the chloroplast contains ancient proteins with conserved functions in ribosome assembly, newly evolved factors have also emerged to help plants acclimate to changes in their environment and internal signals. Overall, this review offers a comprehensive analysis of the molecular mechanisms underlying chloroplast ribosome assembly and highlights the importance of this process in plant survival, acclimation and adaptation.
Collapse
Affiliation(s)
- Lisa-Marie Schmid
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| |
Collapse
|
5
|
Lejeune C, Cornu D, Sago L, Redeker V, Virolle MJ. The stringent response is strongly activated in the antibiotic producing strain, Streptomyces coelicolor. Res Microbiol 2024; 175:104177. [PMID: 38159786 DOI: 10.1016/j.resmic.2023.104177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
S. lividans and S. coelicolor are phylogenetically closely related strains with different abilities to produce the same specialized metabolites. Previous studies revealed that the strong antibiotic producer, S. coelicolor, had a lower ability to assimilate nitrogen and phosphate than the weak producer, Streptomyces lividans, and this resulted into a lower growth rate. A comparative proteomic dataset was used to establish the consequences of these nutritional stresses on the abundance of proteins of the translational apparatus of these strains, grown in low and high phosphate availability. Our study revealed that most proteins of the translational apparatus were less abundant in S. coelicolor than in S. lividans whereas it was the opposite for ET-Tu 3 and a TrmA-like methyltransferase. The expression of the latter being known to be under the positive control of the stringent response whereas that of the other ribosomal proteins is under its negative control, this indicated the occurrence of a strong activation of the stringent response in S. coelicolor. Furthermore, in S. lividans, ribosomal proteins were more abundant in phosphate proficiency than in phosphate limitation suggesting that a limitation in phosphate, that was also shown to trigger RelA expression, contributes to the induction of the stringent response.
Collapse
Affiliation(s)
- Clara Lejeune
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| | - David Cornu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| | - Laila Sago
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| | - Virginie Redeker
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France; Institut Francois Jacob, Molecular Imaging Center (MIRCen), Laboratory of Neurodegenerative Diseases, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France.
| | - Marie-Joelle Virolle
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Qi Z, Lu P, Long X, Cao X, Wu M, Xin K, Xue T, Gao X, Huang Y, Wang Q, Jiang C, Xu JR, Liu H. Adaptive advantages of restorative RNA editing in fungi for resolving survival-reproduction trade-offs. SCIENCE ADVANCES 2024; 10:eadk6130. [PMID: 38181075 PMCID: PMC10776026 DOI: 10.1126/sciadv.adk6130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
RNA editing in various organisms commonly restores RNA sequences to their ancestral state, but its adaptive advantages are debated. In fungi, restorative editing corrects premature stop codons in pseudogenes specifically during sexual reproduction. We characterized 71 pseudogenes and their restorative editing in Fusarium graminearum, demonstrating that restorative editing of 16 pseudogenes is crucial for germ tissue development in fruiting bodies. Our results also revealed that the emergence of premature stop codons is facilitated by restorative editing and that premature stop codons corrected by restorative editing are selectively favored over ancestral amino acid codons. Furthermore, we found that ancestral versions of pseudogenes have antagonistic effects on reproduction and survival. Restorative editing eliminates the survival costs of reproduction caused by antagonistic pleiotropy and provides a selective advantage in fungi. Our findings highlight the importance of restorative editing in the evolution of fungal complex multicellularity and provide empirical evidence that restorative editing serves as an adaptive mechanism enabling the resolution of genetic trade-offs.
Collapse
Affiliation(s)
- Zhaomei Qi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ping Lu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyuan Long
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyu Cao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengchun Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaiyun Xin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tuan Xue
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinlong Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qinhu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Huiquan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Upendra N, Kavya KM, Krishnaveni S. Molecular dynamics simulation study on Bacillus subtilis EngA: the presence of Mg 2+ at the active-sites promotes the functionally important conformation. J Biomol Struct Dyn 2023; 41:9219-9231. [PMID: 36444972 DOI: 10.1080/07391102.2022.2151513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/20/2022] [Indexed: 11/30/2022]
Abstract
EngA, a GTPase contains two GTP binding domains [GD1, GD2], and the C-terminal KH domain shown to be involved in the later stages of ribosome maturation. Association of EngA to the ribosomal subunit in the intermediate stage of maturation is essential for complete ribosome maturation. However, this association was shown to be dependent on the nucleotide bound combinations. This nucleotide dependent association tendency is attributed to the conformational changes that occur among different nucleotide bound combinations. Therefore, to explore the conformational changes, all-atom molecular dynamics simulations for Bacillus subtilis EngA in different nucleotide bound combinations along with the presence or absence of Mg2+ in the active-sites were carried out. The presence of Mg2+ along with the bound nucleotide at the GD2 active-site dictates the GD2-Sw-II mobility, but the GD1-Sw-II mobility has not shown any nucleotide or Mg2+ dependent movement. However, the GD1-Sw-II secondary conformations are shown to be influenced by the GD2 nucleotide bound state. This allosteric connection between the GD2 active-site and the GD1-Sw-II is also observed through the dynamic network analysis. Further, the exploration of the GD1-KH interface interactions exhibited a more attractive tendency when GD1 is bound to GTP-Mg2+. In addition, the presence of Mg2+ stabilizes active-site water and also increases the distances between the α- and γ- phosphates of the bound GTP. Curiously, three water molecules in the GD1 active-site and only one water molecule in the GD2 active-site are stabilized. This indicates that the probability of GTP hydrolysis is more in GD1 compared to GD2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- N Upendra
- Department of Studies in Physics, University of Mysore, Mysuru, India
| | - K M Kavya
- Department of Studies in Physics, University of Mysore, Mysuru, India
| | - S Krishnaveni
- Department of Studies in Physics, University of Mysore, Mysuru, India
| |
Collapse
|
8
|
Xiong W, Ye Y, He D, He S, Xiang Y, Xiao J, Feng W, Wu M, Yang Z, Wang D. Deregulation of Ribosome Biogenesis in Nitrite-Oxidizing Bacteria Leads to Nitrite Accumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16673-16684. [PMID: 37862695 DOI: 10.1021/acs.est.3c06002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Nitrite (NO2-) accumulation caused by nitrite-oxidizing bacteria (NOB) inhibition in nitrification is a double-edged sword, i.e., a disaster in aquatic environments but a hope for innovating nitrogen removal technology in wastewater treatment. However, little information is available regarding the molecular mechanism of NOB inhibition at the cellular level. Herein, we investigate the response of NOB inhibition on NO2- accumulation established by a side-stream free ammonia treatment unit in a nitrifying reactor using integrated metagenomics and metaproteomics. Results showed that compared with the baseline, the relative abundance and activity of NOB in the experimental stage decreased by 91.64 and 68.66%, respectively, directly resulting in a NO2- accumulation rate of 88%. Moreover, RNA polymerase, translation factors, and aa-tRNA ligase were significantly downregulated, indicating that protein synthesis in NOB was interfered during NO2- accumulation. Further investigations showed that ribosomal proteins and GTPases, responsible for bindings between either ribosomal proteins and rRNA or ribosome subunits, were remarkably downregulated. This suggests that ribosome biogenesis was severely disrupted, which might be the key reason for the inhibited protein synthesis. Our findings fill a knowledge gap regarding the underlying mechanisms of NO2- accumulation, which would be beneficial for regulating the accumulation of NO2- in aquatic environments and engineered systems.
Collapse
Affiliation(s)
- Weiping Xiong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yuhang Ye
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dandan He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Siying He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yinping Xiang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jun Xiao
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenyi Feng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Mengru Wu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| |
Collapse
|
9
|
Sheng K, Li N, Rabuck-Gibbons JN, Dong X, Lyumkis D, Williamson JR. Assembly landscape for the bacterial large ribosomal subunit. Nat Commun 2023; 14:5220. [PMID: 37633970 PMCID: PMC10460392 DOI: 10.1038/s41467-023-40859-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/14/2023] [Indexed: 08/28/2023] Open
Abstract
Assembly of ribosomes in bacteria is highly efficient, taking ~2-3 min, but this makes the abundance of assembly intermediates very low, which is a challenge for mechanistic understanding. Genetic perturbations of the assembly process create bottlenecks where intermediates accumulate, facilitating structural characterization. We use cryo-electron microscopy, with iterative subclassification to identify intermediates in the assembly of the 50S ribosomal subunit from E. coli. The analysis of the ensemble of intermediates that spans the entire biogenesis pathway for the 50 S subunit was facilitated by a dimensionality reduction and cluster picking approach using PCA-UMAP-HDBSCAN. The identity of the cooperative folding units in the RNA with associated proteins is revealed, and the hierarchy of these units reveals a complete assembly map for all RNA and protein components. The assembly generally proceeds co-transcriptionally, with some flexibility in the landscape to ensure efficiency for this central cellular process under a variety of growth conditions.
