1
|
Emerson AE, Lyons Q, Becker MW, Sepulveda K, Hiremath SC, Brady SR, Chilimba C, Weaver JD. Hydrogel injection molded complex macroencapsulation device geometry improves long-term cell therapy viability and function in the rat omentum transplant site. Biomaterials 2024; 317:123040. [PMID: 39754965 DOI: 10.1016/j.biomaterials.2024.123040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/08/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
Insulin-secreting allogeneic cell therapies are a promising treatment for type 1 diabetes, with the potential to eliminate hypoglycemia and long-term complications of the disease. However, chronic systemic immunosuppression is necessary to prevent graft rejection, and the acute risks associated with immunosuppression limit the number of patients who can be treated with allogeneic cell therapies. Islet macroencapsulation in a hydrogel biomaterial is one proposed method to reduce or eliminate immune suppression; however, macroencapsulation devices suffer from poor oxygen transport and limited efficacy as they scale to large animal model preclinical studies and clinical trials. Hydrogel geometric device designs that optimize nutrient transport combined with methods to promote localized vasculogenesis may improve in vivo macroencapsulated cell viability and function. Here, we demonstrate with finite element modeling that a high surface area-to-volume ratio spiral geometry can increase macroencapsulated islet viability and function relative to a traditional cylindrical design, and we validate these observations in vitro under normoxic and physiological oxygen conditions. Finally, we evaluate macroencapsulated syngeneic islet survival and function in vivo in a diabetic rat omentum transplant model, and demonstrate that high surface area-to-volume hydrogel device designs improved macroencapsulated syngeneic islet function relative to traditional device designs.
Collapse
Affiliation(s)
- Amy E Emerson
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange St., Tempe, AZ, 85281, USA
| | - Quincy Lyons
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange St., Tempe, AZ, 85281, USA
| | - Matthew W Becker
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange St., Tempe, AZ, 85281, USA
| | - Keven Sepulveda
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange St., Tempe, AZ, 85281, USA
| | - Shivani C Hiremath
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange St., Tempe, AZ, 85281, USA
| | - Sarah R Brady
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange St., Tempe, AZ, 85281, USA
| | - Chishiba Chilimba
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange St., Tempe, AZ, 85281, USA
| | - Jessica D Weaver
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange St., Tempe, AZ, 85281, USA.
| |
Collapse
|
2
|
Emerson AE, Sugamura Y, Mazboudi J, Abdallah TM, Seaton CD, Ghasemi A, Kodibagkar VD, Weaver JD. pO 2 reporter composite hydrogel macroencapsulation devices for magnetic resonance imaging oxygen quantification. J Biomed Mater Res A 2024; 112:1506-1517. [PMID: 38488241 PMCID: PMC11239328 DOI: 10.1002/jbm.a.37707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/12/2024] [Accepted: 03/04/2024] [Indexed: 07/12/2024]
Abstract
Hydrogel cell encapsulation devices are a common approach to reduce the need for chronic systemic immunosuppression in allogeneic cell product transplantation. Macroencapsulation approaches are an appealing strategy, as they maximize graft retrievability and cell dosage within a single device; however, macroencapsulation devices face oxygen transport challenges as geometries increase from preclinical to clinical scales. Device design guided by computational approaches can facilitate graft oxygen availability to encapsulated cells in vivo but is limited without accurate measurement of oxygen levels within the transplant site and graft. In this study, we engineer pO2 reporter composite hydrogels (PORCH) to enable spatiotemporal measurement of oxygen tension within macroencapsulation devices using the proton Imaging of siloxanes to map tissue oxygenation levels (PISTOL) magnetic resonance imaging approach. We engineer two methods of incorporating siloxane oximetry reporters within hydrogel devices, an emulsion and microbead-based approach, and evaluate PORCH cytotoxicity on co-encapsulated cells and accuracy in quantifying oxygen tension in vitro. We find that both emulsion and microbead PORCH approaches enable accurate in situ oxygen quantification using PISTOL magnetic resonance oximetry, and that the emulsion-based PORCH approach results in higher spatial resolution.
Collapse
Affiliation(s)
- Amy E Emerson
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Yuka Sugamura
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Jad Mazboudi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Tuhfah M Abdallah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Charmayne D Seaton
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Azin Ghasemi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Vikram D Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Jessica D Weaver
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
3
|
Grimus S, Sarangova V, Welzel PB, Ludwig B, Seissler J, Kemter E, Wolf E, Ali A. Immunoprotection Strategies in β-Cell Replacement Therapy: A Closer Look at Porcine Islet Xenotransplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401385. [PMID: 38884159 PMCID: PMC11336975 DOI: 10.1002/advs.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by absolute insulin deficiency primarily due to autoimmune destruction of pancreatic β-cells. The prevailing treatment for T1DM involves daily subcutaneous insulin injections, but a substantial proportion of patients face challenges such as severe hypoglycemic episodes and poorly controlled hyperglycemia. For T1DM patients, a more effective therapeutic option involves the replacement of β-cells through allogeneic transplantation of either the entire pancreas or isolated pancreatic islets. Unfortunately, the scarcity of transplantable human organs has led to a growing list of patients waiting for an islet transplant. One potential alternative is xenotransplantation of porcine pancreatic islets. However, due to inter-species molecular incompatibilities, porcine tissues trigger a robust immune response in humans, leading to xenograft rejection. Several promising strategies aim to overcome this challenge and enhance the long-term survival and functionality of xenogeneic islet grafts. These strategies include the use of islets derived from genetically modified pigs, immunoisolation of islets by encapsulation in biocompatible materials, and the creation of an immunomodulatory microenvironment by co-transplanting islets with accessory cells or utilizing immunomodulatory biomaterials. This review concentrates on delineating the primary obstacles in islet xenotransplantation and elucidates the fundamental principles and recent breakthroughs aimed at addressing these challenges.
Collapse
Affiliation(s)
- Sarah Grimus
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| | - Victoria Sarangova
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Petra B. Welzel
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Barbara Ludwig
- Department of Medicine IIIUniversity Hospital Carl Gustav CarusTechnische Universität DresdenD‐01307DresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the Technische Universität DresdenD‐01307DresdenGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
- DFG‐Center for Regenerative Therapies DresdenTechnische Universität DresdenD‐01307DresdenGermany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IVDiabetes Zentrum – Campus InnenstadtKlinikum der Ludwig‐Maximilians‐Universität MünchenD‐80336MunichGermany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Asghar Ali
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| |
Collapse
|
4
|
Zhu J, He Y, Wang Y, Cai LH. Voxelated bioprinting of modular double-network bio-ink droplets. Nat Commun 2024; 15:5902. [PMID: 39003266 PMCID: PMC11246467 DOI: 10.1038/s41467-024-49705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/17/2024] [Indexed: 07/15/2024] Open
Abstract
Analogous of pixels to two-dimensional pictures, voxels-in the form of either small cubes or spheres-are the basic building blocks of three-dimensional objects. However, precise manipulation of viscoelastic bio-ink voxels in three-dimensional space represents a grand challenge in both soft matter science and biomanufacturing. Here, we present a voxelated bioprinting technology that enables the digital assembly of interpenetrating double-network hydrogel droplets made of polyacrylamide/alginate-based or hyaluronic acid/alginate-based polymers. The hydrogels are crosslinked via additive-free and biofriendly click reaction between a pair of stoichiometrically matched polymers carrying norbornene and tetrazine groups, respectively. We develop theoretical frameworks to describe the crosslinking kinetics and stiffness of the hydrogels, and construct a diagram-of-state to delineate their mechanical properties. Multi-channel print nozzles are developed to allow on-demand mixing of highly viscoelastic bio-inks without significantly impairing cell viability. Further, we showcase the distinctive capability of voxelated bioprinting by creating highly complex three-dimensional structures such as a hollow sphere composed of interconnected yet distinguishable hydrogel particles. Finally, we validate the cytocompatibility and in vivo stability of the printed double-network scaffolds through cell encapsulation and animal transplantation.
Collapse
Affiliation(s)
- Jinchang Zhu
- Soft Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Yi He
- Department of Surgery, University of Virginia, Charlottesville, VA, 22903, USA
| | - Yong Wang
- Department of Surgery, University of Virginia, Charlottesville, VA, 22903, USA
| | - Li-Heng Cai
- Soft Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
5
|
Raoufinia R, Rahimi HR, Saburi E, Moghbeli M. Advances and challenges of the cell-based therapies among diabetic patients. J Transl Med 2024; 22:435. [PMID: 38720379 PMCID: PMC11077715 DOI: 10.1186/s12967-024-05226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Diabetes mellitus is a significant global public health challenge, with a rising prevalence and associated morbidity and mortality. Cell therapy has evolved over time and holds great potential in diabetes treatment. In the present review, we discussed the recent progresses in cell-based therapies for diabetes that provides an overview of islet and stem cell transplantation technologies used in clinical settings, highlighting their strengths and limitations. We also discussed immunomodulatory strategies employed in cell therapies. Therefore, this review highlights key progresses that pave the way to design transformative treatments to improve the life quality among diabetic patients.
Collapse
Affiliation(s)
- Ramin Raoufinia
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Ren R, Jiang J, Li X, Zhang G. Research progress of autoimmune diseases based on induced pluripotent stem cells. Front Immunol 2024; 15:1349138. [PMID: 38720903 PMCID: PMC11076788 DOI: 10.3389/fimmu.2024.1349138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Autoimmune diseases can damage specific or multiple organs and tissues, influence the quality of life, and even cause disability and death. A 'disease in a dish' can be developed based on patients-derived induced pluripotent stem cells (iPSCs) and iPSCs-derived disease-relevant cell types to provide a platform for pathogenesis research, phenotypical assays, cell therapy, and drug discovery. With rapid progress in molecular biology research methods including genome-sequencing technology, epigenetic analysis, '-omics' analysis and organoid technology, large amount of data represents an opportunity to help in gaining an in-depth understanding of pathological mechanisms and developing novel therapeutic strategies for these diseases. This paper aimed to review the iPSCs-based research on phenotype confirmation, mechanism exploration, drug discovery, and cell therapy for autoimmune diseases, especially multiple sclerosis, inflammatory bowel disease, and type 1 diabetes using iPSCs and iPSCs-derived cells.
