1
|
Laczi K, Bodor A, Kovács T, Magyar B, Perei K, Rákhely G. Methanogenesis coupled hydrocarbon biodegradation enhanced by ferric and sulphate ions. Appl Microbiol Biotechnol 2024; 108:449. [PMID: 39207532 PMCID: PMC11362221 DOI: 10.1007/s00253-024-13278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Bioremediation provides an environmentally sound solution for hydrocarbon removal. Although bioremediation under anoxic conditions is slow, it can be coupled with methanogenesis and is suitable for energy recovery. By altering conditions and supplementing alternative terminal electron acceptors to the system to induce syntrophic partners of the methanogens, this process can be enhanced. In this study, we investigated a hydrocarbon-degrading microbial community derived from chronically contaminated soil. Various hydrocarbon mixtures were used during our experiments in the presence of different electron acceptors. In addition, we performed whole metagenome sequencing to identify the main actors of hydrocarbon biodegradation in the samples. Our results showed that the addition of ferric ions or sulphate increased the methane yield. Furthermore, the addition of CO2, ferric ion or sulphate enhanced the biodegradation of alkanes. A significant increase in biodegradation was observed in the presence of ferric ions or sulphate in the case of all aromatic components, while naphthalene and phenanthrene degradation was also enhanced by CO2. Metagenome analysis revealed that Cellulomonas sp. is the most abundant in the presence of alkanes, while Ruminococcus and Faecalibacterium spp. are prevalent in aromatics-supplemented samples. From the recovery of 25 genomes, it was concluded that the main pathway of hydrocarbon activation was fumarate addition in both Cellulomonas, Ruminococcus and Faecalibacterium. Chloroflexota bacteria can utilise the central metabolites of aromatics biodegradation via ATP-independent benzoyl-CoA reduction. KEY POINTS: • Methanogenesis and hydrocarbon biodegradation were enhanced by Fe3+ or SO42- • Cellulomonas, Ruminococcus and Faecalibacterium can be candidates for the main hydrocarbon degraders • Chloroflexota bacteria can utilise the central metabolites of aromatics degradation.
Collapse
Affiliation(s)
- Krisztián Laczi
- Department of Biotechnology, University of Szeged, Szeged, Hungary.
- Biological Research Centre, Institute of Plant Biology, Hungarian Research Network, Szeged, Hungary.
| | - Attila Bodor
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Biological Research Centre, Institute of Biophysics, Hungarian Research Network, Szeged, Hungary
| | - Tamás Kovács
- Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Pécs, Hungary
| | | | - Katalin Perei
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Biological Research Centre, Institute of Biophysics, Hungarian Research Network, Szeged, Hungary
| |
Collapse
|
2
|
Lü H, Tang GX, Huang YH, Mo CH, Zhao HM, Xiang L, Li YW, Li H, Cai QY, Li QX. Response and adaptation of rhizosphere microbiome to organic pollutants with enriching pollutant-degraders and genes for bioremediation: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169425. [PMID: 38128666 DOI: 10.1016/j.scitotenv.2023.169425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Phytoremediation largely involves microbial degradation of organic pollutants in rhizosphere for removing organic pollutants like polycyclic aromatic hydrocarbons, phthalates and polychlorinated biphenyls. Microbial community in rhizosphere experiences complex processes of response-adaptation-feedback up on exposure to organic pollutants. This review summarizes recent research on the response and adaptation of rhizosphere microbial community to the stress of organic pollutants, and discusses the enrichment of the pollutant-degrading microbial community and genes in the rhizosphere for promoting bioremediation. Soil pollution by organic contaminants often reduces the diversity of rhizosphere microbial community, and changes its functions. Responses vary among rhizosphere microbiomes up on different classes of organic pollutants (including co-contamination with heavy metals), plant species, root-associated niches (e.g., rhizosphere, rhizoplane and endosphere), geographical location and soil properties. Soil pollution can deplete some sensitive microbial taxa and enrich some tolerant microbial taxa in rhizosphere. Furthermore, rhizosphere enriches pollutant-degrading microbial community and functional genes including different gene clusters responsible for biodegradation of organic pollutants and their intermediates, which improve the adaptation of microbiome and enhance the remediation efficiency of the polluted soil. The knowledge gaps and future research challenges are highlighted on rhizosphere microbiome in response-adaptation-feedback processes to organic pollution and rhizoremediation. This review will hopefully update understanding on response-adaptation-feedback processes of rhizosphere microbiomes and rhizoremediation for the soil with organic pollutants.
Collapse
Affiliation(s)
- Huixiong Lü
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Guang-Xuan Tang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing X Li
- Department of Molecular Bioscience and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
3
|
Veerasamy V, Jagannathan UM, Arakkala SD, Shafee WA, Kaliannan T. Exploring the bacterial genetic diversity and community structure of crude oil contaminated soils using microbiomics. ENVIRONMENTAL RESEARCH 2023; 236:116779. [PMID: 37517495 DOI: 10.1016/j.envres.2023.116779] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/08/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
The impact of environmental pollution in air and water is reflected mainly in the soil ecosystem as it impairs soil functions. Also, since the soil is the habitat for billions of organisms, the biodiversity is in turn altered. Microbes are precise sensors of ecological contamination, and bacteria have a key and important function in terms of bioremediation of the contaminated soil. Hence in the current work, we aimed at assessing the unidentified bacterial population through Illumina MiSeq sequencing technology and their community structural changes in different levels of petroleum-contaminated soil and sludge samples (aged, sludge, and leakage soil) to identify unique bacteria for their potential application in remediation. The studies showed that major bacterial consortiums namely, Proteobacteria (57%), Alphaproteobacteria (31%), and Moraxellaceae (23%) were present in aged soil, whereas Proteobacteria (52%), Alphaproteobacteria (33%), and Rhodobacteraceae (28%) were dominantly found in sludge soil. In leakage soil, Proteobacteria (59%), Alphaproteobacteria (33%), and Rhodobacteraceae (29%) were abundantly present. The Venn diagrams are used to analyze the distribution of abundances in individual operational taxonomic units (OTUs) within three soil samples. After data filtering, they were grouped into OTU clusters and 329 OTUs were identified from the three soil samples. Among the 329, 160 OTUs were common in the three soil samples. The bacterial diversity is estimated using alpha diversity indices and Shanon index and was found to be 4.490, 4.073 and 4.631 in aged soil, sludge soil and leakage soil, respectively and similarly richness was found to be 618, 417 and 418. The heat map was generated by QIIME software and from the top 50 enriched genera few microbes such as Pseudomonas, Bacillus, Mycobacterium, Sphingomonas and Paracoccus, were shown across all the samples. In addition, we also analyzed various physicochemical properties of soil including pH, temperature, salinity, electrical conductivity, alkalinity, total carbon, total organic matter, nitrogen, phosphorus and potassium to calculate the soil quality index (SQI). The SQI of aged, sludge and leakage soil samples were 0.73, 0.64, and 0.89, respectively. These findings show the presence of unexplored bacterial species which could be applied for hydrocarbon remediation and further they can be exploited for the same.