Collapse
Affiliation(s)
- Kai Sheng
- Department of Integrative Structural and Computational Biology, Department of Chemistry, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ning Li
- Department of Integrative Structural and Computational Biology, Department of Chemistry, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jessica N Rabuck-Gibbons
- Department of Integrative Structural and Computational Biology, Department of Chemistry, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Xiyu Dong
- Department of Integrative Structural and Computational Biology, Department of Chemistry, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dmitry Lyumkis
- Department of Integrative Structural and Computational Biology, Department of Chemistry, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Graduate School of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, Department of Chemistry, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
10
|
Shanbhag C, Saraogi I. Bacterial GTPases as druggable targets to tackle antimicrobial resistance. Bioorg Med Chem Lett 2023; 87:129276. [PMID: 37030567 DOI: 10.1016/j.bmcl.2023.129276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Small molecules as antibacterial agents have contributed immensely to the growth of modern medicine over the last several decades. However, the emergence of drug resistance among bacterial pathogens has undermined the effectiveness of the existing antibiotics. Thus, there is an exigency to address the antibiotic crisis by developing new antibacterial agents and identifying novel drug targets in bacteria. In this review, we summarize the importance of guanosine triphosphate hydrolyzing proteins (GTPases) as key agents for bacterial survival. We also discuss representative examples of small molecules that target bacterial GTPases as novel antibacterial agents, and highlight areas that are ripe for exploration. Given their vital roles in cell viability, virulence, and antibiotic resistance, bacterial GTPases are highly attractive antibacterial targets that will likely play a vital role in the fight against antimicrobial resistance.
Collapse
|
11
|
Stoll J, Zegarra V, Bange G, Graumann PL. Single-molecule dynamics suggest that ribosomes assemble at sites of translation in Bacillus subtilis. Front Microbiol 2022; 13:999176. [PMID: 36406443 PMCID: PMC9670183 DOI: 10.3389/fmicb.2022.999176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/26/2022] [Indexed: 04/07/2024] Open
Abstract
Eukaryotic cells transcribe ribosomal RNA and largely assemble ribosomes in a structure called the nucleolus, where chromosomal regions containing rRNA operons are clustered. In bacteria, many rRNA operons cluster close to the origin regions that are positioned on the outer borders of nucleoids, close to polar areas, where translating 70S ribosomes are located. Because outer regions of the nucleoids contain the highest accumulation of RNA polymerase, it has been hypothesized that bacteria contain "nucleolus-like" structures. However, ribosome subunits freely diffuse through the entire cells, and could thus be assembled and matured throughout the non-compartmentalized cell. By tracking single molecules of two GTPases that play an essential role in ribosomal folding and processing in Bacillus subtilis, we show that this process takes place at sites of translation, i.e., predominantly at the cell poles. Induction of the stringent response led to a change in the population of GTPases assumed to be active in maturation, but did not abolish nucleoid occlusion of ribosomes or of GTPases. Our findings strongly support the idea of the conceptualization of nucleolus-like structures in bacteria, i.e., rRNA synthesis, ribosomal protein synthesis and subunit assembly occurring in close proximity at the cell poles, facilitating the efficiency of ribosome maturation even under conditions of transient nutrient deprivation.
Collapse
Affiliation(s)
| | | | | | - Peter L. Graumann
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
12
|
Naganathan A, Culver GM. Interdependency and Redundancy Add Complexity and Resilience to Biogenesis of Bacterial Ribosomes. Annu Rev Microbiol 2022; 76:193-210. [PMID: 35609945 DOI: 10.1146/annurev-micro-041020-121806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pace and efficiency of ribosomal subunit production directly impact the fitness of bacteria. Biogenesis demands more than just the union of ribosomal components, including RNA and proteins, to form this functional ribonucleoprotein particle. Extra-ribosomal protein factors play a fundamental role in the efficiency and efficacy of ribosomal subunit biogenesis. A paucity of data on intermediate steps, multiple and overlapping pathways, and the puzzling number of functions that extra-ribosomal proteins appear to play in vivo make unraveling the formation of this macromolecular assemblage difficult. In this review, we outline with examples the multinodal landscape of factor-assisted mechanisms that influence ribosome synthesis in bacteria. We discuss in detail late-stage events that mediate correct ribosome formation and the transition to translation initiation and thereby ensure high-fidelity protein synthesis.
Collapse
Affiliation(s)
- Anusha Naganathan
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA
| |
Collapse
|
13
|
Agarwal N, Sharma S, Pal P, Kaushal PS, Kumar N. Era, a GTPase-like protein of the Ras family, does not control ribosome assembly in Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35917161 DOI: 10.1099/mic.0.001200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Era GTPase is universally present in microbes including Mycobacterium tuberculosis (Mtb) complex bacteria. While Era is known to regulate ribosomal assembly in Escherichia coli and predicted to be essential for in vitro growth, its function in mycobacteria remains obscured. Herein, we show that Era ortholog in the attenuated Mtb H37Ra strain, MRA_2388 (annotated as EraMT) is a cell envelope localized protein harbouring critical GTP-binding domains, which interacts with several envelope proteins of Mtb. The purified Era from M. smegmatis (annotated as EraMS) exhibiting ~90 % sequence similarity with EraMT, exists in monomeric conformation. While it is co-purified with RNA upon overexpression in E. coli, the presence of RNA does not modulate the GTPase activity of the EraMS as against its counterpart from other organisms. CRISPRi silencing of eraMT does not show any substantial effect on the in vitro growth of Mtb H37Ra, which suggests a redundant function of Era in mycobacteria. Notably, no effect on ribosome assembly, protein synthesis or bacterial susceptibility to protein synthesis inhibitors was observed upon depletion of EraMT in Mtb H37Ra, further indicating a divergent role of Era GTPase in mycobacteria.
Collapse
Affiliation(s)
- Nisheeth Agarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad- 121001 (Haryana), India
| | - Shivani Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad- 121001 (Haryana), India
| | - Pramila Pal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad- 121001 (Haryana), India.,Jawaharlal Nehru University, New Mehrauli Road, New Delhi- 110067 (Delhi), India
| | - Prem S Kaushal
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad- 121001 (Haryana), India
| | - Naresh Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad- 121001 (Haryana), India
| |
Collapse
|
14
|
Upendra N, Krishnaveni S. Conformational exploration of RbgA using molecular dynamics: Possible implications in ribosome maturation and GTPase activity in different nucleotide bound states. J Mol Graph Model 2021; 111:108087. [PMID: 34864321 DOI: 10.1016/j.jmgm.2021.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/30/2021] [Accepted: 11/21/2021] [Indexed: 11/26/2022]
Abstract
Ribosome biogenesis GTPase A (RbgA) is involved in the late steps of the 50S ribosomal subunit maturation by binding into the 45S pre-ribosomal subunit. The association of RbgA to the 45S intermediate subunit depends on its bound nucleotide (GTP/GDP), probably because of the conformational shifts that occur between the GTP and GDP bound states. However, the available crystal structures of Staphylococcus aureus RbgA (SaRbgA) do not show any significant variations between different nucleotide bound states. Therefore, conformational exploration of SaRbgA in different nucleotide bound states was carried out using all-atom molecular dynamics (MD) simulations. Exploration of conformational distribution using cluster analysis and principal component analysis (PCA) revealed that GDP and pppGpp bound systems exhibit a larger distribution. This is majorly due to the fluctuations of the C-terminal tail (C-tail) as a result of the unwinding of α-helical secondary conformations into loop conformations which are observed from RMSF and DSSP analyses. Further investigation of the network of interactions revealed that the GTP and GMPPNP bound systems hold the C-tail in an α-helical form through stronger interactions between the active-site and C-tail. We also find that the presence of Mg2+ positions Sw-I loop away from the bound nucleotide and stabilizes the active-site water molecules. This seems to assist SaRbgA GTPase activity. In addition, mutations at the C-terminal and Sw-II conserved residues exhibit a larger conformational distribution majorly due to the C-tail fluctuations suggesting that the C-tail of SaRbgA probably interacts with the rRNA or rprotein in the process of ribosome biogenesis.
Collapse
Affiliation(s)
- N Upendra
- Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru, 570006, India
| | - S Krishnaveni
- Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru, 570006, India.
| |
Collapse
|
15
|
The Stringent Response Inhibits 70S Ribosome Formation in Staphylococcus aureus by Impeding GTPase-Ribosome Interactions. mBio 2021; 12:e0267921. [PMID: 34749534 PMCID: PMC8579695 DOI: 10.1128/mbio.02679-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
During nutrient limitation, bacteria produce the alarmones (p)ppGpp as effectors of a stress signaling network termed the stringent response. RsgA, RbgA, Era, and HflX are four ribosome-associated GTPases (RA-GTPases) that bind to (p)ppGpp in Staphylococcus aureus. These enzymes are cofactors in ribosome assembly, where they cycle between the ON (GTP-bound) and OFF (GDP-bound) ribosome-associated states. Entry into the OFF state occurs upon hydrolysis of GTP, with GTPase activity increasing substantially upon ribosome association. When bound to (p)ppGpp, GTPase activity is inhibited, reducing 70S ribosome assembly and growth. Here, we determine how (p)ppGpp impacts RA-GTPase-ribosome interactions. We show that RA-GTPases preferentially bind to 5′-diphosphate-containing nucleotides GDP and ppGpp over GTP, which is likely exploited as a regulatory mechanism within the cell to shut down ribosome biogenesis during stress. Stopped-flow fluorescence and association assays reveal that when bound to (p)ppGpp, the association of RA-GTPases to ribosomal subunits is destabilized, both in vitro and within bacterial cells. Consistently, structural analysis of the ppGpp-bound RA-GTPase RsgA reveals an OFF-state conformation similar to the GDP-bound state, with the G2/switch I loop adopting a conformation incompatible with ribosome association. Altogether, we highlight (p)ppGpp-mediated inhibition of RA-GTPases as a major mechanism of stringent response-mediated ribosome assembly and growth control.