Collapse
Affiliation(s)
| | | | | | - Guirong Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| |
Collapse
|
7
|
Harding J, Vintersten-Nagy K, Yang H, Tang JK, Shutova M, Jong ED, Lee JH, Massumi M, Oussenko T, Izadifar Z, Zhang P, Rogers IM, Wheeler MB, Lye SJ, Sung HK, Li C, Izadifar M, Nagy A. Immune-privileged tissues formed from immunologically cloaked mouse embryonic stem cells survive long term in allogeneic hosts. Nat Biomed Eng 2024; 8:427-442. [PMID: 37996616 PMCID: PMC11087263 DOI: 10.1038/s41551-023-01133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/30/2023] [Indexed: 11/25/2023]
Abstract
The immunogenicity of transplanted allogeneic cells and tissues is a major hurdle to the advancement of cell therapies. Here we show that the overexpression of eight immunomodulatory transgenes (Pdl1, Cd200, Cd47, H2-M3, Fasl, Serpinb9, Ccl21 and Mfge8) in mouse embryonic stem cells (mESCs) is sufficient to immunologically 'cloak' the cells as well as tissues derived from them, allowing their survival for months in outbred and allogeneic inbred recipients. Overexpression of the human orthologues of these genes in human ESCs abolished the activation of allogeneic human peripheral blood mononuclear cells and their inflammatory responses. Moreover, by using the previously reported FailSafe transgene system, which transcriptionally links a gene essential for cell division with an inducible and cell-proliferation-dependent kill switch, we generated cloaked tissues from mESCs that served as immune-privileged subcutaneous sites that protected uncloaked allogeneic and xenogeneic cells from rejection in immune-competent hosts. The combination of cloaking and FailSafe technologies may allow for the generation of safe and allogeneically accepted cell lines and off-the-shelf cell products.
Collapse
Affiliation(s)
- Jeffrey Harding
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Kristina Vintersten-Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Huijuan Yang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jean Kit Tang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Maria Shutova
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Eric D Jong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mohammad Massumi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Tatiana Oussenko
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Zohreh Izadifar
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Puzheng Zhang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Ian M Rogers
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - ChengJin Li
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Mohammad Izadifar
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Duman BÖ, Yazir Y, Halbutoğullari ZS, Mert S, Öztürk A, Gacar G, Duruksu G. Production of alginate macrocapsule device for long-term normoglycaemia in the treatment of type 1 diabetes mellitus with pancreatic cell sheet engineering. Biomed Mater 2024; 19:025008. [PMID: 38194706 DOI: 10.1088/1748-605x/ad1c9b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Type 1 diabetes-mellitus (T1DM) is characterized by damage of beta cells in pancreatic islets. Cell-sheet engineering, one of the newest therapeutic approaches, has also been used to create functional islet systems by creating islet/beta cell-sheets and transferring these systems to areas that require minimally invasive intervention, such as extrahepatic areas. Since islets, beta cells, and pancreas transplants are allogeneic, immune problems such as tissue rejection occur after treatment, and patients become insulin dependent again. In this study, we aimed to design the most suitable cell-sheet treatment method and macrocapsule-device that could provide long-term normoglycemia in rats. Firstly, mesenchymal stem cells (MSCs) and beta cells were co-cultured in a temperature-responsive culture dish to obtain a cell-sheet and then the cell-sheets macroencapsulated using different concentrations of alginate. The mechanical properties and pore sizes of the macrocapsule-device were characterized. The viability and activity of cell-sheets in the macrocapsule were evaluatedin vitroandin vivo. Fasting blood glucose levels, body weight, and serum insulin & C-peptide levels were evaluated after transplantation in diabetic-rats. After the transplantation, the blood glucose level at 225 mg dl-1on the 10th day dropped to 168 mg dl-1on the 15th day, and remained at the normoglycemic level for 210 days. In this study, an alginate macrocapsule-device was successfully developed to protect cell-sheets from immune attacks after transplantation. The results of our study provide the basis for future animal and human studies in which this method can be used to provide long-term cellular therapy in T1DM patients.
Collapse
Affiliation(s)
- Büşra Öncel Duman
- European Vocational School, Medical Laboratory Techniques Program, Kocaeli Health and Technology University, 41030 Kocaeli, Turkey
| | - Yusufhan Yazir
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University (KOGEM), TR41001 Izmit, Kocaeli, Turkey
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Zehra Seda Halbutoğullari
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University (KOGEM), TR41001 Izmit, Kocaeli, Turkey
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Serap Mert
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University (KOGEM), TR41001 Izmit, Kocaeli, Turkey
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
- Department of Chemistry and Chemical Processing Technology, Kocaeli University, Kocaeli, Turkey
- Department of Polymer Science and Technology, Kocaeli University, Kocaeli, Turkey
| | - Ahmet Öztürk
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University (KOGEM), TR41001 Izmit, Kocaeli, Turkey
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Gülçin Gacar
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University (KOGEM), TR41001 Izmit, Kocaeli, Turkey
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
| | - Gökhan Duruksu
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University (KOGEM), TR41001 Izmit, Kocaeli, Turkey
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
9
|
Abstract
Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Kaneko M, Moriguchi H, Futatsubashi R, Ayano S, Kobayashi G, Ito A. Transplantable cell-encapsulation device using a semipermeable ethylene-vinyl alcohol copolymer membrane in a mouse diabetic model. J Biosci Bioeng 2023; 136:415-422. [PMID: 37748982 DOI: 10.1016/j.jbiosc.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/27/2023] [Accepted: 09/03/2023] [Indexed: 09/27/2023]
Abstract
Cell-based therapy is an attractive approach, and encapsulation of therapeutic cells is a promising strategy because it prevents immune responses and allows transplanted cells to be retrieved in case of dysfunction. Bioartificial pancreas, in which insulin-secreting cells are encapsulated in a semipermeable membrane bag, is a new class of medical device for treating type-I diabetes. In this study, we developed a macroencapsulation device in which the pancreatic beta cell line MIN6 was encapsulated in a semipermeable bag made of an ethylene-vinyl alcohol copolymer membrane. In vitro evaluation of ATP and insulin levels revealed that MIN6 cells grown in Matrigel within the device secreted insulin in response to glucose levels. Transplantation of the device lowered blood glucose levels for 30 days in diabetic mice. Histological observation revealed that MIN6 cells formed spheroids in Matrigel, and no host cells were detected within the device. Blood levels of inflammatory cytokines in the transplanted mice were similar to those in non-transplanted mice, and antibody levels in the device were lower than those in the intraperitoneal fluid. These results suggest that the semipermeable ethylene-vinyl alcohol copolymer membrane developed in this study is useful for cell encapsulation in cell-based therapies, including beta-cell macroencapsulation for type-1 diabetes.
Collapse
Affiliation(s)
- Masahiro Kaneko
- Department of Chemical Systems Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroaki Moriguchi
- Department of Chemical Systems Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ryo Futatsubashi
- Department of Chemical Systems Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Satoru Ayano
- Research and Development Division, Kuraray Co., Ltd., 41 Miyukigaoka, Tsukuba, Ibaraki 305-0841, Japan
| | - Goro Kobayashi
- Research and Development Division, Kuraray Co., Ltd., 41 Miyukigaoka, Tsukuba, Ibaraki 305-0841, Japan
| | - Akira Ito
- Department of Chemical Systems Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
11
|
Grogg J, Vernet R, Charrier E, Urwyler M, Von Rohr O, Saingier V, Courtout F, Lathuiliere A, Gaudenzio N, Engel A, Mach N. Engineering a versatile and retrievable cell macroencapsulation device for the delivery of therapeutic proteins. iScience 2023; 26:107372. [PMID: 37539029 PMCID: PMC10393802 DOI: 10.1016/j.isci.2023.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/12/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
Encapsulated cell therapy holds a great potential to deliver sustained levels of highly potent therapeutic proteins to patients and improve chronic disease management. A versatile encapsulation device that is biocompatible, scalable, and easy to administer, retrieve, or replace has yet to be validated for clinical applications. Here, we report on a cargo-agnostic, macroencapsulation device with optimized features for protein delivery. It is compatible with adherent and suspension cells, and can be administered and retrieved without burdensome surgical procedures. We characterized its biocompatibility and showed that different cell lines producing different therapeutic proteins can be combined in the device. We demonstrated the ability of cytokine-secreting cells encapsulated in our device and implanted in human skin to mobilize and activate antigen-presenting cells, which could potentially serve as an effective adjuvant strategy in cancer immunization therapies. We believe that our device may contribute to cell therapies for cancer, metabolic disorders, and protein-deficient diseases.
Collapse
Affiliation(s)
- Julien Grogg
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
- MaxiVAX SA, Geneva, Switzerland
| | - Remi Vernet
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Emily Charrier
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
- MaxiVAX SA, Geneva, Switzerland
| | - Muriel Urwyler
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Olivier Von Rohr
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Valentin Saingier
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Fabien Courtout
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Aurelien Lathuiliere
- Department of Rehabilitation and Geriatrics, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 - CNRS UMR5051 - University Toulouse III, Toulouse, France
- Genoskin SAS, Toulouse, France
| | - Adrien Engel
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
- MaxiVAX SA, Geneva, Switzerland
| | - Nicolas Mach
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Bai X, Wang D, Wang B, Zhang X, Bai Y, Zhang X, Tian R, Li C, Yi Q, Cheng Y, He S. Staphylococcal protein A-modified hydrogel facilitates in situ immunomodulation by capturing anti-HMGB1 for islet grafts. Acta Biomater 2023; 166:95-108. [PMID: 37150280 DOI: 10.1016/j.actbio.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Islet transplantation is regarded as the most promising therapy for type 1 diabetes. However, both hypoxia and immune attack impair the grafted islets after transplantation, eventually failing the islet graft. Although many studies showed that biomaterials with nanoscale pores, like hydrogels, could protect islets from immune cells, the pores on biomaterials inhibited vascular endothelial cells (VECs) to creep in, which resulted in poor revascularization. Thus, a hydrogel device that can facilitate in situ immune modulations without the cost of poor revascularization should be put forward. Accordingly, we designed a spA-modified hydrogel capturing anti-HMGB1 mAB (mAB-spA Gel): the Staphylococcus aureus protein A (spA) was conjugated on the network of hydrogel to capture anti-HMGB1mAB which can inactivate immune cells, while the pore sizes of the hydrogel were more than 100μm which allows vascular endothelial cells (VECs) to creep in. In this study, we screened the optimal spA concentration in mAB-spA Gel according to the physical properties and antibody binding capability, then demonstrated that it could facilitate in situ immunomodulation without decreasing the vessel reconstruction in vitro. Further, we transplanted islet graft in vivo and showed that the survival of islets was elongated. In conclusion, mAB-spA Gel provided an alternative islet encapsulation strategy for type 1 diabetes. STATEMENT OF SIGNIFICANCE: Although various studies have shown that the backbone of the hydrogels can isolate islets grafts from immune cells and the survival of the islets can be prolonged by this way, it is also reported that when the pore size of the backbone is too small the revascularization will be adversely affected. According to this point, it is hard to adjust hydrogel's pore size to protect the islets from the immune attack while allowing endothelial vascular cells to creep in. To solve this dilemma, we designed an immunomodulatory hydrogel inhibiting the activation of T cells by immunosuppressive IgGs instead of the backbone network, so the hydrogel can prolong the survival of islets without the sacrifice of revascularization.
