1
|
Jafarzadeh S, Nemati M, Zandvakili R, Jafarzadeh A. Modulation of M1 and M2 macrophage polarization by metformin: Implications for inflammatory diseases and malignant tumors. Int Immunopharmacol 2025; 151:114345. [PMID: 40024215 DOI: 10.1016/j.intimp.2025.114345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Macrophages perform an essential role in the body's defense mechanisms and tissue homeostasis. These cells exhibit plasticity and are categorized into two phenotypes, including classically activated/M1 pro-inflammatory and alternatively activated/M2 anti-inflammatory phenotypes. Functional deviation in macrophage polarization occurs in different pathological conditions that need correction. In addition to antidiabetic impacts, metformin also possesses multiple biological activities, including immunomodulatory, anti-inflammatory, anti-tumorigenic, anti-aging, cardioprotective, hepatoprotective, and tissue-regenerative properties. Metformin can influence the polarization of macrophages toward M1 and M2 phenotypes. The ability of metformin to support M2 polarization and suppress M1 polarization could enhance its anti-inflammatory properties and potentiate its protective effects in conditions such as chronic inflammatory diseases, atherosclerosis, and obesity. However, in metformin-treated tumors, the proportion of M2 macrophages is decreased, while the frequency ratio of M1 macrophages is increased, indicating that metformin can modulate macrophage polarization from a pro-tumoral M2 state to an anti-tumoral M1 phenotype in malignancies. Metformin affects macrophage polarization through AMPK-dependent and independent pathways involving factors, such as NF-κB, mTOR, ATF, AKT/AS160, SIRT1, STAT3, HO-1, PGC-1α/PPAR-γ, and NLRP3 inflammasome. By modulating cellular metabolism and apoptosis, metformin can also influence macrophage polarization. This review provides comprehensive evidence regarding metformin's effects on macrophage polarization and the underlying mechanisms. The polarization-inducing capabilities of metformin may provide significant therapeutic applications in various inflammatory diseases and malignant tumors.
Collapse
Affiliation(s)
- Sara Jafarzadeh
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran; Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Lai G, Zhao X, Chen Y, Xie T, Su Z, Lin J, Chen Y, Chen K. The origin and polarization of Macrophages and their role in the formation of the Pre-Metastatic niche in osteosarcoma. Int Immunopharmacol 2025; 150:114260. [PMID: 39938167 DOI: 10.1016/j.intimp.2025.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
Osteosarcoma, a primary malignant bone tumor commonly found in adolescents, is highly aggressive, with a high rate of disability and mortality. It has a profound negative impact on both the physical and psychological well-being of patients. The standard treatment approach, comprising surgery and chemotherapy, has seen little improvement in patient outcomes over the past several decades. Once relapse or metastasis occurs, prognosis worsens significantly. Therefore, there is an urgent need to explore new therapeutic approaches. In recent years, the successful application of immunotherapy in certain cancers has demonstrated its potential in the field of cancer treatment. Macrophages are the predominant components of the immune microenvironment in osteosarcoma and represent critical targets for immunotherapy. Macrophages exhibit dual characteristics; while they play a key role in maintaining tumor-promoting properties within the microenvironment, such as inflammation, angiogenesis, and immune suppression, they also possess antitumor potential as part of the innate immune system. A deeper understanding of macrophages and their relationship with osteosarcoma is essential for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Guisen Lai
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Xinyi Zhao
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Yuanquan Chen
- Department of Orthopaedic Sun Yat-sen Memorial Hospital Sun Yat-sen University PR China
| | - Tianwei Xie
- The People's Hospital of Hezhou, No.150 Xiyue Street, Hezhou 542800 PR China
| | - Zepeng Su
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Jiajie Lin
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Yuanhai Chen
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Keng Chen
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China.
| |
Collapse
|
3
|
Sergi CM, Burnett M, Jantuan E, Hakoum M, Beug ST, Leng R, Shen F. Digging Through the Complexities of Immunological Approaches in Emerging Osteosarcoma Therapeutics: A Comprehensive Narrative Review with Updated Clinical Trials. Biomedicines 2025; 13:664. [PMID: 40149640 PMCID: PMC11940054 DOI: 10.3390/biomedicines13030664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Osteosarcoma (OS) is the predominant mesenchymal primary malignant bone tumor in oncology and pathology, impacting a wide age range from adolescents to older adults. It frequently advances to lung metastasis, ultimately resulting in the mortality of OS patients. The precise pathological pathways responsible for OS progression and dissemination are not fully understood due to its heterogeneity. The integration of surgery with neoadjuvant and postoperative chemotherapy has significantly increased the 5-year survival rate to more than 70% for patients with localized OS tumors. However, about 30% of patients experience local recurrence and/or metastasis. Hence, there is a requirement for innovative therapeutic approaches to address the limitations of traditional treatments. Immunotherapy has garnered increasing attention as a promising avenue for tumors resistant to standard therapies, including OS, despite the underlying mechanisms of disease progression and dissemination remaining not well elucidated. Immunotherapy may not have been suitable for use in patients with OS because of the tumor's immunosuppressive microenvironment and limited immunogenicity. Nevertheless, there are immune-based treatments now being developed for clinical use, such as bispecific antibodies, chimeric antigen receptor T cells, and immune checkpoint inhibitors. Also, additional immunotherapy techniques including cytokines, vaccines, and modified-Natural Killer (NK) cells/macrophages are in the early phases of research but will certainly be popular subjects in the nearest future. Our goal in writing this review was to spark new lines of inquiry into OS immunotherapy by summarizing the findings from both preclinical and current clinical studies examining different approaches.