Collapse
|
16
|
Verma Y, Mehra U, Pandey DK, Kar J, Pérez-Martinez X, Jana SS, Datta K. MRX8, the conserved mitochondrial YihA GTPase family member, is required for de novo Cox1 synthesis at suboptimal temperatures in Saccharomyces cerevisiae. Mol Biol Cell 2021; 32:ar16. [PMID: 34432493 PMCID: PMC8693954 DOI: 10.1091/mbc.e20-07-0457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The synthesis of Cox1, the conserved catalytic-core subunit of Complex IV, a multisubunit machinery of the mitochondrial oxidative phosphorylation (OXPHOS) system under environmental stress, has not been sufficiently addressed. In this study, we show that the putative YihA superfamily GTPase, Mrx8, is a bona fide mitochondrial protein required for Cox1 translation initiation and elongation during suboptimal growth condition at 16°C. Mrx8 was found in a complex with mitochondrial ribosomes, consistent with a role in protein synthesis. Cells expressing mutant Mrx8 predicted to be defective in guanine nucleotide binding and hydrolysis were compromised for robust cellular respiration. We show that the requirement of Pet309 and Mss51 for cellular respiration is not bypassed by overexpression of Mrx8 and vice versa. Consistently the ribosomal association of Mss51 is independent of Mrx8. Significantly, we find that GTPBP8, the human orthologue, complements the loss of cellular respiration in Δmrx8 cells and GTPBP8 localizes to the mitochondria in mammalian cells. This strongly suggests a universal role of the MRX8 family of proteins in regulating mitochondrial function.
Collapse
Affiliation(s)
- Yash Verma
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India
| | - Upasana Mehra
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India
| | | | - Joy Kar
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Xochitl Pérez-Martinez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Siddhartha S Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Kaustuv Datta
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
17
|
Chandrasekaran V, Desai N, Burton NO, Yang H, Price J, Miska EA, Ramakrishnan V. Visualizing formation of the active site in the mitochondrial ribosome. eLife 2021; 10:e68806. [PMID: 34609277 PMCID: PMC8492066 DOI: 10.7554/elife.68806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Ribosome assembly is an essential and conserved process that is regulated at each step by specific factors. Using cryo-electron microscopy (cryo-EM), we visualize the formation of the conserved peptidyl transferase center (PTC) of the human mitochondrial ribosome. The conserved GTPase GTPBP7 regulates the correct folding of 16S ribosomal RNA (rRNA) helices and ensures 2'-O-methylation of the PTC base U3039. GTPBP7 binds the RNA methyltransferase NSUN4 and MTERF4, which sequester H68-71 of the 16S rRNA and allow biogenesis factors to access the maturing PTC. Mutations that disrupt binding of their Caenorhabditis elegans orthologs to the large subunit potently activate mitochondrial stress and cause viability, development, and sterility defects. Next-generation RNA sequencing reveals widespread gene expression changes in these mutant animals that are indicative of mitochondrial stress response activation. We also answer the long-standing question of why NSUN4, but not its enzymatic activity, is indispensable for mitochondrial protein synthesis.
Collapse
Affiliation(s)
| | - Nirupa Desai
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Nicholas O Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
- Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | - Hanting Yang
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Jon Price
- Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Eric A Miska
- Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
| | - V Ramakrishnan
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
18
|
Chen TY, Lee Y, Wang X, Mathias D, Caragata EP, Smartt CT. Profiling Transcriptional Response of Dengue-2 Virus Infection in Midgut Tissue of Aedes aegypti. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.708817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Understanding the mosquito antiviral response could reveal target pathways or genes of interest that could form the basis of new disease control applications. However, there is a paucity of data in the current literature in understanding antiviral response during the replication period. To illuminate the gene expression patterns in the replication stage, we collected gene expression data at 2.5 days after Dengue-2 virus (DENV-2) infection. We sequenced the whole transcriptome of the midgut tissue and compared gene expression levels between the control and virus-infected group. We identified 31 differentially expressed genes. Based on their function, we identified that those genes fell into two major functional categories - (1) nucleic acid/protein process and (2) immunity/oxidative stress response. Our study has identified candidate genes that can be followed up for gene overexpression/inhibition experiments to examine if the perturbed gene interaction may impact the mosquito’s immune response against DENV. This is an important step to understanding how mosquitoes eliminate the virus and provides an important foundation for further research in developing novel dengue control strategies.
Collapse
|
19
|
Chen J, Wang L, Jin X, Wan J, Zhang L, Je BI, Zhao K, Kong F, Huang J, Tian M. Oryza sativa ObgC1 Acts as a Key Regulator of DNA Replication and Ribosome Biogenesis in Chloroplast Nucleoids. RICE (NEW YORK, N.Y.) 2021; 14:65. [PMID: 34251486 PMCID: PMC8275814 DOI: 10.1186/s12284-021-00498-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The Spo0B-associated GTP-binding protein (Obg) GTPase, has diverse and important functions in bacteria, including morphological development, DNA replication and ribosome maturation. Homologs of the Bacillus subtilis Obg have been also found in chloroplast of Oryza sativa, but their primary roles remain unknown. RESULTS We clarify that OsObgC1 is a functional homolog of AtObgC. The mutant obgc1-d1 exhibited hypersensitivity to the DNA replication inhibitor hydroxyurea. Quantitative PCR results showed that the ratio of chloroplast DNA to nuclear DNA in the mutants was higher than that of the wild-type plants. After DAPI staining, OsObgC1 mutants showed abnormal nucleoid architectures. The specific punctate staining pattern of OsObgC1-GFP signal suggests that this protein localizes to the chloroplast nucleoids. Furthermore, loss-of-function mutation in OsObgC1 led to a severe suppression of protein biosynthesis by affecting plastid rRNA processing. It was also demonstrated through rRNA profiling that plastid rRNA processing was decreased in obgc1-d mutants, which resulted in impaired ribosome biogenesis. The sucrose density gradient profiles revealed a defective chloroplast ribosome maturation of obgc1-d1 mutants. CONCLUSION Our findings here indicate that the OsObgC1 retains the evolutionarily biological conserved roles of prokaryotic Obg, which acts as a signaling hub that regulates DNA replication and ribosome biogenesis in chloroplast nucleoids.
Collapse
Affiliation(s)
- Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Li Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaowan Jin
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Wan
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lang Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Byoung Il Je
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 61005, China
| | - Ke Zhao
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fanlei Kong
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jin Huang
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju, 660-701, Republic of Korea.
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 61005, China.
| | - Mengliang Tian
- Institute for New Rural Development, Sichuan Agricultural University, Yaan, 625000, China.
| |
Collapse
|
20
|
Human Mitoribosome Biogenesis and Its Emerging Links to Disease. Int J Mol Sci 2021; 22:ijms22083827. [PMID: 33917098 PMCID: PMC8067846 DOI: 10.3390/ijms22083827] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
Mammalian mitochondrial ribosomes (mitoribosomes) synthesize a small subset of proteins, which are essential components of the oxidative phosphorylation machinery. Therefore, their function is of fundamental importance to cellular metabolism. The assembly of mitoribosomes is a complex process that progresses through numerous maturation and protein-binding events coordinated by the actions of several assembly factors. Dysregulation of mitoribosome production is increasingly recognized as a contributor to metabolic and neurodegenerative diseases. In recent years, mutations in multiple components of the mitoribosome assembly machinery have been associated with a range of human pathologies, highlighting their importance to cell function and health. Here, we provide a review of our current understanding of mitoribosome biogenesis, highlighting the key factors involved in this process and the growing number of mutations in genes encoding mitoribosomal RNAs, proteins, and assembly factors that lead to human disease.
Collapse
|
21
|
Cipullo M, Pearce SF, Lopez Sanchez IG, Gopalakrishna S, Krüger A, Schober F, Busch JD, Li X, Wredenberg A, Atanassov I, Rorbach J. Human GTPBP5 is involved in the late stage of mitoribosome large subunit assembly. Nucleic Acids Res 2021; 49:354-370. [PMID: 33283228 PMCID: PMC7797037 DOI: 10.1093/nar/gkaa1131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Human mitoribosomes are macromolecular complexes essential for translation of 11 mitochondrial mRNAs. The large and the small mitoribosomal subunits undergo a multistep maturation process that requires the involvement of several factors. Among these factors, GTP-binding proteins (GTPBPs) play an important role as GTP hydrolysis can provide energy throughout the assembly stages. In bacteria, many GTPBPs are needed for the maturation of ribosome subunits and, of particular interest for this study, ObgE has been shown to assist in the 50S subunit assembly. Here, we characterize the role of a related human Obg-family member, GTPBP5. We show that GTPBP5 interacts specifically with the large mitoribosomal subunit (mt-LSU) proteins and several late-stage mitoribosome assembly factors, including MTERF4:NSUN4 complex, MRM2 methyltransferase, MALSU1 and MTG1. Interestingly, we find that interaction of GTPBP5 with the mt-LSU is compromised in the presence of a non-hydrolysable analogue of GTP, implying a different mechanism of action of this protein in contrast to that of other Obg-family GTPBPs. GTPBP5 ablation leads to severe impairment in the oxidative phosphorylation system, concurrent with a decrease in mitochondrial translation and reduced monosome formation. Overall, our data indicate an important role of GTPBP5 in mitochondrial function and suggest its involvement in the late-stage of mt-LSU maturation.