Collapse
Affiliation(s)
- Xue Bai
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China; Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiao Zhang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China; Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yan Bai
- School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xinying Zhang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China; Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ruoyuan Tian
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China; Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Caihua Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China; Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qiying Yi
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yao Cheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Sirong He
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China; Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China.
| |
Collapse
|
13
|
Qin T, Smink AM, de Vos P. Enhancing longevity of immunoisolated pancreatic islet grafts by modifying both the intracapsular and extracapsular environment. Acta Biomater 2023:S1742-7061(23)00362-8. [PMID: 37392934 DOI: 10.1016/j.actbio.2023.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease characterized by autoimmune destruction of pancreatic β cells. Transplantation of immunoisolated pancreatic islets might treat T1DM in the absence of chronic immunosuppression. Important advances have been made in the past decade as capsules can be produced that provoke minimal to no foreign body response after implantation. However, graft survival is still limited as islet dysfunction may occur due to chronic damage to islets during islet isolation, immune responses induced by inflammatory cells, and nutritional issues for encapsulated cells. This review summarizes the current challenges for promoting longevity of grafts. Possible strategies for improving islet graft longevity are also discussed, including supplementation of the intracapsular milieu with essential survival factors, promotion of vascularization and oxygenation near capsules, modulation of biomaterials, and co-transplantation of accessory cells. Current insight is that both the intracapsular as well as the extracapsular properties should be improved to achieve long-term survival of islet-tissue. Some of these approaches reproducibly induce normoglycemia for more than a year in rodents. Further development of the technology requires collective research efforts in material science, immunology, and endocrinology. STATEMENT OF SIGNIFICANCE: Islet immunoisolation allows for transplantation of insulin producing cells in absence of immunosuppression and might facilitate the use of xenogeneic cell sources or grafting of cells obtained from replenishable cell sources. However, a major challenge to date is to create a microenvironment that supports long-term graft survival. This review provides a comprehensive overview of the currently identified factors that have been demonstrated to be involved in either stimulating or reducing islet graft survival in immunoisolating devices and discussed current strategies to enhance the longevity of encapsulated islet grafts as treatment for type 1 diabetes. Although significant challenges remain, interdisciplinary collaboration across fields may overcome obstacles and facilitate the translation of encapsulated cell therapy from the laboratory to clinical application.
Collapse
Affiliation(s)
- Tian Qin
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands.
| | - Alexandra M Smink
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
14
|
Samadi A, Moammeri A, Pourmadadi M, Abbasi P, Hosseinpour Z, Farokh A, Shamsabadipour A, Heydari M, Mohammadi MR. Cell Encapsulation and 3D Bioprinting for Therapeutic Cell Transplantation. ACS Biomater Sci Eng 2023; 9:1862-1890. [PMID: 36877212 DOI: 10.1021/acsbiomaterials.2c01183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The promise of cell therapy has been augmented by introducing biomaterials, where intricate scaffold shapes are fabricated to accommodate the cells within. In this review, we first discuss cell encapsulation and the promising potential of biomaterials to overcome challenges associated with cell therapy, particularly cellular function and longevity. More specifically, cell therapies in the context of autoimmune disorders, neurodegenerative diseases, and cancer are reviewed from the perspectives of preclinical findings as well as available clinical data. Next, techniques to fabricate cell-biomaterials constructs, focusing on emerging 3D bioprinting technologies, will be reviewed. 3D bioprinting is an advancing field that enables fabricating complex, interconnected, and consistent cell-based constructs capable of scaling up highly reproducible cell-biomaterials platforms with high precision. It is expected that 3D bioprinting devices will expand and become more precise, scalable, and appropriate for clinical manufacturing. Rather than one printer fits all, seeing more application-specific printer types, such as a bioprinter for bone tissue fabrication, which would be different from a bioprinter for skin tissue fabrication, is anticipated in the future.
Collapse
Affiliation(s)
- Amirmasoud Samadi
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, California 92617, United States
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Parisa Abbasi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Avenue, Tehran 1458889694, Iran
| | - Zeinab Hosseinpour
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol 4714871167, Mazandaran Province, Iran
| | - Arian Farokh
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Science, University of Kharazmi, Tehran 199389373, Iran
| | - M Rezaa Mohammadi
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, California 92866, United States
| |
Collapse
|
15
|
Santandreu AG, Taheri‐Tehrani P, Feinberg B, Torres A, Blaha C, Shaheen R, Moyer J, Wright N, Szot GL, Fissell WH, Vartanian S, Posselt A, Roy S. Characterization of human islet function in a convection-driven intravascular bioartificial pancreas. Bioeng Transl Med 2023; 8:e10444. [PMID: 36925691 PMCID: PMC10013798 DOI: 10.1002/btm2.10444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/13/2022] [Accepted: 10/30/2022] [Indexed: 12/23/2022] Open
Abstract
Clinical islet transplantation for treatment of type 1 diabetes (T1D) is limited by the shortage of pancreas donors and need for lifelong immunosuppressive therapy. A convection-driven intravascular bioartificial pancreas (iBAP) based on highly permeable, yet immunologically protective, silicon nanopore membranes (SNM) holds promise to sustain islet function without the need for immunosuppressants. Here, we investigate short-term functionality of encapsulated human islets in an iBAP prototype. Using the finite element method (FEM), we calculated predicted oxygen profiles within islet scaffolds at normalized perifusion rates of 14-200 nl/min/IEQ. The modeling showed the need for minimum in vitro and in vivo islet perifusion rates of 28 and 100 nl/min/IEQ, respectively to support metabolic insulin production requirements in the iBAP. In vitro glucose-stimulated insulin secretion (GSIS) profiles revealed a first-phase response time of <15 min and comparable insulin production rates to standard perifusion systems (~10 pg/min/IEQ) for perifusion rates of 100-200 nl/min/IEQ. An intravenous glucose tolerance test (IVGTT), performed at a perifusion rate of 100-170 nl/min/IEQ in a non-diabetic pig, demonstrated a clinically relevant C-peptide production rate (1.0-2.8 pg/min/IEQ) with a response time of <5 min.
Collapse
Affiliation(s)
- Ana G. Santandreu
- Department of Bioengineering and Therapeutic SciencesUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
| | - Parsa Taheri‐Tehrani
- Department of Bioengineering and Therapeutic SciencesUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
| | - Benjamin Feinberg
- Department of Bioengineering and Therapeutic SciencesUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
| | - Alonso Torres
- Department of Bioengineering and Therapeutic SciencesUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
| | - Charles Blaha
- Department of Bioengineering and Therapeutic SciencesUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
- Silicon Kidney LLCSan FranciscoCaliforniaUSA
| | - Rebecca Shaheen
- Department of Bioengineering and Therapeutic SciencesUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
| | - Jarrett Moyer
- Department of SurgeryUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
| | - Nathan Wright
- Department of Bioengineering and Therapeutic SciencesUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
- Silicon Kidney LLCSan FranciscoCaliforniaUSA
| | - Gregory L. Szot
- Department of SurgeryUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
| | - William H. Fissell
- Silicon Kidney LLCSan FranciscoCaliforniaUSA
- Division of Nephrology and HypertensionVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Shant Vartanian
- Department of SurgeryUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
| | - Andrew Posselt
- Department of SurgeryUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic SciencesUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
- Silicon Kidney LLCSan FranciscoCaliforniaUSA
| |
Collapse
|
16
|
Ghaffari M, Razi S, Zalpoor H, Nabi-Afjadi M, Mohebichamkhorami F, Zali H. Association of MicroRNA-146a with Type 1 and 2 Diabetes and their Related Complications. J Diabetes Res 2023; 2023:2587104. [PMID: 36911496 PMCID: PMC10005876 DOI: 10.1155/2023/2587104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 03/06/2023] Open
Abstract
Most medical investigations have found a reduced blood level of miR-146a in type 2 diabetes (T2D) patients, suggesting an important role for miR-146a (microRNA-146a) in the etiology of diabetes mellitus (DM) and its consequences. Furthermore, injection of miR-146a mimic has been confirmed to alleviate diabetes mellitus in diabetic animal models. In this line, deregulation of miR-146a expression has been linked to the progression of nephropathy, neuropathy, wound healing, olfactory dysfunction, cardiovascular disorders, and retinopathy in diabetic patients. In this review, besides a comprehensive review of the function of miR-146a in DM, we discussed new findings on type 1 (T1MD) and type 2 (T2DM) diabetes mellitus, highlighting the discrepancies between clinical and preclinical investigations and elucidating the biological pathways regulated through miR-146a in DM-affected tissues.