Collapse
Affiliation(s)
- Veeramani Veerasamy
- Laboratory of Molecular Bioremediation and Nanobiotechnology, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Uma Maheswari Jagannathan
- Department of Civil Engineering, Priyadarshini Engineering College, Vaniyambadi, Tirupattur, 635 751, Tamil Nadu, India
| | - Sherry Davis Arakkala
- Department of Environmental Studies, A.M. Jain College, Meenambakkam, Chennai, 600 114, Tamil Nadu, India
| | - Wasim Akthar Shafee
- Laboratory of Molecular Bioremediation and Nanobiotechnology, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thamaraiselvi Kaliannan
- Laboratory of Molecular Bioremediation and Nanobiotechnology, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
4
|
Gao H, Wu M, Liu H, Ou Y, Zhang T, Duan X. Unraveling the Positive Effect of Soil Moisture on the Bioaugmentation of Petroleum-Contaminated Soil Using Bioinformatics. MICROBIAL ECOLOGY 2023; 86:2436-2446. [PMID: 37278908 DOI: 10.1007/s00248-023-02245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Petroleum contamination is a severe threat to the soil environment. Previous studies have demonstrated that petroleum degradation efficiency is promoted by enhancing soil moisture content (MC). However, the effects of MC on soil microbial ecological functions during bioremediation remain unclear. Here, we investigated the impacts of 5% and 15% of moisture contents on petroleum degradation, soil microbial structures and functions, and the related genes using high-throughput sequencing and gene function prediction. Results indicated that petroleum biodegradation efficiency was increased by 8.06% in the soils with 15% MC when compared to that with 5% of MC. The complexity and stability of soil microbial community structures with 15% MC were higher than those in the soils with 5% MC when hydrocarbon-degrading bacterial flora (HDBF) were inoculated into the soils. Fifteen percent of moisture content strengthened the interaction of the bacterial community network and reduced the loss of some key bacteria species including Mycobacterium, Sphingomonas, and Gemmatimonas. Some downregulated gene pathways relating to bioaugmentation were enhanced in the soils with 15% MC. The results suggested that the dynamic balances of microbial communities and the metabolic interactions by 15% MC treatment are the driving forces for the enhancement of bioremediation in petroleum-contaminated soil.
Collapse
Affiliation(s)
- Huan Gao
- Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Manli Wu
- Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| | - Heng Liu
- Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yawen Ou
- Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Ting Zhang
- Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Xuhong Duan
- Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| |
Collapse
|
5
|
Harikrishnan S, Sudarshan S, Sivasubramani K, Nandini MS, Narenkumar J, Ramachandran V, Almutairi BO, Arunkumar P, Rajasekar A, Jayalakshmi S. Larvicidal and anti-termite activities of microbial biosurfactant produced by Enterobacter cloacae SJ2 isolated from marine sponge Clathria sp. Sci Rep 2023; 13:15153. [PMID: 37704703 PMCID: PMC10499797 DOI: 10.1038/s41598-023-42475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023] Open
Abstract
The widespread use of synthetic pesticides has resulted in a number of issues, including a rise in insecticide-resistant organisms, environmental degradation, and a hazard to human health. As a result, new microbial derived insecticides that are safe for human health and the environment are urgently needed. In this study, rhamnolipid biosurfactants produced from Enterobacter cloacae SJ2 was used to evaluate the toxicity towards mosquito larvae (Culex quinquefasciatus) and termites (Odontotermes obesus). Results showed dose dependent mortality rate was observed between the treatments. The 48 h LC50 (median lethal concentration) values of the biosurfactant were determined for termite and mosquito larvae following the non-linear regression curve fit method. Results showed larvicidal activity and anti-termite activity of biosurfactants with 48 h LC50 value (95% confidence interval) of 26.49 mg/L (25.40 to 27.57) and 33.43 mg/L (31.09 to 35.68), respectively. According to a histopathological investigation, the biosurfactant treatment caused substantial tissue damage in cellular organelles of larvae and termites. The findings of this study suggest that the microbial biosurfactant produced by E. cloacae SJ2 is an excellent and potentially effective agent for controlling Cx. quinquefasciatus and O. obesus.
Collapse
Affiliation(s)
- Sekar Harikrishnan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, 608502, India.
| | - Shanmugam Sudarshan
- Department of Aquatic Environment Management, TNJFU- Dr. M.G.R Fisheries College and Research Institute, Thalainayeru, Tamil Nadu, 614712, India
| | - Kandasamy Sivasubramani
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, India
| | - M S Nandini
- Department of Microbiology, Sree Balaji Medical College and Hospital, Chennai, Tamil Nadu, India
| | - Jayaraman Narenkumar
- Department of Environmental & Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Vasudevan Ramachandran
- Department of Medical Sciences, University College of MAIWP International, Taman Batu Muda, 68100, Batu Caves, Kuala Lumpur, Malaysia
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Paulraj Arunkumar
- School of Chemical Engineering, Chonnam National University, Gwangju, South Korea
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Singaram Jayalakshmi
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, 608502, India
| |
Collapse
|
6
|
Use of Shotgun Metagenomics to Assess the Microbial Diversity and Hydrocarbons Degrading Functions of Auto-Mechanic Workshops Soils Polluted with Gasoline and Diesel Fuel. Microorganisms 2023; 11:microorganisms11030722. [PMID: 36985295 PMCID: PMC10059880 DOI: 10.3390/microorganisms11030722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Bioaugmentation is a valuable technique for oil recovery. This study investigates the composition and functions of microbial communities in gasoline- and diesel-contaminated soils of garages Matoko (SGM) and Guy et Paul (SGP) originating from auto mechanic workshops as well as the concentration of soil enzymes β-glucosidase, β-glucosaminidase, and acid phosphatase. The work aimed to evaluate the presence of petroleum-hydrocarbon-degrading bacteria for the development of foreseen bioremediation of oil-contaminated soils. Microbial diversity, as given by shotgun metagenomics, indicated the presence of 16 classes, among which Actinobacteria and Gammaproteobacteria dominated, as well as more than 50 families, including the dominant Gordoniaceae (26.63%) in SGM and Pseudomonadaceae (57.89%) in SGP. The dominant bacterial genera in the two soils were, respectively, Gordonia (26.7%) and Pseudomonas (57.9%). The exploration of the bacterial metabolic abilities using HUMANn2 allowed to detect genes and pathways involved in alkanes and aromatic hydrocarbons in the two contaminated soils. Furthermore, enzymes β-glucosidase, β-glucosaminidase, and acid phosphatase were found in high concentrations ranging between 90.27 ± 5.3 and 804.17 ± 20.5 µg pN/g soil/h, which indicated active microbial metabolism. The high diversity of microorganisms with a hydrocarbon degradation genetic package revealed that the bacteria inhabiting the two soils are likely good candidates for the bioaugmentation of oil-contaminated soils.
Collapse
|
7
|
Das N, Bhuyan B, Pandey P. Correlation of soil microbiome with crude oil contamination drives detection of hydrocarbon degrading genes which are independent to quantity and type of contaminants. ENVIRONMENTAL RESEARCH 2022; 215:114185. [PMID: 36049506 DOI: 10.1016/j.envres.2022.114185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The impacts of crude oil contamination on soil microbial populations were explored in seven different polluted areas near oil and gas drilling sites and refineries of Assam, India. Using high-throughput sequencing techniques, the functional genes and metabolic pathways involved in the bioconversion of crude oil contaminants by the indigenous microbial community were explored. Total petroleum hydrocarbon (TPH) concentrations in soil samples ranged from 1109.47 to 75,725.33 mg/kg, while total polyaromatic hydrocarbon (PAH) concentrations ranged from 0.780 to 560.05 mg/kg. Pyrene, benzo[a]anthracene, naphthalene, phenanthrene, and anthracene had greater quantities than the maximum permitted limits, suggesting a greater ecological risk, in comparison to other polyaromatic hydrocarbons. According to the metagenomic data analysis, the bacterial phyla Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroides were the most prevalent among all polluted areas. The most prominent hydrocarbon degraders in the contaminated sites included Burkholderia, Mycobacterium, Polaromonas, and Pseudomonas. However, the kinds of pollutants and their concentrations did not correlate with the abundances of respective degrading genes for all polluted locations, as some of the sites with little to low PAH contamination had significant abundances of corresponding functional genes for degradation. Thus, the findings of this study imply that the microbiome of hydrocarbon-contaminated areas, which are biologically involved in the degradation process, has various genes, operons and catabolic pathways that are independent of the presence of a specific kind of contaminant.