Collapse
Affiliation(s)
- Miriam Cipullo
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Sarah F Pearce
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Isabel G Lopez Sanchez
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, 32 Gisborne Street, East Melbourne, 3002 Victoria, Australia
| | - Shreekara Gopalakrishna
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Annika Krüger
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Florian Schober
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna (L1:00), 171 76 Stockholm, Sweden
| | - Jakob D Busch
- Department of Mitochondrial Biology, Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Xinping Li
- Proteomics Core Facility, Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ilian Atanassov
- Proteomics Core Facility, Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
N U, S K. Molecular dynamics simulation study on Thermotoga maritima EngA: GTP/GDP bound state of the second G-domain influences the domain-domain interface interactions. J Biomol Struct Dyn 2020; 40:1387-1399. [PMID: 33016853 DOI: 10.1080/07391102.2020.1826359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
EngA, a GTPase involved in the late steps of ribosome maturation, consists of two GTP binding domains (G-domains) [GD1, GD2] and a C-terminal domain. The combination of GTP/GDP in G-domains dictates its binding to the ribosomal subunits by altering its conformation. Studies and comparisons on the available structures of EngA enable us to understand the correlation between nucleotide bound states and its conformation. Using all-atom molecular dynamics (MD) simulations, we have explored the conformational behavior of EngA from Thermotoga maritima (TmDer) upon binding the various combinations of GTP and GDP. Analyses of Root Mean Square Deviation (RMSD), Radius of Gyration (Rg) and Root Mean Square Fluctuation (RMSF) emphasize the importance of the second G-domain nucleotide bound state. RMSD and Rg exhibit slightly lower values when GTP is embedded in GD2 compared to GDP. These lower values are due to Sw-II of GD2, which has been observed from RMSF plot. Further investigation on the effects of GD2 nucleotide bound state using Principal Component Analysis (PCA) and Free Energy Landscape (FEL) analysis manifests an allosteric connection between GD2 nucleotide bound state and the GD1-KH interface. This is further validated by extracting electrostatic interactions and H-bonds at the GD1-KH interface. In silico mutations at the GD1 interface of KH domain affect the Sw-II mobility of GD2 by showing inverted behavior. This suggests using the second G-domain as an antibacterial target and further simulation studies on different species of EngA are to be explored.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Upendra N
- Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru, India
| | - Krishnaveni S
- Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru, India
| |
Collapse
|
23
|
Integration of Rap1 and Calcium Signaling. Int J Mol Sci 2020; 21:ijms21051616. [PMID: 32120817 PMCID: PMC7084553 DOI: 10.3390/ijms21051616] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Ca2+ is a universal intracellular signal. The modulation of cytoplasmic Ca2+ concentration regulates a plethora of cellular processes, such as: synaptic plasticity, neuronal survival, chemotaxis of immune cells, platelet aggregation, vasodilation, and cardiac excitation–contraction coupling. Rap1 GTPases are ubiquitously expressed binary switches that alternate between active and inactive states and are regulated by diverse families of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Active Rap1 couples extracellular stimulation with intracellular signaling through secondary messengers—cyclic adenosine monophosphate (cAMP), Ca2+, and diacylglycerol (DAG). Much evidence indicates that Rap1 signaling intersects with Ca2+ signaling pathways to control the important cellular functions of platelet activation or neuronal plasticity. Rap1 acts as an effector of Ca2+ signaling when activated by mechanisms involving Ca2+ and DAG-activated (CalDAG-) GEFs. Conversely, activated by other GEFs, such as cAMP-dependent GEF Epac, Rap1 controls cytoplasmic Ca2+ levels. It does so by regulating the activity of Ca2+ signaling proteins such as sarcoendoplasmic reticulum Ca2+-ATPase (SERCA). In this review, we focus on the physiological significance of the links between Rap1 and Ca2+ signaling and emphasize the molecular interactions that may offer new targets for the therapy of Alzheimer’s disease, hypertension, and atherosclerosis, among other diseases.
Collapse
|
24
|
Bennison DJ, Irving SE, Corrigan RM. The Impact of the Stringent Response on TRAFAC GTPases and Prokaryotic Ribosome Assembly. Cells 2019; 8:cells8111313. [PMID: 31653044 PMCID: PMC6912228 DOI: 10.3390/cells8111313] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Many facets of ribosome biogenesis and function, including ribosomal RNA (rRNA) transcription, 70S assembly and protein translation, are negatively impacted upon induction of a nutrient stress-sensing signalling pathway termed the stringent response. This stress response is mediated by the alarmones guanosine tetra- and penta-phosphate ((p)ppGpp), the accumulation of which leads to a massive cellular response that slows growth and aids survival. The 70S bacterial ribosome is an intricate structure, with assembly both complex and highly modular. Presiding over the assembly process is a group of P-loop GTPases within the TRAFAC (Translation Factor Association) superclass that are crucial for correct positioning of both early and late stage ribosomal proteins (r-proteins) onto the rRNA. Often described as 'molecular switches', members of this GTPase superfamily readily bind and hydrolyse GTP to GDP in a cyclic manner that alters the propensity of the GTPase to carry out a function. TRAFAC GTPases are considered to act as checkpoints to ribosome assembly, involved in binding to immature sections in the GTP-bound state, preventing further r-protein association until maturation is complete. Here we review our current understanding of the impact of the stringent response and (p)ppGpp production on ribosome maturation in prokaryotic cells, focusing on the inhibition of (p)ppGpp on GTPase-mediated subunit assembly, but also touching upon the inhibition of rRNA transcription and protein translation.
Collapse
Affiliation(s)
- Daniel J Bennison
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - Sophie E Irving
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - Rebecca M Corrigan
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
25
|
Seffouh A, Jain N, Jahagirdar D, Basu K, Razi A, Ni X, Guarné A, Britton RA, Ortega J. Structural consequences of the interaction of RbgA with a 50S ribosomal subunit assembly intermediate. Nucleic Acids Res 2019; 47:10414-10425. [PMID: 31665744 PMCID: PMC6821245 DOI: 10.1093/nar/gkz770] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Bacteria harbor a number GTPases that function in the assembly of the ribosome and are essential for growth. RbgA is one of these GTPases and is required for the assembly of the 50S subunit in most bacteria. Homologs of this protein are also implicated in the assembly of the large subunit of the mitochondrial and eukaryotic ribosome. We present here the cryo-electron microscopy structure of RbgA bound to a Bacillus subtilis 50S subunit assembly intermediate (45SRbgA particle) that accumulates in cells upon RbgA depletion. Binding of RbgA at the P site of the immature particle stabilizes functionally important rRNA helices in the A and P-sites, prior to the completion of the maturation process of the subunit. The structure also reveals the location of the highly conserved N-terminal end of RbgA containing the catalytic residue Histidine 9. The derived model supports a mechanism of GTP hydrolysis, and it shows that upon interaction of RbgA with the 45SRbgA particle, Histidine 9 positions itself near the nucleotide potentially acting as the catalytic residue with minimal rearrangements. This structure represents the first visualization of the conformational changes induced by an assembly factor in a bacterial subunit intermediate.
Collapse
Affiliation(s)
- Amal Seffouh
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Nikhil Jain
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dushyant Jahagirdar
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Kaustuv Basu
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Aida Razi
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Xiaodan Ni
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Alba Guarné
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| |
Collapse
|
26
|
Rocchio S, Santorelli D, Rinaldo S, Franceschini M, Malatesta F, Imperi F, Federici L, Travaglini-Allocatelli C, Di Matteo A. Structural and functional investigation of the Small Ribosomal Subunit Biogenesis GTPase A (RsgA) from Pseudomonas aeruginosa. FEBS J 2019; 286:4245-4260. [PMID: 31199072 DOI: 10.1111/febs.14959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/03/2019] [Accepted: 06/11/2019] [Indexed: 01/16/2023]
Abstract
The Small Ribosomal Subunit Biogenesis GTPase A (RsgA) is a bacterial assembly factor involved in the late stages of the 30S subunit maturation. It is a multidomain GTPase in which the central circularly permutated GTPase domain is flanked by an OB domain and a Zn-binding domain. All three domains participate in the interaction with the 30S particle thus ensuring an efficient coupling between catalytic activity and biological function. In vivo studies suggested the relevance of rsgA in bacterial growth and cellular viability, but other pleiotropic roles of RsgA are also emerging. Here, we report the 3D structure of RsgA from Pseudomonas aeruginosa (PaRsgA) in the GDP-bound form. We also report a biophysical and biochemical characterization of the protein in both the GDP-bound and its nucleotide-free form. In particular, we report a kinetic analysis of the RsgA binding to GTP and GDP. We found that PaRsgA is able to bind both nucleotides with submicromolar affinity. The higher affinity towards GDP (KD = 0.011 μm) with respect to GTP (KD = 0.16 μm) is mainly ascribed to a smaller GDP dissociation rate. Our results confirm that PaRsgA, like most other GTPases, has a weak intrinsic enzymatic activity (kCAT = 0.058 min-1 ). Finally, the biological role of RsgA in P. aeruginosa was investigated, allowing us to conclude that rsgA is dispensable for P. aeruginosa growth but important for drug resistance and virulence in an animal infection model. DATABASES: Coordinates and structure factors for the protein structure described in this manuscript have been deposited in the Protein Data Bank (https://www.rcsb.org) with the accession code 6H4D.
