1
|
Khazaeel K, Sadeghi A, Khademi Moghaddam F, Mohammadi T. The impact of graphene quantum dots on osteogenesis potential of Wharton's jelly mesenchymal stem cells in fibrin hydrogel scaffolds. Cytotechnology 2025; 77:14. [PMID: 39665046 PMCID: PMC11628478 DOI: 10.1007/s10616-024-00672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024] Open
Abstract
Bone tissue engineering is a promising approach to overcome the limitations of traditional autograft bone transplantation. Graphene quantum dots (GQDs) have been suggested as an enhancement for osteogenic differentiation. This study aimed to investigate the ability of the fibrin hydrogel scaffold in the presence of graphene quantum dots to promote osteogenic differentiation of human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs). The hWJ-MSCs were isolated from the Wharton's jelly of the human umbilical cord using a mechanical method. Fibrin hydrogel scaffolds were prepared by mixing 15 µl of thrombin solution with fibrinogen solution. GQDs were incorporated into the scaffolds at concentrations of 0, 5, and 10 µg/ml. Cell viability was determined through DAPI staining and the MTT assay. Osteogenic differentiation was assessed by measuring alkaline phosphatase (ALP) activity, quantifying calcium deposition using Alizarin Red S staining, and analyzing the gene expression of BGLAP, COL1A1, Runx-2 and ALP via qPCR. Scanning electron microscopy (SEM) was employed to analyze the scaffold architecture. SEM analysis revealed that the fibrin hydrogel exhibited a suitable architecture for tissue engineering, and DAPI staining confirmed cell viability. The MTT results indicated that the GQDs and fibrin hydrogel scaffold exhibited no cytotoxic effects. Furthermore, the incorporation of GQDs at a concentration of 10 µg/ml significantly enhanced ALP activity, calcium deposition, and the expression of osteogenesis-related genes compared to the control. The findings suggest that the combination of fibrin hydrogel and GQDs can effectively promote the osteogenic differentiation of hWJ-MSCs, contributing to the advancement of bone tissue engineering.
Collapse
Affiliation(s)
- Kaveh Khazaeel
- Department of Basic Sciences, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Abbas Sadeghi
- Department of Basic Sciences, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Tayebeh Mohammadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| |
Collapse
|
2
|
Bashiri Z, Khosrowpour Z, Moghaddaszadeh A, Jafari D, Alizadeh S, Nasiri H, Parsaei H, Keshtkaran Z, Abdollahpour‐Alitappeh M, Bargrizaneh F, Rezaei B, Simorgh S, Gholipourmalekabadi M. Optimizations of Placenta Extracellular Matrix-Loaded Silk Fibroin/Alginate 3D-Printed Scaffolds Structurally and Functionally for Bone Tissue Engineering. Eng Life Sci 2025; 25:e202400085. [PMID: 39801563 PMCID: PMC11717148 DOI: 10.1002/elsc.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Recent interest has been focused on extracellular matrix (ECM)-based scaffolds totreat critical-sized bone injuries. In this study, urea was used to decellularize and solubilize human placenta tissue. Then, different concentrations of ECM were composited with 8% alginate (Alg) and 12% silk fibroin (SF) for printing in order to produce a natural 3D construct that resembled bone tissue. The physical and biological features of the printed structures were evaluated entirely in vitro. Finally, a rat model was employed to examine the optimal 3D printed scaffold (5% ECM) as a bone transplant for the healing of cranial bone lesions. The present investigation demonstrated that decellularizing placental tissue fragments led to efficient removal of cell debris. In addition, a remarkable improvement in the printed scaffolds' mechanical and biological properties was observed by increasing the ECM concentration. The histology studies and real-time PCR results demonstrated the acceleration of bone regeneration in the bone lesions treated with 5%ECM-SF/Alg at 4 and 8 weeks after implantation. Overall, these results proved that the placental ECM-printed scaffolds could potentially construct biomimetic grafts to reconstruct significant bone defects and now promise to proceed with clinical studies.
Collapse
Affiliation(s)
- Zahra Bashiri
- Endometrium and Endometriosis Research CenterHamadan University of Medical SciencesHamadanIran
- Department of Anatomy, School of MedicineIran University of Medical SciencesTehranIran
- Omid Fertility & Infertility ClinicHamedanIran
| | - Zahra Khosrowpour
- Department of PediatricsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ali Moghaddaszadeh
- Departement of Biomedical Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Davod Jafari
- Oncopathology Research CenterIran University of Medical SciencesTehranIran
| | | | - Hajar Nasiri
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
| | - Houman Parsaei
- Nervous System Stem Cells Research CenterSemnan University of Medical SciencesSemnanIran
| | - Zahra Keshtkaran
- Community Based Psychiatric Care Research Center, Department of Nursing, School of Nursing and MidwiferyShiraz University of Medical SciencesShirazIran
| | | | - Farshad Bargrizaneh
- Student Research Committee, School of Health Management and Information SciencesShiraz Universiy of Medical SciencesShirazIran
| | - Behzad Rezaei
- Department of Surgery, School of MedicineLarestan University of Medical SciencesLarestanIran
| | - Sara Simorgh
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
- Department of Medical Biotechnology, Faculty of Allied MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Xiao Y, Liang Z, Shyngys M, Baekova A, Cheung S, Muljadi MB, Bai Q, Zeng L, Choi CHJ. In Vivo Interactions of Nucleic Acid Nanostructures With Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2314232. [PMID: 39263835 PMCID: PMC11733725 DOI: 10.1002/adma.202314232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/03/2024] [Indexed: 09/13/2024]
Abstract
Nucleic acid nanostructures, derived from the assembly of nucleic acid building blocks (e.g., plasmids and oligonucleotides), are important intracellular carriers of therapeutic cargoes widely utilized in preclinical nanomedicine applications, yet their clinical translation remains scarce. In the era of "translational nucleic acid nanotechnology", a deeper mechanistic understanding of the interactions of nucleic acid nanostructures with cells in vivo will guide the development of more efficacious nanomedicines. This review showcases the recent progress in dissecting the in vivo interactions of four key types of nucleic acid nanostructures (i.e., tile-based, origami, spherical nucleic acid, and nucleic acid nanogel) with cells in rodents over the past five years. Emphasis lies on the cellular-level distribution of nucleic acid nanostructures in various organs and tissues and the cellular responses induced by their cellular entry. Next, in the spirit of preclinical translation, this review features the latest interactions of nucleic acid nanostructures with cells in large animals and humans. Finally, the review offers directions for studying the interactions of nucleic acid nanostructures with cells from both materials and biology perspectives and concludes with some regulatory updates.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Zhihui Liang
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Moldir Shyngys
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Aiana Baekova
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Suen Cheung
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Mathias Billy Muljadi
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Qianqian Bai
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Lula Zeng
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Chung Hang Jonathan Choi
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkShatinNew TerritoriesHong Kong
| |
Collapse
|
4
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
5
|
Wang Y, Wang L, Soro N, Buenzli PR, Li Z, Green N, Tetsworth K, Erbulut D. Bone Ingrowth Simulation Within the Hexanoid, a Novel Scaffold Design. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:1949-1960. [PMID: 39734733 PMCID: PMC11669832 DOI: 10.1089/3dp.2023.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
The utilization of bone scaffold implants represents a promising approach for repairing substantial bone defects. In recent years, various traditional scaffold structures have been developed and, with advances in materials biology and computer technology, novel scaffold designs are now being evaluated. This study investigated the effects of a novel scaffold unit cell design (Hexanoid) through a computational framework, comparing its performance to that of four well-known scaffold designs. A finite element analysis numerical simulation and mechanical testing were conducted to analyze the dynamic bone ingrowth process and the mechanical strength of the different scaffold designs. Bone formation within the Ti-6Al-4V metal scaffolds was simulated based on the theory of bone remodeling. The outcomes of the study reveal that the novel scaffold design (Hexanoid) attains a notably elevated ultimate bone volume fraction (∼27%), it outperformed conventional unit-cell designs found in extant literature, such as cubic design with 19.1% and circular design with 16.9% in relation to the bone-to-cavity volume ratio. This novel structure also has comparable mechanical strength to that of human compact bone tissue. While the design was not optimal in every category, it provided a very satisfactory overall performance regarding certain key aspects of bone performances in comparison with the five scaffold structures evaluated. Although limitations exist in this project, similar methodologies can also be applied in the primary evaluation of new scaffold structures, resulting in improved efficiency and effectiveness. In future research, the results of this project may be integrated with clinical rehabilitation processes to offer a critical evaluation for optimization of additional novel scaffold unit-cell structure designs.
Collapse
Affiliation(s)
- Yuheng Wang
- Orthopedics Program, Herston Biofabrication Institute, Block 7 Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
- Doctor of Medicine Program, School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Luping Wang
- Faculty of Engineering, Department of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nicolas Soro
- Centre for Advanced Material Processing and Manufacturing, Department of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Pascal R. Buenzli
- Faculty of Science, Department of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Zhiyong Li
- Faculty of Engineering, Department of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nicholas Green
- Orthopedics Program, Herston Biofabrication Institute, Block 7 Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Kevin Tetsworth
- Orthopedics Program, Herston Biofabrication Institute, Block 7 Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
- Doctor of Medicine Program, School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Department of Orthopedic Surgery, Royal Brisbane and Women's Hospital, Herstone, Queensland, Australia
| | - Deniz Erbulut
- Orthopedics Program, Herston Biofabrication Institute, Block 7 Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| |
Collapse
|
6
|
Yang Y, Sun W, Fu Q, Wang Z, Zhao H, Wang Z, Gao Y, Wang J. Fabrication and evaluation of Zn-EGCG-loaded chitosan scaffolds for bone regeneration: From cellular responses to in vivo performance. Int J Biol Macromol 2024; 283:137695. [PMID: 39551306 DOI: 10.1016/j.ijbiomac.2024.137695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
We have synthesized a flavonoid metal complex (FMC) by chelating zinc to epigallocatechin-3-gallate (EGCG), a flavonoid present in green tea and incorporated into chitosan (CS) to form 3D constructs by freeze drying method. Scanning electron microscopy characterized The scaffolds for surface morphology and pore dimensions and depicted the presence of interconnected porous network. The scaffolds exhibited optimal pore size (>50 μm), facilitating bone tissue ingrowth and neovascularization. Inclusion of Zn-EGCG into CS matrix improved the mechanical property by increasing compressive strength (0.53±0.045 MPa) and reducing enzymatic degradation with controlled swelling. In addition, increased protein adsorption was observed during the initial hour, which is crucial for cell attachment. Furthermore, the FMC inclusion promoted exogenous biomineralization of CS scaffolds as early as 4d in simulated body fluid. Indirect cytotoxicity measurements indicated the scaffolds with Zn-EGCG had no toxic effects on mouse mesenchymal stem cells (mMSCs). Under osteogenic environment, the scaffold promoted calcium deposition of mMSCs by upregulation of ALP activity and increased expression of osteoblast differentiation markers such as Runx2, ColI, OC and OPN. We found that the involvement of miR-15b/smurf-1 signalling pathway behind the osteogenic potential of the scaffold. In vivo assessments using the chick embryo CAM assay showed enhanced angiogenesis and confirmed the scaffold's biocompatibility with no toxicity. Additionally, in a zebrafish scale regeneration model, the scaffold enhanced calcium deposition and osteoblast marker expression, aligning with the in vitro findings. Overall, form the study it is clear that the osteogenic potential of the scaffold is as follows chitosan < EGCG-Chitosan < Zn-EGCG-Chitosan.