Collapse
Affiliation(s)
- Nandita Das
- Soil and Environmental Microbiology Lab, Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Bhrigu Bhuyan
- Soil and Environmental Microbiology Lab, Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Piyush Pandey
- Soil and Environmental Microbiology Lab, Department of Microbiology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
8
|
Dynamics and prevalence of specific hydrocarbonoclastic bacterial population with respect to nutrient treatment levels in crude oil sludge. Arch Microbiol 2022; 204:708. [DOI: 10.1007/s00203-022-03323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
|
9
|
An S, Kim K, Woo H, Yun ST, Chung J, Lee S. Coupled effect of porous network and water content on the natural attenuation of diesel in unsaturated soils. CHEMOSPHERE 2022; 302:134804. [PMID: 35533929 DOI: 10.1016/j.chemosphere.2022.134804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
The natural attenuation potential of a vadose zone against diesel is critical for optimizing remedial actions and determining groundwater vulnerability to contamination. Here, diesel attenuation in unsaturated soils was systematically examined to develop a qualitative relationship between physical soil properties and the natural attenuation capacity of a vadose zone against diesel. The uniformity coefficient (Cu) and water saturation (Sw, %) were considered as the proxies reflecting the degree of effects by porous network and water content in different soils, respectively. These, in turn, are related to the primary diesel attenuation mechanisms of volatilization and biodegradation. The volatilization of diesel was inversely proportional to Cu and Sw, which could be attributed to effective pore channels facilitating gas transport. Conversely, biodegradation was highly proportional to Cu under unsaturated conditions (Sw = 35-71%), owing to nutrients typically associated with fine soil particles. The microbial community in unsaturated soils was affected by Sw rather than Cu. The overall diesel attenuation including volatilization and biodegradation was optimized at Sw = 35% for all tested soils.
Collapse
Affiliation(s)
- Seongnam An
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Department of Earth and Environmental Sciences, Korea University, Seoul, 136-701, South Korea
| | - Kibeum Kim
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Heesoo Woo
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Seong-Taek Yun
- Department of Earth and Environmental Sciences, Korea University, Seoul, 136-701, South Korea
| | - Jaeshik Chung
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea.
| | - Seunghak Lee
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea; Graduate School of Energy and Environment (KU-KIST GREEN SCHOOL), Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
10
|
Miglani R, Parveen N, Kumar A, Ansari MA, Khanna S, Rawat G, Panda AK, Bisht SS, Upadhyay J, Ansari MN. Degradation of Xenobiotic Pollutants: An Environmentally Sustainable Approach. Metabolites 2022; 12:818. [PMID: 36144222 PMCID: PMC9505297 DOI: 10.3390/metabo12090818] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The ability of microorganisms to detoxify xenobiotic compounds allows them to thrive in a toxic environment using carbon, phosphorus, sulfur, and nitrogen from the available sources. Biotransformation is the most effective and useful metabolic process to degrade xenobiotic compounds. Microorganisms have an exceptional ability due to particular genes, enzymes, and degradative mechanisms. Microorganisms such as bacteria and fungi have unique properties that enable them to partially or completely metabolize the xenobiotic substances in various ecosystems.There are many cutting-edge approaches available to understand the molecular mechanism of degradative processes and pathways to decontaminate or change the core structure of xenobiotics in nature. These methods examine microorganisms, their metabolic machinery, novel proteins, and catabolic genes. This article addresses recent advances and current trends to characterize the catabolic genes, enzymes and the techniques involved in combating the threat of xenobiotic compounds using an eco-friendly approach.
Collapse
Affiliation(s)
- Rashi Miglani
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Nagma Parveen
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Ankit Kumar
- Department of Pharmaceutical Sciences, Sir J. C Bose Technical Campus, Bhimtal, Nainital 263136, Uttarakhand, India
| | - Mohd. Arif Ansari
- Department of Forestry and Environmental Science, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Soumya Khanna
- Department of Anatomy, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Gaurav Rawat
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Amrita Kumari Panda
- Department of Biotechnology, Sant Gahira Guru University, Ambikapur 497001, Chhattisgarh, India
| | - Satpal Singh Bisht
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, Uttarakhand, India
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
11
|
Haque S, Srivastava N, Pal DB, Alkhanani MF, Almalki AH, Areeshi MY, Naidu R, Gupta VK. Functional microbiome strategies for the bioremediation of petroleum-hydrocarbon and heavy metal contaminated soils: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155222. [PMID: 35421499 DOI: 10.1016/j.scitotenv.2022.155222] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 05/21/2023]
Abstract
Petroleum hydrocarbons and heavy metals are the two major soil contaminants that are released into the environment in the forms of industrial effluents. These contaminants exert serious impacts on human health and the sustainability of the environment. In this context, remediation of these pollutants via a biological approach can be effective, low-cost, and eco-friendly approach. The implementation of microorganisms and metagenomics are regarded as the advanced solution for remediating such pollutants. Further, microbiomes can overcome this issue via adopting specific structural, functional and metabolic pathways involved in the microbial community to degrade these pollutants. Genomic sequencing and library can effectively channelize the degradation of these pollutants via microbiomes. Nevertheless, more advanced technology and reliable strategies are required to develop. The present review provides insights into the role of microbiomes to effectively remediate/degrade petroleum hydrocarbons and heavy metals in contaminated soil. The possible degradation mechanisms of these pollutants have also been discussed in detail along with their existing limitations. Finally, prospects of the bioremediation strategies using microbiomes are discussed.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Mustfa F Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Al-Hawiah, Taif 21944, Saudi Arabia
| | - Mohammed Y Areeshi
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia; Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
12
|
The car tank lid bacteriome: a reservoir of bacteria with potential in bioremediation of fuel. NPJ Biofilms Microbiomes 2022; 8:32. [PMID: 35484166 PMCID: PMC9050737 DOI: 10.1038/s41522-022-00299-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/04/2022] [Indexed: 11/08/2022] Open
Abstract
Bioprospecting of microorganisms suitable for bioremediation of fuel or oil spills is often carried out in contaminated environments such as gas stations or polluted coastal areas. Using next-generation sequencing (NGS) we analyzed the microbiota thriving below the lids of the fuel deposits of diesel and gasoline cars. The microbiome colonizing the tank lids differed from the diversity found in other hydrocarbon-polluted environments, with Proteobacteria being the dominant phylum and without clear differences between gasoline or diesel-fueled vehicles. We observed differential growth when samples were inoculated in cultures with gasoline or diesel as the main carbon source, as well as an increase in the relative abundance of the genus Pseudomonas in diesel. A collection of culturable strains was established, mostly Pseudomonas, Stenotrophomonas, Staphylococcus, and Bacillus genera. Strains belonging to Bacillus, Pseudomonas, Achromobacter, and Isoptericola genera showed a clear diesel degradation pattern when analyzed by GC-MS, suggesting their potential use for bioremediation and a possible new species of Isoptericola was further characterized as hydrocarbon degrader.
Collapse
|
13
|
Microbial Consortiums of Putative Degraders of Low-Density Polyethylene-Associated Compounds in the Ocean. mSystems 2022; 7:e0141521. [PMID: 35229650 PMCID: PMC8941889 DOI: 10.1128/msystems.01415-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyethylene (PE) is one of the most abundant plastics in the ocean. The development of a biofilm on PE in the ocean has been reported, yet whether some of the biofilm-forming organisms can biodegrade this plastic in the environment remains unknown. Via metagenomics analysis, we taxonomically and functionally analyzed three biofilm communities using low-density polyethylene (LDPE) as their sole carbon source for 2 years. Several of the taxa that increased in relative abundance over time were closely related to known degraders of alkane and other hydrocarbons. Alkane degradation has been proposed to be involved in PE degradation, and most of the organisms increasing in relative abundance over time harbored genes encoding proteins essential in alkane degradation, such as the genes alkB and CYP153, encoding an alkane monooxygenase and a cytochrome P450 alkane hydroxylase, respectively. Weight loss of PE sheets when incubated with these communities and chemical and electron microscopic analyses provided evidence for alteration of the PE surface over time. Taken together, these results provide evidence for the utilization of LDPE-associated compounds by the prokaryotic communities. This report identifies a group of genes potentially involved in the degradation of the LDPE polymeric structure and/or associated plastic additives in the ocean and describes a phylogenetically diverse community of plastic biofilm-dwelling microbes with the potential for utilizing LDPE-associated compounds as carbon and energy source. IMPORTANCE Low-density polyethylene (LDPE) is one of the most used plastics worldwide, and a large portion of it ends up in the ocean. Very little is known about its fate in the ocean and whether it can be biodegraded by microorganisms. By combining 2-year incubations with metagenomics, respiration measurements, and LDPE surface analysis, we identified bacteria and associated genes and metabolic pathways potentially involved in LDPE biodegradation. After 2 years of incubation, two of the microbial communities exhibited very similar taxonomic compositions mediating changes to the LDPE pieces they were incubated with. We provide evidence that there are plastic-biofilm dwelling bacteria in the ocean that might have the potential to degrade LDPE-associated compounds and that alkane degradation pathways might be involved.