Collapse
Affiliation(s)
- Consolato M. Sergi
- Division of Anatomic Pathology, Department of Laboratory Medicine, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Laboratory Medicine, Stollery Children’s Hospital, University of Alberta, Edmonton, AB T6G 2R3, Canada (E.J.); (F.S.)
| | - Mervin Burnett
- Department of Laboratory Medicine, Stollery Children’s Hospital, University of Alberta, Edmonton, AB T6G 2R3, Canada (E.J.); (F.S.)
| | - Eugeniu Jantuan
- Department of Laboratory Medicine, Stollery Children’s Hospital, University of Alberta, Edmonton, AB T6G 2R3, Canada (E.J.); (F.S.)
| | - Mariam Hakoum
- CHEO Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (M.H.)
| | - Shawn T. Beug
- CHEO Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (M.H.)
| | - Roger Leng
- Department of Laboratory Medicine, Stollery Children’s Hospital, University of Alberta, Edmonton, AB T6G 2R3, Canada (E.J.); (F.S.)
| | - Fan Shen
- Department of Laboratory Medicine, Stollery Children’s Hospital, University of Alberta, Edmonton, AB T6G 2R3, Canada (E.J.); (F.S.)
| |
Collapse
|
4
|
Sierra J, de León UAP, Padilla-Longoria P. Tumor microenvironment noise-induced polarization: the main challenge in macrophages' immunotherapy for cancer. Mol Cell Biochem 2025:10.1007/s11010-025-05205-2. [PMID: 39827422 DOI: 10.1007/s11010-025-05205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Disturbance of epigenetic processes can lead to altered gene function and malignant cellular transformation. In particular, changes in the epigenetic landscape are a central topic in cancer biology. The initiation and progression of cancer are now recognized to involve both epigenetic and genetic alterations. In this paper, we study the epigenetic mechanism (related to the tumor microenvironment) responsible for increasing tumor-associated macrophages that promote the occurrence and metastasis of tumor cells, support tumor angiogenesis, inhibit T-cell-mediated anti-tumor immune response, and lead to tumor progression. We show that the tumor benefits from the macrophages' high degree of plasticity and larger epigenetic basins corresponding to phenotypes that favor cancer development through a process that we call noise-induced polarization. Moreover, we propose a mechanism to promote the appropriate epigenetic stability for immunotherapies involving macrophages, which includes p53 and APR-246 (eprenetapopt). Our results show that a combination therapy may be necessary to ensure the proper epigenetic stability of macrophages, which otherwise will contribute to cancer progression. On the other hand, we conclude that macrophages may remain in the anti-tumoral state in types of cancer that exhibit less TP53 mutation, like colorectal cancer; in these cases, macrophages' immunotherapy may be more suitable. We finally mention the relevance of the epigenetic potential (Waddington's landscape) as the backbone for our study, which encapsulates the biological information of the system.
Collapse
Affiliation(s)
- Jesus Sierra
- CIMAT, De Jalisco s/n, Gto., 36023, Guanajuato, Mexico
| | - Ugo Avila-Ponce de León
- Schiffer Group, Vaccine and Infectious Disease, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Pablo Padilla-Longoria
- IIMAS, Universidad Nacional Autonoma de Mexico (UNAM), Ciudad Universitaria, 04510, Mexico City, Mexico.
| |
Collapse
|
5
|
Xu HZ, Chen FX, Li K, Zhang Q, Han N, Li TF, Xu YH, Chen Y, Chen X. Anti-lung cancer synergy of low-dose doxorubicin and PD-L1 blocker co-delivered via mild photothermia-responsive black phosphorus. Drug Deliv Transl Res 2025; 15:269-290. [PMID: 38597996 DOI: 10.1007/s13346-024-01595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
We have previously identified a latent interaction mechanism between non-small cell lung cancer cells (NSCLCC) and their associated macrophages (TAM) mediated by mutual paracrine activation of the HMGB1/RAGE/NF-κB signaling. Activation of this mechanism results in TAM stimulation and PD-L1 upregulation in the NSCLCC. In the present work, we found that free DOX at a low concentration that does not cause DNA damage could activate the HMGB1/RAGE/NF-κB/PD-L1 pathway byinducing oxidative stress. It was thus proposed that a combination of low-dose DOX and a PD-L1 blocker delivered in the NSCLC tumor would achieve synergistic TAM stimulation and thereby synergetic anti-tumor potency. To prove this idea, DOX and BMS-202 (a PD-L1 blocker) were loaded to black phosphorus (BP) nanoparticles after dosage titration to yield the BMS-202/DOX@BP composites that rapidly disintegrated and released drug cargo upon mild photothermal heating at 40 °C. In vitro experiments then demonstrated that low-dose DOX and BMS-202 delivered via BMS-202/DOX@BP under mild photothermia displayed enhanced tumor cell toxicity with a potent synergism only in the presence of TAM. This enhanced synergism was due to an anti-tumor M1-like TAM phenotype that was synergistically induced by low dose DOX plus BMS-202 only in the presence of the tumor cells, indicating the damaged tumor cells to be the cardinal contributor to the M1-like TAM stimulation. In vivo, BMS-202/DOX@BP under mild photothermia exhibited targeted delivery to NSCLC graft tumors in mice and synergistic anti-tumor efficacy of delivered DOX and BMS-202. In conclusion, low-dose DOX in combination with a PD-L1 blocker is an effective strategy to turn TAM against their host tumor cells exploiting the HMGB1/RAGE/NF-κB/PD-L1 pathway. The synergetic actions involved highlight the value of TAM and the significance of modulating tumor cell-TAM cross-talk in tumor therapy. Photothermia-responsive BP provides an efficient platform to translate this strategy into targeted, efficacious tumor therapy.