Collapse
Affiliation(s)
- Yu Yang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 12100, China
| | - Wei Sun
- Department of Geriatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 12100, China
| | - Qiang Fu
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 12100, China
| | - Zhongyuan Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 12100, China
| | - Hui Zhao
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 12100, China
| | - Zaijun Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 12100, China
| | - Yuzhong Gao
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 12100, China.
| | - Jian Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 12100, China.
| |
Collapse
|
7
|
Gaihre B, Camilleri E, Tilton M, Astudillo Potes MD, Liu X, Lucien F, Lu L. LAPONITE® nano-silicates potentiate the angiogenic effects of FG-4592 and osteogenic effects of BMP-2. Biomater Sci 2024; 12:5610-5619. [PMID: 39359127 PMCID: PMC11822916 DOI: 10.1039/d4bm00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
LAPONITE®-based drug delivery systems offer many advantages due to the unique ionic and physical properties of LAPONITE®. The high ionicity and large surface area of LAPONITE® nanoparticles enable the intercalation and dissolution of biomolecules. In this study, we explored the potential of LAPONITE® as a carrier for FG-4592 to support angiogenesis and as a carrier for bone morphogenic protein-2 (BMP-2) to support osteogenesis. Interestingly, we found that LAPONITE® promoted the FG-4592 induced upregulation of vascular endothelial growth factor (VEGF) gene expression of human umbilical cord endothelial cells (HUVECs). Additionally, we observed that LAPONITE® could provide a sustained release of BMP-2 and significantly potentiate the osteogenic effects of BMP-2 on adipose derived mesenchymal stem cells (AMSCs). Overall, current findings on the LAPONITE®-drug/protein model system provide a unique way to potentiate the angiogenic activities of FG-4592 on HUVECs and osteogenic effects of BMP-2 on AMSCs for tissue engineering application. Future studies will be directed towards gaining a deeper understanding of these effects on a co-culture system of HUVECs and AMSCs.
Collapse
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Emily Camilleri
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maria D Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
8
|
Nocchetti M, Piccotti C, Piccinini M, Caponi S, Mattarelli M, Pietrella D, Di Michele A, Ambrogi V. Silver Nanoparticles and Simvastatin-Loaded PLGA-Coated Hydroxyapatite/Calcium Carbonate Scaffolds. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1637. [PMID: 39452973 PMCID: PMC11510553 DOI: 10.3390/nano14201637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
The need to develop synthetic bone substitutes with structures, properties, and functions similar to bone and capable of preventing microbial infections is still an ongoing challenge. This research is focused on the preparation and characterization of three-dimensional porous scaffolds based on hydroxyapatite (HA)-functionalized calcium carbonate loaded with silver nanoparticles and simvastatin (SIMV). The scaffolds were prepared using the foam replica method, with a polyurethane (PU) sponge as a template, followed by successive polymer removal and sintering. The scaffolds were then coated with poly(lactic-co-glycolic) acid (PLGA) to improve mechanical properties and structural integrity, and loaded with silver nanoparticles and SIMV. The scaffolds were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), ATR FT-IR, and silver and SIMV loading. Moreover, the samples were analyzed by Brillouin and Raman microscopy. Finally, in vitro bioactivity, SIMV and silver release, and antimicrobial activity against Staphylococcus aureus and Staphylococcus epidermidis were evaluated. From the Brillouin spectra, samples showed characteristics analogous to those of bone tissue. They exhibited new hydroxyapatite growth, as evidenced by SEM, and good antimicrobial activity against the tested bacteria. In conclusion, the obtained results demonstrate the potential of the scaffolds for application in bone repair.
Collapse
Affiliation(s)
- Morena Nocchetti
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo, 1, 06123 Perugia, Italy; (C.P.); (M.P.)
| | - Chiara Piccotti
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo, 1, 06123 Perugia, Italy; (C.P.); (M.P.)
| | - Michela Piccinini
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo, 1, 06123 Perugia, Italy; (C.P.); (M.P.)
| | - Silvia Caponi
- Istituto Officina dei Materiali, National Research Council (IOM-CNR), Unit of Perugia, c/o Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy;
| | - Maurizio Mattarelli
- Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, 06123 Perugia, Italy; (M.M.); (A.D.M.)
| | - Donatella Pietrella
- Dipartimento di Medicina, Università di Perugia, Piazzale Gambuli, 1, 06132 Perugia, Italy;
| | - Alessandro Di Michele
- Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, 06123 Perugia, Italy; (M.M.); (A.D.M.)
| | - Valeria Ambrogi
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo, 1, 06123 Perugia, Italy; (C.P.); (M.P.)
| |
Collapse
|
9
|
Medojevic M, Jakovljevic A, Devillard R, Kérourédan O. Novel Approaches for the Treatment of Maxillofacial Defects. Bioengineering (Basel) 2024; 11:995. [PMID: 39451371 PMCID: PMC11504718 DOI: 10.3390/bioengineering11100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Maxillofacial defects, located in a region characterized by a complex interplay of soft and hard tissues, along with a sophisticated capillary and neural network, have long posed significant challenges in both clinical practice and research [...].
Collapse
Affiliation(s)
- Mina Medojevic
- BioTis, U1026, Institut National de la Santé et de la Recherche Médicale, Université de Bordeaux, F-33000 Bordeaux, France; (M.M.); (R.D.)
- Department of Pathophysiology, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Implant-Research Center, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandar Jakovljevic
- Department of Pathophysiology, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Implant-Research Center, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Raphaël Devillard
- BioTis, U1026, Institut National de la Santé et de la Recherche Médicale, Université de Bordeaux, F-33000 Bordeaux, France; (M.M.); (R.D.)
- UFR des Sciences Odontologiques, Université de Bordeaux, F-33076 Bordeaux, France
- CHU de Bordeaux, Pôle de Médecine et Chirurgie Bucco-Dentaire, F-33000 Bordeaux, France
- Centre de Compétence des Maladies Rares Orales et Dentaires (O-Rares), CHU de Bordeaux, F-33000 Bordeaux, France
- Centre de Compétence des Maladies Osseuses Constitutionnelles (MOC), CHU de Bordeaux, F-33000 Bordeaux, France
| | - Olivia Kérourédan
- BioTis, U1026, Institut National de la Santé et de la Recherche Médicale, Université de Bordeaux, F-33000 Bordeaux, France; (M.M.); (R.D.)
- UFR des Sciences Odontologiques, Université de Bordeaux, F-33076 Bordeaux, France
- CHU de Bordeaux, Pôle de Médecine et Chirurgie Bucco-Dentaire, F-33000 Bordeaux, France
- Centre de Compétence des Maladies Rares Orales et Dentaires (O-Rares), CHU de Bordeaux, F-33000 Bordeaux, France
- Centre de Compétence des Maladies Osseuses Constitutionnelles (MOC), CHU de Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
10
|
Pourhajrezaei S, Abbas Z, Khalili MA, Madineh H, Jooya H, Babaeizad A, Gross JD, Samadi A. Bioactive polymers: A comprehensive review on bone grafting biomaterials. Int J Biol Macromol 2024; 278:134615. [PMID: 39128743 DOI: 10.1016/j.ijbiomac.2024.134615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
The application of bone grafting materials in bone tissue engineering is paramount for treating severe bone defects. In this comprehensive review, we explore the significance and novelty of utilizing bioactive polymers as grafts for successful bone repair. Unlike metals and ceramics, polymers offer inherent biodegradability and biocompatibility, mimicking the native extracellular matrix of bone. While these polymeric micro-nano materials may face challenges such as mechanical strength, various fabrication techniques are available to overcome these shortcomings. Our study not only investigates diverse biopolymeric materials but also illuminates innovative fabrication methods, highlighting their importance in advancing bone tissue engineering.
Collapse
Affiliation(s)
- Sana Pourhajrezaei
- Department of biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zahid Abbas
- Department of Chemistry, University of Bologna, Bologna, Italy
| | | | - Hossein Madineh
- Department of Polymer Engineering, University of Tarbiat Modares, Tehran, Iran
| | - Hossein Jooya
- Biochemistry group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Jeffrey D Gross
- ReCELLebrate Regenerative Medicine Clinic, Henderson, NV, USA
| | - Ali Samadi
- Department of Basic Science, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| |
Collapse
|
11
|
Stellpflug A, Walls J, Hansen C, Joshi A, Wang B. From bone to nanoparticles: development of a novel generation of bone derived nanoparticles for image guided orthopedic regeneration. Biomater Sci 2024; 12:3633-3648. [PMID: 38856671 PMCID: PMC11238765 DOI: 10.1039/d4bm00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Bone related diseases such as osteoporosis, osteoarthritis, metastatic bone cancer, osteogenesis imperfecta, and Paget's disease, are primarily treated with pharmacologic therapies that often exhibit limited efficacy and substantial side effects. Bone injuries or fractures are primarily repaired with biocompatible materials that produce mixed results in sufficiently regenerating healthy and homogenous bone tissue. Each of these bone conditions, both localized and systemic, use different strategies with the same goal of achieving a healthy and homeostatic bone environment. In this study, we developed a new type of bone-based nanoparticle (BPs) using the entire organic extracellular matrix (ECM) of decellularized porcine bone, additionally encapsulating indocyanine green dye (ICG) for an in vivo monitoring capability. Utilizing the regenerative capability of bone ECM and the functionality of nanoparticles, the ICG encapsulated BPs (ICG/BPs) have been demonstrated to be utilized as a therapeutic option for localized and systemic orthopedic conditions. Additionally, ICG enables an in situ monitoring capability in the Short-Wave Infrared (SWIR) spectrum, capturing the degradation or the biodistribution of the ICG/BPs after both local implantation and intravenous administration, respectively. The efficacy and safety of the ICG/BPs shown within this study lay the foundation for future investigations, which will delve into optimization for clinical translation.
Collapse
Affiliation(s)
- Austin Stellpflug
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Jacob Walls
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Christopher Hansen
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Amit Joshi
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Bo Wang
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
12
|
Ribeiro ED, de Santana IHG, Viana MRM, Júnior ESH, Dias JCP, Ferreira-Júnior O, Sant'Ana E. The efficacy of Platelet and Leukocyte Rich Fibrin (L-PRF) in the healing process and bone repair in oral and maxillofacial surgeries: a systematic review. Clin Oral Investig 2024; 28:414. [PMID: 38965076 DOI: 10.1007/s00784-024-05817-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION The search to optimize the healing and bone repair processes in oral and maxillofacial surgeries reflects the constant evolution in clinical practice, driven by the demand for increasingly satisfactory results and the need to minimize postoperative complications. OBJECTIVE To evaluate the efficacy of Platelet and Leukocyte Rich Fibrin (L-PRF) in the healing and bone repair process in oral and maxillofacial surgeries. MATERIALS AND METHODS The systematic review protocol for this study included the definition of the research question, the domain of the study, the databases searched, the search strategy, the inclusion and exclusion criteria, the types of studies to be included, the measures of effect, the methods for screening, data extraction and analysis, and the approach to data synthesis. Systematic literature searches were carried out on Cochrane databases, Web of Science, PubMed, ScienceDirect, Embase and Google Scholar. RESULTS The strategic search in the databases identified 1,159 studies. After removing the duplicates with the Rayyan© software, 946 articles remained. Of these, 30 met the inclusion criteria. After careful evaluation based on the inclusion and exclusion criteria, 8 studies were considered highly relevant and included in the systematic review. CONCLUSION Platelet and Leukocyte Rich Fibrin (L-PRF) has a positive effect on the healing process and bone repair in oral and maxillofacial surgeries.