Collapse
Affiliation(s)
- Serena Rocchio
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Daniele Santorelli
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy
| | - Serena Rinaldo
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy
| | - Mimma Franceschini
- Ce.S.I.-MeT Centro di Scienze dell'Invecchiamento e Medicina Traslazionale, Università "G. d'Annunzio" di Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche - Università "G. d'Annunzio" di Chieti, Italy
| | - Francesco Malatesta
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy
| | - Francesco Imperi
- Dipartimento di Scienze, Università Roma Tre, Italy.,Dipartimento di Biologia e Biotecnologie Charles Darwin, Laboratorio affiliato all'Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Luca Federici
- Ce.S.I.-MeT Centro di Scienze dell'Invecchiamento e Medicina Traslazionale, Università "G. d'Annunzio" di Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche - Università "G. d'Annunzio" di Chieti, Italy
| | | | - Adele Di Matteo
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| |
Collapse
|
27
|
Chou YT, Lo KY. Thallium(I) treatment induces nucleolar stress to stop protein synthesis and cell growth. Sci Rep 2019; 9:6905. [PMID: 31061518 PMCID: PMC6502789 DOI: 10.1038/s41598-019-43413-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/17/2018] [Indexed: 01/23/2023] Open
Abstract
Thallium is considered as an emergent contaminant owing to its potential use in the superconductor alloys. The monovalent thallium, Tl(I), is highly toxic to the animals as it can affect numerous metabolic processes. Here we observed that Tl(I) decreased protein synthesis and phosphorylated eukaryotic initiation factor 2α. Although Tl(I) has been shown to interact with the sulfhydryl groups of proteins and cause the accumulation of reactive oxygen species, it did not activate endoplasmic reticulum stress. Notably, the level of 60S ribosomal subunit showed significant under-accumulation after the Tl(I) treatment. Given that Tl(I) shares similarities with potassium in terms of the ionic charge and atomic radius, we proposed that Tl(I) occupies certain K+-binding sites and inactivates the ribosomal function. However, we observed neither activation of ribophagy nor acceleration of the proteasomal degradation of 60S subunits. On the contrary, the ribosome synthesis pathway was severely blocked, i.e., the impairment of rRNA processing, deformed nucleoli, and accumulation of 60S subunits in the nucleus were observed. Although p53 remained inactivated, the decreased c-Myc and increased p21 levels indicated the activation of nucleolar stress. Therefore, we proposed that Tl(I) interfered the ribosome synthesis, thus resulting in cell growth inhibition and lethality.
Collapse
Affiliation(s)
- Yi-Ting Chou
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
28
|
The Many Faces of Rap1 GTPase. Int J Mol Sci 2018; 19:ijms19102848. [PMID: 30241315 PMCID: PMC6212855 DOI: 10.3390/ijms19102848] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022] Open
Abstract
This review addresses the issue of the numerous roles played by Rap1 GTPase (guanosine triphosphatase) in different cell types, in terms of both physiology and pathology. It is one among a myriad of small G proteins with endogenous GTP-hydrolyzing activity that is considerably stimulated by posttranslational modifications (geranylgeranylation) or guanine nucleotide exchange factors (GEFs), and inhibited by GTPase-activating proteins (GAPs). Rap1 is a ubiquitous protein that plays an essential role in the control of metabolic processes, such as signal transduction from plasma membrane receptors, cytoskeleton rearrangements necessary for cell division, intracellular and substratum adhesion, as well as cell motility, which is needed for extravasation or fusion. We present several examples of how Rap1 affects cells and organs, pointing to possible molecular manipulations that could have application in the therapy of several diseases.
Collapse
|
29
|
Kim HJ, Barrientos A. MTG1 couples mitoribosome large subunit assembly with intersubunit bridge formation. Nucleic Acids Res 2018; 46:8435-8453. [PMID: 30085276 PMCID: PMC6144824 DOI: 10.1093/nar/gky672] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Mammalian mitochondrial ribosomes (mitoribosomes) synthesize 13 proteins, essential components of the oxidative phosphorylation system. They are linked to mitochondrial disorders, often involving cardiomyopathy. Mitoribosome biogenesis is assisted by multiple cofactors whose specific functions remain largely uncharacterized. Here, we examined the role of human MTG1, a conserved ribosome assembly guanosine triphosphatase. MTG1-silencing in human cardiomyocytes and developing zebrafish revealed early cardiovascular lesions. A combination of gene-editing and biochemical approaches using HEK293T cells demonstrated that MTG1 binds to the large subunit (mtLSU) 16S ribosomal RNA to facilitate incorporation of late-assembly proteins. Furthermore, MTG1 interacts with mtLSU uL19 protein and mtSSU mS27, a putative guanosine triphosphate-exchange factor (GEF), to enable MTG1 release and the formation of the mB6 intersubunit bridge. In this way, MTG1 establishes a quality control checkpoint in mitoribosome assembly. In conclusion, MTG1 controls mitochondrial translation by coupling mtLSU assembly with intersubunit bridge formation using the intrinsic GEF activity acquired by the mtSSU through mS27, a unique occurrence in translational systems.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
30
|
Yao C, Chou J, Wang T, Zhao H, Zhang B. Pantothenic Acid, Vitamin C, and Biotin Play Important Roles in the Growth of Lactobacillus helveticus. Front Microbiol 2018; 9:1194. [PMID: 29922266 PMCID: PMC5996940 DOI: 10.3389/fmicb.2018.01194] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/16/2018] [Indexed: 11/13/2022] Open
Abstract
Lactobacillus helveticus is an important lactic acid bacterium. The strains used in this study have proven probiotic function, and the potential to produce functional dairy products and bioactive peptides. To explore the effects of vitamins on the growth of L. helveticus, a chemically defined medium was designed and nine vitamins were tested. Pantothenic acid (Vb5), vitamin C (Vc), and biotin were necessary for the growth of L. helveticus CICC 22171. These three vitamins had an important effect on the glucose metabolism and energy metabolism of strain CICC 22171. Through transcriptomic analysis, we found that three vitamins were related to the synthesis of fatty acids and participate in the energy supply of the cells. Additionally, Vb5 was involved in the metabolism of bacterial proteins and lipids and was related to the activity of various enzymes. The results indicated that Vc was involved in protein metabolism, and biotin affected the intracellular transport mechanism of bacteria. The ability of vitamins to promote the growth of the strain was verified in skim milk medium. The results indicated that Vc, biotin, and Vb5 could promote the proliferation of L. helveticus but had no significant effect on Lactobacillus bulgaricus.
Collapse
Affiliation(s)
- Chunxiao Yao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jiandong Chou
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Tao Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongfei Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing, China
| | - Bolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing, China
| |
Collapse
|
31
|
Structural Visualization of the Formation and Activation of the 50S Ribosomal Subunit during In Vitro Reconstitution. Mol Cell 2018; 70:881-893.e3. [DOI: 10.1016/j.molcel.2018.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/27/2018] [Accepted: 05/01/2018] [Indexed: 01/07/2023]
|
32
|
Wang H, Wang K, Du Q, Wang Y, Fu Z, Guo Z, Kang D, Li WX, Tang J. Maize Urb2 protein is required for kernel development and vegetative growth by affecting pre-ribosomal RNA processing. THE NEW PHYTOLOGIST 2018; 218:1233-1246. [PMID: 29479724 DOI: 10.1111/nph.15057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Ribosome biogenesis is a fundamental process in eukaryotic cells. Although Urb2 protein has been implicated in ribosome biogenesis in yeast, the Urb2 domain is loosely conserved between plants and yeast, and the function of Urb2 protein in plants remains unknown. Here, we isolated a maize mutant, designated as urb2, with defects in kernel development and vegetative growth. Positional cloning and transgenic analysis revealed that urb2 encodes an Urb2 domain-containing protein. Compared with the wild-type (WT), the urb2 mutant showed decreased ratios of 60S/40S and 80S/40S and increased ratios of polyribosomes. The pre-rRNA intermediates of 35/33S rRNA, P-A3 and 18S-A3 were significantly accumulated in the urb2 mutant. Transcriptome profiling of the urb2 mutant indicated that ZmUrb2 affects the expression of a number of ribosome-related genes. We further demonstrated that natural variations in ZmUrb2 are significantly associated with maize kernel length. The overall results indicate that, by affecting pre-rRNA processing, the Urb2 protein is required for ribosome biogenesis in maize.
Collapse
Affiliation(s)
- Hongqiu Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Kai Wang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingguo Du
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yafei Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhanyong Guo
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dingming Kang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wen-Xue Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
33
|
da Silveira Tomé C, Foucher AE, Jault JM, Housset D. High concentrations of GTP induce conformational changes in the essential bacterial GTPase EngA and enhance its binding to the ribosome. FEBS J 2017; 285:160-177. [PMID: 29148177 DOI: 10.1111/febs.14333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/28/2017] [Accepted: 11/13/2017] [Indexed: 11/28/2022]
Abstract
EngA is a conserved bacterial GTPase involved in ribosome biogenesis. While essential in bacteria, EngA does not have any human orthologue and can thus be an interesting target for new antibacterial compounds. EngA is the only known GTPase bearing two G domains, making unique its catalytic cycle and the induced modulation of its conformation and interaction with the ribosome. We have investigated nucleotide-induced conformational changes in EngA in order to unveil their role in ribosome binding. SAXS and limited proteolysis were used to probe EngA conformational changes, and revealed a change in protein structure and a distinct rate of proteolysis induced by GTP. Structure analysis showed that the conformation adopted in solution in the presence of GTP does not match any known EngA structure, while the SAXS data measured in the presence of GDP are in perfect agreement with two crystal structures (i.e. 2HGJ and 4DCU). Combination of mass spectrometry and N-terminal sequencing for the analysis of the fragmentation pattern upon proteolytic cleavage gave insights into which regions become more or less accessible in the different nucleotide-bound states. Interactions studies confirmed a stronger binding of EngA to the bacterial ribosome in the presence of GTP and suggest that the induced change in conformation of EngA plays a key role for ribosome binding.