Collapse
|
14
|
Bedics A, Banerjee S, Bóka K, Tóth E, Benedek T, Kriszt B, Táncsics A. Pinisolibacter aquiterrae sp. nov., a novel aromatic hydrocarbon-degrading bacterium isolated from benzene-, and xylene-degrading enrichment cultures, and emended description of the genus Pinisolibacter. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-reaction-negative strains, designated as B13T and MA2-2, were isolated from two different aromatic hydrocarbon-degrading enrichment cultures and characterized using a polyphasic approach to determine their taxonomic position. The two strains had identical 16S rRNA gene sequences and were most closely related to
Pinisolibacter ravus
E9T (97.36 %) and
Siculibacillus lacustris
SA-279T (96.33 %). Cells were facultatively aerobic rods and motile with a single polar flagellum. The strains were able to degrade ethylbenzene as sole source of carbon and energy. The assembled genome of strain B13T had a total length of 4.91 Mb and the DNA G+C content was 68.8 mol%. The predominant fatty acids (>5 % of the total) of strains B13T and MA2-2 were C18 : 1
ω7c/C18 : 1
ω6c, C16 : 1
ω7c/C16 : 1
ω6c and C16 : 0. The major ubiquinone of strain B13T was Q10, while the major polar lipids were phosphatidyl-N-methylethanolamine, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and a phospholipid. Based on phenotypic characteristics and phylogenetic data, it is concluded that strains B13T and MA2-2 are members of the genus
Pinisolibacter
and represent a novel species for which the name Pinisolibacter aquiterrae sp. nov. is proposed. The type strain of the species is strain B13T (=LMG 32346T=NCAIM B.02665T).
Collapse
Affiliation(s)
- Anna Bedics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Sinchan Banerjee
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Károly Bóka
- Department of Plant Anatomy, Eötvös Loránd University, Budapest, Hungary
| | - Erika Tóth
- Department of Microbiology, Eötvös Loránd University, Budapest, Hungary
| | - Tibor Benedek
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - András Táncsics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| |
Collapse
|
15
|
Kim JW, Hong YK, Kim HS, Oh EJ, Park YH, Kim SC. Metagenomic Analysis for Evaluating Change in Bacterial Diversity in TPH-Contaminated Soil after Soil Remediation. TOXICS 2021; 9:toxics9120319. [PMID: 34941754 PMCID: PMC8708857 DOI: 10.3390/toxics9120319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
Soil washing and landfarming processes are widely used to remediate total petroleum hydrocarbon (TPH)-contaminated soil, but the impact of these processes on soil bacteria is not well understood. Four different states of soil (uncontaminated soil (control), TPH-contaminated soil (CS), after soil washing (SW), and landfarming (LF)) were collected from a soil remediation facility to investigate the impact of TPH and soil remediation processes on soil bacterial populations by metagenomic analysis. Results showed that TPH contamination reduced the operational taxonomic unit (OTU) number and alpha diversity of soil bacteria. Compared to SW and LF remediation techniques, LF increased more bacterial richness and diversity than SW, indicating that LF is a more effective technique for TPH remediation in terms of microbial recovery. Among different bacterial species, Proteobacteria were the most abundant in all soil groups followed by Actinobacteria, Acidobacteria, and Firmicutes. For each soil group, the distribution pattern of the Proteobacteria class was different. The most abundant classed were Alphaproteobacteria (16.56%) in uncontaminated soils, Deltaproteobacteria (34%) in TPH-contaminated soils, Betaproteobacteria (24%) in soil washing, and Gammaproteobacteria (24%) in landfarming, respectively. TPH-degrading bacteria were detected from soil washing (23%) and TPH-contaminated soils (21%) and decreased to 12% in landfarming soil. These results suggest that soil pollution can change the diversity of microbial groups and different remediation techniques have varied effective ranges for recovering bacterial communities and diversity. In conclusion, the landfarming process of TPH remediation is more advantageous than soil washing from the perspective of bacterial ecology.
Collapse
Affiliation(s)
- Jin-Wook Kim
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Korea; (J.-W.K.); (Y.-K.H.)
| | - Young-Kyu Hong
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Korea; (J.-W.K.); (Y.-K.H.)
| | - Hyuck-Soo Kim
- Department of Biological Environment, Kangwon National University, Chuncheon 24341, Korea;
| | - Eun-Ji Oh
- Korea Environment Institute, Sejong 30147, Korea;
| | - Yong-Ha Park
- Korea Environment Institute, Sejong 30147, Korea;
- Correspondence: (Y.-H.P.); (S.-C.K.)
| | - Sung-Chul Kim
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Korea; (J.-W.K.); (Y.-K.H.)
- Correspondence: (Y.-H.P.); (S.-C.K.)
| |
Collapse
|
16
|
Samarasinghe H, Lu Y, Aljohani R, Al-Amad A, Yoell H, Xu J. Global patterns in culturable soil yeast diversity. iScience 2021; 24:103098. [PMID: 34622153 PMCID: PMC8479693 DOI: 10.1016/j.isci.2021.103098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/09/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Yeasts, broadly defined as unicellular fungi, fulfill essential roles in soil ecosystems as decomposers and nutrition sources for fellow soil-dwellers. Broad-scale investigations of soil yeasts pose a methodological challenge as metagenomics are of limited use for identifying this group of fungi. Here we characterize global soil yeast diversity using fungal DNA barcoding on 1473 yeasts cultured from 3826 soil samples obtained from nine countries in six continents. We identify mean annual precipitation and international air travel as two significant correlates with soil yeast community structure and composition worldwide. Evidence for anthropogenic influences on soil yeast communities, directly via travel and indirectly via altered rainfall patterns resulting from climate change, is concerning as we found common infectious yeasts frequently distributed in soil in several countries. Our discovery of 41 putative novel species highlights the continued need for culture-based studies to advance our knowledge of environmental yeast diversity. Mean annual rainfall is a positive predictor of global soil yeast diversity International travel predicts number of shared yeast species between countries 41 novel yeast species were discovered from soils in eight countries Continued culture-based studies are needed to investigate soil yeast populations
Collapse
Affiliation(s)
| | - Yi Lu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Renad Aljohani
- Department of Biology, McMaster University, Hamilton, ON, Canada.,Department of Infectious Diseases, South Kensington Campus, Imperial College London, London, UK
| | - Ahmad Al-Amad
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Heather Yoell
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
17
|
Zhang X, Wang L, Zhou W, Feng L, Hu M, Hu J, Liu Z. Mixing of plant litters strengthens their remediation effects on crude oil-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12753-12765. [PMID: 33094455 DOI: 10.1007/s11356-020-11299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
To investigate the effects of the mixing of litters on their remediation efficiency in petroleum-contaminated soil, litters from two common plants in the petroleum-contaminated region of Northern Shaanxi, China, Bothriochloa ischaemum (L.) Keng and Sophora davidii Kom. ex Pavol., and their mixture were mixed with 45 g/kg petroleum-contaminated soil. Based on these, a 150-day simulated remediation experiment was conducted at 25 °C and consistent moisture conditions. The effects on the degradation of petroleum components and the restoration of nutrient contents, pH, and enzymatic activity in the disturbed soil were detected. The effects of the litter treatments on the community structure and carbon source utilization characteristics of soil microorganisms were also studied. The results indicated that all litter treatments significantly accelerated the degradation of petroleum components, while the mixing of litter exhibited significant synergistic effects, leading to significantly higher degradation rates of saturated hydrocarbons, aromatic hydrocarbons, and nonhydrocarbon substances than the observed rates in the single-litter treatments and the predicted rates based on the single-litter treatments. Litter treatment significantly increased the N and P contents and enzymatic activity of contaminated soil. The effects of mixed litter on soil chemical and biological properties fell between the effects of the 2 types of single-litter treatments. However, the mixing of litters exhibited significant synergistic effects in supplementing available P and increasing sucrase, dehydrogenase, lignin peroxidase, and laccase activity, while it exhibited significant antagonistic effects in supplementing nitrate nitrogen and increasing urease, phosphatase, polyphenol oxidase, and manganese peroxidase activity. Litter treatment significantly altered the community structure of soil microorganisms. The relative abundances of some petroleum-degrading microbial phyla or genera in mixed litter-treated soil were significantly different from those in single litter-treated soils, which might contribute to the strengthened remediation effects of mixed litter treatment. The results might provide a theoretical basis for the more effect utilization of biomass resources in the remediation of petroleum-contaminated soil.