Collapse
Affiliation(s)
- Hua-Zhen Xu
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Fei-Xiang Chen
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Ke Li
- Center for Lab Teaching, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Quan Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Ning Han
- School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Hubei, 442000, China
| | - Tong-Fei Li
- School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Hubei, 442000, China
| | - Yong-Hong Xu
- Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yun Chen
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China.
| | - Xiao Chen
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430072, China.
| |
Collapse
|
6
|
Qi D, Zhang H, Xiong F, Zhang G, Tao B, Wang C. Renal cell carcinoma and macrophage research: A bibliometric analysis (2004-2023). Medicine (Baltimore) 2024; 103:e40954. [PMID: 39686418 DOI: 10.1097/md.0000000000040954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
To analyze hotspots and trends in renal cell carcinoma (RCC)-macrophage research using bibliometric analysis, although numerous studies on macrophages in RCC have been recently reported, understanding the progressive trends in this field remains challenging. Publications focused on macrophages in RCC were extracted from the Web of Science Core Collection. VOSviewer, Citespace, and Bibliometrics online platforms were used to visualize hot topics and global trends in RCC-macrophage research. In total, 778 papers were collected. China produced the most articles; however, the United States accounted for the largest number of citations. Oncology journals published the most articles, and these were cited most frequently. Based on keyword analysis, "prognosis," "immunotherapy," "tumor microenvironment," and "immune infiltration" represented the primary research hotspots. In summary, RCC-macrophage studies have emerged as a key research focus; particularly, incorporating multiomics data and applying artificial intelligence for predictive modeling have demonstrated significant potential. Our study suggests that the resistance mechanism of immune checkpoint inhibitors and the interaction between macrophages and immune checkpoint inhibitors will be pivotal areas for future research.
Collapse
Affiliation(s)
- Dingtian Qi
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
7
|
Costa S, Rodrigues J, Vieira C, Dias S, Viegas J, Castro F, Sarmento B, Leite Pereira C. Advancing osteosarcoma 3D modeling in vitro for novel tumor microenvironment-targeted therapies development. J Control Release 2024; 376:1068-1085. [PMID: 39505219 DOI: 10.1016/j.jconrel.2024.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Osteosarcoma (OS) represents one of the most common primary bone cancers affecting children and young adults. The available treatments have remained unimproved for the past decades, hampered by the poor knowledge of OS etiology/pathophysiology and the lack of innovative, predictive and biologically relevant in vitro models, that can recapitulate the 3D OS tumor microenvironment (TME). Here, we report the development and characterization of an innovative 3D model of OS, composed of OS tumor cells, immune cells (macrophages) and mesenchymal stem cells (MSCs), that formed a multicellular tissue spheroid (MCTS). This fully humanized 3D model was shown to accurately mimic the native histological features of OS, while innately leading to the polarization of macrophages towards an M2-like phenotype, highly aggressive and pro-tumor profile. Upon the exposure to immunomodulatory molecules, the MCTS were shown to be responsive by shifting macrophages polarization, and dramatically altering the TME secretome. In agreement, when treated with immunomodulatory/stimulatory nanoparticles (NPSs), we were able to revert the TME secretome towards an anti-inflammatory profile. This study establishes an advanced 3D OS model capable of shedding light on macrophages and MSCs contributions to disease progression, paving the way for the development of innovative therapeutic approaches targeting the OS TME, while providing a biologically relevant in vitro tool for the efficacy screening of novel OS therapeutic approaches.