Collapse
Affiliation(s)
- Eduardo Dias Ribeiro
- Department of Clinical and Social Dentistry (DCOS), Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | | | | | | | | | - Osny Ferreira-Júnior
- Bauru School of Dentistry, University of São Paulo, (FOB-USP), São Paulo, Brazil
| | - Eduardo Sant'Ana
- Bauru School of Dentistry, University of São Paulo, (FOB-USP), São Paulo, Brazil
| |
Collapse
|
13
|
Yang DH, Nah H, Lee D, Min SJ, Park S, An SH, Wang J, He H, Choi KS, Ko WK, Lee JS, Kwon IK, Lee SJ, Heo DN. A review on gold nanoparticles as an innovative therapeutic cue in bone tissue engineering: Prospects and future clinical applications. Mater Today Bio 2024; 26:101016. [PMID: 38516171 PMCID: PMC10952045 DOI: 10.1016/j.mtbio.2024.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/19/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Bone damage is a complex orthopedic problem primarily caused by trauma, cancer, or bacterial infection of bone tissue. Clinical care management for bone damage remains a significant clinical challenge and there is a growing need for more advanced bone therapy options. Nanotechnology has been widely explored in the field of orthopedic therapy for the treatment of a severe bone disease. Among nanomaterials, gold nanoparticles (GNPs) along with other biomaterials are emerging as a new paradigm for treatment with excellent potential for bone tissue engineering and regenerative medicine applications. In recent years, a great deal of research has focused on demonstrating the potential for GNPs to provide for enhancement of osteogenesis, reduction of osteoclastogenesis/osteomyelitis, and treatment of bone cancer. This review details the latest understandings in regards to GNPs based therapeutic systems, mechanisms, and the applications of GNPs against various bone disorders. The present review aims to summarize i) the mechanisms of GNPs in bone tissue remodeling, ii) preparation methods of GNPs, and iii) functionalization of GNPs and its decoration on biomaterials as a delivery vehicle in a specific bone tissue engineering for future clinical application.
Collapse
Affiliation(s)
- Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Haram Nah
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Donghyun Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Sung Jun Min
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Seulki Park
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Sang-Hyun An
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Kyu-Sun Choi
- Department of Neurosurgery, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Wan-Kyu Ko
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jae Seo Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Kyung Hee University Medical Science Research Institute, Kyung Hee University, 23 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Sang Jin Lee
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Biofriends Inc, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| |
Collapse
|
14
|
Zhang Y, Jian Y, Jiang X, Li X, Wu X, Zhong J, Jia X, Li Q, Wang X, Zhao K, Yao Y. Stepwise degradable PGA-SF core-shell electrospinning scaffold with superior tenacity in wetting regime for promoting bone regeneration. Mater Today Bio 2024; 26:101023. [PMID: 38525312 PMCID: PMC10959703 DOI: 10.1016/j.mtbio.2024.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/22/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024] Open
Abstract
Regenerating bone in the oral and maxillofacial region is clinically challenging due to the complicated osteogenic environment and the limitation of existing bone graft materials. Constructing bone graft materials with controlled degradation and stable mechanical properties in a physiological environment is of utmost importance. In this study, we used silk fibroin (SF) and polyglycolic acid (PGA) to fabricate a coaxial PGA-SF fibrous scaffold (PGA-SF-FS) to meet demands for bone grafts. The SF shell exerted excellent osteogenic activity while protecting PGA from rapid degradation and the PGA core equipped scaffold with excellent tenacity. The experiments related to biocompatibility and osteogenesis (e.g., cell attachment, proliferation, differentiation, and mineralization) demonstrated the superior ability of PGA-SF-FS to improve cell growth and osteogenic differentiation. Furthermore, in vivo testing using Sprague-Dawley rat cranial defect model showed that PGA-SF-FS accelerates bone regeneration as the implantation time increases, and its stepwise degradation helps to match the remodeling kinetics of the host bone tissue. Besides, immunohistochemical staining of CD31 and Col-1 confirmed the ability of PGA-SF-FS to enhance revascularization and osteogenesis response. Our results suggest that PGA-SF-FS fully utilizing the advantages of both components, exhibites stepwise degradation and superior tenacity in wetting regime, making it a promising candidate in the treatment of bone defects.
Collapse
Affiliation(s)
- Yuan Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yutao Jian
- Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiao Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xuerong Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiangnan Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Juan Zhong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoshi Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qiulan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaodong Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ke Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yitong Yao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
15
|
Ali M, Kim YS. A comprehensive review and advanced biomolecule-based therapies for osteoporosis. J Adv Res 2024:S2090-1232(24)00215-7. [PMID: 38810908 DOI: 10.1016/j.jare.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The prevalence of osteoporosis (OP) on a global scale is significantly elevated that causes life threatening issues. The potential of groundbreaking biomolecular therapeutics in the field of OP is highly encouraging. The administration of biomolecular agents has the potential to mitigate the process of bone demineralization while concurrently augmenting the regenerative capacity of bone tissue, thereby facilitating a personalized therapeutic approach. Biomolecules-based therapies showed promising results in term of bone mass protection and restoration in OP. AIM OF REVIEW We summarized the recent biomolecular therapies with notable progress in clinical, demonstrating the potential to transform illness management. These treatments frequently utilize different biomolecule based strategies. Biomolecular therapeutics has a targeted character, which results in heightened specificity and less off-target effects, ultimately leading to increased patient outcomes. These aspects have the capacity to greatly enhance the management of OP, thus resulting in a major enhancement in the quality of life encountered by individuals affected by this condition.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Yong-Sik Kim
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea.
| |
Collapse
|
16
|
Li Z, Wang D, Li J, Liu H, Nie L, Li C. Bone Regeneration Facilitated by Autologous Bioscaffold Material: Liquid Phase of Concentrated Growth Factor with Dental Follicle Stem Cell Loading. ACS Biomater Sci Eng 2024; 10:3173-3187. [PMID: 38605468 DOI: 10.1021/acsbiomaterials.3c01981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The application of bioengineering techniques for achieving bone regeneration in the oral environment is an increasingly prominent field. However, the clinical use of synthetic materials carries certain risks. The liquid phase of concentrated growth factor (LPCGF), as a biologically derived material, exhibits superior biocompatibility. In this study, LPCGF was employed as a tissue engineering scaffold, hosting dental follicle cells (DFCs) to facilitate bone regeneration. Both in vivo and in vitro experimental results demonstrate that this platform significantly enhances the expression of osteogenic markers in DFCs, such as alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and type I collagen (Col1a1). Simultaneously, it reduces the expression of inflammation-related genes, particularly interleukin-6 (IL-6) and interleukin-8 (IL-8), thereby alleviating the negative impact of the inflammatory microenvironment on DFCs. Further investigation into potential mechanisms reveals that this process is regulated over time by the WNT pathway. Our research results demonstrate that LPCGF, with its favorable physical characteristics, holds great potential as a scaffold. It can effectively carry DFCs, thereby providing an optimal initial environment for bone regeneration. Furthermore, LPCGF endeavors to closely mimic the mechanisms of bone healing post-trauma to facilitate bone formation. This offers new perspectives and insights into bone regeneration engineering.
Collapse
Affiliation(s)
- Zhentao Li
- Stomatological Hospital of Chongqing Medical University, No. 426 Songshi North Road, Yubei District, Chongqing 401147, China
| | - Di Wang
- Stomatological Hospital of Chongqing Medical University, No. 426 Songshi North Road, Yubei District, Chongqing 401147, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, No. 426 Songshi North Road, Yubei District, Chongqing 401147, China
| | - Hao Liu
- Stomatological Hospital of Chongqing Medical University, No. 426 Songshi North Road, Yubei District, Chongqing 401147, China
| | - Li Nie
- Stomatological Hospital of Chongqing Medical University, No. 426 Songshi North Road, Yubei District, Chongqing 401147, China
| | - Conghua Li
- Stomatological Hospital of Chongqing Medical University, No. 426 Songshi North Road, Yubei District, Chongqing 401147, China
| |
Collapse
|
17
|
Karpova SG, Olkhov AA, Varyan IA, Khan OI, Botin AA, Naletova AV, Popov AA, Iordanskii AL. Electrospun Polylactide-Poly(ε-Caprolactone) Fibers: Structure Characterization and Segmental Dynamic Response. Polymers (Basel) 2024; 16:1307. [PMID: 38794500 PMCID: PMC11125250 DOI: 10.3390/polym16101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Electrospun ultrathin fibers based on binary compositions of polylactide (PLA) and poly(ε-caprolactone) (PCL) with the various content from the polymer ratio from 0/100 to 100/0 have been explored. Combining thermal (DSC) and spectropy (ESR) techniques, the effect of biopolymer content on the characteristics of the crystal structure of PLA and PCL and the rotative diffusion of the stable TEMPO radical in the intercrystallite areas of PLA/PCL compositions was shown. It was revealed that after PLA and PCL blending, significant changes in the degree of crystallinity of PLA, PCL segment mobility, sorption of the Tempo probe, as well as its activation energy of rotation in the intercrystalline areas of PLA/PCL fibers, were evaluated. The characteristic region of biopolymers' composition from 50/50 to 30/70% PLA/PCL blend ratio was found, where the inversion transition of PLA from dispersive medium to dispersive phase where an inversion transition is assumed when the continuous medium of the PLA transforms into a discrete phase. The performed studies made it possible, firstly, to carry out a detailed study of the effect of the system component ratio on the structural and dynamic characteristics of the PLA/PCL film material at the molecular level.