Collapse
Affiliation(s)
- Xiaoxi Zhang
- College of Life Sciences, Yan'an University, Yan'an, 716000, China.
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Lijie Wang
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Wenxing Zhou
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Liaoliao Feng
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Man Hu
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Jiawei Hu
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Zengwen Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
18
|
Li J, Xu Y, Song Q, Yang J, Xie L, Yu S, Zheng L. Polycyclic aromatic hydrocarbon and n-alkane pollution characteristics and structural and functional perturbations to the microbial community: a case-study of historically petroleum-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10589-10602. [PMID: 33098556 DOI: 10.1007/s11356-020-11301-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/18/2020] [Indexed: 05/25/2023]
Abstract
Characterization of the typical petroleum pollutants, polycyclic aromatic hydrocarbons (PAHs) and n-alkanes, and indigenous microbial community structure and function in historically contaminated soil at petrol stations is critical. Five soil samples were collected from a petrol station in Beijing, China. The concentrations of 16 PAHs and 31 n-alkanes were measured by gas chromatography-mass spectrometry. The total concentrations of PAHs and n-alkanes ranged from 973 ± 55 to 2667 ± 183 μg/kg and 6.40 ± 0.38 to 8.65 ± 0.59 mg/kg (dry weight), respectively, which increased with depth. According to the observed molecular indices, PAHs and n-alkanes originated mostly from petroleum-related sources. The levels of ΣPAHs and the total toxic benzo[a]pyrene equivalent (ranging from 6.41 to 72.54 μg/kg) might exert adverse biological effects. Shotgun metagenomic sequencing was employed to investigate the indigenous microbial community structure and function. The results revealed that Proteobacteria and Actinobacteria were the most abundant phyla, and Nocardioides and Microbacterium were the important genera. Based on COG and KEGG annotations, the highly abundant functional classes were identified, and these functions were involved in allowing microorganisms to adapt to the pressure from contaminants. Five petroleum hydrocarbon degradation-related genes were annotated, revealing the distribution of degrading microorganisms. This work facilitates the understanding of the composition, source, and potential ecological impacts of residual PAHs and n-alkanes in historically contaminated soil.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ying Xu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Quanwei Song
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China
| | - Jie Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lin Xie
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shihang Yu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lei Zheng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
19
|
Rajkumari J, Choudhury Y, Bhattacharjee K, Pandey P. Rhizodegradation of Pyrene by a Non-pathogenic Klebsiella pneumoniae Isolate Applied With Tagetes erecta L. and Changes in the Rhizobacterial Community. Front Microbiol 2021; 12:593023. [PMID: 33708179 PMCID: PMC7940843 DOI: 10.3389/fmicb.2021.593023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/18/2021] [Indexed: 11/27/2022] Open
Abstract
The non-clinical Klebsiella pneumoniae variants, isolated from different environments, are now well acknowledged for their role in plant-growth promotion and biodegradation of pollutants. In the present study, a non-clinical environmental isolate K. pneumoniae AWD5 is being described for rhizoremediation of pyrene, applied through the rhizosphere of an ornamental plant, Tagetes erecta L (marigold). The non-pathogenic nature of AWD5 was established using an in vivo mouse model experiment, where AWD5 was unable to cause lung infection in tested mice. Degradation of pyrene, in the presence of succinate as co-substrate, was observed to be 87.5% by AWD5, after 21 days of incubation in minimal (Bushnell–Hass) medium in vitro conditions. Consequently, the bacterial inoculation through the rhizosphere of T. erecta L. plants resulted in 68.61% degradation of pyrene, which was significantly higher than control soil. Inoculation of AWD5 also improved plant growth and exhibited an increase in root length (14.64%), dry root weight (80.56%), shoot length (3.26%), and dry shoot weight (45.35%) after 60 days of incubation. T. erecta L., an ornamental plant, was also found to be suitable for bioremediation of pyrene. The effect of AWD5 application, and rhizoremediation process, on rhizosphere bacterial diversity and community structure has been studied using the metagenomic analysis of the 16S (V3–V4) region of rRNA. 37 bacterial phyla constituted the core microbiome, which was dominated by Proteobacteria followed by Actinobacteria, Actinobacteria, and Planctomycetes for all the treatments. AWD5 inoculation enhanced the relative abundance of Firmicutes and Acidobacteria as compared with other treatments. Genus Kaistobacter and Verrucomicrobia were found to be an abundant indigenous population in pyrene-spiked soils. Bacterial richness and diversity were analyzed using the Shannon–Wiener (H) index. A lower diversity index was observed in pyrene-spiked soils. Canonical correspondence analysis (CCA) showed a possible linkage with plant growth attributes and available nitrogen content that influences diversity and abundance of the bacterial community.
Collapse
Affiliation(s)
- Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, India
| | | | | | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, India
| |
Collapse
|
20
|
Medina R, David Gara PM, Rosso JA, Del Panno MT. Effects of organic matter addition on chronically hydrocarbon-contaminated soil. Biodegradation 2021; 32:145-163. [PMID: 33586077 DOI: 10.1007/s10532-021-09929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 11/26/2022]
Abstract
Soil is the recipient of organic pollutants as a consequence of anthropogenic activities. Hydrocarbons are contaminants that pose a risk to human and environmental health. Bioremediation of aging contaminated soils is a challenge due to the low biodegradability of contaminants as a result of their interaction with the soil matrix. The aim of this work was to evaluate the effect of both composting and the addition of mature compost on a soil chronically contaminated with hydrocarbons, focusing mainly on the recovery of soil functions and transformations of the soil matrix as well as microbial community shifts. The initial pollution level was 214 ppm of polycyclic aromatic hydrocarbons (PAHs) and 2500 ppm of aliphatic hydrocarbons (AHs). Composting and compost addition produced changes on soil matrix that promoted the release of PAHs (5.7 and 15 % respectively) but not the net PAH elimination. Interestingly, composting stimulated AHs elimination (about 24 %). The lack of PAHs elimination could be attributed to the insufficient PAHs content to stimulate the microbial degrading capacity, and the preferential consumption of easily absorbed C sources by the bacterial community. Despite the low PAH catabolic potential of the aging soil, metabolic shift was driven by the addition of organic matter, which could be monitored by the ratio of Proteobacteria to Actinobacteria combined with E4/E6 ratio. Regarding the quality of the soil, the nutrients provided by the exogenous organic matter contributed to the recovery of the global functions and species diversity of the soil along with the reduction of phytotoxicity.