Collapse
Affiliation(s)
- Sofia Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - João Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carolina Vieira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; FMUP - Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Sofia Dias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Juliana Viegas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Flávia Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Catarina Leite Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
8
|
Charalambous A, Mpekris F, Panagi M, Voutouri C, Michael C, Gabizon AA, Stylianopoulos T. Tumor Microenvironment Reprogramming Improves Nanomedicine-Based Chemo-Immunotherapy in Sarcomas. Mol Cancer Ther 2024; 23:1555-1567. [PMID: 38940284 DOI: 10.1158/1535-7163.mct-23-0772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Sarcomas are a heterogeneous group of rare cancers that originate in soft tissues or bones. Their complexity and tendency for metastases make treatment challenging, highlighting the need for new therapeutic approaches to improve patient survival. The difficulties in treating these cancers primarily stem from abnormalities within the tumor microenvironment (TME), which leads to reduced blood flow and oxygen levels in tumors. Consequently, this hampers the effective delivery of drugs to tumors and diminishes treatment efficacy despite higher toxic doses of chemotherapy. In this study, we tested the mechanotherapeutic ketotifen combined with either pegylated liposomal doxorubicin (PLD) or pegylated liposomal coencapsulated alendronate-doxorubicin (PLAD) plus anti-programmed cell death protein 1 antibody in mouse models of fibrosarcoma and osteosarcoma. We found that ketotifen successfully reprogrammed the TME by reducing tumor stiffness and increasing perfusion, proven by changes measured by shear-wave elastography and contrast-enhanced ultrasound, respectively, and enhanced the therapeutic efficacy of our nanomedicine-based chemo-immunotherapy protocols. Furthermore, we observed a trend toward improved antitumor responses when nano-chemotherapy is given alongside anti-programmed cell death protein 1 and when the immunomodulator alendronate was present in the treatment. We next investigated the mechanisms of action of this combination. Ketotifen combined with nanomedicine-based chemo-immunotherapy increased T-cell infiltration, specifically cytotoxic CD8+ T cells and CD4+ T helper cells, and decreased the number of regulatory T cells. In addition, the combination also altered the polarization of tumor-associated macrophages, favoring the M1 immune-supportive phenotype over the M2 immunosuppressive phenotype. Collectively, our findings provide evidence that ketotifen-induced TME reprogramming can improve the efficacy of nanomedicine-based chemo-immunotherapy in sarcomas.
Collapse
Affiliation(s)
- Antonia Charalambous
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Christina Michael
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Alberto A Gabizon
- Nano-Oncology Research Center, Department of Medical Oncology, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
9
|
Robbins GM, Vue YY, Rahrmann EP, Moriarity BS. Osteosarcoma: A comprehensive review of model systems and experimental therapies. MEDICAL RESEARCH ARCHIVES 2024; 12:6000. [PMID: 39916749 PMCID: PMC11801376 DOI: 10.18103/mra.v12i11.6000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Osteosarcoma (OSA) is a highly malignant bone tumor for which more than 50% of patients have or will develop metastatic disease, resulting in an abysmal 5-year survival rate of <29%. Despite the advances in science and medicine, the etiology of OSA remains unclear. Similarly, the standard of care (surgery and chemotherapy) has changed little in the past 5 decades. This stagnation in treatment options is in part due to inadequate preclinical models for OSA; many of these models are oversimplified and do not account for the complexities of patient disease. Further, current treatments are harsh and invasive (e.g. high dose chemotherapy and potential limb removal) leading to a reduction in a patient's quality of life (e.g. hearing loss, infertility, neuropathy), highlighting a need for developing more effective treatment strategies. Many experimental therapies have been tested in the preclinical and preclinical setting, with varying degrees of success. In this review, we will focus on pediatric and adolescent OSA, highlighting current animal models and experimental therapies.
Collapse
Affiliation(s)
- Gabrielle M Robbins
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55455, USA
| | - Young Y Vue
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric P Rahrmann
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Mantovani A, Marchesi F, Di Mitri D, Garlanda C. Macrophage diversity in cancer dissemination and metastasis. Cell Mol Immunol 2024; 21:1201-1214. [PMID: 39402303 PMCID: PMC11528009 DOI: 10.1038/s41423-024-01216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024] Open
Abstract
Invasion and metastasis are hallmarks of cancer. In addition to the well-recognized hematogenous and lymphatic pathways of metastasis, cancer cell dissemination can occur via the transcoelomic and perineural routes, which are typical of ovarian and pancreatic cancer, respectively. Macrophages are a universal major component of the tumor microenvironment and, in established tumors, promote growth and dissemination to secondary sites. Here, we review the role of tumor-associated macrophages (TAMs) in cancer cell dissemination and metastasis, emphasizing the diversity of myeloid cells in different tissue contexts (lungs, liver, brain, bone, peritoneal cavity, nerves). The generally used models of lung metastasis fail to capture the diversity of pathways and tissue microenvironments. A better understanding of TAM diversity in different tissue contexts may pave the way for tailored diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Alberto Mantovani
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy.
- William Harvey Research Institute, Queen Mary University, London, UK.
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Diletta Di Mitri
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| |
Collapse
|
11
|
Mao J, Li HM, Huang Z. Comprehensive analysis of the expression and prognosis for cyclin-dependent protein kinase family in osteosarcoma. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-24. [PMID: 39357043 DOI: 10.1080/15257770.2024.2410957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Cyclin-dependent protein kinases (CDKs) have been suggested as prospective therapeutic targets because they control processes vital to the survival and growth of cancer cells. However, research on the varied CDK expression profiles and prognostic factors in osteosarcoma is still lacking. METHODS The osteosarcoma microRNA (GSE65071) and gene expression profiles were retrieved from the Gene Expression Omnibus (GEO) database (GSE42352). A substantial variation in prognosis was discovered in CDKs using the TARGET database. Cytoscape was used to construct the miRNAs-CDKs network, and functional and pathway enrichment analyses were completed. It was looked at how immune checkpoint genes, m6A-related genes, and CDKs interact. RESULTS In patients with osteosarcoma compared to normal samples, CDK1-5, CDK18, CDK16, and CDK17 gene expression levels were considerably greater, whereas CDK7-9, CDK11B, CDK16, and CDK20 gene expression levels were significantly lower. Patients with osteosarcoma who had low CDK3 and 18 gene levels or high CDK6, 9 gene levels were predicted to have a favorable prognosis and a long-life expectancy. Immune checkpoint genes, m6A-related gene expression, and CDKs expression all showed some connection. Finally, a network of crucial CDKs and miRNAs was constructed. CONCLUSION According to our research, CDK3, 6, 9, and 18 have been identified as possible therapeutic targets for osteosarcoma, and CDKs may have a role in controlling m6A mutations in tumor cells as well as immune checkpoint regulation.