Collapse
Affiliation(s)
- Svetlana G. Karpova
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia; (S.G.K.); (A.A.O.); (A.A.P.)
| | - Anatoly A. Olkhov
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia; (S.G.K.); (A.A.O.); (A.A.P.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia
| | - Ivetta A. Varyan
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia; (S.G.K.); (A.A.O.); (A.A.P.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia
| | - Oksana I. Khan
- Institute of Biochemical Technology and Nanotechnology, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia;
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia
| | - Andrey A. Botin
- Department of Organic Chemistry and Petroleum Chemistry, Gubkin University, 65 Leninsky Prospect Building 1, 119991 Moscow, Russia; (A.A.B.); (A.V.N.)
| | - Anna V. Naletova
- Department of Organic Chemistry and Petroleum Chemistry, Gubkin University, 65 Leninsky Prospect Building 1, 119991 Moscow, Russia; (A.A.B.); (A.V.N.)
| | - Anatoly A. Popov
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia; (S.G.K.); (A.A.O.); (A.A.P.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia
| | - Alexey L. Iordanskii
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia
| |
Collapse
|
18
|
Mim JJ, Hasan M, Chowdhury MS, Ghosh J, Mobarak MH, Khanom F, Hossain N. A comprehensive review on the biomedical frontiers of nanowire applications. Heliyon 2024; 10:e29244. [PMID: 38628721 PMCID: PMC11016983 DOI: 10.1016/j.heliyon.2024.e29244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
This comprehensive review examines the immense capacity of nanowires, nanostructures characterized by unbounded dimensions, to profoundly transform the field of biomedicine. Nanowires, which are created by combining several materials using techniques such as electrospinning and vapor deposition, possess distinct mechanical, optical, and electrical properties. As a result, they are well-suited for use in nanoscale electronic devices, drug delivery systems, chemical sensors, and other applications. The utilization of techniques such as the vapor-liquid-solid (VLS) approach and template-assisted approaches enables the achievement of precision in synthesis. This precision allows for the customization of characteristics, which in turn enables the capability of intracellular sensing and accurate drug administration. Nanowires exhibit potential in biomedical imaging, neural interfacing, and tissue engineering, despite obstacles related to biocompatibility and scalable manufacturing. They possess multifunctional capabilities that have the potential to greatly influence the intersection of nanotechnology and healthcare. Surmounting present obstacles has the potential to unleash the complete capabilities of nanowires, leading to significant improvements in diagnostics, biosensing, regenerative medicine, and next-generation point-of-care medicines.
Collapse
Affiliation(s)
- Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mehedi Hasan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Shakil Chowdhury
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Jubaraz Ghosh
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fahmida Khanom
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| |
Collapse
|
19
|
Soleymani Eil Bakhtiari S, Karbasi S. Keratin-containing scaffolds for tissue engineering applications: a review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:916-965. [PMID: 38349200 DOI: 10.1080/09205063.2024.2311450] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/24/2024] [Indexed: 04/13/2024]
Abstract
In tissue engineering and regenerative medicine applications, the utilization of bioactive materials has become a routine tool. The goal of tissue engineering is to create new organs and tissues by combining cell biology, materials science, reactor engineering, and clinical research. As part of the growth pattern for primary cells in an organ, backing material is frequently used as a supporting material. A porous three-dimensional (3D) scaffold can provide cells with optimal conditions for proliferating, migrating, differentiating, and functioning as a framework. Optimizing the scaffolds' structure and altering their surface may improve cell adhesion and proliferation. A keratin-based biomaterials platform has been developed as a result of discoveries made over the past century in the extraction, purification, and characterization of keratin proteins from hair and wool fibers. Biocompatibility, biodegradability, intrinsic biological activity, and cellular binding motifs make keratin an attractive biomaterial for tissue engineering scaffolds. Scaffolds for tissue engineering have been developed from extracted keratin proteins because of their capacity to self-assemble and polymerize into intricate 3D structures. In this review article, applications of keratin-based scaffolds in different tissues including bone, skin, nerve, and vascular are explained based on common methods of fabrication such as electrospinning, freeze-drying process, and sponge replication method.
Collapse
Affiliation(s)
- Sanaz Soleymani Eil Bakhtiari
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Saeed Karbasi
- Biomaterials and Tissue Engineering Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
20
|
Tariq S, Shah SA, Hameed F, Mutahir Z, Khalid H, Tufail A, Akhtar H, Chaudhry AA, Khan AF. Tissue engineered periosteum: Fabrication of a gelatin basedtrilayer composite scaffold with biomimetic properties for enhanced bone healing. Int J Biol Macromol 2024; 263:130371. [PMID: 38423439 DOI: 10.1016/j.ijbiomac.2024.130371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
The periosteum, a vascularized tissue membrane, is essential in bone regeneration following fractures and bone loss due to some other reasons, yet there exist several research gaps concerning its regeneration. These gaps encompass reduced cellular proliferation and bioactivity, potential toxicity, heightened stiffness of scaffold materials, unfavorable porosity, expensive materials and procedures, and suboptimal survivability or inappropriate degradation rates of the implanted materials. This research used an interdisciplinary approach by forming a new material fabricated through electrospinning for the proposed application as a layer-by-layer tissue-engineered periosteum (TEP). TEP comprises poly(ε-caprolactone) (PCL), PCL/gelatin/magnesium-doped zinc oxide (vascular layer), and gelatin/bioactive glass/COD liver oil (osteoconductive layer). These materials were selected for their diverse properties, when integrated into the scaffold formation, successfully mimic the characteristics of native periosteum. Scanning electron microscopy (SEM) was employed to confirm the trilayer structure of the scaffold and determine the average fiber diameter. In-vitro degradation and swelling studies demonstrated a uniform degradation rate that matches the typical recovery time of periosteum. The scaffold exhibited excellent mechanical properties comparable to natural periosteum. Furthermore, the sustained release kinetics of COD liver oil were observed in the trilayer scaffold. Cell culture results indicated that the three-dimensional topography of the scaffold promoted cell growth, proliferation, and attachment, confirming its non-toxicity, biocompatibility, and bioactivity. This study suggests that the fabricated scaffold holds promise as a potential artificial periosteum for treating periostitis and bone fractures.
Collapse
Affiliation(s)
- Sana Tariq
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Saqlain A Shah
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Fareeha Hameed
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Zeeshan Mutahir
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Hamad Khalid
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Asma Tufail
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Hafsah Akhtar
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Ather Farooq Khan
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan.
| |
Collapse
|
21
|
Han L, Zhao C, Zhu Y, Li H. Dimethyloxallyl glycine-loaded mesoporous bioactive glass/poly(D,L-lactide) composite scaffolds with ultrasound stimulation for promoting bone repair. Front Bioeng Biotechnol 2024; 12:1339135. [PMID: 38476968 PMCID: PMC10928532 DOI: 10.3389/fbioe.2024.1339135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction: Bone tissue engineering is considered the ideal approach for bone repair. Mesoporous bioactive glass (MBG) possesses the characteristics of high drug-loading capacity and bioactivity. Low-intensity pulsed ultrasound contributes to promoting fracture healing and bone defect repair, and dimethyloxalyl glycine (DMOG) is a small molecular inhibitor that can suppress prolyl hydroxylase, reducing the degradation of hypoxia-inducible factor. Methods: In this study, we proposed to prepare DMOG-loaded MBG/poly(D,L-lactide) composite scaffolds (DMOG-MBG/PDLLA) for promoting bone repair. The effects of ultrasound stimulation and DMOG release on the cell responses of rat bone marrow mesenchymal stem cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) and bone repair in vivo were investigated. Results and Discussion: The results showed that both ultrasound stimulation and DMOG release could promote the proliferation, adhesion and differentiation of BMSCs and HUVECs, respectively. After the implantation of scaffolds in rat cranial bone defect model for 8 weeks, the results indicated that the combined ultrasound stimulation and DMOG release contributed to the highest ability for promoting bone repair. Hence, the DMOG-MBG/PDLLA scaffolds with ultrasound stimulation are promising for application in bone repair.
Collapse
Affiliation(s)
- Lei Han
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Chaoqian Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Moreno Florez AI, Malagon S, Ocampo S, Leal-Marin S, Ossa EA, Glasmacher B, Garcia C, Pelaez-Vargas A. In vitro evaluation of the osteogenic and antimicrobial potential of porous wollastonite scaffolds impregnated with ethanolic extracts of propolis. Front Bioeng Biotechnol 2024; 12:1321466. [PMID: 38361789 PMCID: PMC10867276 DOI: 10.3389/fbioe.2024.1321466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Context: The development of porous devices using materials modified with various natural agents has become a priority for bone healing processes in the oral and maxillofacial field. There must be a balance between the proliferation of eukaryotic and the inhibition of prokaryotic cells to achieve proper bone health. Infections might inhibit the formation of new alveolar bone during bone graft augmentation. Objective: This study aimed to evaluate the in vitro osteogenic behavior of human bone marrow stem cells and assess the antimicrobial response to 3D-printed porous scaffolds using propolis-modified wollastonite. Methodology: A fractional factorial design of experiments was used to obtain a 3D printing paste for developing scaffolds with a triply periodic minimal surface (TPMS) gyroid geometry based on wollastonite and modified with an ethanolic propolis extract. The antioxidant activity of the extracts was characterized using free radical scavenging methods (DPPH and ABTS). Cell proliferation and osteogenic potential using Human Bone Marrow Stem Cells (bmMSCs) were assessed at different culture time points up to 28 days. MIC and inhibition zones were studied from single strain cultures, and biofilm formation was evaluated on the scaffolds under co-culture conditions. The mechanical strength of the scaffolds was evaluated. Results: Through statistical design of experiments, a paste suitable for printing scaffolds with the desired geometry was obtained. Propolis extracts modifying the TPMS gyroid scaffolds showed favorable cell proliferation and metabolic activity with osteogenic potential after 21 days. Additionally, propolis exhibited antioxidant activity, which may be related to the antimicrobial effectiveness of the scaffolds against S. aureus and S. epidermidis cultures. The mechanical properties of the scaffolds were not affected by propolis impregnation. Conclusion: These results demonstrate that propolis-impregnated porous wollastonite scaffolds might have the potential to stimulate bone repair in maxillofacial tissue engineering applications.
Collapse
Affiliation(s)
- Ana Isabel Moreno Florez
- Grupo de Materiales Cerámicos y Vítreos, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | - Sarita Malagon
- Grupo GIOM, Facultad de Odontología, Universidad Cooperativa de Colombia, Sede Medellín, Colombia
| | - Sebastian Ocampo
- Grupo de Materiales Cerámicos y Vítreos, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | - Sara Leal-Marin
- Institute for Multiphase Processes (IMP), Leibniz University Hannover, Garbsen, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Edgar Alexander Ossa
- School of Applied Sciences and Engineering, Universidad Eafit, Medellín, Colombia
| | - Birgit Glasmacher
- Institute for Multiphase Processes (IMP), Leibniz University Hannover, Garbsen, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Claudia Garcia
- Grupo de Materiales Cerámicos y Vítreos, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | - Alejandro Pelaez-Vargas
- Grupo GIOM, Facultad de Odontología, Universidad Cooperativa de Colombia, Sede Medellín, Colombia
| |
Collapse
|
23
|
Thomas T, Bakhshiannik A, Nautiyal P, Hutcheson JD, Agarwal A. Freeze casting to engineer gradient porosity in hydroxyapatite-boron nitride nanotube composite scaffold for improved compressive strength and osteogenic potential. J Mech Behav Biomed Mater 2024; 150:106283. [PMID: 38048712 DOI: 10.1016/j.jmbbm.2023.106283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/06/2023]
Abstract
Graded porosity plays a crucial role in scaffolds for bone tissue engineering as it facilitates vital processes such as nutrient diffusion, cellular infiltration, and tissue integration. This paper explores the utilization of freeze casting (FC) as a technique to generate composite scaffolds comprising hydroxyapatite (HA) reinforced with 1D-boron nitride nanotubes (BNNTs) featuring graded porosity and improved compressive strength. Comparative studies were conducted using FC at room and sub-zero temperatures to assess the influence of temperature gradient and heat transfer rate on the production of gradient and aligned porosity in HA-BNNT composites. The FC process with a prolonged thermal gradient facilitated the creation of aligned pores in the HA-BNNT, exhibiting a wide distribution of 60% porosity ranging from 1 to 30 μm. Adding high strength 1 vol% BNNT reinforcement resulted in a remarkable 50% enhancement in compressive strength compared to the control sample. Osteoblasts seeded on the HA-BNNT substrate exhibited significantly higher alkaline phosphate activity, indicating accelerated mineralization compared to the control sample. Gradient porosity and wide pore distribution in the HA-BNNT scaffolds promoted osteogenic activities. Overall, the demonstrated FC processing technique and BNNT addition hold great potential for developing functional and biomimetic scaffolds that can effectively promote tissue regeneration, leading to improved clinical outcomes in bone tissue engineering applications.