Collapse
Affiliation(s)
| | | | - Jean-Michel Jault
- UMR5086 "Molecular Microbiology and Structural Biochemistry", CNRS, Univ. Lyon 1, France
| | | |
Collapse
|
34
|
Sprenger H, Kienesberger S, Pertschy B, Pöltl L, Konrad B, Bhutada P, Vorkapic D, Atzmüller D, Feist F, Högenauer C, Gorkiewicz G, Zechner EL. Fic Proteins of Campylobacter fetus subsp. venerealis Form a Network of Functional Toxin-Antitoxin Systems. Front Microbiol 2017; 8:1965. [PMID: 29089929 PMCID: PMC5651007 DOI: 10.3389/fmicb.2017.01965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/25/2017] [Indexed: 01/02/2023] Open
Abstract
Enzymes containing the FIC (filamentation induced by cyclic AMP) domain catalyze post-translational modifications of target proteins. In bacteria the activity of some Fic proteins resembles classical toxin–antitoxin (TA) systems. An excess of toxin over neutralizing antitoxin can enable bacteria to survive some stress conditions by slowing metabolic processes and promoting dormancy. The cell can return to normal growth when sufficient antitoxin is present to block toxin activity. Fic genes of the human and animal pathogen Campylobacter fetus are significantly associated with just one subspecies, which is specifically adapted to the urogenital tract. Here, we demonstrate that the fic genes of virulent isolate C. fetus subsp. venerealis 84-112 form multiple TA systems. Expression of the toxins in Escherichia coli caused filamentation and growth inhibition phenotypes reversible by concomitant antitoxin expression. Key active site residues involved in adenylylation by Fic proteins are conserved in Fic1, Fic3 and Fic4, but degenerated in Fic2. We show that both Fic3 and the non-canonical Fic2 disrupt assembly and function of E. coli ribosomes when expressed independently of a trans-acting antitoxin. Toxicity of the Fic proteins is controlled by different mechanisms. The first involves intramolecular regulation by an inhibitory helix typical for Fic proteins. The second is an unusual neutralization by heterologous Fic–Fic protein interactions. Moreover, a small interacting antitoxin called Fic inhibitory protein 3, which appears unrelated to known Fic antitoxins, has the novel capacity to bind and neutralize Fic toxins encoded in cis and at distant sites. These findings reveal a remarkable system of functional crosstalk occurring between Fic proteins expressed from chromosomal and extrachromosomal modules. Conservation of fic genes in other bacteria that either inhabit or establish pathology in the urogenital tract of humans and animals underscores the significance of these factors for niche-specific adaptation and virulence.
Collapse
Affiliation(s)
- Hanna Sprenger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,Institute of Pathology, Medical University of Graz, Graz, Austria.,Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,Institute of Pathology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Lisa Pöltl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Bettina Konrad
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Priya Bhutada
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Dina Vorkapic
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Denise Atzmüller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Florian Feist
- Vehicle Safety Institute, Graz University of Technology, Graz, Austria
| | - Christoph Högenauer
- Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Gregor Gorkiewicz
- Institute of Pathology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
35
|
Stokes JM, Brown ED. Chemical modulators of ribosome biogenesis as biological probes. Nat Chem Biol 2015; 11:924-32. [PMID: 26575239 DOI: 10.1038/nchembio.1957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/13/2015] [Indexed: 01/17/2023]
Abstract
Small-molecule inhibitors of protein biosynthesis have been instrumental in the dissection of the complexities of ribosome structure and function. Ribosome biogenesis, on the other hand, is a complex and largely enigmatic process for which there is a paucity of chemical probes. Indeed, ribosome biogenesis has been studied almost exclusively using genetic and biochemical approaches without the benefit of small-molecule inhibitors of this process. Here, we provide a perspective on the promise of chemical inhibitors of ribosome assembly for future research. We explore key obstacles that complicate the interpretation of studies aimed at perturbing ribosome biogenesis in vivo using genetic methods, and we argue that chemical inhibitors are especially powerful because they can be used to induce perturbations in a manner that obviates these difficulties. Thus, in combination with leading-edge biochemical and structural methods, chemical probes offer unique advantages toward elucidating the molecular events that define the assembly of ribosomes.
Collapse
Affiliation(s)
- Jonathan M Stokes
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Eric D Brown
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
36
|
Jeon Y, Park YJ, Cho HK, Jung HJ, Ahn TK, Kang H, Pai HS. The nucleolar GTPase nucleostemin-like 1 plays a role in plant growth and senescence by modulating ribosome biogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6297-310. [PMID: 26163696 PMCID: PMC4588883 DOI: 10.1093/jxb/erv337] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nucleostemin is a nucleolar GTP-binding protein that is involved in stem cell proliferation, embryonic development, and ribosome biogenesis in mammals. Plant nucleostemin-like 1 (NSN1) plays a role in embryogenesis, and apical and floral meristem development. In this study, a nucleolar function of NSN1 in the regulation of ribosome biogenesis was identified. Green fluorescent protein (GFP)-fused NSN1 localized to the nucleolus, which was primarily determined by its N-terminal domain. Recombinant NSN1 and its N-terminal domain (NSN1-N) bound to RNA in vitro. Recombinant NSN1 expressed GTPase activity in vitro. NSN1 silencing in Arabidopsis thaliana and Nicotiana benthamiana led to growth retardation and premature senescence. NSN1 interacted with Pescadillo and EBNA1 binding protein 2 (EBP2), which are nucleolar proteins involved in ribosome biogenesis, and with several ribosomal proteins. NSN1, NSN1-N, and EBP2 co-fractionated primarily with the 60S ribosomal large subunit in vivo. Depletion of NSN1 delayed 25S rRNA maturation and biogenesis of the 60S ribosome subunit, and repressed global translation. NSN1-deficient plants exhibited premature leaf senescence, excessive accumulation of reactive oxygen species, and senescence-related gene expression. Taken together, these results suggest that NSN1 plays a crucial role in plant growth and senescence by modulating ribosome biogenesis.
Collapse
Affiliation(s)
- Young Jeon
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Yong-Joon Park
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hui Kyung Cho
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hyun Ju Jung
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Tae-Kyu Ahn
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
37
|
Weis BL, Missbach S, Marzi J, Bohnsack MT, Schleiff E. The 60S associated ribosome biogenesis factor LSG1-2 is required for 40S maturation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:1043-1056. [PMID: 25319368 DOI: 10.1111/tpj.12703] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 06/04/2023]
Abstract
Ribosome biogenesis involves a large ensemble of trans-acting factors, which catalyse rRNA processing, ribosomal protein association and ribosomal subunit assembly. The circularly permuted GTPase Lsg1 is such a ribosome biogenesis factor, which is involved in maturation of the pre-60S ribosomal subunit in yeast. We identified two orthologues of Lsg1 in Arabidopsis thaliana. Both proteins differ in their C-terminus, which is highly charged in atLSG1-2 but missing in atLSG1-1. This C-terminus of atLSG1-2 contains a functional nuclear localization signal in a part of the protein that also targets atLSG1-2 to the nucleolus. Furthermore, only atLSG1-2 is physically associated with ribosomes suggesting its function in ribosome biogenesis. Homozygous T-DNA insertion lines are viable for both LSG1 orthologues. In plants lacking atLSG1-2 18S rRNA precursors accumulate and a 20S pre-rRNA is detected, while the amount of pre-rRNAs that lead to the 25S and 5.8S rRNA is not changed. Thus, our results suggest that pre-60S subunit maturation is important for the final steps of pre-40S maturation in plants. In addition, the lsg1-2 mutants show severe developmental defects, including triple cotyledons and upward curled leaves, which link ribosome biogenesis to early plant and leaf development.
Collapse
Affiliation(s)
- Benjamin L Weis
- Department of Biosciences, Goethe University, Molecular Cell Biology of Plants and Cluster of Excellence, Max von Laue Str. 9, 60438 Frankfurt/Main, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
38
|
Balakrishnan R, Oman K, Shoji S, Bundschuh R, Fredrick K. The conserved GTPase LepA contributes mainly to translation initiation in Escherichia coli. Nucleic Acids Res 2014; 42:13370-83. [PMID: 25378333 PMCID: PMC4245954 DOI: 10.1093/nar/gku1098] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
LepA is a paralog of EF-G found in all bacteria. Deletion of lepA confers no obvious growth defect in Escherichia coli, and the physiological role of LepA remains unknown. Here, we identify nine strains (ΔdksA, ΔmolR1, ΔrsgA, ΔtatB, ΔtonB, ΔtolR, ΔubiF, ΔubiG or ΔubiH) in which ΔlepA confers a synthetic growth phenotype. These strains are compromised for gene regulation, ribosome assembly, transport and/or respiration, indicating that LepA contributes to these functions in some way. We also use ribosome profiling to deduce the effects of LepA on translation. We find that loss of LepA alters the average ribosome density (ARD) for hundreds of mRNA coding regions in the cell, substantially reducing ARD in many cases. By contrast, only subtle and codon-specific changes in ribosome distribution along mRNA are seen. These data suggest that LepA contributes mainly to the initiation phase of translation. Consistent with this interpretation, the effect of LepA on ARD is related to the sequence of the Shine–Dalgarno region. Global perturbation of gene expression in the ΔlepA mutant likely explains most of its phenotypes.