Collapse
Affiliation(s)
- Jianshui Mao
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, P R China
| | - Hui-Min Li
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, P R China
| | - Zhidan Huang
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, P R China
| |
Collapse
|
12
|
Huang Y, Cao D, Zhang M, Yang Y, Niu G, Tang L, Shen Z, Zhang Z, Bai Y, Min D, He A. Exploring the impact of PDGFD in osteosarcoma metastasis through single-cell sequencing analysis. Cell Oncol (Dordr) 2024; 47:1715-1733. [PMID: 38652223 PMCID: PMC11467127 DOI: 10.1007/s13402-024-00949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE The overall survival rate for metastatic osteosarcoma hovers around 20%. Responses to second-line chemotherapy, targeted therapies, and immunotherapies have demonstrated limited efficacy in metastatic osteosarcoma. Our objective is to validate differentially expressed genes and signaling pathways between non-metastatic and metastatic osteosarcoma, employing single-cell RNA sequencing (scRNA-seq) and additional functional investigations. We aim to enhance comprehension of metastatic mechanisms and potentially unveil a therapeutic target. METHODS scRNA-seq was performed on two primary osteosarcoma lesions (1 non-metastatic and 1 metastatic). Seurat package facilitated dimensionality reduction and cluster identification. Copy number variation (CNV) was predicted using InferCNV. CellChat characterized ligand-receptor-based intercellular communication networks. Differentially expressed genes underwent GO function enrichment analysis and GSEA. Validation was achieved through the GSE152048 dataset, which identified PDGFD-PDGFRB as a common ligand-receptor pair with significant contribution. Immunohistochemistry assessed PDGFD and PDGFRB expression, while multicolor immunofluorescence and flow cytometry provided insight into spatial relationships and the tumor immune microenvironment. Kaplan-Meier survival analysis compared metastasis-free survival and overall survival between high and low levels of PDGFD and PDGFRB. Manipulation of PDGFD expression in primary osteosarcoma cells examined invasion abilities and related markers. RESULTS Ten clusters encompassing osteoblasts, osteoclasts, osteocytes, fibroblasts, pericytes, endothelial cells, myeloid cells, T cells, B cells, and proliferating cells were identified. Osteoblasts, osteoclasts, and osteocytes exhibited heightened CNV levels. Ligand-receptor-based communication networks exposed significant fibroblast crosstalk with other cell types, and the PDGF signaling pathway was activated in non-metastatic osteosarcoma primary lesion. These results were corroborated by the GSE152048 dataset, confirming the prominence of PDGFD-PDGFRB as a common ligand-receptor pair. Immunohistochemistry demonstrated considerably greater PDGFD expression in non-metastatic osteosarcoma tissues and organoids, correlating with extended metastasis-free and overall survival. PDGFRB expression showed no significant variation between non-metastatic and metastatic osteosarcoma, nor strong correlations with survival times. Multicolor immunofluorescence suggested co-localization of PDGFD with PDGFRB. Flow cytometry unveiled a highly immunosuppressive microenvironment in metastatic osteosarcoma. Manipulating PDGFD expression demonstrated altered invasive abilities and marker expressions in primary osteosarcoma cells from both non-metastatic and metastatic lesions. CONCLUSIONS scRNA-seq illuminated the activation of the PDGF signaling pathway in primary lesion of non-metastatic osteosarcoma. PDGFD displayed an inhibitory effect on osteosarcoma metastasis, likely through the suppression of the EMT signaling pathway.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Oncology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongyan Cao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Biliary-Pancreatic Surgery, the Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Manxue Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Biliary-Pancreatic Surgery, the Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yue Yang
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China
| | | | - Lina Tang
- Department of Oncology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zan Shen
- Department of Oncology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhichang Zhang
- Department of Orthopaedic, Shanghai Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yueqing Bai
- Department of Pathology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Daliu Min
- Department of Oncology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aina He
- Department of Oncology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Hashemi M, Mohandesi Khosroshahi E, Tanha M, Khoushab S, Bizhanpour A, Azizi F, Mohammadzadeh M, Matinahmadi A, Khazaei Koohpar Z, Asadi S, Taheri H, Khorrami R, Ramezani Farani M, Rashidi M, Rezaei M, Fattah E, Taheriazam A, Entezari M. Targeting autophagy can synergize the efficacy of immune checkpoint inhibitors against therapeutic resistance: New promising strategy to reinvigorate cancer therapy. Heliyon 2024; 10:e37376. [PMID: 39309904 PMCID: PMC11415696 DOI: 10.1016/j.heliyon.2024.e37376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/29/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Immune checkpoints are a set of inhibitory and stimulatory molecules/mechanisms that affect the activity of immune cells to maintain the existing balance between pro- and anti-inflammatory signaling pathways and avoid the progression of autoimmune disorders. Tumor cells can employ these checkpoints to evade immune system. The discovery and development of immune checkpoint inhibitors (ICIs) was thereby a milestone in the area of immuno-oncology. ICIs stimulate anti-tumor immune responses primarily by disrupting co-inhibitory signaling mechanisms and accelerate immune-mediated killing of tumor cells. Despite the beneficial effects of ICIs, they sometimes encounter some degrees of therapeutic resistance, and thereby do not effectively act against tumors. Among multiple combination therapies have been introduced to date, targeting autophagy, as a cellular degradative process to remove expired organelles and subcellular constituents, has represented with potential capacities to overcome ICI-related therapy resistance. It has experimentally been illuminated that autophagy induction blocks the immune checkpoint molecules when administered in conjugation with ICIs, suggesting that autophagy activation may restrict therapeutic challenges that ICIs have encountered with. However, the autophagy flux can also provoke the immune escape of tumors, which must be considered. Since the conventional FDA-approved ICIs have designed and developed to target programmed cell death receptor/ligand 1 (PD-1/PD-L1) as well as cytotoxic T lymphocyte-associated molecule 4 (CTLA-4) immune checkpoint molecules, we aim to review the effects of autophagy targeting in combination with anti-PD-1/PD-L1- and anti-CTLA-4-based ICIs on cancer therapeutic resistance and tumor immune evasion.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Anahita Bizhanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farnaz Azizi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Mohammadzadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hengameh Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Rezaei