Collapse
Affiliation(s)
- Tony Thomas
- Department of Mechanical and Materials Engineering, USA
| | - Amirala Bakhshiannik
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA
| | - Pranjal Nautiyal
- School of Mechanical and Aerospace Engineering, Oklahoma State University, USA
| | - Joshua D Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA
| | - Arvind Agarwal
- Department of Mechanical and Materials Engineering, USA.
| |
Collapse
|
24
|
Cheng YJ, Wu TH, Tseng YS, Chen WF. Development of hybrid 3D printing approach for fabrication of high-strength hydroxyapatite bioscaffold using FDM and DLP techniques. Biofabrication 2024; 16:025003. [PMID: 38226849 DOI: 10.1088/1758-5090/ad1b20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024]
Abstract
This study develops a hybrid 3D printing approach that combines fused deposition modeling (FDM) and digital light processing (DLP) techniques for fabricating bioscaffolds, enabling rapid mass production. The FDM technique fabricates outer molds, while DLP prints struts for creating penetrating channels. By combining these components, hydroxyapatite (HA) bioscaffolds with different channel sizes (600, 800, and 1000μm) and designed porosities (10%, 12.5%, and 15%) are fabricated using the slurry casting method with centrifugal vacuum defoaming for significant densification. This innovative method produces high-strength bioscaffolds with an overall porosity of 32%-37%, featuring tightly bound HA grains and a layered surface structure, resulting in remarkable cell viability and adhesion, along with minimal degradation rates and superior calcium phosphate deposition. The HA scaffolds show hardness ranging from 1.43 to 1.87 GPa, with increasing compressive strength as the designed porosity and channel size decrease. Compared to human cancellous bone at a similar porosity range of 30%-40%, exhibiting compressive strengths of 13-70 MPa and moduli of 0.8-8 GPa, the HA scaffolds demonstrate robust strengths ranging from 40 to 73 MPa, paired with lower moduli of 0.7-1.23 GPa. These attributes make them well-suited for cancellous bone repair, effectively mitigating issues like stress shielding and bone atrophy.
Collapse
Affiliation(s)
- Yu-Jui Cheng
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Tsung-Han Wu
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Yu-Sheng Tseng
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Wen-Fan Chen
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
25
|
Rolińska K, Bakhshi H, Balk M, Blocki A, Panwar A, Puchalski M, Wojasiński M, Mazurek-Budzyńska M. Electrospun Poly(carbonate-urea-urethane)s Nonwovens with Shape-Memory Properties as a Potential Biomaterial. ACS Biomater Sci Eng 2023; 9:6683-6697. [PMID: 38032398 PMCID: PMC10716822 DOI: 10.1021/acsbiomaterials.3c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
Poly(carbonate-urea-urethane) (PCUU)-based scaffolds exhibit various desirable properties for tissue engineering applications. This study thus aimed to investigate the suitability of PCUU as polymers for the manufacturing of nonwoven mats by electrospinning, able to closely mimic the fibrous structure of the extracellular matrix. PCUU nonwovens of fiber diameters ranging from 0.28 ± 0.07 to 0.82 ± 0.12 μm were obtained with an average surface porosity of around 50-60%. Depending on the collector type and solution concentration, a broad range of tensile strengths (in the range of 0.3-9.6 MPa), elongation at break (90-290%), and Young's modulus (5.7-26.7 MPa) at room temperature of the nonwovens could be obtained. Furthermore, samples collected on the plate collector showed a shape-memory effect with a shape-recovery ratio (Rr) of around 99% and a shape-fixity ratio (Rf) of around 96%. Biological evaluation validated the inertness, stability, and lack of cytotoxicity of PCUU nonwovens obtained on the plate collector. The ability of mesenchymal stem cells (MSCs) and endothelial cells (HUVECs) to attach, elongate, and grow on the surface of the nonwovens suggests that the manufactured nonwovens are suitable scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Karolina Rolińska
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Hadi Bakhshi
- Department
of Life Science and Bioprocesses, Fraunhofer
Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Maria Balk
- Institute
of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Anna Blocki
- Institute
for Tissue Engineering and Regenerative Medicine, The Chinese University
of Hong Kong, Shatin, New Territories 999077, Hong Kong
- School of
Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong
- Center
for Neuromusculoskeletal Restorative Medicine, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong
| | - Amit Panwar
- Institute
for Tissue Engineering and Regenerative Medicine, The Chinese University
of Hong Kong, Shatin, New Territories 999077, Hong Kong
- School of
Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong
- Center
for Neuromusculoskeletal Restorative Medicine, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong
| | - Michał Puchalski
- Institute
of Material Science of Textiles and Polymer Composites, Faculty of
Material Technologies and Textile Design, Lodz University of Technology, ul. Żeromskiego 116, 90-924 Łódź, Poland
| | - Michał Wojasiński
- Faculty
of Chemical and Process Engineering, Department of Biotechnology and
Bioprocess Engineering, Laboratory of Biomedical Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | | |
Collapse
|
26
|
Xie W, Chen Y, Yang H. Layered Clay Minerals in Cancer Therapy: Recent Progress and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300842. [PMID: 37093210 DOI: 10.1002/smll.202300842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Cancer is one of the deadliest diseases, and current treatment regimens suffer from limited efficacy, nonspecific toxicity, and chemoresistance. With the advantages of good biocompatibility, large specific surface area, excellent cation exchange capacity, and easy availability, clay minerals have been receiving ever-increasing interests in cancer treatment. They can act as carriers to reduce the toxic side effects of chemotherapeutic drugs, and some of their own properties can kill cancer cells, etc. Compared with other morphologies clays, layered clay minerals (LCM) have attracted more and more attention due to adjustable interlayer spacing, easier ion exchange, and stronger adsorption capacity. In this review, the structure, classification, physicochemical properties, and functionalization methods of LCM are summarized. The state-of-the-art progress of LCM in antitumor therapy is systematically described, with emphasis on the application of montmorillonite, kaolinite, and vermiculite. Furthermore, the property-function relationships of LCM are comprehensively illustrated to reveal the design principles of clay-based antitumor systems. Finally, foreseeable challenges and outlook in this field are discussed.
Collapse
Affiliation(s)
- Weimin Xie
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
| | - Ying Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
27
|
Schimper CB, Pachschwöll P, Maitz MF, Werner C, Rosenau T, Liebner F. Hemocompatibility of cellulose phosphate aerogel membranes with potential use in bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1152577. [PMID: 37152648 PMCID: PMC10154571 DOI: 10.3389/fbioe.2023.1152577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Cellulose is an appealing material for tissue engineering. In an attempt to overcome some obstacles with cellulose II cell scaffolding materials related to insufficient biomineralization, lack of micron-size porosity, and deficiency in surface charge, respective solutions have been proposed. These included covalent phosphorylation of different cellulose materials targeting relatively low degrees of substitution (DS 0.18-0.23) and processing these cellulose derivatives into scaffolding materials by a dissolution/coagulation approach employing the hitherto rarely used TBAF/DMSO/H2O system for cellulose dissolution. Here, we report bioactivity and preliminary hemocompatibility testing of dual-porous cellulose phosphate aerogels (contrasted with the phosphate-free reference) obtained via coagulation (water/ethanol), solvent exchange and scCO2 drying. Deposition of hydroxyapatite from simulated body fluid (7 days of immersion) revealed good bioactivity (1.5-2.2 mg Ca2+ per mg scaffold). Incubation of the scCO2-dried and rehydrated scaffolding materials in heparin anticoagulated human whole blood was conducted to study selected parameters of hemostasis (prothrombin F1+2 fragment, PF4, count of thrombocyte-leukocyte conjugates) and inflammatory response (C5a fragment, leukocyte activation marker CD11b). Adhesion of leukocytes on the surface of the incubated substrates was assessed by scanning electron and fluorescence microscopy (DAPI staining). The results suggest that phosphorylation at low DS does not increase platelet activation. However, a significant increase in platelet activation and thrombin formation was observed after a certain fraction of the negative surface charges had been compensated by Ca2+ ions. The combination of both phosphorylation and calcification turned out to be a potent means for controlling the inflammatory response, which was close to baseline level for some of the studied samples.
Collapse
Affiliation(s)
- Christian B. Schimper
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Paul Pachschwöll
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Manfred F. Maitz
- Leibniz Institute of Polymer Research, Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research, Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Falk Liebner
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- *Correspondence: Falk Liebner,
| |
Collapse
|
28
|
Chauhan A, Alam MA, Kaur A, Malviya R. Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Curr Drug Targets 2023; 24:13-40. [PMID: 36221880 DOI: 10.2174/1389450123666221011100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
The drug development process requires a thorough understanding of the scaffold and its three-dimensional structure. Scaffolding is a technique for tissue engineering and the formation of contemporary functioning tissues. Tissue engineering is sometimes referred to as regenerative medicine. They also ensure that drugs are delivered with precision. Information regarding scaffolding techniques, scaffolding kinds, and other relevant facts, such as 3D nanostructuring, are discussed in depth in this literature. They are specific and demonstrate localized action for a specific reason. Scaffold's acquisition nature and flexibility make it a new drug delivery technology with good availability and structural parameter management.
Collapse
Affiliation(s)
- Akash Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
29
|
Paek K, Kim S, Tak S, Kim MK, Park J, Chung S, Park TH, Kim JA. A high-throughput biomimetic bone-on-a-chip platform with artificial intelligence-assisted image analysis for osteoporosis drug testing. Bioeng Transl Med 2023; 8:e10313. [PMID: 36684077 PMCID: PMC9842054 DOI: 10.1002/btm2.10313] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/25/2023] Open
Abstract
Although numerous organ-on-a-chips have been developed, bone-on-a-chip platforms have rarely been reported because of the high complexity of the bone microenvironment. With an increase in the elderly population, a high-risk group for bone-related diseases such as osteoporosis, it is essential to develop a precise bone-mimicking model for efficient drug screening and accurate evaluation in preclinical studies. Here, we developed a high-throughput biomimetic bone-on-a-chip platform combined with an artificial intelligence (AI)-based image analysis system. To recapitulate the key aspects of natural bone microenvironment, mouse osteocytes (IDG-SW3) and osteoblasts (MC3T3-E1) were cocultured within the osteoblast-derived decellularized extracellular matrix (OB-dECM) built in a well plate-based three-dimensional gel unit. This platform spatiotemporally and configurationally mimics the characteristics of the structural bone unit, known as the osteon. Combinations of native and bioactive ingredients obtained from the OB-dECM and coculture of two types of bone cells synergistically enhanced osteogenic functions such as osteocyte differentiation and osteoblast maturation. This platform provides a uniform and transparent imaging window that facilitates the observation of cell-cell interactions and features high-throughput bone units in a well plate that is compatible with a high-content screening system, enabling fast and easy drug tests. The drug efficacy of anti-SOST antibody, which is a newly developed osteoporosis drug for bone formation, was tested via β-catenin translocation analysis, and the performance of the platform was evaluated using AI-based deep learning analysis. This platform could be a cutting-edge translational tool for bone-related diseases and an efficient alternative to bone models for the development of promising drugs.