Collapse
Affiliation(s)
- Rocío Medina
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), CONICET- UNLP, La Plata, Argentina.
- Centro de Investigación de Fitopatologías (CIDEFI), CICBA - UNLP, La Plata, Argentina.
| | - Pedro M David Gara
- Centro de Investigaciones Ópticas (CIOp), CONICET - CICBA - UNLP, La Plata, Argentina
| | - Janina A Rosso
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET- UNLP, La Plata, Argentina
| | - María T Del Panno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), CONICET- UNLP, La Plata, Argentina
| |
Collapse
|
21
|
Su Y, Yang Y, Zhu XY, Zhang XH, Yu M. Metagenomic Insights Into the Microbial Assemblage Capable of Quorum Sensing and Quorum Quenching in Particulate Organic Matter in the Yellow Sea. Front Microbiol 2021; 11:602010. [PMID: 33519743 PMCID: PMC7843935 DOI: 10.3389/fmicb.2020.602010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/03/2020] [Indexed: 11/23/2022] Open
Abstract
Quorum sensing (QS) is a density-dependent communicating mechanism that allows bacteria to regulate a wide range of biogeochemical important processes and could be inhibited by quorum quenching (QQ). Increasing researches have demonstrated that QS can affect the degradation of particulate organic matter (POM) in the photic zone. However, knowledge of the diversity and variation of microbial QS and QQ systems in sinking POM is scarce. Here, POM samples were collected from surface seawater (SW), bottom seawater (BW), and surficial sediment (SS) in the Yellow Sea of China. 16S rRNA gene amplicon and metagenome sequencing were performed to analyze the community structure of particle-associated microorganisms and distribution of QS genes [acylated homoserine lactone (AHL) synthesizing gene luxI and AHL sensing gene luxR] and QQ genes (genes encoding for AHL lactonase and acylase) in POM. Shifting community structures were observed at different sampling depths, with an increase of microbial abundance and diversity from SW to BW. Along with the variation of microbial communities, the abundances of luxI and luxR decreased slightly but were restored or even exceeded when POM arrived at SS. Comparatively, abundances of AHL lactonase and acylase remained constant during the transportation process from SW to BW but increased dramatically in SS. Correlation tests indicated that abundances of luxI and luxR were positively correlated with temperature, while those of AHL acylase were positively correlated with depth, SiO4 2-, PO4 3-, and NO3 -, but negatively correlated with temperature and pH. According to phylogenetic analyses, the retrieved QS and QQ genes are more diverse and distinctive than ever experimentally identified. Besides, the vertical transmission of QS and QQ genes along with POM sinking was observed, which could be one of the key factors leading to the prevalence of QS and QQ genes in marine ecosystems. Overall, our results increase the current knowledge of QS and QQ metabolic pathways in marine environment and shed light on the intertwined interspecies relationships to better investigate their dynamics and ecological roles in POM cycling.
Collapse
Affiliation(s)
- Ying Su
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuanzhi Yang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Xiao-Yu Zhu
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Min Yu
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| |
Collapse
|
22
|
Liu H, Luo J, Shukla P. Effluents detoxification from pulp and paper industry using microbial engineering and advanced oxidation techniques. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122998. [PMID: 32502804 DOI: 10.1016/j.jhazmat.2020.122998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Due to the high demand of paper and related items, pulp and paper industry is flourishing day by day. With increased production, come the hazards associated with the toxic elements present in the effluents. Various microorganisms are currently employed in the remediation of these toxic effluents. In addition, various techniques like ozonation, electrocoagulation, UV treatment, Fenton's reagent, and photo-Fenton based techniques are used in advanced oxidation processes to reduce these toxins from effluents. This review highlights various above mentioned advanced techniques and innovative processes along with the biological remediation of these toxic effluents with the help of some potential microbial consortia or their combinatory effects. Moreover, the present review will also disclose the ideas on utilizing the tools of metabolic engineering, systems biology, and artificial intelligence towards microbial engineering for relatively better bioremediation processes. In the future, these techniques might be helpful in increasing the capability of microbial consortia towards detoxification of effluents to make them environmentally safe. Finally, this review gives well-synchronized approaches to get more insights into these innovative methodologies and techniques and their use for various industrial applications.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Jianfei Luo
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
23
|
Tikariha H, Purohit HJ. Unfolding microbial community intelligence in aerobic and anaerobic biodegradation processes using metagenomics. Arch Microbiol 2020; 202:1269-1274. [PMID: 32130435 DOI: 10.1007/s00203-020-01839-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022]
Abstract
Environmental factors and available nutrients influence microbial communities, and with that, there exists a dynamic shift in community structure and hierarchy in wastewater treatment systems. Of the various factors, the availability and gradient of oxygen selectively enrich a typical microbial community and also form the community stratification which could be established through metagenomics studies. In recent years, metagenomics with various sets of bioinformatics tools has assisted in exploration and better insight into the organization and relation of the taxonomical and functional composition and associate physiological intelligence of the microbial communities. The microbial communities, under defined conditions acquire a typical hierarchy with flexible but active network of the metabolic route, which ensures the survival needs of every member residing in that community and their abundance. This knowledge of community functional organization defines the rule in designing and improving biodegradation processes in case of both aerobic and anaerobic systems.
Collapse
Affiliation(s)
- Hitesh Tikariha
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India.
| |
Collapse
|
24
|
Statistical optimisation of growth conditions and diesel degradation by the Antarctic bacterium, Rhodococcus sp. strain AQ5‒07. Extremophiles 2019; 24:277-291. [DOI: 10.1007/s00792-019-01153-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/09/2019] [Indexed: 01/21/2023]
|
25
|
Microbiome and imputed metagenome study of crude and refined petroleum-oil-contaminated soils: Potential for hydrocarbon degradation and plant-growth promotion. J Biosci 2019. [DOI: 10.1007/s12038-019-9936-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Zampolli J, Zeaiter Z, Di Canito A, Di Gennaro P. Genome analysis and -omics approaches provide new insights into the biodegradation potential of Rhodococcus. Appl Microbiol Biotechnol 2018; 103:1069-1080. [PMID: 30554387 DOI: 10.1007/s00253-018-9539-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 01/05/2023]
Abstract
The past few years observed a breakthrough of genome sequences of bacteria of Rhodococcus genus with significant biodegradation abilities. Invaluable knowledge from genome data and their functional analysis can be applied to develop and design strategies for attenuating damages caused by hydrocarbon contamination. With the advent of high-throughput -omic technologies, it is currently possible to utilize the functional properties of diverse catabolic genes, analyze an entire system at the level of molecule (DNA, RNA, protein, and metabolite), simultaneously predict and construct catabolic degradation pathways. In this review, the genes involved in the biodegradation of hydrocarbons and several emerging plasticizer compounds in Rhodococcus strains are described in detail (aliphatic, aromatics, PAH, phthalate, polyethylene, and polyisoprene). The metabolic biodegradation networks predicted from omics-derived data along with the catabolic enzymes exploited in diverse biotechnological and bioremediation applications are characterized.