Collapse
Affiliation(s)
- Mahyar Ghaffari
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Sara Razi
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehram, Iran
| |
Collapse
|
17
|
Khazaei M, Khazaei F, Niromand E, Ghanbari E. Tissue engineering approaches and generation of insulin-producing cells to treat type 1 diabetes. J Drug Target 2023; 31:14-31. [PMID: 35896313 DOI: 10.1080/1061186x.2022.2107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tissue engineering (TE) has become a new effective solution to a variety of medical problems, including diabetes. Mesenchymal stem cells (MSCs), which have the ability to differentiate into endodermal and mesodermal cells, appear to be appropriate for this function. The purpose of this review was to evaluate the outcomes of various researches on the insulin-producing cells (IPCs) generation from MSCs with TE approaches to increase efficacy of type 1 diabetes treatments. The search was performed in PubMed/Medline, Scopus and Embase databases until 2021. Studies revealed that MSCs could also differentiate into IPCs under certain conditions. Therefore, a wide range of protocols have been used for this differentiation, but their effectiveness is very different. Scaffolds can provide a microenvironment that enhances the MSCs to IPCs differentiation, improves their metabolic activity and up-regulate pancreatic-specific transcription factors. They also preserve IPCs architecture and enhance insulin production as well as protect against cell death. This systematic review offers a framework for prospective research based on data. In vitro and in vivo evidence suggests that scaffold-based TE can improve the viability and function of IPCs.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khazaei
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Niromand
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
18
|
Jeyagaran A, Lu CE, Zbinden A, Birkenfeld AL, Brucker SY, Layland SL. Type 1 diabetes and engineering enhanced islet transplantation. Adv Drug Deliv Rev 2022; 189:114481. [PMID: 36002043 PMCID: PMC9531713 DOI: 10.1016/j.addr.2022.114481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting β-cell biology, as well as the mechanisms responsible for their autoimmune destruction. β-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic β-cells, pathology of T1D and current state of β-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Aline Zbinden
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Munich, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
19
|
Emerson AE, McCall AB, Brady SR, Slaby EM, Weaver JD. Hydrogel Injection Molding to Generate Complex Cell Encapsulation Geometries. ACS Biomater Sci Eng 2022; 8:4002-4013. [DOI: 10.1021/acsbiomaterials.2c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amy E. Emerson
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| | - Alec B. McCall
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| | - Sarah R. Brady
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| | - Emily M. Slaby
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| | - Jessica D. Weaver
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| |
Collapse
|
20
|
Accolla RP, Simmons AM, Stabler CL. Integrating Additive Manufacturing Techniques to Improve Cell-Based Implants for the Treatment of Type 1 Diabetes. Adv Healthc Mater 2022; 11:e2200243. [PMID: 35412030 PMCID: PMC9262806 DOI: 10.1002/adhm.202200243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/22/2022] [Indexed: 12/12/2022]
Abstract
The increasing global prevalence of endocrine diseases like type 1 diabetes mellitus (T1DM) elevates the need for cellular replacement approaches, which can potentially enhance therapeutic durability and outcomes. Central to any cell therapy is the design of delivery systems that support cell survival and integration. In T1DM, well-established fabrication methods have created a wide range of implants, ranging from 3D macro-scale scaffolds to nano-scale coatings. These traditional methods, however, are often challenged by their inherent limitations in reproducible and discrete fabrication, particularly when scaling to the clinic. Additive manufacturing (AM) techniques provide a means to address these challenges by delivering improved control over construct geometry and microscale component placement. While still early in development in the context of T1DM cellular transplantation, the integration of AM approaches serves to improve nutrient material transport, vascularization efficiency, and the accuracy of cell, matrix, and local therapeutic placement. This review highlights current methods in T1DM cellular transplantation and the potential of AM approaches to overcome these limitations. In addition, emerging AM technologies and their broader application to cell-based therapy are discussed.
Collapse
Affiliation(s)
- Robert P. Accolla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Amberlyn M. Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Immunology and Pathology, College of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| |
Collapse
|
21
|
Stock AA, Gonzalez GC, Pete SI, De Toni T, Berman DM, Rabassa A, Diaz W, Geary JC, Willman M, Jackson JM, DeHaseth NH, Ziebarth NM, Hogan AR, Ricordi C, Kenyon NS, Tomei AA. Performance of islets of Langerhans conformally coated via an emulsion cross-linking method in diabetic rodents and nonhuman primates. SCIENCE ADVANCES 2022; 8:eabm3145. [PMID: 35767620 PMCID: PMC9242596 DOI: 10.1126/sciadv.abm3145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Polyethylene glycol (PEG)-based conformal coating (CC) encapsulation of transplanted islets is a promising β cell replacement therapy for the treatment of type 1 diabetes without chronic immunosuppression because it minimizes capsule thickness, graft volume, and insulin secretion delay. However, we show here that our original CC method, the direct method, requiring exposure of islets to low pH levels and inclusion of viscosity enhancers during coating, severely affected the viability, scalability, and biocompatibility of CC islets in nonhuman primate preclinical models of type 1 diabetes. We therefore developed and validated in vitro and in vivo, in several small- and large-animal models of type 1 diabetes, an augmented CC method-emulsion method-that achieves hydrogel CCs around islets at physiological pH for improved cytocompatibility, with PEG hydrogels for increased biocompatibility and with fivefold increase in encapsulation throughput for enhanced scalability.
Collapse
Affiliation(s)
- Aaron A. Stock
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Grisell C. Gonzalez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sophia I. Pete
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Teresa De Toni
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Dora M. Berman
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alexander Rabassa
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Waldo Diaz
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - James C. Geary
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Melissa Willman
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joy M. Jackson
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Noa H. DeHaseth
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Noel M. Ziebarth
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Anthony R. Hogan
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Norma S. Kenyon
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alice A. Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
22
|
Domingo-Lopez DA, Lattanzi G, H. J. Schreiber L, Wallace EJ, Wylie R, O'Sullivan J, Dolan EB, Duffy GP. Medical devices, smart drug delivery, wearables and technology for the treatment of Diabetes Mellitus. Adv Drug Deliv Rev 2022; 185:114280. [PMID: 35405298 DOI: 10.1016/j.addr.2022.114280] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus refers to a group of metabolic disorders which affect how the body uses glucose impacting approximately 9% of the population worldwide. This review covers the most recent technological advances envisioned to control and/or reverse Type 1 diabetes mellitus (T1DM), many of which will also prove effective in treating the other forms of diabetes mellitus. Current standard therapy for T1DM involves multiple daily glucose measurements and insulin injections. Advances in glucose monitors, hormone delivery systems, and control algorithms generate more autonomous and personalised treatments through hybrid and fully automated closed-loop systems, which significantly reduce hypo- and hyperglycaemic episodes and their subsequent complications. Bi-hormonal systems that co-deliver glucagon or amylin with insulin aim to reduce hypoglycaemic events or increase time spent in target glycaemic range, respectively. Stimuli responsive materials for the controlled delivery of insulin or glucagon are a promising alternative to glucose monitors and insulin pumps. By their self-regulated mechanism, these "smart" drugs modulate their potency, pharmacokinetics and dosing depending on patients' glucose levels. Islet transplantation is a potential cure for T1DM as it restores endogenous insulin and glucagon production, but its use is not yet widespread due to limited islet sources and risks of chronic immunosuppression. New encapsulation strategies that promote angiogenesis and oxygen delivery while protecting islets from recipients' immune response may overcome current limiting factors.
Collapse
|
23
|
PEGDA microencapsulated allogeneic islets reverse canine diabetes without immunosuppression. PLoS One 2022; 17:e0267814. [PMID: 35613086 PMCID: PMC9132281 DOI: 10.1371/journal.pone.0267814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/17/2022] [Indexed: 11/21/2022] Open
Abstract
Background Protection of islets without systemic immunosuppression has been a long-sought goal in the islet transplant field. We conducted a pilot biocompatibility/safety study in healthy dogs followed by a dose-finding efficacy study in diabetic dogs using polyethylene glycol diacrylate (PEGDA) microencapsulated allogeneic canine islets. Methods Prior to the transplants, characterization of the canine islets included the calculations determining the average cell number/islet equivalent. Following measurements of purity, insulin secretion, and insulin, DNA and ATP content, the islets were encapsulated and transplanted interperitoneally into dogs via a catheter, which predominantly attached to the omentum. In the healthy dogs, half of the microspheres injected contained canine islets, the other half of the omentum received empty PEGDA microspheres. Results In the biocompatibility study, healthy dogs received increasing doses of cells up to 1.7 M cells/kg body weight, yet no hypoglycemic events were recorded and the dogs presented with no adverse events. At necropsy the microspheres were identified and described as clear with attachment to the omentum. Several of the blood chemistry values that were abnormal prior to the transplants normalized after the transplant. The same observation was made for the diabetic dogs that received higher doses of canine islets. In all diabetic dogs, the insulin required to attempt to control blood glucose was cut by 50–100% after the transplant, down to no required insulin for the course of the 60-day study. The dogs had no adverse events and behavioral monitoring suggested normal activity after recovery from the transplant. Conclusions and implications The study provides evidence that PEGDA microencapsulated canine islets reversed the signs of diabetes without immunosuppression and led to states of insulin-independence or significantly lowered insulin requirements in the recipients.
Collapse
|
24
|
Das M, Banerjee A, Roy R. A novel in vitro approach to test the effectiveness of fish oil in ameliorating type 1 diabetes. Mol Cell Biochem 2022; 477:2121-2132. [PMID: 35545742 DOI: 10.1007/s11010-022-04424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
Abstract
Diabetes type 1 (T1D) characterized by destruction of pancreatic β-cells results in inadequate insulin production and hyperglycaemia. Generation of reactive oxygen species and glycosylation end-products stimulates toxic impacts on T1D. Dietary w-3 fatty acids present in Fish oil (FO) might be helpful in the prevention of oxidative stress and lipid peroxidation, thus, beneficial against T1D. But how the cellular secretion from β-cells under influence of FO affects the glucose homeostasis of peri-pancreatic cells is poorly understood. In the current study, we aimed to introduce an in vitro model for T1D and evaluate its effectiveness in respect of alloxan treatment to pancreatic Min6 cells. We use alloxan in the Min6 pancreatic β-cell line to induce cellular damage related to T1D. Further treatment with FO was seen to prevent cell death by alloxan and induce mRNA expression of both insulin 1 and insulin 2 isoforms under low-glucose conditions. From the first part of the study, it is clear that FO is effective to recover Min6 cells from the destructive effect of alloxan, and it worked best when given along with alloxan or given after alloxan treatment regime. FO-induced secretion of molecules from Min6 was clearly shown to regulate mRNA expression of key enzymes of carbohydrate metabolism in peri-pancreatic cell types. This is a pilot study showing that an improved in vitro approach of using Min6 along with muscle cells (C2C12) and adipose tissue cells (3T3-L1) together to understand the crosstalk of molecules could be used to check the efficacy of an anti-diabetic drug.