Collapse
Affiliation(s)
- Kyurim Paek
- Center for Scientific InstrumentationKorea Basic Science InstituteDaejeonSouth Korea
- Program in Micro/Nano SystemKorea UniversitySeoulSouth Korea
| | - Seulha Kim
- School of Chemical and Biological Engineering, Institute of Chemical ProcessesSeoul National UniversitySeoulSouth Korea
| | - Sungho Tak
- Research Center for Bioconvergence AnalysisKorea Basic Science InstituteCheongjuChungbukSouth Korea
| | - Min Kyeong Kim
- Center for Scientific InstrumentationKorea Basic Science InstituteDaejeonSouth Korea
| | - Jubin Park
- Center for Scientific InstrumentationKorea Basic Science InstituteDaejeonSouth Korea
- Program in Micro/Nano SystemKorea UniversitySeoulSouth Korea
| | - Seok Chung
- Program in Micro/Nano SystemKorea UniversitySeoulSouth Korea
- School of Mechanical EngineeringKorea UniversitySeoulSouth Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical ProcessesSeoul National UniversitySeoulSouth Korea
| | - Jeong Ah Kim
- Center for Scientific InstrumentationKorea Basic Science InstituteDaejeonSouth Korea
- Department of Bio‐Analytical ScienceUniversity of Science and TechnologyDaejeonSouth Korea
| |
Collapse
|
30
|
Zenebe CG. A Review on the Role of Wollastonite Biomaterial in Bone Tissue Engineering. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4996530. [PMID: 36560965 PMCID: PMC9767726 DOI: 10.1155/2022/4996530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Millions of people around the world have bone-tissue defects. Autologous and allogeneic bone grafting are frequent therapeutic techniques; however, none has produced the best therapeutic results. This has inspired researchers to investigate novel bone-regeneration technologies. In recent years, the development of bone tissue engineering (BTE) scaffolds has been at the forefront of this discipline. Due to their limitless supply and lack of disease transmission, engineered bone tissue has been advanced for the repair and reconstruction of bone deformities. Bone tissue is a highly vascularized, dynamic tissue that constantly remodels during an individual's lifetime. Bone tissue engineering is aimed at stimulating the creation of new, functional bone by combining biomaterials, cells, and factor treatment synergistically. This article provides a review of wollastonite's biomaterial application in bone tissue engineering. This work includes an explanation of wollastonite minerals including mining, raw materials for the synthesis of artificial wollastonite with various methods, its biocompatibility, and biomedical applications. Future perspectives are also addressed, along with topics like bone tissue engineering, the qualities optimal bone scaffolds must have, and the way a scaffold is designed can have a big impact on how the body reacts.
Collapse
Affiliation(s)
- Chirotaw Getem Zenebe
- Department of Chemical Engineering, Kombolcha Institute of Technology, Wollo University, P.O. Box: 208, Kombolcha, Ethiopia
| |
Collapse
|
31
|
Assem NZ, Pazmiño VFC, Caliente EA, Dalben GDS, Soares S, Santiago Júnior JF, de Almeida ALPF, de Almeida ALPF. Bone substitutes vs. autogenous bone graft for regeneration of the anterior maxillary alveolar process with horizontal bone resorption: systematic review. J ORAL IMPLANTOL 2022; 49:102-113. [PMID: 36913696 DOI: 10.1563/aaid-joi-d-22-00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/26/2022] [Accepted: 08/20/2022] [Indexed: 12/12/2022]
Abstract
The objective of this systematic review was to identify the available scientific evidence on bone substitutes (BS) compared to autogenous bone grafts (ABG) for regeneration of horizontal bone resorption in the anterior maxillary alveolar process, aiming at rehabilitation with endosseous implants. This review was performed according to the PRISMA guidelines (2020) and registered in the database PROSPERO (CRD: 42017070574) . The databases searched were PUBMED/MEDLINE, EMBASE, SCOPUS, SCIENCE DIRECT, WEB OF SCIENCE, and CENTRAL COCHRANE, in the English language. The Australian National Health and Medical Research Council (NHMRC) and Cochrane Risk of Bias Tool were used to assess the study's quality and risk of bias. 544 papers were found. After the selection process, six studies were selected for review. A total of 182 patients were followed for a period of 6 to 48 months. The mean age of patients was 46.46 years, 152 implants were installed in the anterior region. Two studies achieved a reduced graft and implant failure rate, while the remaining four studies had no losses. It may be concluded that both the use of ABG and some BS are viable alternatives for the rehabilitation with implants in individuals with anterior horizontal bone loss. However, additional RCTs are warranted due to the limited number of papers.
Collapse
Affiliation(s)
- Naida Zanini Assem
- Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | | | - Eliana Aparecida Caliente
- Postgraduate Student at the Department of Dentistry, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Gisele da Silva Dalben
- Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Simone Soares
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Joel Ferreira Santiago Júnior
- Sacred Heart University - Bauru Assistant Professor Health Sciences 10-50 Irmã Arminda BRAZIL Bauru São Paulo 17011160 551421077112
| | - Ana Lúcia Pompéia Fraga de Almeida
- Associate Professor, Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | | |
Collapse
|
32
|
Zhao Z, Liu J, Weir MD, Schneider A, Ma T, Oates TW, Xu HHK, Zhang K, Bai Y. Periodontal ligament stem cell-based bioactive constructs for bone tissue engineering. Front Bioeng Biotechnol 2022; 10:1071472. [PMID: 36532583 PMCID: PMC9755356 DOI: 10.3389/fbioe.2022.1071472] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/17/2022] [Indexed: 09/29/2023] Open
Abstract
Objectives: Stem cell-based tissue engineering approaches are promising for bone repair and regeneration. Periodontal ligament stem cells (PDLSCs) are a promising cell source for tissue engineering, especially for maxillofacial bone and periodontal regeneration. Many studies have shown potent results via PDLSCs in bone regeneration. In this review, we describe recent cutting-edge researches on PDLSC-based bone regeneration and periodontal tissue regeneration. Data and sources: An extensive search of the literature for papers related to PDLSCs-based bioactive constructs for bone tissue engineering was made on the databases of PubMed, Medline and Google Scholar. The papers were selected by three independent calibrated reviewers. Results: Multiple types of materials and scaffolds have been combined with PDLSCs, involving xeno genic bone graft, calcium phosphate materials and polymers. These PDLSC-based constructs exhibit the potential for bone and periodontal tissue regeneration. In addition, various osteo inductive agents and strategies have been applied with PDLSCs, including drugs, biologics, gene therapy, physical stimulation, scaffold modification, cell sheets and co-culture. Conclusoin: This review article demonstrates the great potential of PDLSCs-based bioactive constructs as a promising approach for bone and periodontal tissue regeneration.
Collapse
Affiliation(s)
- Zeqing Zhao
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Jin Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Michael D. Weir
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, United States
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Thomas W. Oates
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, United States
| | - Hockin H. K. Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Ilyas K, Akhtar MA, Ammar EB, Boccaccini AR. Surface Modification of 3D-Printed PCL/BG Composite Scaffolds via Mussel-Inspired Polydopamine and Effective Antibacterial Coatings for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238289. [PMID: 36499786 PMCID: PMC9738435 DOI: 10.3390/ma15238289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/12/2023]
Abstract
A wide variety of composite scaffolds with unique geometry, porosity and pore size can be fabricated with versatile 3D printing techniques. In this work, we fabricated 3D-printed composite scaffolds of polycaprolactone (PCL) incorporating bioactive glass (BG) particles (13-93 and 13-93B3 compositions) by using fused deposition modeling (FDM). The scaffolds were modified with a "mussel-inspired surface coating" to regulate biological properties. The chemical and surface properties of scaffolds were analyzed by Fourier transform infrared spectroscopy (FTIR), contact angle and scanning electron microscopy (SEM). Polydopamine (PDA) surface-modified composite scaffolds exhibited attractive properties. Firstly, after the surface modification, the adhesion of a composite coating based on gelatin incorporated with strontium-doped mesoporous bioactive glass (Sr-MBGNs/gelatin) was significantly improved. In addition, cell attachment and differentiation were promoted, and the antibacterial properties of the scaffolds were increased. Moreover, the bioactivity of these scaffolds was also significantly influenced: a hydroxyapatite layer formed on the scaffold surface after 3 days of immersion in SBF. Our results suggest that the promoting effect of PDA coating on PCL-BG scaffolds leads to improved scaffolds for bone tissue engineering.
Collapse
|
34
|
Meesuk L, Suwanprateeb J, Thammarakcharoen F, Tantrawatpan C, Kheolamai P, Palang I, Tantikanlayaporn D, Manochantr S. Osteogenic differentiation and proliferation potentials of human bone marrow and umbilical cord-derived mesenchymal stem cells on the 3D-printed hydroxyapatite scaffolds. Sci Rep 2022; 12:19509. [PMID: 36376498 PMCID: PMC9663507 DOI: 10.1038/s41598-022-24160-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising candidate for bone repair. However, the maintenance of MSCs injected into the bone injury site remains inefficient. A potential approach is to develop a bone-liked platform that incorporates MSCs into a biocompatible 3D scaffold to facilitate bone grafting into the desired location. Bone tissue engineering is a multistep process that requires optimizing several variables, including the source of cells, osteogenic stimulation factors, and scaffold properties. This study aims to evaluate the proliferation and osteogenic differentiation potentials of MSCs cultured on 2 types of 3D-printed hydroxyapatite, including a 3D-printed HA and biomimetic calcium phosphate-coated 3D-printed HA. MSCs from bone marrow (BM-MSCs) and umbilical cord (UC-MSCs) were cultured on the 3D-printed HA and coated 3D-printed HA. Scanning electron microscopy and immunofluorescence staining were used to examine the characteristics and the attachment of MSCs to the scaffolds. Additionally, the cell proliferation was monitored, and the ability of cells to differentiate into osteoblast was assessed using alkaline phosphatase (ALP) activity and osteogenic gene expression. The BM-MSCs and UC-MSCs attached to a plastic culture plate with a spindle-shaped morphology exhibited an immunophenotype consistent with the characteristics of MSCs. Both MSC types could attach and survive on the 3D-printed HA and coated 3D-printed HA scaffolds. The MSCs cultured on these scaffolds displayed sufficient osteoblastic differentiation capacity, as evidenced by increased ALP activity and the expression of osteogenic genes and proteins compared to the control. Interestingly, MSCs grown on coated 3D-printed HA exhibited a higher ALP activity and osteogenic gene expression than those cultured on the 3D-printed HA. The finding indicated that BM-MSCs and UC-MSCs cultured on the 3D-printed HA and coated 3D-printed HA scaffolds could proliferate and differentiate into osteoblasts. Thus, the HA scaffolds could provide a suitable and favorable environment for the 3D culture of MSCs in bone tissue engineering. Additionally, biomimetic coating with octacalcium phosphate may improve the biocompatibility of the bone regeneration scaffold.