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
14
|
Yang Y, Zhou Y, Wang J, Zhou Y, Watowich SS, Kleinerman ES. CD103 + cDC1 Dendritic Cell Vaccine Therapy for Osteosarcoma Lung Metastases. Cancers (Basel) 2024; 16:3251. [PMID: 39409873 PMCID: PMC11482638 DOI: 10.3390/cancers16193251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND We generated a CD103+DC vaccine using K7M3 OS cell lysates (cDCV) and investigated its ability to induce regression of primary tumors, established lung metastases, and a systemic immune response. METHODS A bilateral tumor model was used to assess cDCV therapy efficacy and systemic immunity induction. K7M3 cells were injected into mice bilaterally. Right-sided tumors received PBS (control) or cDCV. Left-sided tumors were untreated. Tumor growth was compared between the vaccine-treated and untreated tumor on the contralateral side and compared to the control group. The immune cell profiles of the tumors, and tumor-draining lymph nodes (TdLNs) and spleen were evaluated. To determine the efficacy of systemic cDCV therapy against established lung metastases, K7M3 cells were injected intratibially. Leg amputation was performed 5 weeks later. Mice were treated intravenously with PBS or cDCV and euthanized 6 weeks later. Lungs, TdLNs and spleen were collected. The number and size of the lung nodules were quantified. The immune cell profile of tumor, and lymph nodes and spleen were also evaluated. Using this same model, we evaluated the effect of cDCV + anti-CTLA-4. RESULTS cDCV therapy inhibited the treated and untreated tumors and increased the number of T-cells in these tumors and the lymph nodes compared to control-treated mice. Systemic cDCV therapy administered following amputation decreased the size and number of lung metastases, and increased T-cell numbers in the tumor and lymph nodes. Combining anti-CTLA-4 with cDCV therapy increased cDCV efficacy against lung metastases. CONCLUSIONS Intratumor cDCV generated a systemic immune response inhibiting the growth of both the treated and untreated tumors, with increased T-cells in the tumor and lymph nodes. Systemic cDCV was effective against established lung metastases. Efficacy was increased by anti-CTLA4. cDCVs may provide a novel therapeutic approach for relapsed/metastatic OS patients.
Collapse
Affiliation(s)
- Yuanzheng Yang
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (Y.Y.); (Y.Z.)
| | - Yifan Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (Y.Z.); (S.S.W.)
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - You Zhou
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (Y.Y.); (Y.Z.)
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (Y.Z.); (S.S.W.)
| | - Eugenie S. Kleinerman
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (Y.Y.); (Y.Z.)
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|
15
|
Sun C, Li S, Ding J. Biomaterials-Boosted Immunotherapy for Osteosarcoma. Adv Healthc Mater 2024; 13:e2400864. [PMID: 38771618 DOI: 10.1002/adhm.202400864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that emanates from mesenchymal cells, commonly found in the epiphyseal end of long bones. The highly recurrent and metastatic nature of OS poses significant challenges to the efficacy of treatment and negatively affects patient prognosis. Currently, available clinical treatment strategies primarily focus on maximizing tumor resection and reducing localized symptoms rather than the complete eradication of malignant tumor cells to achieve ideal outcomes. The biomaterials-boosted immunotherapy for OS is characterized by high effectiveness and a favorable safety profile. This therapeutic approach manipulates the tumor microenvironments at the cellular and molecular levels to impede tumor progression. This review delves into the mechanisms underlying the treatment of OS, emphasizing biomaterials-enhanced tumor immunity. Moreover, it summarizes the immune cell phenotype and tumor microenvironment regulation, along with the ability of immune checkpoint blockade to activate the autoimmune system. Gaining a profound comprehension of biomaterials-boosted OS immunotherapy is imperative to explore more efficacious immunotherapy protocols and treatment options in this setting.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Shuqiang Li
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
16
|
Ma L, Yang H, Wu S, Wang C, Mei J. DPP7 as a Potential Therapeutic Marker for Colorectal Cancer. J Cancer 2024; 15:5425-5439. [PMID: 39247602 PMCID: PMC11375546 DOI: 10.7150/jca.93112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/09/2024] [Indexed: 09/10/2024] Open
Abstract
Background: Dipeptidyl peptidase 7 (DPP7) is overexpressed in various tumors, but its role in colorectal cancer (CRC) remains unclear. Study the Impact of DPP7 on malignant progression and tumor immunity in CRC. Methods: We utilized Tumor Immune Estimation Resource 2.0 (TIMER2.0) and The Cancer Genome Atlas (TCGA) analyses to assess the expression of DPP7 in tumors and validated it through immunohistochemistry and immunoblotting. Additionally, we investigated the relationship between DPP7 and immune cell infiltration using single-sample Gene Set Enrichment Analysis (ssGSEA) analysis. Finally, the impact of DPP7 on cell proliferation, invasion, migration, and immune cell function in the tumor microenvironment was confirmed through cell experiments and animal studies. Results: DPP7 is highly expressed in CRC, and high expression of DPP7 is associated with poor prognosis. Cell experiments demonstrate that overexpression of DPP7 enhances the proliferation, migration, and invasion capabilities of colorectal cancer cells both in vitro and in vivo. Immune infiltration analysis and co-culture results indicate that overexpression of DPP7 suppresses the immune cell's cytotoxic function against tumors in the tumor microenvironment. Conclusions: DPP7 promotes the malignant potential of colorectal cancer cells and inhibits tumor immune function, thereby promoting the progression of colorectal cancer.