Collapse
Affiliation(s)
- Moitreyi Das
- Department of Zoology, Goa University, Goa, India
| | - Arnab Banerjee
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa, India
| | | |
Collapse
|
25
|
Wang H, Wei J, Hu H, Le F, Wu H, Wei H, Luo J, Chen T. Oral Administration of Bacterial β Cell Expansion Factor A (BefA) Alleviates Diabetes in Mice with Type 1 and Type 2 Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9206039. [PMID: 35186190 PMCID: PMC8853770 DOI: 10.1155/2022/9206039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022]
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases, and there is an urgent need to develop new therapeutic DM oral drugs with fewer side effects and sound therapeutic efficacy. In this study, a β cell expansion factor A (BefA) production strain of Escherichia coli (BL21-pet 28C-BefA) was constructed, and the antidiabetes effect of BefA was evaluated using type 1 DM (T1DM) and type 2 DM (T2DM) mice models. The T1DM mice results indicated that BefA significantly reduced blood glucose levels; exerted a protective effect on islet β cell morphology; downregulated the expressions of TLR-4, p-NFκB/NFκB, and Bax/Bcl-2, and the secretion levels of IL-1β and TNF-α; increased the expression of PDX-1 protein and insulin secretion in a concentration-dependent manner; and restored the disturbed microbial diversity to normal levels. Similarly with the T1DM mice, BefA obviously increased islet β cells and reduced the inflammatory reaction and apoptosis in T2DM mice, as well as improved liver lipid metabolism by downregulating the expressions of CEBP-α, ACC, and Fasn; inhibited the synthesis of triglycerides; and induced Cpt-1, Hmgcs2, and Pparα in a concentration-dependent manner. In conclusion, BefA alleviates diabetes via increasing the number of islet β cells, reducing the inflammatory reaction and apoptosis, improving liver lipid metabolism, and restoring microbial diversity to normal levels, which provides a new strategy for a DM oral drug.
Collapse
Affiliation(s)
- Huan Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hong Hu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Fuyin Le
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Heng Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Luo
- School of Public Health and Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330031, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| |
Collapse
|
26
|
Perikamana SKM, Seale N, Hoque J, Ryu JH, Kumar V, Shih YV, Varghese S. Molecularly Tailored Interface for Long-Term Xenogeneic Cell Transplantation. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2108221. [PMID: 37920452 PMCID: PMC10622113 DOI: 10.1002/adfm.202108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 11/04/2023]
Abstract
Encapsulation of therapeutic cells in a semipermeable device can mitigate the need for systemic immune suppression following cell transplantation by providing local immunoprotection while being permeable to nutrients, oxygen, and different cell-secreted biomolecules. However, fibrotic tissue deposition around the device has been shown to compromise the long-term function of the transplanted cells. Herein, a macroencapsulation device design that improves long-term survival and function of the transplanted cells is reported. The device is comprised of a semipermeable chitosan pouch with a tunable reservoir and molecularly engineered interface. The chitosan pouch interface decorated with 1,12-dodecanedioic acid (DDA), limits the cell adhesion and vigorous foreign body response while maintaining the barrier properties amenable to cell encapsulation. The device provides long-term protection to the encapsulated human primary hepatocytes in the subcutaneous space of immunocompetent mice. The device supports the encapsulated cells for up to 6 months as evident from cell viability and presence of human specific albumin in circulation. Solutions that integrate biomaterials and interfacial engineering such as the one described here may advance development of easy-to manufacture and retrievable devices for the transplantation of therapeutic cells in the absence of immunosuppression.
Collapse
Affiliation(s)
| | - Nailah Seale
- Department of Bioengineering University of California-San Diego La Jolla, CA 92093, USA
| | - Jiaul Hoque
- Department of Orthopaedic Surgery Duke University School of Medicine Durham, NC 27710, USA
| | - Ji Hyun Ryu
- Department of Orthopaedic Surgery Duke University School of Medicine Durham, NC 27710, USA
| | - Vardhman Kumar
- Department of Biomedical Engineering Duke University Durham, NC 27710, USA
| | - Yuru Vernon Shih
- Department of Orthopaedic Surgery Duke University School of Medicine Durham, NC 27710, USA
| | - Shyni Varghese
- Department of Orthopaedic Surgery Duke University School of Medicine Durham, NC 27710, USA
- Department of Biomedical Engineering Duke University Durham, NC 27710, USA
- Department of Mechanical Engineering and Materials Science Duke University Durham, NC 27710, USA
| |
Collapse
|
27
|
Abd El Kader MA, Gabr MM, Khater SM, Ghanem RA, Abou El Naga AM. Impact of insulin producing cells derived from adipose tissue mesenchymal stem cells on testicular dysfunction of diabetic rats. Heliyon 2021; 7:e08316. [PMID: 34820536 PMCID: PMC8601995 DOI: 10.1016/j.heliyon.2021.e08316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/06/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022] Open
Abstract
The present study is to clarify the effect of insulin-producing cells (IPCs) derived from adipose tissue mesenchymal stem cells (AT-MSCs) on diabetic-induced impairments as the abnormalities of testicular tissues, oxidative stress of testes, and defects of spermatogenesis. Diabetes was stimulated by streptozotocin (STZ) injection in male adult Sprague Dawley (SD) rats. Diabetes was confirmed by taking two highly consecutive fasting blood sugar readings; more than 300 mg/dl; within one week. Five million of IPCs derived from AT-MSCs; encased in TheraCyte capsule; were then directly transplanted (one implant for each rat) subcutaneously in diabetic rats. Implants were maintained for 3 months and the fasting blood sugar of the transplanted rats was observed every month. At the end of the experiment; serum testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) were also estimated. The sperm parameters (count, motility, and abnormality) were recorded. In testicular tissue; GPX4, Bcl2, and Bax levels were evaluated, while oxidative stress and antioxidant enzymes activities were measured in the testes homogenate. Also, histopathological alterations were examined in the testes cross-section. In the results, it was found that IPCs treatment enhanced the serum testosterone, FSH, and LH levels. Diabetic-induced impairments in the sperm parameters were noticeably improved post-IPCs transplantation in the diabetic rats. Moreover, the treatment improved the diabetic-associated testicular oxidative stress. Also, it was recognized that the Bax expression decreased, while, GPX4 and Bcl2 expression increased in the treated rats. Meanwhile, the abnormalities showed in the histopathological studies of the hyperglycemic rat's testes were attenuated post-treatment. So, IPCs transplantation improved diabetes and consequently protected against hyperglycemia-induced testicular damages.
Collapse
Affiliation(s)
- Mai A Abd El Kader
- Department of Biotechnology, Urology and Nephrology Center, Mansoura, Egypt
| | - Mahmoud M Gabr
- Department of Biotechnology, Urology and Nephrology Center, Mansoura, Egypt
| | - Sherry M Khater
- Department of Pathology, Urology and Nephrology Center, Mansoura, Egypt
| | - Reham A Ghanem
- Division of Molecular Biology, Faculty of Dentistry, Delta University, Mansoura, Egypt
| | | |
Collapse
|
28
|
In Vitro Disease Models of the Endocrine Pancreas. Biomedicines 2021; 9:biomedicines9101415. [PMID: 34680532 PMCID: PMC8533367 DOI: 10.3390/biomedicines9101415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The ethical constraints and shortcomings of animal models, combined with the demand to study disease pathogenesis under controlled conditions, are giving rise to a new field at the interface of tissue engineering and pathophysiology, which focuses on the development of in vitro models of disease. In vitro models are defined as synthetic experimental systems that contain living human cells and mimic tissue- and organ-level physiology in vitro by taking advantage of recent advances in tissue engineering and microfabrication. This review provides an overview of in vitro models and focuses specifically on in vitro disease models of the endocrine pancreas and diabetes. First, we briefly review the anatomy, physiology, and pathophysiology of the human pancreas, with an emphasis on islets of Langerhans and beta cell dysfunction. We then discuss different types of in vitro models and fundamental elements that should be considered when developing an in vitro disease model. Finally, we review the current state and breakthroughs in the field of pancreatic in vitro models and conclude with some challenges that need to be addressed in the future development of in vitro models.
Collapse
|
29
|
A therapeutic convection-enhanced macroencapsulation device for enhancing β cell viability and insulin secretion. Proc Natl Acad Sci U S A 2021; 118:2101258118. [PMID: 34504013 PMCID: PMC8449352 DOI: 10.1073/pnas.2101258118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 12/30/2022] Open
Abstract
Islet transplantation for type 1 diabetes treatment has been limited by the need for lifelong immunosuppression regimens. This challenge has prompted the development of macroencapsulation devices (MEDs) to immunoprotect the transplanted islets. While promising, conventional MEDs are faced with insufficient transport of oxygen, glucose, and insulin because of the reliance on passive diffusion. Hence, these devices are constrained to two-dimensional, wafer-like geometries with limited loading capacity to maintain cells within a distance of passive diffusion. We hypothesized that convective nutrient transport could extend the loading capacity while also promoting cell viability, rapid glucose equilibration, and the physiological levels of insulin secretion. Here, we showed that convective transport improves nutrient delivery throughout the device and affords a three-dimensional capsule geometry that encapsulates 9.7-fold-more cells than conventional MEDs. Transplantation of a convection-enhanced MED (ceMED) containing insulin-secreting β cells into immunocompetent, hyperglycemic rats demonstrated a rapid, vascular-independent, and glucose-stimulated insulin response, resulting in early amelioration of hyperglycemia, improved glucose tolerance, and reduced fibrosis. Finally, to address potential translational barriers, we outlined future steps necessary to optimize the ceMED design for long-term efficacy and clinical utility.
Collapse
|
30
|
Goswami D, Domingo‐Lopez DA, Ward NA, Millman JR, Duffy GP, Dolan EB, Roche ET. Design Considerations for Macroencapsulation Devices for Stem Cell Derived Islets for the Treatment of Type 1 Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100820. [PMID: 34155834 PMCID: PMC8373111 DOI: 10.1002/advs.202100820] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/24/2021] [Indexed: 05/08/2023]
Abstract
Stem cell derived insulin producing cells or islets have shown promise in reversing Type 1 Diabetes (T1D), yet successful transplantation currently necessitates long-term modulation with immunosuppressant drugs. An alternative approach to avoiding this immune response is to utilize an islet macroencapsulation device, where islets are incorporated into a selectively permeable membrane that can protect the transplanted cells from acute host response, whilst enabling delivery of insulin. These macroencapsulation systems have to meet a number of stringent and challenging design criteria in order to achieve the ultimate goal of reversing T1D. In this progress report, the design considerations and functional requirements of macroencapsulation systems are reviewed, specifically for stem-cell derived islets (SC-islets), highlighting distinct design parameters. Additionally, a perspective on the future for macroencapsulation systems is given, and how incorporating continuous sensing and closed-loop feedback can be transformative in advancing toward an autonomous biohybrid artificial pancreas.