Collapse
Affiliation(s)
- Rohan Balakrishnan
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kenji Oman
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Shinichiro Shoji
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Kurt Fredrick
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
39
|
Heo JB, Lee YM, Yun HR, Im CH, Lee YS, Yi YB, Kwon C, Lim J, Bahk JD. Rice serine/threonine kinase 1 is required for the stimulation of OsNug2 GTPase activity. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1601-1608. [PMID: 25151129 DOI: 10.1016/j.jplph.2014.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/07/2014] [Accepted: 07/31/2014] [Indexed: 06/03/2023]
Abstract
Several GTPases are required for ribosome biogenesis and assembly. We recently identified rice (Oryza sativa) nuclear/nucleolar GTPase 2 (OsNug2), a YlqF/YawG family GTPase, as having a role in pre-60S ribosomal subunit maturation. To investigate the potential factors involved in regulating OsNug2 function, yeast two-hybrid screens were performed using OsNug2 as bait. Rice serine/threonine kinase 1 (OsSTK1) was identified as a candidate interacting protein. OsSTK1 appeared to interact with OsNug2 both in vitro and in vivo. OsSTK1 was found to have no effect on the GTP-binding activity of OsNug2; however, the presence of recombinant OsSTK1 in OsNug2 assay reaction mixtures increased OsNug2 GTPase activity. A kinase assay showed that OsSTK1 had weak autophosphorylation activity and strongly phosphorylated serine 209 of OsNug2. Using yeast complementation testing, we identified a GAL::OsNug2(S209N) mutation-harboring yeast strain that exhibited a growth-defective phenotype on galactose medium at 39°C, which was divergent from that of a yeast strain harboring GAL::OsNug2. The intrinsic GTPase activity of OsNug2(S209N), which was found to be similar to that of OsNug2, was not fully enhanced upon weak binding of OsSTK1. Our findings indicate that OsSTK1 functions as a positive regulator of OsNug2 by enhancing OsNug2 GTPase activity. In addition, phosphorylation of OsNug2 serine 209 is essential for its complete function in biological functional pathway.
Collapse
Affiliation(s)
- Jae Bok Heo
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714, South Korea.
| | - Yun Mi Lee
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714, South Korea
| | - Hee Rang Yun
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714, South Korea
| | - Chak Han Im
- Eco-friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju 660-360, South Korea
| | - Yong-Suk Lee
- Department of Biotechnology, Dong-A University, Busan 604-714, South Korea
| | - Young Byong Yi
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714, South Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Yongin 448-701, South Korea
| | - Jun Lim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, South Korea
| | - Jeong Dong Bahk
- Department of Biochemistry, Gyeongsang National University, Jinju 660-701, South Korea
| |
Collapse
|
40
|
Gooi JH, Chia LY, Walsh NC, Karsdal MA, Quinn JMW, Martin TJ, Sims NA. Decline in calcitonin receptor expression in osteocytes with age. J Endocrinol 2014; 221:181-91. [PMID: 24516262 DOI: 10.1530/joe-13-0524] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have previously shown that co-administration of the transient osteoclast inhibitor, salmon calcitonin (sCT), blunts the anabolic effect of parathyroid hormone (PTH) in young rats and increases osteocytic expression of the bone formation inhibitor sclerostin (Sost). To determine whether this also occurs in adult animals, we co-administered sCT with PTH to 6-month-old sham-operated (SHAM) and ovariectomised (OVX) rats. While sCT reduced the stimulatory effect of PTH on serum amino-terminal propeptide of type 1 procollagen levels, in contrast to its influence in young rats, sCT did not reduce the anabolic effect of PTH on femoral bone mineral density, tibial trabecular bone volume or bone formation rate in 6-month-old SHAM or OVX rats. Quantitative real-time PCR analysis of femoral metaphyses collected 1 and 4 h after a single PTH injection confirmed a significant increase in mRNA levels for interleukin 6 (Il6) and ephrinB2 (EfnB2), and a significant reduction in Sost and dentin matrix protein-1 (Dmp1) in response to PTH. However, in contrast to observations in young rats, these effects were not modified by co-administration of sCT, nor did sCT significantly modify Sost, Dmp1, or matrix extracellular phosphoglycoprotein (Mepe) mRNA levels. Furthermore, while CT receptor (CTR) mRNA (Calcr) was readily detected in GFP+ osteocytes isolated from young (3-week-old) DMP1-GFP mice, Calcr levels in osteocytes declined as mice aged, reaching levels that were undetectable in long bone at 49 weeks of age. These data indicate that osteocyte-mediated responses to CT are most likely to be of physiological relevance in young rodents.
Collapse
Affiliation(s)
- Jonathan H Gooi
- St Vincent's Institute, and Department of Medicine, at St Vincent's Hospital, The University of Melbourne, 9 Princes Street, Fitzroy, Victoria 3065, Australia Nordic Bioscience Inc., Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
41
|
Ribosome assembly factors Pwp1 and Nop12 are important for folding of 5.8S rRNA during ribosome biogenesis in Saccharomyces cerevisiae. Mol Cell Biol 2014; 34:1863-77. [PMID: 24636992 DOI: 10.1128/mcb.01322-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previous work from our lab suggests that a group of interdependent assembly factors (A(3) factors) is necessary to create early, stable preribosomes. Many of these proteins bind at or near internal transcribed spacer 2 (ITS2), but in their absence, ITS1 is not removed from rRNA, suggesting long-range communication between these two spacers. By comparing the nonessential assembly factors Nop12 and Pwp1, we show that misfolding of rRNA is sufficient to perturb early steps of biogenesis, but it is the lack of A(3) factors that results in turnover of early preribosomes. Deletion of NOP12 significantly inhibits 27SA(3) pre-rRNA processing, even though the A(3) factors are present in preribosomes. Furthermore, pre-rRNAs are stable, indicating that the block in processing is not sufficient to trigger turnover. This is in contrast to the absence of Pwp1, in which the A(3) factors are not present and pre-rRNAs are unstable. In vivo RNA structure probing revealed that the pre-rRNA processing defects are due to misfolding of 5.8S rRNA. In the absence of Nop12 and Pwp1, rRNA helix 5 is not stably formed. Interestingly, the absence of Nop12 results in the formation of an alternative yet unproductive helix 5 when cells are grown at low temperatures.
Collapse
|
42
|
Gijsbers A, García-Márquez A, Luviano A, Sánchez-Puig N. Guanine nucleotide exchange in the ribosomal GTPase EFL1 is modulated by the protein mutated in the Shwachman–Diamond Syndrome. Biochem Biophys Res Commun 2013; 437:349-54. [DOI: 10.1016/j.bbrc.2013.06.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
|
43
|
Li N, Chen Y, Guo Q, Zhang Y, Yuan Y, Ma C, Deng H, Lei J, Gao N. Cryo-EM structures of the late-stage assembly intermediates of the bacterial 50S ribosomal subunit. Nucleic Acids Res 2013; 41:7073-83. [PMID: 23700310 PMCID: PMC3737534 DOI: 10.1093/nar/gkt423] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ribosome assembly is a process fundamental for all cellular activities. The efficiency and accuracy of the subunit assembly are tightly regulated and closely monitored. In the present work, we characterized, both compositionally and structurally, a set of in vivo 50S subunit precursors (45S), isolated from a mutant bacterial strain. Our qualitative mass spectrometry data indicate that L28, L16, L33, L36 and L35 are dramatically underrepresented in the 45S particles. This protein spectrum shows interesting similarity to many qualitatively analyzed 50S precursors from different genetic background, indicating the presence of global rate-limiting steps in the late-stage assembly of 50S subunit. Our structural data reveal two major intermediate states for the 45S particles. Consistently, both states severally lack those proteins, but they also differ in the stability of the functional centers of the 50S subunit, demonstrating that they are translationally inactive. Detailed analysis indicates that the orientation of H38 accounts for the global conformational differences in these intermediate structures, and suggests that the reorientation of H38 to its native position is rate-limiting during the late-stage assembly. Especially, H38 plays an essential role in stabilizing the central protuberance, through the interaction with the 5S rRNA, and the correctly orientated H38 is likely a prerequisite for further maturation of the 50S subunit.
Collapse
Affiliation(s)
- Ningning Li
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kint C, Verstraeten N, Hofkens J, Fauvart M, Michiels J. Bacterial Obg proteins: GTPases at the nexus of protein and DNA synthesis. Crit Rev Microbiol 2013; 40:207-24. [PMID: 23537324 DOI: 10.3109/1040841x.2013.776510] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Obg proteins (also known as ObgE, YhbZ and CgtA) are conserved P-loop GTPases, essential for growth in bacteria. Like other GTPases, Obg proteins cycle between a GTP-bound ON and a GDP-bound OFF state, thereby controlling cellular processes. Interestingly, the in vitro biochemical properties of Obg proteins suggest that they act as sensors for the cellular GDP/GTP pools and adjust their activity according to the cellular energy status. Obg proteins have been attributed a host of cellular functions, including roles in essential cellular processes (DNA replication, ribosome maturation) and roles in different stress adaptation pathways (stringent response, sporulation, general stress response). This review summarizes the current knowledge on Obg activity and function. Furthermore, we present a model that integrates the different functions of Obg by assigning it a fundamental role in cellular physiology, at the hub of protein and DNA synthesis. In particular, we believe that Obg proteins might provide a connection between different global pathways in order to fine-tune cellular processes in response to a given energy status.
Collapse
Affiliation(s)
- Cyrielle Kint
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven , Kasteelpark Arenberg 20, 3001 Heverlee , Kasteelpark Arenberg 20, 3001 Heverlee and
| | | | | | | | | |
Collapse
|
45
|
Abstract
The ribosome is an RNA- and protein-based macromolecule having multiple functional domains to facilitate protein synthesis, and it is synthesized through multiple steps including transcription, stepwise cleavages of the primary transcript, modifications of ribosomal proteins and RNAs and assemblies of ribosomal proteins with rRNAs. This process requires dozens of trans-acting factors including GTP- and ATP-binding proteins to overcome several energy-consuming steps. Despite accumulation of genetic, biochemical and structural data, the entire process of bacterial ribosome synthesis remains elusive. Here, we review GTPases involved in bacterial ribosome maturation.