Collapse
Affiliation(s)
- Li Ma
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Molecular Pathology, Nanchang University, Nanchang, China
| | - Hailang Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuwei Wu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chunliang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinhong Mei
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Molecular Pathology, Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Tatsuno R, Komohara Y, Pan C, Kawasaki T, Enomoto A, Jubashi T, Kono H, Wako M, Ashizawa T, Haro H, Ichikawa J. Surface Markers and Chemokines/Cytokines of Tumor-Associated Macrophages in Osteosarcoma and Other Carcinoma Microenviornments-Contradictions and Comparisons. Cancers (Basel) 2024; 16:2801. [PMID: 39199574 PMCID: PMC11353089 DOI: 10.3390/cancers16162801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents. Prognosis is improving with advances in multidisciplinary treatment strategies, but the development of new anticancer agents has not, and improvement in prognosis for patients with pulmonary metastases has stalled. In recent years, the tumor microenvironment (TME) has gained attention as a therapeutic target for cancer. The immune component of OS TME consists mainly of tumor-associated macrophages (TAMs). They exhibit remarkable plasticity, and their phenotype is influenced by the TME. In general, surface markers such as CD68 and CD80 show anti-tumor effects, while CD163 and CD204 show tumor-promoting effects. Surface markers have potential value as diagnostic and prognostic biomarkers. The cytokines and chemokines produced by TAMs promote tumor growth and metastasis. However, the role of TAMs in OS remains unclear to date. In this review, we describe the role of TAMs in OS by focusing on TAM surface markers and the TAM-produced cytokines and chemokines in the TME, and by comparing their behaviors in other carcinomas. We found contrary results from different studies. These findings highlight the urgency for further research in this field to improve the stalled OS prognosis percentages.
Collapse
Affiliation(s)
- Rikito Tatsuno
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Tomonori Kawasaki
- Department of Pathology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan;
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan;
| | - Takahiro Jubashi
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hiroyuki Kono
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Masanori Wako
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Tomoyuki Ashizawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| |
Collapse
|
18
|
Du X, Liu H, Shi J, Yang P, Gu Y, Meng J. The PD-1 /PD-L1 signaling pathway regulates decidual macrophage polarization and may participate in preeclampsia. J Reprod Immunol 2024; 164:104258. [PMID: 38810587 DOI: 10.1016/j.jri.2024.104258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/11/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
The pathogenesis of preeclampsia (PE) has not been elucidated, but immune imbalance is known to be one of the main pathogeneses. Dysfunction of decidual macrophages can lead to PE, and the PD-1/PD-L1 signaling pathway is associated with macrophage polarization. However, the relationship between the influence of the PD-1/PD-L1 signaling pathway on macrophage polarization and the onset of PE has not been fully elucidated. In this study, we analyzed the expression of CD68, iNOS, CD206, PD-1 and PD-L1 and the coexpression of CD68+PD-1+ and CD68+PD-L1+ in the decidual tissue of PE patients (n= 18) and healthy pregnant women (n=20). We found that CD68 and iNOS expression was increased in the decidua of PE patients (P < 0.001) and that CD206, PD-1 and PD-L1 expression and CD68+PD-1+ and CD68+PD-L1+ coexpression were decreased (P < 0.001). To assess the influence of the PD-1/PD-L1 signaling pathway on macrophage polarization, we added an anti-PD-1 mAb (pembrolizumab) or an anti-PD-L1 mAb (durvalumab) during THP-1 differentiation into M1 macrophages. Then, we detected the polarization of CD68+CD80+ macrophages and the expression of iNOS. To examine the effect of macrophage polarization on the invasion ability of trophoblast cells, macrophages were cocultured with HTR8/SVneo cells, and the invasion ability of HTR8/SVneo cells was detected via transwell assays. We found that CD68+CD80+ macrophage polarization was enhanced (P<0.05) and that iNOS expression was greater (P<0.01) in the pembrolizumab group. In the durvalumab group, CD68+CD80+ macrophage polarization and iNOS expression were also increased (P<0.05 and P<0.001). Compared with that in the untreated group, the aggressiveness of HTR8/SVneo cells was decreased in both the pembrolizumab group (P < 0.01) and the durvalumab group (P < 0.001). These findings indicate that the PD-1/PD-L1 signaling pathway may play an important role in the pathogenesis of PE by influencing macrophage polarization and reducing the invasion ability of trophoblasts.