Collapse
Affiliation(s)
- Debkalpa Goswami
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Daniel A. Domingo‐Lopez
- Department of AnatomyCollege of Medicine, Nursing, and Health SciencesNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Niamh A. Ward
- Department of Biomedical EngineeringSchool of EngineeringCollege of Science and EngineeringNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Jeffrey R. Millman
- Division of Endocrinology, Metabolism & Lipid ResearchWashington University School of MedicineSt. LouisMO63110USA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMO63110USA
| | - Garry P. Duffy
- Department of AnatomyCollege of Medicine, Nursing, and Health SciencesNational University of Ireland GalwayGalwayH91 TK33Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER)Trinity College DublinDublinD02 PN40Ireland
- CÚRAM, Centre for Research in Medical DevicesNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Eimear B. Dolan
- Department of Biomedical EngineeringSchool of EngineeringCollege of Science and EngineeringNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Ellen T. Roche
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
31
|
Kharbikar BN, Chendke GS, Desai TA. Modulating the foreign body response of implants for diabetes treatment. Adv Drug Deliv Rev 2021; 174:87-113. [PMID: 33484736 PMCID: PMC8217111 DOI: 10.1016/j.addr.2021.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Diabetes Mellitus is a group of diseases characterized by high blood glucose levels due to patients' inability to produce sufficient insulin. Current interventions often require implants that can detect and correct high blood glucose levels with minimal patient intervention. However, these implantable technologies have not reached their full potential in vivo due to the foreign body response and subsequent development of fibrosis. Therefore, for long-term function of implants, modulating the initial immune response is crucial in preventing the activation and progression of the immune cascade. This review discusses the different molecular mechanisms and cellular interactions involved in the activation and progression of foreign body response (FBR) and fibrosis, specifically for implants used in diabetes. We also highlight the various strategies and techniques that have been used for immunomodulation and prevention of fibrosis. We investigate how these general strategies have been applied to implants used for the treatment of diabetes, offering insights on how these devices can be further modified to circumvent FBR and fibrosis.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gauree S Chendke
- University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
32
|
Shaheen R, Gurlin RE, Gologorsky R, Blaha C, Munnangi P, Santandreu A, Torres A, Carnese P, Nair GG, Szot G, Fissell WH, Hebrok M, Roy S. Superporous agarose scaffolds for encapsulation of adult human islets and human stem-cell-derived β cells for intravascular bioartificial pancreas applications. J Biomed Mater Res A 2021; 109:2438-2448. [PMID: 34196100 DOI: 10.1002/jbm.a.37236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/14/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
Type 1 diabetic patients with severe hypoglycemia unawareness have benefitted from cellular therapies, such as pancreas or islet transplantation; however, donor shortage and the need for immunosuppression limits widespread clinical application. We previously developed an intravascular bioartificial pancreas (iBAP) using silicon nanopore membranes (SNM) for immunoprotection. To ensure ample nutrient delivery, the iBAP will need a cell scaffold with high hydraulic permeability to provide mechanical support and maintain islet viability and function. Here, we examine the feasibility of superporous agarose (SPA) as a potential cell scaffold in the iBAP. SPA exhibits 66-fold greater hydraulic permeability than the SNM along with a short (<10 μm) diffusion distance to the nearest islet. SPA also supports short-term functionality of both encapsulated human islets and stem-cell-derived enriched β-clusters in a convection-based system, demonstrated by high viability (>95%) and biphasic insulin responses to dynamic glucose stimulus. These findings suggest that the SPA scaffold will not limit nutrient delivery in a convection-based bioartificial pancreas and merits continued investigation.
Collapse
Affiliation(s)
- Rebecca Shaheen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Rachel E Gurlin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Rebecca Gologorsky
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Charles Blaha
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA.,Silicon Kidney, San Francisco, California, USA
| | - Pujita Munnangi
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Ana Santandreu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Alonso Torres
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Phichitpol Carnese
- Diabetes Center, Department of Medicine, University of California, San Francisco, California, USA
| | - Gopika G Nair
- Diabetes Center, Department of Medicine, University of California, San Francisco, California, USA
| | - Gregory Szot
- Diabetes Center, Department of Medicine, University of California, San Francisco, California, USA
| | - William H Fissell
- Silicon Kidney, San Francisco, California, USA.,Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, California, USA
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA.,Silicon Kidney, San Francisco, California, USA
| |
Collapse
|
33
|
Kochar IS, Jain R. Pancreas transplant in type 1 diabetes mellitus: the emerging role of islet cell transplant. Ann Pediatr Endocrinol Metab 2021; 26:86-91. [PMID: 34218630 PMCID: PMC8255858 DOI: 10.6065/apem.2142012.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/12/2021] [Indexed: 11/28/2022] Open
Abstract
Pancreas transplant, both whole pancreas and islet cell, is a known therapeutic option for treatment of type 1 diabetes mellitus. Islet cell transplant began as an experimental therapy but is emerging to be quite beneficial due to less surgical risk and fewer complications. It is also considered a promising option in pediatric patients. In this review the authors discuss the indications, procedure, and benefits of islet cell transplant along with newer strategies for improving outcomes.
Collapse
Affiliation(s)
- Inderpal Singh Kochar
- Department of Pediatric and Adolescent Endocrinology, Indraprastha Apollo Hospital, New Delhi, India
| | - Rakhi Jain
- Department of Pediatric and Adolescent Endocrinology, Indraprastha Apollo Hospital, New Delhi, India,Address for correspondence: Rakhi Jain Department of Pediatric and Adolescent Endocrinology, Indraprastha Apollo Hospital, Sarita Vihar, New Delhi 110076, India
| |
Collapse
|
34
|
Fernandez SA, Danielczak L, Gauvin-Rossignol G, Hasilo C, Bégin-Drolet A, Ruel J, Paraskevas S, Leask RL, Hoesli CA. An in vitro Perfused Macroencapsulation Device to Study Hemocompatibility and Survival of Islet-Like Cell Clusters. Front Bioeng Biotechnol 2021; 9:674125. [PMID: 34124024 PMCID: PMC8193939 DOI: 10.3389/fbioe.2021.674125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/30/2021] [Indexed: 11/23/2022] Open
Abstract
Transplantation of hydrogel-encapsulated pancreatic islets is a promising long-term treatment for type 1 diabetes that restores blood glucose regulation while providing graft immunoprotection. Most human-scale islet encapsulation devices that rely solely on diffusion fail to provide sufficient surface area to meet islet oxygen demands. Perfused macroencapsulation devices use blood flow to mitigate oxygen limitations but increase the complexity of blood-device interactions. Here we describe a human-scale in vitro perfusion system to study hemocompatibility and performance of islet-like cell clusters (ILCs) in alginate hydrogel. A cylindrical perfusion device was designed for multi-day culture without leakage, contamination, or flow occlusion. Rat blood perfusion was assessed for prothrombin time and international normalized ratio and demonstrated no significant change in clotting time. Ex vivo perfusion performed with rats showed patency of the device for over 100 min using Doppler ultrasound imaging. PET-CT imaging of the device successfully visualized metabolically active mouse insulinoma 6 ILCs. ILCs cultured for 7 days under static conditions exhibited abnormal morphology and increased activated caspase-3 staining when compared with the perfused device. These findings reinforce the need for convective transport in macroencapsulation strategies and offer a robust and versatile in vitro system to better inform preclinical design.
Collapse
Affiliation(s)
| | - Lisa Danielczak
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
| | | | - Craig Hasilo
- Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| | - André Bégin-Drolet
- Department of Mechanical Engineering, Laval University, Québec City, QC, Canada
| | - Jean Ruel
- Department of Mechanical Engineering, Laval University, Québec City, QC, Canada
| | - Steven Paraskevas
- Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| | - Richard L Leask
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montréal, QC, Canada
| |
Collapse
|
35
|
Abstract
Type 1 diabetes mellitus is a common and highly morbid disease for which there is no cure. Treatment primarily involves exogenous insulin administration, and, under specific circumstances, islet or pancreas transplantation. However, insulin replacement alone fails to replicate the endocrine function of the pancreas and does not provide durable euglycemia. In addition, transplantation requires lifelong use of immunosuppressive medications, which has deleterious side effects, is expensive, and is inappropriate for use in adolescents. A bioartificial pancreas that provides total endocrine pancreatic function without immunosuppression is a potential therapy for treatment of type 1 diabetes. Numerous models are in development and take different approaches to cell source, encapsulation method, and device implantation location. We review current therapies for type 1 diabetes mellitus, the requirements for a bioartificial pancreas, and quantitatively compare device function.
Collapse
Affiliation(s)
- Sara J. Photiadis
- From the Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA
| | - Rebecca C. Gologorsky
- From the Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA
| | - Deepika Sarode
- From the Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA
| |
Collapse
|
36
|
Abstract
Abstract
Purpose of Review
β cell replacement via whole pancreas or islet transplantation has greatly evolved for the cure of type 1 diabetes. Both these strategies are however still affected by several limitations. Pancreas bioengineering holds the potential to overcome these hurdles aiming to repair and regenerate β cell compartment. In this review, we detail the state-of-the-art and recent progress in the bioengineering field applied to diabetes research.
Recent Findings
The primary target of pancreatic bioengineering is to manufacture a construct supporting insulin activity in vivo. Scaffold-base technique, 3D bioprinting, macro-devices, insulin-secreting organoids, and pancreas-on-chip represent the most promising technologies for pancreatic bioengineering.
Summary
There are several factors affecting the clinical application of these technologies, and studies reported so far are encouraging but need to be optimized. Nevertheless pancreas bioengineering is evolving very quickly and its combination with stem cell research developments can only accelerate this trend.