Collapse
Affiliation(s)
- Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Zahraa Zeaiter
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Alessandra Di Canito
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|
27
|
Piubeli FA, Dos Santos LG, Fernández EN, DA Silva FH, Durrant LR, Grossman MJ. The Emergence of Different Functionally Equivalent PAH Degrading Microbial Communities from a Single Soil in Liquid PAH Enrichment Cultures and Soil Microcosms Receiving PAHs with and without Bioaugmentation. Pol J Microbiol 2018; 67:365-375. [PMID: 30451454 PMCID: PMC7256725 DOI: 10.21307/pjm-2018-046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2018] [Indexed: 11/11/2022] Open
Abstract
Polycyclic aromatic hydrocarbon (PAHs) are common soil contaminants of concern due to their toxicity toward plants, animals and microorganisms. The use of indigenous or added microbes (bioaugmentation) is commonly used for bioremediation of PAHs. In this work, the biodegradation rates and changes in the bacterial community structure were evaluated. The enrichment culture was useful for unambiguously identifying members of the soil bacterial community associated with PAH degradation and yielded a low diversity community. No significant difference in the rate of PAH degradation was observed between the microcosm receiving only PAHs or PAHs and bioaugmentation. Moreover, identical matches to the bioaugmentation inoculum were only observed at the initial stages of PAH degradation on day 8. After 22 days of incubation, the substantial degradation of all PAHs had occurred in both microcosms and the PAH contaminated soil had statistically significant increases in Alphaproteobacteria. There were also increases in Betaproteobacteria. In contrast, the PAH contaminated and bioaugmented soil was not enriched in PAH degrading Proteobacteria genera and, instead, an increase from 1.6% to 8% of the population occurred in the phylum Bacteroidetes class Flavobacteria, with Flavobacterium being the only identified genus. In addition, the newly discovered genus Ohtaekwangia increased from 0% to 3.2% of the total clones. These results indicate that the same soil microbial community can give rise to different PAH degrading consortia that are equally effective in PAH degradation efficiency. Moreover, these results suggest that the lack of efficacy of bioaugmentation in soils can be attributed to a lack of persistence of the introduced microbes, yet nonetheless may alter the microbial community that arises in response to PAH contamination in unexpected ways.
Collapse
Affiliation(s)
- Francine Amaral Piubeli
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Ligia Gibbi Dos Santos
- Department of Food Science - FEA, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Emilia Naranjo Fernández
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Flávio Henrique DA Silva
- Laboratory of Molecular Biology, DGE-Federal University of São Carlos (DGE/UFSCar), São Carlos, SP, Brazil
| | - Lucia Regina Durrant
- Department of Food Science - FEA, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Matthew James Grossman
- Department of Food Science - FEA, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
28
|
Comparative assessment of autochthonous bacterial and fungal communities and microbial biomarkers of polluted agricultural soils of the Terra dei Fuochi. Sci Rep 2018; 8:14281. [PMID: 30250138 PMCID: PMC6155181 DOI: 10.1038/s41598-018-32688-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023] Open
Abstract
Organic and inorganic xenobiotic compounds can affect the potential ecological function of the soil, altering its biodiversity. Therefore, the response of microbial communities to environmental pollution is a critical issue in soil ecology. Here, a high-throughput sequencing approach was used to investigate the indigenous bacterial and fungal community structure as well as the impact of pollutants on their diversity and richness in contaminated and noncontaminated soils of a National Interest Priority Site of Campania Region (Italy) called "Terra dei Fuochi". The microbial populations shifted in the polluted soils via their mechanism of adaptation to contamination, establishing a new balance among prokaryotic and eukaryotic populations. Statistical analyses showed that the indigenous microbial communities were most strongly affected by contamination rather than by site of origin. Overabundant taxa and Actinobacteria were identified as sensitive biomarkers for assessing soil pollution and could provide general information on the health of the environment. This study has important implications for microbial ecology in contaminated environments, increasing our knowledge of the capacity of natural ecosystems to develop microbiota adapted to polluted soil in sites with high agricultural potential and providing a possible approach for modeling pollution indicators for bioremediation purposes.
Collapse
|
29
|
Tiralerdpanich P, Sonthiphand P, Luepromchai E, Pinyakong O, Pokethitiyook P. Potential microbial consortium involved in the biodegradation of diesel, hexadecane and phenanthrene in mangrove sediment explored by metagenomics analysis. MARINE POLLUTION BULLETIN 2018; 133:595-605. [PMID: 30041354 DOI: 10.1016/j.marpolbul.2018.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/22/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Hydrocarbon contamination is a serious problem that degrades the quality of mangrove ecosystems, and bioremediation using autochthonous bacteria is a promising technology to recover an impacted environment. This research investigates the biodegradation rates of diesel, hexadecane and phenanthrene, by conducting a microcosm study and survey of the autochthonous microbial community in contaminated mangrove sediment, using an Illumina MiSeq platform. The biodegradation rates of diesel, hexadecane and phenanthrene were 82, 86 and 8 mg kg-1 sediment day-1, respectively. The removal efficiencies of hexadecane and phenanthrene were >99%, whereas the removal efficiency of diesel was 88%. A 16S rRNA gene amplicon sequence analysis revealed that the major bacterial assemblages detected were Gammaproteobacteria, Deltaproteobacteria, Alphaproteobacteria. The bacterial compositions were relatively constant, while reductions of the supplemented hydrocarbons were observed. The results imply that the autochthonous microorganisms in the mangrove sediment were responsible for the degradation of the respective hydrocarbons. Diesel-, hexadecane- and phenanthrene-degrading bacteria, namely Bacillus sp., Pseudomonas sp., Acinetobacter sp. and Staphylococcus sp., were also isolated from the mangrove sediment. The mangrove sediment provides a potential resource of effective hydrocarbon-degrading bacteria that can be used as an inoculum or further developed as a ready-to-use microbial consortium for the purpose of bioremediation.
Collapse
Affiliation(s)
- Parichaya Tiralerdpanich
- International Postgraduate Program in Hazardous Substance and Environmental Management, Chulalongkorn University, 9th Floor, CU Research Building, Phayathai Road, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, 8th Floor, CU Research Building, Phayathai Road, Bangkok 10330, Thailand
| | - Prinpida Sonthiphand
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Ekawan Luepromchai
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, 8th Floor, CU Research Building, Phayathai Road, Bangkok 10330, Thailand
| | - Onruthai Pinyakong
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, 8th Floor, CU Research Building, Phayathai Road, Bangkok 10330, Thailand
| | - Prayad Pokethitiyook
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
30
|
Khan MAI, Biswas B, Smith E, Mahmud SA, Hasan NA, Khan MAW, Naidu R, Megharaj M. Microbial diversity changes with rhizosphere and hydrocarbons in contrasting soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:434-442. [PMID: 29604472 DOI: 10.1016/j.ecoenv.2018.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/15/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
In the ecotoxicological assessment of petroleum hydrocarbon-contaminated soil, microbial community profile is important aspect due to their involvement in soil functions. However, soil physicochemical properties and the inhabiting plants could dictate the microbial composition. A question remains unanswered is, how an integrated approach may be utilized to account for various contrasting soil properties, plant types (reference vs. native) and the nature of the hydrocarbon contamination. In this study, we utilized bacterial DNA profiling techniques to investigate the relationship between soil properties, contaminant and plant species. Results identified that Proteobacteria and Actinobacteria were the most abundant bacteria of the 45 phyla identified in the hydrocarbon-contaminated soil. The bulk and rhizosphere microbiome showed that the contaminated soil originally had quite distinct bacterial communities compared to the artificially contaminated soil (mine soil = 95 genera vs. other soils = 2-29 genera). In these cases, not significantly but the native plant slightly increased bacterial diversity and relative abundance in the same soils. Also, within each site, the bacterial community was significantly altered with the hydrocarbon concentration. In this instance, the influence of the contaminant was strong and also with the soil pH and organic matter. These results would significantly contribute to the novel insights on the molecular technique-based hydrocarbon toxicity assessment and the development of the further integrative approach with other microbial community and their metabolic profile in the contaminated sites.
Collapse
Affiliation(s)
- Muhammad Atikul Islam Khan
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment The University of Newcastle, ACT building, Callaghan, NSW 2308, Australia.
| | - Bhabananda Biswas
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment The University of Newcastle, ACT building, Callaghan, NSW 2308, Australia.
| | - Euan Smith
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Siraje Arif Mahmud
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka 1342, Bangladesh; Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Nur A Hasan
- University of Maryland Institute for Advanced Computer Studies, College Park, MD 20742, USA
| | - Md Abdul Wadud Khan
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Ravi Naidu
- Global Centre for Environmental Remediation, The University of Newcastle, ACT building, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment The University of Newcastle, ACT building, Callaghan, NSW 2308, Australia.