Collapse
Affiliation(s)
- Ladda Meesuk
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand
| | - Jintamai Suwanprateeb
- grid.425537.20000 0001 2191 4408Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Faungchat Thammarakcharoen
- grid.425537.20000 0001 2191 4408Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Chairat Tantrawatpan
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| | - Pakpoom Kheolamai
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| | - Iyapa Palang
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand
| | - Duangrat Tantikanlayaporn
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| | - Sirikul Manochantr
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| |
Collapse
|
35
|
V. K. AD, Ray S, Arora U, Mitra S, Sionkowska A, Jaiswal AK. Dual drug delivery platforms for bone tissue engineering. Front Bioeng Biotechnol 2022; 10:969843. [PMID: 36172012 PMCID: PMC9511792 DOI: 10.3389/fbioe.2022.969843] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
The dual delivery platforms used in bone tissue engineering provide supplementary bioactive compounds that include distinct medicines and growth factors thereby aiding enhanced bone regeneration. The delivery of these compounds can be adjusted for a short or prolonged time based on the requirement by altering various parameters of the carrier platform. The platforms thus used are fabricated to mimic the niche of the bone microenvironment, either in the form of porous 3D structures, microspheres, or films. Thus, this review article focuses on the concept of dual drug delivery platform and its importance, classification of various platforms for dual drug delivery specific to bone tissue engineering, and finally highlights the foresight into the future direction of these techniques for better clinical applications.
Collapse
Affiliation(s)
- Anupama Devi V. K.
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, India
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
| | - Sarbajit Ray
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
| | - Udita Arora
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
| | - Sunrito Mitra
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
| | | | - Amit Kumar Jaiswal
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, India
- *Correspondence: Amit Kumar Jaiswal,
| |
Collapse
|
36
|
In Vivo Application of Silica-Derived Inks for Bone Tissue Engineering: A 10-Year Systematic Review. Bioengineering (Basel) 2022; 9:bioengineering9080388. [PMID: 36004914 PMCID: PMC9404869 DOI: 10.3390/bioengineering9080388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
As the need for efficient, sustainable, customizable, handy and affordable substitute materials for bone repair is critical, this systematic review aimed to assess the use and outcomes of silica-derived inks to promote in vivo bone regeneration. An algorithmic selection of articles was performed following the PRISMA guidelines and PICO method. After the initial selection, 51 articles were included. Silicon in ink formulations was mostly found to be in either the native material, but associated with a secondary role, or to be a crucial additive element used to dope an existing material. The inks and materials presented here were essentially extrusion-based 3D-printed (80%), and, overall, the most investigated animal model was the rabbit (65%) with a femoral defect (51%). Quality (ARRIVE 2.0) and risk of bias (SYRCLE) assessments outlined that although a large majority of ARRIVE items were “reported”, most risks of bias were left “unclear” due to a lack of precise information. Almost all studies, despite a broad range of strategies and formulations, reported their silica-derived material to improve bone regeneration. The rising number of publications over the past few years highlights Si as a leverage element for bone tissue engineering to closely consider in the future.
Collapse
|
37
|
Design Strategies and Biomimetic Approaches for Calcium Phosphate Scaffolds in Bone Tissue Regeneration. Biomimetics (Basel) 2022; 7:biomimetics7030112. [PMID: 35997432 PMCID: PMC9397031 DOI: 10.3390/biomimetics7030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Bone is a complex biologic tissue, which is extremely relevant for various physiological functions, in addition to movement, organ protection, and weight bearing. The repair of critical size bone defects is a still unmet clinical need, and over the past decades, material scientists have been expending efforts to find effective technological solutions, based on the use of scaffolds. In this context, biomimetics which is intended as the ability of a scaffold to reproduce compositional and structural features of the host tissues, is increasingly considered as a guide for this purpose. However, the achievement of implants that mimic the very complex bone composition, multi-scale structure, and mechanics is still an open challenge. Indeed, despite the fact that calcium phosphates are widely recognized as elective biomaterials to fabricate regenerative bone scaffolds, their processing into 3D devices with suitable cell-instructing features is still prevented by insurmountable drawbacks. With respect to biomaterials science, new approaches maybe conceived to gain ground and promise for a substantial leap forward in this field. The present review provides an overview of physicochemical and structural features of bone tissue that are responsible for its biologic behavior. Moreover, relevant and recent technological approaches, also inspired by natural processes and structures, are described, which can be considered as a leverage for future development of next generation bioactive medical devices.
Collapse
|
38
|
Mohammad Gholami, Tarverdi A, Gholami A. The Effect of Vanillic Acid on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in Wistar Male Rats. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022030074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Arifin N, Sudin I, Ngadiman NHA, Ishak MSA. A Comprehensive Review of Biopolymer Fabrication in Additive Manufacturing Processing for 3D-Tissue-Engineering Scaffolds. Polymers (Basel) 2022; 14:2119. [PMID: 35632000 PMCID: PMC9147259 DOI: 10.3390/polym14102119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 01/25/2023] Open
Abstract
The selection of a scaffold-fabrication method becomes challenging due to the variety in manufacturing methods, biomaterials and technical requirements. The design and development of tissue engineering scaffolds depend upon the porosity, which provides interconnected pores, suitable mechanical strength, and the internal scaffold architecture. The technology of the additive manufacturing (AM) method via photo-polymerization 3D printing is reported to have the capability to fabricate high resolution and finely controlled dimensions of a scaffold. This technology is also easy to operate, low cost and enables fast printing, compared to traditional methods and other additive manufacturing techniques. This article aims to review the potential of the photo-polymerization 3D-printing technique in the fabrication of tissue engineering scaffolds. This review paper also highlights the comprehensive comparative study between photo-polymerization 3D printing with other scaffold fabrication techniques. Various parameter settings that influence mechanical properties, biocompatibility and porosity behavior are also discussed in detail.
Collapse
Affiliation(s)
- Nurulhuda Arifin
- Quality Engineering, Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur (UniKL), Persiaran Sinaran Ilmu, Bandar Seri Alam 81750, Johor, Malaysia;
| | - Izman Sudin
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru 81310, Johor, Malaysia;
| | - Nor Hasrul Akhmal Ngadiman
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru 81310, Johor, Malaysia;
| | - Mohamad Shaiful Ashrul Ishak
- Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, Kampus Pauh Putra, Arau 02600, Perlis, Malaysia;
| |
Collapse
|
40
|
Liu C, Tan D, Chen X, Liao J, Wu L. Research on Graphene and Its Derivatives in Oral Disease Treatment. Int J Mol Sci 2022; 23:ijms23094737. [PMID: 35563128 PMCID: PMC9104291 DOI: 10.3390/ijms23094737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
Oral diseases present a global public health problem that imposes heavy financial burdens on individuals and health-care systems. Most oral health conditions can be treated in their early stage. Even if the early symptoms of oral diseases do not seem to cause significant discomfort, prompt treatment is essential for preventing their progression. Biomaterials with superior properties enable dental therapies with applications in restoration, therapeutic drug/protein delivery, and tissue regeneration. Graphene nanomaterials have many unique mechanical and physiochemical properties and can respond to the complex oral microenvironment, which includes oral microbiota colonization and high masticatory force. Research on graphene nanomaterials in dentistry, especially in caries, periodontitis therapy, and implant coatings, is progressing rapidly. Here, we review the development of graphene and its derivatives for dental disease therapy.
Collapse
Affiliation(s)
- Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (C.L.); (X.C.)
| | - Dan Tan
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China;
| | - Xiaoli Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (C.L.); (X.C.)
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, West China School & Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.L.); (L.W.)
| | - Leng Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430030, China
- Correspondence: (J.L.); (L.W.)
| |
Collapse
|
41
|
Wang C, Ma Z, Yuan K, Ji T. Using scaffolds as drug delivery systems to treat bone tumor. NANOTECHNOLOGY 2022; 33:212002. [PMID: 35092950 DOI: 10.1088/1361-6528/ac5017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Surgery is the principal strategy to treat osteosarcoma and other types of bone tumors, but it causes bone defects that cannot be healed spontaneously. After surgery, patients still need to receive radiotherapy and/or chemotherapy to prevent tumor recurrence and metastasis, which leads to systemic side effects. Bone scaffolds exhibit the potentials to load cargos (drugs or growth factors) and act as drug delivery systems (DDSs) in the osteosarcoma postoperative treatment. This review introduces current types of bone scaffolds and highlights representative works using scaffolds as DDSs to treat osteosarcomas. Challenges and perspectives in the scaffold-based DDSs are also discussed. This review may provide references to develop effective and safe strategies for osteosarcoma postoperative treatment.
Collapse
Affiliation(s)
- Caifeng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zijiu Ma
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kemeng Yuan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
42
|
Kareem MM, Tanner KE. Methods of producing three dimensional electrospun scaffolds for bone tissue engineering: A review. Proc Inst Mech Eng H 2022; 236:9544119211069463. [PMID: 35048771 DOI: 10.1177/09544119211069463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Bone is a dynamic, living tissue that exists and renews itself continuously in a 3D manner. Nevertheless, complex clinical conditions require a bone substitute to replace the defective bone and/or accelerate bone healing. Bone tissue engineering aims to treat bone defects that fail to heal on their own. Electrospinning provides an opportunity to create nano- to micro-fibrous scaffolds that mimic the architecture of the natural extracellular matrix (ECM) with high porosity and large specific surface area. Despite these advantages, traditional electrospun meshes can only provide a 2D architecture for cell attachment and proliferation rather than the 3D attachment in native tissue. Fabrication of 3D electrospun scaffolds for bone tissue regeneration is a challenging task, which has attracted significant attention over the past couple of decades. This review highlights recent strategies used to produce 3D electrospun/co-electrospun scaffolds for bone tissue applications describing the materials and procedures. It also considers combining conventional and coaxial electrospinning with other scaffold manufacturing techniques to produce 3D structures which have the potential to engineer missing bone in the human body.Graphical abstract[Formula: see text].
Collapse
Affiliation(s)
- Muna M Kareem
- Department of Medical Instrumentation Techniques Engineering, Dijlah University College, Baghdad, Iraq
| | - K E Tanner
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| |
Collapse
|
43
|
Pires T, Dunlop JWC, Fernandes PR, Castro APG. Challenges in computational fluid dynamics applications for bone tissue engineering. Proc Math Phys Eng Sci 2022; 478:20210607. [PMID: 35153613 PMCID: PMC8791047 DOI: 10.1098/rspa.2021.0607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bone injuries or defects that require invasive surgical treatment are a serious clinical issue, particularly when it comes to treatment success and effectiveness. Accordingly, bone tissue engineering (BTE) has been researching the use of computational fluid dynamics (CFD) analysis tools to assist in designing optimal scaffolds that better promote bone growth and repair. This paper aims to offer a comprehensive review of recent studies that use CFD analysis in BTE. The mechanical and fluidic properties of a given scaffold are coupled to each other via the scaffold architecture, meaning an optimization of one may negatively affect the other. For example, designs that improve scaffold permeability normally result in a decreased average wall shear stress. Linked with these findings, it appears there are very few studies in this area that state a specific application for their scaffolds and those that do are focused on in vitro bioreactor environments. Finally, this review also demonstrates a scarcity of studies that combine CFD with optimization methods to improve scaffold design. This highlights an important direction of research for the development of the next generation of BTE scaffolds.