Collapse
|
37
|
Kuwabara R, Hu S, Smink AM, Orive G, Lakey JRT, de Vos P. Applying Immunomodulation to Promote Longevity of Immunoisolated Pancreatic Islet Grafts. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:129-140. [PMID: 33397201 DOI: 10.1089/ten.teb.2020.0326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Islet transplantation is a promising therapy for insulin-dependent diabetes, but large-scale application is hampered by the lack of a consistent source of insulin-producing cells and need for lifelong administration of immunosuppressive drugs, which are associated with severe side effects. To avoid chronic immunosuppression, islet grafts can be enveloped in immunoisolating polymeric membranes. These immunoisolating polymeric membranes protect islet grafts from cell-mediated rejection while allowing diffusion of oxygen, nutrients, and insulin. Although clinical trials have shown the safety and feasibility of encapsulated islets to control glucose homeostasis, the strategy does up till now not support long-term graft survival. This partly can be explained by a significant loss of insulin-producing cells in the immediate period after implantation. The loss can be prevented by combining immunoisolation with immunomodulation, such as combined administration of immunomodulating cytokines or coencapsulation of immunomodulating cell types such as regulatory T cells, mesenchymal stem cells, or Sertoli cells. Also, administration of specific antibodies or apoptotic donor leucocytes is considered to create a tolerant microenvironment around immunoisolated grafts. In this review, we describe the outcomes and limitations of these approaches, as well as the recent progress in immunoisolating devices. Impact statement Immunoisolation by enveloping islets in semipermeable membranes allows for successful transplantation of islet grafts in the absence of chronic immunosuppression, but the duration of graft survival is still not permanent. The reasons for long-term final graft failure is not fully understood, but combining immunoisolation with immunomodulation of tissues or host immune system has been proposed to enhance the longevity of grafts. This article reviews the recent progress and challenges of immunoisolation, as well as the benefits and feasibility of combining encapsulation approaches with immunomodulation to promote longevity of encapsulated grafts.
Collapse
Affiliation(s)
- Rei Kuwabara
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shuxian Hu
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Jonathan R T Lakey
- Department of Surgery and Biomedical Engineering, University of California Irvine, Irvine, California, USA
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
38
|
Bourgeois S, Sawatani T, Van Mulders A, De Leu N, Heremans Y, Heimberg H, Cnop M, Staels W. Towards a Functional Cure for Diabetes Using Stem Cell-Derived Beta Cells: Are We There Yet? Cells 2021; 10:cells10010191. [PMID: 33477961 PMCID: PMC7835995 DOI: 10.3390/cells10010191] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a pandemic metabolic disorder that results from either the autoimmune destruction or the dysfunction of insulin-producing pancreatic beta cells. A promising cure is beta cell replacement through the transplantation of islets of Langerhans. However, donor shortage hinders the widespread implementation of this therapy. Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, represent an attractive alternative beta cell source for transplantation. Although major advances over the past two decades have led to the generation of stem cell-derived beta-like cells that share many features with genuine beta cells, producing fully mature beta cells remains challenging. Here, we review the current status of beta cell differentiation protocols and highlight specific challenges that are associated with producing mature beta cells. We address the challenges and opportunities that are offered by monogenic forms of diabetes. Finally, we discuss the remaining hurdles for clinical application of stem cell-derived beta cells and the status of ongoing clinical trials.
Collapse
Affiliation(s)
- Stephanie Bourgeois
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium; (T.S.); (M.C.)
| | - Annelore Van Mulders
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Nico De Leu
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
- Department of Endocrinology, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Endocrinology, ASZ Aalst, 9300 Aalst, Belgium
| | - Yves Heremans
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Harry Heimberg
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium; (T.S.); (M.C.)
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Willem Staels
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
- Service of Pediatric Endocrinology, Department of Pediatrics, KidZ Health Castle, Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-0-24774473
| |
Collapse
|
39
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
40
|
Lopez-Mendez TB, Santos-Vizcaino E, Pedraz JL, Hernandez RM, Orive G. Cell microencapsulation technologies for sustained drug delivery: Clinical trials and companies. Drug Discov Today 2020; 26:852-861. [PMID: 33242694 DOI: 10.1016/j.drudis.2020.11.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
In recent years, cell microencapsulation technology has advanced, mainly driven by recent developments in the use of stem cells or the optimization of biomaterials. Old challenges have been addressed from new perspectives, and systems developed and improved for decades are now being transferred to the market by novel start-ups and consolidated companies. These products are mainly intended for the treatment of diabetes mellitus (DM), but also cancer, central nervous system (CNS) disorders or lysosomal diseases, among others. In this review, we analyze the results obtained in clinical trials to date and define the global key players that will lead the cell microencapsulation market to bring this technology to the clinic in the future.
Collapse
Affiliation(s)
- Tania B Lopez-Mendez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua); BTI Biotechnology Institute, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
41
|
Kogawa R, Nakamura K, Mochizuki Y. A New Islet Transplantation Method Combining Mesenchymal Stem Cells with Recombinant Peptide Pieces, Microencapsulated Islets, and Mesh Bags. Biomedicines 2020; 8:biomedicines8090299. [PMID: 32825661 PMCID: PMC7555598 DOI: 10.3390/biomedicines8090299] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Microencapsulated islet transplantation was widely studied as a promising treatment for type 1 diabetes mellitus. However, micro-encapsulated islet transplantation has the following problems—early dysfunction of the islets due to the inflammatory reaction at the transplantation site, and hyponutrition and hypoxia due to a lack of blood vessels around the transplantation site, and difficulty in removal of the islets. On the other hand, we proposed a cell transplantation technique called CellSaic, which was reported to enhance the vascular induction effect of mesenchymal stem cells (MSCs) in CellSaic form, and to enhance the effect of islet transplantation through co-transplantation. Therefore, we performed islet transplantation in diabetic mice by combining three components—microencapsulated islets, MSC-CellSaic, and a mesh bag that encapsulates them and enables their removal. Mesh pockets were implanted in the peritoneal cavity of Balb/c mice as implantation sites. After 4 weeks of implantation, a pocket was opened and transplanted with (1) pancreatic islets, (2) microencapsulated islets, and (3) microencapsulated islets + MSC-CellSaic. Four weeks of observation of blood glucose levels showed that the MSC-CellSaic co-transplant group showed a marked decrease in blood glucose levels, compared to the other groups. A three-component configuration of microcapsules, MSC-CellSaic, and mesh bag was shown to enhance the efficacy of islet transplantation.
Collapse
|
42
|
Lim D, Sreekanth V, Cox KJ, Law BK, Wagner BK, Karp JM, Choudhary A. Engineering designer beta cells with a CRISPR-Cas9 conjugation platform. Nat Commun 2020; 11:4043. [PMID: 32792475 PMCID: PMC7426819 DOI: 10.1038/s41467-020-17725-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 07/10/2020] [Indexed: 12/23/2022] Open
Abstract
Genetically fusing protein domains to Cas9 has yielded several transformative technologies; however, the genetic modifications are limited to natural polypeptide chains at the Cas9 termini, which excludes a diverse array of molecules useful for gene editing. Here, we report chemical modifications that allow site-specific and multiple-site conjugation of a wide assortment of molecules on both the termini and internal sites of Cas9, creating a platform for endowing Cas9 with diverse functions. Using this platform, Cas9 can be modified to more precisely incorporate exogenously supplied single-stranded oligonucleotide donor (ssODN) at the DNA break site. We demonstrate that the multiple-site conjugation of ssODN to Cas9 significantly increases the efficiency of precision genome editing, and such a platform is compatible with ssODNs of diverse lengths. By leveraging the conjugation platform, we successfully engineer INS-1E, a β-cell line, to repurpose the insulin secretion machinery, which enables the glucose-dependent secretion of protective immunomodulatory factor interleukin-10. Cas9 fusions partners are often limited to natural polypeptide chains at the Cas9 termni. Here the authors present a platform for site-specific and multiple-site conjugation to both termini and internal sites of Cas9, and they apply this platform to efficiently engineer insulin-producing β cells.
Collapse
Affiliation(s)
- Donghyun Lim
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Vedagopuram Sreekanth
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Kurt J Cox
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Benjamin K Law
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jeffrey M Karp
- Engineering in Medicine, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA, 02139, USA.,Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA. .,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
43
|
Watanabe T, Okitsu T, Ozawa F, Nagata S, Matsunari H, Nagashima H, Nagaya M, Teramae H, Takeuchi S. Millimeter-thick xenoislet-laden fibers as retrievable transplants mitigate foreign body reactions for long-term glycemic control in diabetic mice. Biomaterials 2020; 255:120162. [PMID: 32562943 DOI: 10.1016/j.biomaterials.2020.120162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022]
Abstract
Transplantation technologies of pancreatic islets as well as stem cell-derived pancreatic beta cells encapsulated in hydrogel for the induction of immunoprotection could advance to treat type 1 diabetes mellitus, if the hydrogel transplants acquire retrievability through mitigating foreign body reactions after transplantation. Here, we demonstrate that the diameter of the fiber-shaped hydrogel transplants determines both in vivo cellular deposition onto themselves and their retrievability. Specifically, we found that the in vivo cellular deposition is significantly mitigated when the diameter is 1.0 mm and larger, and that 1.0 mm-thick xenoislet-laden fiber-shaped hydrogel transplants can be retrieved after being placed in the intraperitoneal cavities of immunocompetent diabetic mice for more than 100 days, during which period the hydrogel transplants can normalize the blood glucose concentrations of the mice. These findings could provide an innovative concept of a transplant that would promote the clinical application of stem cell-derived functional cells through improving their in vivo efficacy and safety.
Collapse
Affiliation(s)
- Takaichi Watanabe
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Teru Okitsu
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Fumisato Ozawa
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Shogo Nagata
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571, Japan; Laboratory of Developmental Engineering, Meiji University, Kawasaki, 214-8571, Japan
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571, Japan
| | - Hiroki Teramae
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
44
|
Santos-Vizcaino E, Orive G, Pedraz JL, Hernandez RM. Clinical Applications of Cell Encapsulation Technology. Methods Mol Biol 2020; 2100:473-491. [PMID: 31939144 DOI: 10.1007/978-1-0716-0215-7_32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell encapsulation comprises immunoisolation three-dimensional systems for housing therapeutic cells that secrete bioactive compounds de novo and in a sustained manner. This allows transplantation of multiple allo- or xenogeneic cells without the aid of immunosuppressant drugs. Recent advances in the field have provided improvements to these cell-based drug delivery systems, which have gained the attention of the scientific community and inspired many biotechnological companies to develop their own product candidates. From micro- to macroencapsulation devices, this chapter describes some of the most important approaches that are being currently tested in late-stage clinical trials and are likely to reach the market as future game changers. Most studies involve the treatment of diabetes, eye disorders, and diseases of the central nervous system. However, many other pathologies are also amenable to benefit from this technology. Latest advances to overcome major pending challenges related to biosafety and efficacy are also discussed.