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, The University of Newcastle, ACT building, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment The University of Newcastle, ACT building, Callaghan, NSW 2308, Australia.
| |
Collapse
|
31
|
Kachienga L, Jitendra K, Momba M. Metagenomic profiling for assessing microbial diversity and microbial adaptation to degradation of hydrocarbons in two South African petroleum-contaminated water aquifers. Sci Rep 2018; 8:7564. [PMID: 29765091 PMCID: PMC5954097 DOI: 10.1038/s41598-018-25961-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/02/2018] [Indexed: 11/17/2022] Open
Abstract
Biodegradation of hydrocarbons by indigenous populations of microorganisms found in petroleum-contaminated water sources represents one of the primary mechanisms by which petroleum and other hydrocarbon pollutants are eliminated from the aquatic environment. The identification of these microorganisms, which have capabilities to convert the majority of toxic hydrocarbons into compounds that are less harmful for end-users, is therefore crucial for bioremediation purposes. The aim of this study was to profile the microbial diversity of two South African petroleum-contaminated water aquifer sites and to determine the microbial adaptation to hydrocarbon degradation using a metagenomics approach. The sequenced samples revealed that protozoa (62.04%) were found to be the most dominant group, followed by fungi (24.49%), unknown (12.87%), and finally other sequences such as Animalia and plantae which were <(0.10%) domains in the first oil-polluted aquifer site. In the second site, protozoa (61.90%), unknown (16.51%), fungi (11.41%) in that order. According to the classification at the genus level, the dominant group was Naegleria (15.21%), followed by Vorticella (6.67%) as the only ciliated protozoan genus, other species such as Arabidopsis (2.97%), Asarum (1.84%) Populus (1.04%) were significantly low and drastically lower in the first site. Regarding the second site, the dominant group was Naegleria (18.29%) followed by Colpoda (9.86%) with the remainder of the genera representing <2%. Overall results demonstrated the ability of various groups of microorganisms to adapt and survive in petroleum oil-polluted water sites regardless of their respective distributions and this can be explored further for their role in bioremediation and environmental management.
Collapse
Affiliation(s)
- Leonard Kachienga
- Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Arcadia Campus, P/Bag X680, Pretoria, 0001, South Africa
| | - Keshri Jitendra
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Centre, 50250, Bet Dagan, Israel
| | - Maggy Momba
- Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Arcadia Campus, P/Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
32
|
Gonzalez E, Pitre FE, Pagé AP, Marleau J, Guidi Nissim W, St-Arnaud M, Labrecque M, Joly S, Yergeau E, Brereton NJB. Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination. MICROBIOME 2018; 6:53. [PMID: 29562928 PMCID: PMC5863371 DOI: 10.1186/s40168-018-0432-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/02/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND One method for rejuvenating land polluted with anthropogenic contaminants is through phytoremediation, the reclamation of land through the cultivation of specific crops. The capacity for phytoremediation crops, such as Salix spp., to tolerate and even flourish in contaminated soils relies on a highly complex and predominantly cryptic interacting community of microbial life. METHODS Here, Illumina HiSeq 2500 sequencing and de novo transcriptome assembly were used to observe gene expression in washed Salix purpurea cv. 'Fish Creek' roots from trees pot grown in petroleum hydrocarbon-contaminated or non-contaminated soil. All 189,849 assembled contigs were annotated without a priori assumption as to sequence origin and differential expression was assessed. RESULTS The 839 contigs differentially expressed (DE) and annotated from S. purpurea revealed substantial increases in transcripts encoding abiotic stress response equipment, such as glutathione S-transferases, in roots of contaminated trees as well as the hallmarks of fungal interaction, such as SWEET2 (Sugars Will Eventually Be Exported Transporter). A total of 8252 DE transcripts were fungal in origin, with contamination conditions resulting in a community shift from Ascomycota to Basidiomycota genera. In response to contamination, 1745 Basidiomycota transcripts increased in abundance (the majority uniquely expressed in contaminated soil) including major monosaccharide transporter MST1, primary cell wall and lamella CAZy enzymes, and an ectomycorrhiza-upregulated exo-β-1,3-glucanase (GH5). Additionally, 639 DE polycistronic transcripts from an uncharacterised Enterobacteriaceae species were uniformly in higher abundance in contamination conditions and comprised a wide spectrum of genes cryptic under laboratory conditions but considered putatively involved in eukaryotic interaction, biofilm formation and dioxygenase hydrocarbon degradation. CONCLUSIONS Fungal gene expression, representing the majority of contigs assembled, suggests out-competition of white rot Ascomycota genera (dominated by Pyronema), a sometimes ectomycorrhizal (ECM) Ascomycota (Tuber) and ECM Basidiomycota (Hebeloma) by a poorly characterised putative ECM Basidiomycota due to contamination. Root and fungal expression involved transcripts encoding carbohydrate/amino acid (C/N) dialogue whereas bacterial gene expression included the apparatus necessary for biofilm interaction and direct reduction of contamination stress, a potential bacterial currency for a role in tripartite mutualism. Unmistakable within the metatranscriptome is the degree to which the landscape of rhizospheric biology, particularly the important but predominantly uncharacterised fungal genetics, is yet to be discovered.
Collapse
Affiliation(s)
- E Gonzalez
- Canadian Center for Computational Genomics, McGill University and Genome Quebec Innovation Center, Montréal, H3A 1A4, Canada
- Department of Human Genetics, McGill University, Montreal, H3A 1B1, Canada
| | - F E Pitre
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - A P Pagé
- Aquatic and Crop Resource Development (ACRD), National Research Council Canada, Montréal, QC, H4P 2R2, Canada
| | - J Marleau
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
| | - W Guidi Nissim
- Department of Agri-food and Environmental Science, University of Florence, Viale delle Idee, Sesto Fiorentino, FI, Italy
| | - M St-Arnaud
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - M Labrecque
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - S Joly
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - E Yergeau
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - N J B Brereton
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada.
| |
Collapse
|
33
|
Pal S, Kundu A, Banerjee TD, Mohapatra B, Roy A, Manna R, Sar P, Kazy SK. Genome analysis of crude oil degrading Franconibacter pulveris strain DJ34 revealed its genetic basis for hydrocarbon degradation and survival in oil contaminated environment. Genomics 2017. [DOI: 10.1016/j.ygeno.2017.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8649350. [PMID: 28243605 PMCID: PMC5294359 DOI: 10.1155/2017/8649350] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/02/2016] [Accepted: 12/21/2016] [Indexed: 11/18/2022]
Abstract
Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12-n-C16) to longer chain n-alkanes (n-C21-n-C25) and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time.
Collapse
|
35
|
Singh RP, Manchanda G, Li ZF, Rai AR. Insight of Proteomics and Genomics in Environmental Bioremediation. ACTA ACUST UNITED AC 2017. [DOI: 10.4018/978-1-5225-2325-3.ch003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Bioremediation of hazardous substances from environment is a major human and environmental health concern but can be managed by the microorganism due to their variety of properties that can effectively change the complexity. Microorganisms convey endogenous genetic, biochemical and physiological assets that make them superlative proxies for pollutant remediation in habitat. But, the crucial step is to degrade the complex ring structured pollutants. Interestingly, the integration of genomics and proteomics technologies that allow us to use or alter the genes and proteins of interest in a given microorganism towards a cell-free bioremediation approach. Resultantly, efforts have been finished by developing the genetically modified (Gm) microbes for the remediation of ecological contaminants. Gm microorganisms mediated bioremediation can affect the solubility, bioavailability and mobility of complex hazardous.
Collapse
|