Collapse
Affiliation(s)
- Tiago Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - John W C Dunlop
- MorphoPhysics Group, Department of the Chemistry and Physics of Materials, University of Salzburg, Salzburg, Austria
| | | | - André P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
44
|
Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, Nourbakhsh MS. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng 2021; 7:5397-5431. [PMID: 34797061 DOI: 10.1021/acsbiomaterials.1c00920] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Large injuries to bones are still one of the most challenging musculoskeletal problems. Tissue engineering can combine stem cells, scaffold biomaterials, and biofactors to aid in resolving this complication. Therefore, this review aims to provide information on the recent advances made to utilize the potential of biomaterials for making bone scaffolds and the assisted stem cell therapy and use of biofactors for bone tissue engineering. The requirements and different types of biomaterials used for making scaffolds are reviewed. Furthermore, the importance of stem cells and biofactors (growth factors and extracellular vesicles) in bone regeneration and their use in bone scaffolds and the key findings are discussed. Lastly, some of the main obstacles in bone tissue engineering and future trends are highlighted.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Mahsa Janmohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan 3513119111, Iran
| | - Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Athar Talebi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Parisa Koohsarian
- Department of Biochemistry and Hematology, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | | |
Collapse
|
45
|
Liu Q, Lu WF, Zhai W. Toward stronger robocast calcium phosphate scaffolds for bone tissue engineering: A mini-review and meta-analysis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112578. [PMID: 35525758 DOI: 10.1016/j.msec.2021.112578] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/10/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022]
Abstract
Among different treatments of critical-sized bone defects, bone tissue engineering (BTE) is a fast-developing strategy centering around the fabrication of scaffolds that can stimulate tissue regeneration and provide mechanical support at the same time. This area has seen an extensive application of bioceramics, such as calcium phosphate, for their bioactivity and resemblance to the composition of natural bones. Moreover, recent advances in additive manufacturing (AM) have unleashed enormous potential in the fabrication of BTE scaffolds with tailored porous structures as well as desired biological and mechanical properties. Robocasting is an AM technique that has been widely applied to fabricate calcium phosphate scaffolds, but most of these scaffolds do not meet the mechanical requirements for load-bearing BTE scaffolds. In light of this challenge, various approaches have been utilized to mechanically strengthen the scaffolds. In this review, the current state of knowledge and existing research on robocasting of calcium phosphate scaffolds are presented. Applying the Gibson-Ashby model, this review provides a meta-analysis from the published literature of the compressive strength of robocast calcium phosphate scaffolds. Furthermore, this review evaluates different approaches to the mechanical strengthening of robocast calcium phosphate scaffolds. The aim of this review is to provide insightful data and analysis for future research on mechanical strengthening of robocast calcium phosphate scaffolds and ultimately for their clinical applications.
Collapse
Affiliation(s)
- Quyang Liu
- Department of Mechanical Engineering, National University of Singapore, Singapore 117411, Singapore
| | - Wen Feng Lu
- Department of Mechanical Engineering, National University of Singapore, Singapore 117411, Singapore; The NUS Centre for Additive Manufacturing, National University of Singapore, Singapore 117581, Singapore
| | - Wei Zhai
- Department of Mechanical Engineering, National University of Singapore, Singapore 117411, Singapore; The NUS Centre for Additive Manufacturing, National University of Singapore, Singapore 117581, Singapore.
| |
Collapse
|
46
|
Evdokimov PV, Tikhonova SA, Kiseleva AK, Filippov YY, Novoseletskaya ES, Efimenko AY, Putlayev VI. Effect of the Pore Size on the Biological Activity of β-Ca3(PO4)2-Based Resorbable Macroporous Ceramic Materials Obtained by Photopolymerization. RUSS J INORG CHEM+ 2021. [PMCID: PMC8601372 DOI: 10.1134/s0036023621110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract
The effect of the pore size of macroporous ceramic materials based on β-Ca3(PO4)2 on their biological activity was studied. The formation conditions of macroporous ceramics with a porosity of >50% and a specified pore size were determined. The effect of components of the light-curing emulsion on the pore size in the final macroporous ceramics was studied. The biocompatibility of β-Ca3(PO4)2-based macroporous ceramics was demonstrated in in vitro biomedical assays. The effect of pore size of macroporous ceramic materials on mesenchymal stromal cell proliferation and viability was established.
Collapse
Affiliation(s)
- P. V. Evdokimov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow State University, 119991 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
47
|
Wassif RK, Elkayal M, Shamma RN, Elkheshen SA. Recent advances in the local antibiotics delivery systems for management of osteomyelitis. Drug Deliv 2021; 28:2392-2414. [PMID: 34755579 PMCID: PMC8583938 DOI: 10.1080/10717544.2021.1998246] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic osteomyelitis is a challenging disease due to its serious rates of mortality and morbidity while the currently available treatment strategies are suboptimal. In contrast to the adopted systemic treatment approaches after surgical debridement in chronic osteomyelitis, local drug delivery systems are receiving great attention in the recent decades. Local drug delivery systems using special carriers have the pros of enhancing the feasibility of penetration of antimicrobial agents to bone tissues, providing sustained release and localized concentrations of the antimicrobial agents in the infected area while avoiding the systemic side effects and toxicity. Most important, the incorporation of osteoinductive and osteoconductive materials in these systems assists bones proliferation and differentiation, hence the generation of new bone materials is enhanced. Some of these systems can also provide mechanical support for the long bones during the healing process. Most important, if the local systems are designed to be injectable to the affected site and biodegradable, they will reduce the level of invasion required for implantation and can win the patients’ compliance and reduce the healing period. They will also allow multiple injections during the course of therapy to guard against the side effect of the long-term systemic therapy. The current review presents different available approaches for delivering antimicrobial agents for the treatment of osteomyelitis focusing on the recent advances in researches for local delivery of antibiotics.HIGHLIGHTS Chronic osteomyelitis is a challenging disease due to its serious mortality and morbidity rates and limited effective treatment options. Local drug delivery systems are receiving great attention in the recent decades. Osteoinductive and osteoconductive materials in the local systems assists bones proliferation and differentiation Local systems can be designed to provide mechanical support for the long bones during the healing process. Designing the local system to be injectable to the affected site and biodegradable will reduces the level of invasion and win the patients’ compliance.
Collapse
Affiliation(s)
- Reem Khaled Wassif
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Maha Elkayal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Seham A Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
48
|
Singh YP, Dasgupta S, Bhaskar R, Agrawal AK. Monetite addition into gelatin based freeze-dried scaffolds for improved mechanical and osteogenic properties. Biomed Mater 2021; 16. [PMID: 34624878 DOI: 10.1088/1748-605x/ac2e17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/12/2022]
Abstract
This study was aimed at fabricating monetite nanoparticles impregnated gelatin-based composite scaffold to improve the chemical, mechanical and osteogenic properties. Scaffolds were fabricated using a freeze-drying technique of the slurry containing a varying proportion of gelatin and monetite. The lyophilized scaffolds were cross-linked with 0.25 wt% glutaraldehyde solution to obtain a three-dimensional (3D) interconnected porous microstructure with improved mechanical strength and stability in a physiological environment. The fabricated scaffolds possessed >80% porosity having 3D interconnected pore size distribution varying between 65 and 270 μm as evident from field emission scanning electron microscopy analysis. The average pore size of the prepared scaffold decreased with monetite addition as reflected in values of 210 μm for pure gelatin GM0scaffold and 118 μm registered by GM20scaffold. On increase in monetite content up to 20 wt% of total polymer concentration, compressive strength of the prepared scaffolds was increased from 0.92 MPa in pure gelatin-based GM0to 2.43 MPa in GM20. Up to 20 wt% of monetite reinforced composite scaffolds exhibited higher bioactivity as compared to that observed in pure gelatin-based GM0scaffold. Simulated body fluid (SBF) study and alizarin red assays confirmed higher bio-mineralization ability of GM20as compared to that exhibited by GM0. Human preosteoblast cells (MG-63) revealed higher degree of filopodia and lamellipodia extensions and excellent spreading behavior to anchor with GM20matrix as compared to that onto GM0and GM10. MTT assay and alkaline phosphatase staining study indicated that MG-63 cells found a more conducive environment to proliferate and subsequently differentiate into osteoblast lineage when exposed to GM20scaffolds rather than to GM0and GM10. This study revealed that up to 20 wt% monetite addition in gelatin could improve the performance of prepared scaffolds and serve as an efficient candidate to repair and regenerate bone tissues at musculoskeletal defect sites.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Rakesh Bhaskar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | | |
Collapse
|
49
|
Polylactide, Processed by a Foaming Method Using Compressed Freon R134a, for Tissue Engineering. Polymers (Basel) 2021; 13:polym13203453. [PMID: 34685212 PMCID: PMC8539307 DOI: 10.3390/polym13203453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Fabricating polymeric scaffolds using cost-effective manufacturing processes is still challenging. Gas foaming techniques using supercritical carbon dioxide (scCO2) have attracted attention for producing synthetic polymer matrices; however, the high-pressure requirements are often a technological barrier for its widespread use. Compressed 1,1,1,2-tetrafluoroethane, known as Freon R134a, offers advantages over CO2 in manufacturing processes in terms of lower pressure and temperature conditions and the use of low-cost equipment. Here, we report for the first time the use of Freon R134a for generating porous polymer matrices, specifically polylactide (PLA). PLA scaffolds processed with Freon R134a exhibited larger pore sizes, and total porosity, and appropriate mechanical properties compared with those achieved by scCO2 processing. PLGA scaffolds processed with Freon R134a were highly porous and showed a relatively fragile structure. Human mesenchymal stem cells (MSCs) attached to PLA scaffolds processed with Freon R134a, and their metabolic activity increased during culturing. In addition, MSCs displayed spread morphology on the PLA scaffolds processed with Freon R134a, with a well-organized actin cytoskeleton and a dense matrix of fibronectin fibrils. Functionalization of Freon R134a-processed PLA scaffolds with protein nanoparticles, used as bioactive factors, enhanced the scaffolds' cytocompatibility. These findings indicate that gas foaming using compressed Freon R134a could represent a cost-effective and environmentally friendly fabrication technology to produce polymeric scaffolds for tissue engineering approaches.
Collapse
|
50
|
Easter QT. Biopolymer hydroxyapatite composite materials: Adding fluorescence lifetime imaging microscopy to the characterization toolkit. NANO SELECT 2021. [DOI: 10.1002/nano.202100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Quinn T. Easter
- Department of Innovation and Technology Research ADA Science & Research Institute Gaithersburg MD USA
| |
Collapse
|