Collapse
Affiliation(s)
- Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.,BTI Biotechnology Institute, Vitoria, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain. .,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
45
|
Leberfinger AN, Dinda S, Wu Y, Koduru SV, Ozbolat V, Ravnic DJ, Ozbolat IT. Bioprinting functional tissues. Acta Biomater 2019; 95:32-49. [PMID: 30639351 PMCID: PMC6625952 DOI: 10.1016/j.actbio.2019.01.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/31/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022]
Abstract
Despite the numerous lives that have been saved since the first successful procedure in 1954, organ transplant has several shortcomings which prevent it from becoming a more comprehensive solution for medical care than it is today. There is a considerable shortage of organ donors, leading to patient death in many cases. In addition, patients require lifelong immunosuppression to prevent graft rejection postoperatively. With such issues in mind, recent research has focused on possible solutions for the lack of access to donor organs and rejections, with the possibility of using the patient's own cells and tissues for treatment showing enormous potential. Three-dimensional (3D) bioprinting is a rapidly emerging technology, which holds great promise for fabrication of functional tissues and organs. Bioprinting offers the means of utilizing a patient's cells to design and fabricate constructs for replacement of diseased tissues and organs. It enables the precise positioning of cells and biologics in an automated and high throughput manner. Several studies have shown the promise of 3D bioprinting. However, many problems must be overcome before the generation of functional tissues with biologically-relevant scale is possible. Specific focus on the functionality of bioprinted tissues is required prior to clinical translation. In this perspective, this paper discusses the challenges of functionalization of bioprinted tissue under eight dimensions: biomimicry, cell density, vascularization, innervation, heterogeneity, engraftment, mechanics, and tissue-specific function, and strives to inform the reader with directions in bioprinting complex and volumetric tissues. STATEMENT OF SIGNIFICANCE: With thousands of patients dying each year waiting for an organ transplant, bioprinted tissues and organs show the potential to eliminate this ever-increasing organ shortage crisis. However, this potential can only be realized by better understanding the functionality of the organ and developing the ability to translate this to the bioprinting methodologies. Considering the rate at which the field is currently expanding, it is reasonable to expect bioprinting to become an integral component of regenerative medicine. For this purpose, this paper discusses several factors that are critical for printing functional tissues including cell density, vascularization, innervation, heterogeneity, engraftment, mechanics, and tissue-specific function, and inform the reader with future directions in bioprinting complex and volumetric tissues.
Collapse
Affiliation(s)
- Ashley N Leberfinger
- Department of Surgery, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Shantanab Dinda
- Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yang Wu
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Srinivas V Koduru
- Department of Surgery, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Veli Ozbolat
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Ceyhan Engineering Faculty, Cukurova University, Ceyhan, Adana 01950, Turkey
| | - Dino J Ravnic
- Department of Surgery, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Ibrahim T Ozbolat
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
46
|
Paving the way for successful islet encapsulation. Drug Discov Today 2019; 24:737-748. [PMID: 30738185 DOI: 10.1016/j.drudis.2019.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 01/02/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a disorder that decimates pancreatic β-cells which produce insulin. Direct pancreatic islet transplantation cannot serve as a widespread therapeutic modality owing to the need for lifelong immunosuppression and donor shortage. Therefore, several encapsulation techniques have been developed to enclose the islets in semipermeable vehicles that will allow oxygen and nutrient input as well as insulin, other metabolites and waste output, while accomplishing immunoisolation. Although encapsulation technology continues to face significant obstacles, recent advances in material science, stem cell biology and immunology potentially serve as pathways to success. This review summarizes the accomplishments of the past 5 years.
Collapse
|
47
|
Oxygenation strategies for encapsulated islet and beta cell transplants. Adv Drug Deliv Rev 2019; 139:139-156. [PMID: 31077781 DOI: 10.1016/j.addr.2019.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 04/19/2019] [Accepted: 05/04/2019] [Indexed: 02/06/2023]
Abstract
Human allogeneic islet transplantation (ITx) is emerging as a promising treatment option for qualified patients with type 1 diabetes. However, widespread clinical application of allogeneic ITx is hindered by two critical barriers: the need for systemic immunosuppression and the limited supply of human islet tissue. Biocompatible, retrievable immunoisolation devices containing glucose-responsive insulin-secreting tissue may address both critical barriers by enabling the more effective and efficient use of allogeneic islets without immunosuppression in the near-term, and ultimately the use of a cell source with a virtually unlimited supply, such as human stem cell-derived β-cells or xenogeneic (porcine) islets with minimal or no immunosuppression. However, even though encapsulation methods have been developed and immunoprotection has been successfully tested in small and large animal models and to a limited extent in proof-of-concept clinical studies, the effective use of encapsulation approaches to convincingly and consistently treat diabetes in humans has yet to be demonstrated. There is increasing consensus that inadequate oxygen supply is a major factor limiting their clinical translation and routine implementation. Poor oxygenation negatively affects cell viability and β-cell function, and the problem is exacerbated with the high-density seeding required for reasonably-sized clinical encapsulation devices. Approaches for enhanced oxygen delivery to encapsulated tissues in implantable devices are therefore being actively developed and tested. This review summarizes fundamental aspects of islet microarchitecture and β-cell physiology as well as encapsulation approaches highlighting the need for adequate oxygenation; it also evaluates existing and emerging approaches for enhanced oxygen delivery to encapsulation devices, particularly with the advent of β-cell sources from stem cells that may enable the large-scale application of this approach.
Collapse
|
48
|
Ernst AU, Bowers DT, Wang LH, Shariati K, Plesser MD, Brown NK, Mehrabyan T, Ma M. Nanotechnology in cell replacement therapies for type 1 diabetes. Adv Drug Deliv Rev 2019; 139:116-138. [PMID: 30716349 PMCID: PMC6677642 DOI: 10.1016/j.addr.2019.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Islet transplantation is a promising long-term, compliance-free, complication-preventing treatment for type 1 diabetes. However, islet transplantation is currently limited to a narrow set of patients due to the shortage of donor islets and side effects from immunosuppression. Encapsulating cells in an immunoisolating membrane can allow for their transplantation without the need for immunosuppression. Alternatively, "open" systems may improve islet health and function by allowing vascular ingrowth at clinically attractive sites. Many processes that enable graft success in both approaches occur at the nanoscale level-in this review we thus consider nanotechnology in cell replacement therapies for type 1 diabetes. A variety of biomaterial-based strategies at the nanometer range have emerged to promote immune-isolation or modulation, proangiogenic, or insulinotropic effects. Additionally, coating islets with nano-thin polymer films has burgeoned as an islet protection modality. Materials approaches that utilize nanoscale features manipulate biology at the molecular scale, offering unique solutions to the enduring challenges of islet transplantation.
Collapse
Affiliation(s)
- Alexander U Ernst
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell D Plesser
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Natalie K Brown
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tigran Mehrabyan
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
49
|
Navarro-Tableros V, Gomez Y, Brizzi MF, Camussi G. Generation of Human Stem Cell-Derived Pancreatic Organoids (POs) for Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:179-220. [PMID: 31025308 DOI: 10.1007/5584_2019_340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin-dependent diabetes mellitus or type 1 diabetes mellitus (T1DM) is an auto-immune condition characterized by the loss of pancreatic β-cells. The curative approach for highly selected patients is the pancreas or the pancreatic islet transplantation. Nevertheless, these options are limited by a growing shortage of donor organs and by the requirement of immunosuppression.Xenotransplantation of porcine islets has been extensively investigated. Nevertheless, the strong xenoimmunity and the risk of transmission of porcine endogenous retroviruses, have limited their application in clinic. Generation of β-like cells from stem cells is one of the most promising strategies in regenerative medicine. Embryonic, and more recently, adult stem cells are currently the most promising cell sources exploited to generate functional β-cells in vitro. A number of studies demonstrated that stem cells could generate functional pancreatic organoids (POs), able to restore normoglycemia when implanted in different preclinical diabetic models. Nevertheless, a gradual loss of function and cell dead are commonly detected when POs are transplanted in immunocompetent animals. So far, the main issue to be solved is the post-transplanted islet loss, due to the host immune attack. To avoid this hurdle, nanotechnology has provided a number of polymers currently under investigation for islet micro and macro-encapsulation. These new approaches, besides conferring PO immune protection, are able to supply oxygen and nutrients and to preserve PO morphology and long-term viability.Herein, we summarize the current knowledge on bioengineered POs and the stem cell differentiation platforms. We also discuss the in vitro strategies used to generate functional POs, and the protocols currently used to confer immune-protection against the host immune attack (micro- and macro-encapsulation). In addition, the most relevant ongoing clinical trials, and the most relevant hurdles met to move towards clinical application are revised.
Collapse
Affiliation(s)
- Victor Navarro-Tableros
- 2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Turin, Turin, Italy
| | - Yonathan Gomez
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy.
- Fondazione per la Ricerca Biomedica-ONLUS, Turin, Italy.
| |
Collapse
|
50
|
Abstract
Diabetes can be treated with β cell replacement therapy, where a patient is transplanted with cadaveric human islets to restore glycemic control. Despite this being an effective treatment, the process of isolating islets from the pancreas requires collagenase digestion which disrupts the islet extracellular matrix (ECM) and activates anoikis-mediated apoptosis. To improve islet survival in culture and after transplantation, the islet microenvironment may be enhanced with the addition of ECM components which are lost during isolation. Furthermore, novel β cell replacement strategies, such as stem cell-derived beta cell (SCβC) treatments or alternative transplant sites and devices, could benefit from a better understanding of how β cells interact with ECM. In this mini-review, we discuss the current understanding of the pancreas and islet ECM composition and review decellularization approaches to generate a native pancreatic ECM scaffold for use in both islet and SCβC culture and transplantation.
Collapse
Affiliation(s)
- Daniel M Tremmel
- a Division of Transplantation, Department of Surgery , University of Wisconsin-Madison School of Medicine and Public Health , Madison , Wisconsin , 53705 , USA
| | - Jon S Odorico
- a Division of Transplantation, Department of Surgery , University of Wisconsin-Madison School of Medicine and Public Health , Madison , Wisconsin , 53705 , USA
| |
Collapse
|