Collapse
Affiliation(s)
- Simon Goto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | | | | |
Collapse
|
46
|
Rodríguez-Galán O, García-Gómez JJ, de la Cruz J. Yeast and human RNA helicases involved in ribosome biogenesis: current status and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:775-90. [PMID: 23357782 DOI: 10.1016/j.bbagrm.2013.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 11/17/2022]
Abstract
Ribosome biogenesis is a fundamental process that is conserved in eukaryotes. Although spectacular progress has been made in understanding mammalian ribosome synthesis in recent years, by far, this process has still been best characterised in the yeast Saccharomyces cerevisiae. In yeast, besides the rRNAs, the ribosomal proteins and the 75 small nucleolar RNAs, more than 250 non-ribosomal proteins, generally referred to as trans-acting factors, are involved in ribosome biogenesis. These factors include nucleases, RNA modifying enzymes, ATPases, GTPases, kinases and RNA helicases. Altogether, they likely confer speed, accuracy and directionality to the ribosome synthesis process, however, the precise functions for most of them are still largely unknown. This review summarises our current knowledge on eukaryotic RNA helicases involved in ribosome biogenesis, particularly focusing on the most recent advances with respect to the molecular roles of these enzymes and their co-factors in yeast and human cells. This article is part of a Special Issue entitled: The Biology of RNA helicases-Modulation for life.
Collapse
|
47
|
Gulati M, Jain N, Anand B, Prakash B, Britton RA. Mutational analysis of the ribosome assembly GTPase RbgA provides insight into ribosome interaction and ribosome-stimulated GTPase activation. Nucleic Acids Res 2013; 41:3217-27. [PMID: 23325847 PMCID: PMC3597669 DOI: 10.1093/nar/gks1475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ribosome biogenesis GTPase A protein (RbgA) is an essential GTPase required for the biogenesis of the 50S subunit in Bacillus subtilis. Homologs of RbgA are widely distributed in bacteria and eukaryotes and are implicated in ribosome assembly in the mitochondria, chloroplast and cytoplasm. Cells depleted of RbgA accumulate an immature large subunit that is missing key ribosomal proteins. RbgA, unlike many members of the Ras superfamily of GTPases, lacks a defined catalytic residue for carrying out guanosine triphosphate (GTP) hydrolysis. To probe RbgA function in ribosome assembly, we used a combined bioinformatics, genetic and biochemical approach. We identified a RNA-binding domain within the C-terminus of RbgA that is structurally similar to AmiR–NasR Transcription Anti-termination Regulator (ANTAR) domains, which are known to bind structured RNA. Mutation of key residues in the ANTAR domain altered RbgA association with the ribosome. We identified a putative catalytic residue within a highly conserved region of RbgA, His9, which is contained within a similar PGH motif found in elongation factor Tu (EF-Tu) that is required for GTP hydrolysis on interaction with the ribosome. Finally, our results support a model in which the GTPase activity of RbgA directly participates in the maturation of the large subunit rather than solely promoting dissociation of RbgA from the 50S subunit.
Collapse
Affiliation(s)
- Megha Gulati
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48823, USA
| | | | | | | | | |
Collapse
|
48
|
Foucher AE, Reiser JB, Ebel C, Housset D, Jault JM. Potassium acts as a GTPase-activating element on each nucleotide-binding domain of the essential Bacillus subtilis EngA. PLoS One 2012; 7:e46795. [PMID: 23056455 PMCID: PMC3466195 DOI: 10.1371/journal.pone.0046795] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 09/07/2012] [Indexed: 12/28/2022] Open
Abstract
EngA proteins form a unique family of bacterial GTPases with two GTP-binding domains in tandem, namely GD1 and GD2, followed by a KH (K-homology) domain. They have been shown to interact with the bacterial ribosome and to be involved in its biogenesis. Most prokaryotic EngA possess a high GTPase activity in contrast to eukaryotic GTPases that act mainly as molecular switches. Here, we have purified and characterized the GTPase activity of the Bacillus subtilis EngA and two shortened EngA variants that only contain GD1 or GD2-KH. Interestingly, the GTPase activity of GD1 alone is similar to that of the whole EngA, whereas GD2-KH has a 150-fold lower GTPase activity. At physiological concentration, potassium strongly stimulates the GTPase activity of each protein construct. Interestingly, it affects neither the affinities for nucleotides nor the monomeric status of EngA or the GD1 domain. Thus, potassium likely acts as a chemical GTPase-activating element as proposed for another bacterial GTPase like MnmE. However, unlike MnmE, potassium does not promote dimerization of EngA. In addition, we solved two crystal structures of full-length EngA. One of them contained for the first time a GTP-like analogue bound to GD2 while GD1 was free. Surprisingly, its overall fold was similar to a previously solved structure with GDP bound to both sites. Our data indicate that a significant structural change must occur upon K+ binding to GD2, and a comparison with T. maritima EngA and MnmE structures allowed us to propose a model explaining the chemical basis for the different GTPase activities of GD1 and GD2.
Collapse
Affiliation(s)
- Anne-Emmanuelle Foucher
- Institut de Biologie Structurale, Université Joseph Fourier Grenoble 1, Grenoble, France
- UMR 5075 CNRS, Grenoble, France
- CEA, Grenoble, France
| | - Jean-Baptiste Reiser
- Institut de Biologie Structurale, Université Joseph Fourier Grenoble 1, Grenoble, France
- UMR 5075 CNRS, Grenoble, France
- CEA, Grenoble, France
| | - Christine Ebel
- Institut de Biologie Structurale, Université Joseph Fourier Grenoble 1, Grenoble, France
- UMR 5075 CNRS, Grenoble, France
- CEA, Grenoble, France
| | - Dominique Housset
- Institut de Biologie Structurale, Université Joseph Fourier Grenoble 1, Grenoble, France
- UMR 5075 CNRS, Grenoble, France
- CEA, Grenoble, France
| | - Jean-Michel Jault
- Institut de Biologie Structurale, Université Joseph Fourier Grenoble 1, Grenoble, France
- UMR 5075 CNRS, Grenoble, France
- CEA, Grenoble, France
- * E-mail:
| |
Collapse
|
49
|
Paul MF, Alushin GM, Barros MH, Rak M, Tzagoloff A. The putative GTPase encoded by MTG3 functions in a novel pathway for regulating assembly of the small subunit of yeast mitochondrial ribosomes. J Biol Chem 2012; 287:24346-55. [PMID: 22621929 PMCID: PMC3397861 DOI: 10.1074/jbc.m112.363309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/22/2012] [Indexed: 11/06/2022] Open
Abstract
Very little is known about biogenesis of mitochondrial ribosomes. The GTPases encoded by the nuclear MTG1 and MTG2 genes of Saccharomyces cerevisiae have been reported to play a role in assembly of the ribosomal 54 S subunit. In the present study biochemical screens of a collection of respiratory deficient yeast mutants have enabled us to identify a third gene essential for expression of mitochondrial ribosomes. This gene codes for a member of the YqeH family of GTPases, which we have named MTG3 in keeping with the earlier convention. Mutations in MTG3 cause the accumulation of the 15 S rRNA precursor, previously shown to have an 80-nucleotide 5' extension. Sucrose gradient sedimentation of mitochondrial ribosomes from temperature-sensitive mtg3 mutants grown at the permissive and restrictive temperatures, combined with immunobloting with subunit-specific antibodies, indicate that Mtg3p is required for assembly of the 30 S but not 54 S ribosomal subunit. The respiratory deficient growth phenotype of an mtg3 null mutant is partially rescued by overexpression of the Mrpl4p constituent located at the peptide exit site of the 54 S subunit. The rescue is accompanied by an increase in processed 15 S rRNA. This suggests that Mtg3p and Mrpl4p jointly regulate assembly of the small subunit by modulating processing of the 15 S rRNA precursor.
Collapse
Affiliation(s)
- Marie-Françoise Paul
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Gregory M. Alushin
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Mario H. Barros
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Malgorzata Rak
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Alexander Tzagoloff
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| |
Collapse
|
50
|
Bang WY, Chen J, Jeong IS, Kim SW, Kim CW, Jung HS, Lee KH, Kweon HS, Yoko I, Shiina T, Bahk JD. Functional characterization of ObgC in ribosome biogenesis during chloroplast development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:122-34. [PMID: 22380942 DOI: 10.1111/j.1365-313x.2012.04976.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Spo0B-associated GTP-binding protein (Obg) GTPase, essential for bacterial viability, is also conserved in eukaryotes, but its primary role in eukaryotes remains unknown. Here, our functional characterization of Arabidopsis and rice obgc mutants strongly underlines the evolutionarily conserved role of eukaryotic Obgs in organellar ribosome biogenesis. The mutants exhibited a chlorotic phenotype, caused by retarded chloroplast development. A plastid DNA macroarray revealed a plastid-encoded RNA polymerase (PEP) deficiency in an obgc mutant, caused by incompleteness of the PEP complex, as its western blot exhibited reduced levels of RpoA protein, a component of PEP. Plastid rRNA profiling indicated that plastid rRNA processing is defective in obgc mutants, probably resulting in impaired ribosome biogenesis and, in turn, in reduced levels of RpoA protein. RNA co-immunoprecipitation revealed that ObgC specifically co-precipitates with 23S rRNA in vivo. These findings indicate that ObgC functions primarily in plastid ribosome biogenesis during chloroplast development. Furthermore, complementation analysis can provide new insights into the functional modes of three ObgC domains, including the Obg fold, G domain and OCT.
Collapse
Affiliation(s)
- Woo Young Bang
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology-GNTECH, Jinju 660-758, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|