Collapse
Affiliation(s)
- Xiaoxiao Du
- Department of Obstetrics and Gynecology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan 250001, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250001, China
| | - Haixia Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250001, China
| | - Jingjing Shi
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250001, China
| | - Ping Yang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250001, China
| | - Yongzhong Gu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250001, China
| | - Jinlai Meng
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250001, China; Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan 250001, China.
| |
Collapse
|
19
|
Chang J, Quan S, Tian S, Wang S, Li S, Guo Y, Yang T, Yang X. Niraparib enhances antitumor immunity and contributes to the efficacy of PD-L1 blockade in cervical cancer. J Cancer Res Clin Oncol 2024; 150:304. [PMID: 38869633 PMCID: PMC11176249 DOI: 10.1007/s00432-024-05819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE With the development of immunotherapy research, the role of immune checkpoint blockade (ICB) in the treatment of cervical cancer has been emphasized, but many patients still can't receive long-term benefits from ICB. Poly ADP ribose polymerase inhibitor (PARPi) has been proved to exert significant antitumor effects in multiple solid tumors. Whether cervical cancer patients obtain better benefits from the treatment regimen of PARPi combined with ICB remains unclear. METHODS The alteration of PD-L1 expression induced by niraparib in cervical cancer cells and its underlying mechanism were assessed by western blot and immunofluorescence and quantitative real-time polymerase chain reaction (qRT-PCR).The regulation of PTEN by KDM5A was confirmed using Chromatin immunoprecipitation (ChIP) assay and RNA interference. Analyzing the relationship between PD-L1 and immune effector molecules through searching online databases. Therapeutic efficacy of niraparib, PD-L1 blockade or combination was assessed in syngeneic tumor model. The changes of immune cells and cytokines in vivo was detected by immunohistochemistry (IHC) and qRT-PCR. RESULTS We found that niraparib upregulated PD-L1 expression and potentiated the antitumor effects of PD-L1 blockade in a murine cervical cancer model. Niraparib inhibited the Pten expression by increasing the abundance of KDM5A, which expanded PD-L1 abundance through activating the PI3K-AKT-S6K1 pathway. PD-L1 was positively correlated with immune effector molecules including TNF-α, IFN-γ, granzyme A and granzyme B based on biological information analysis. Niraparib increased the infiltration of CD8+ T cells and the level of IFN-γ, granzyme B in vivo. CONCLUSION Our findings demonstrates the regulation of niraparib on local immune microenvironment of cervical cancer, and provides theoretical basis for supporting the combination of PARPi and PD-L1 blockade as a potential treatment for cervical cancer.
Collapse
Affiliation(s)
- Jie Chang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shimin Quan
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sijuan Tian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shirui Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Simin Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanping Guo
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ting Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
20
|
Teng JS, Wang Y. An immune-related eleven-RNA signature-drived risk score model for prognosis of osteosarcoma metastasis. Sci Rep 2024; 14:13401. [PMID: 38862526 PMCID: PMC11166963 DOI: 10.1038/s41598-024-54292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/10/2024] [Indexed: 06/13/2024] Open
Abstract
This study aimed to determine an immune-related RNA signature as a prognostic marker, in this study, we developed a risk score model for predicting the prognosis of osteosarcoma metastasis. We first downloaded the clinical information and expression data of osteosarcoma samples from the UCSC Xena and GEO databases, of which the former was the training set and the latter was the validation set. Immune infiltration was assessed using the ssGSEA and ESTIMATE algorithms, and the osteosarcoma samples were divided into the Immunity_L and Immunity_H groups. Then, eleven RNAs were identified as the optimal prognostic RNA signatures using LASSO Cox regression analysis for establishing a risk score (RS) model. Kaplan-Meier approach indicated the high-risk group exhibited a shorter survival. Furthermore, we analyzed the tumor metastasis, age, and RS model status were determined to be independent clinical prognostic factors using Cox regression analysis. Decision curve analysis (DCA) indicated that the prognostic factor + RS model had the best net benefit. Finally, nine tumor-infiltrating immune cells (TIICs) showed significant differences in abundance between high- and low-risk groups via CIBERSORT deconvolution algorithm. In conclusion, the immune-related eleven-RNA signature be could served as a potential prognostic biomarker for osteosarcoma metastasis.
Collapse
Affiliation(s)
- Jia-Song Teng
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No. 23 Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu, China
| | - Yang Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, Jilin, China.
| |
Collapse
|
21
|
Yu T, Jiang W, Wang Y, Zhou Y, Jiao J, Wu M. Chimeric antigen receptor T cells in the treatment of osteosarcoma (Review). Int J Oncol 2024; 64:40. [PMID: 38390935 PMCID: PMC10919759 DOI: 10.3892/ijo.2024.5628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Osteosarcoma (OS) is a frequently occurring primary bone tumor, mostly affecting children, adolescents and young adults. Before 1970, surgical resection was the main treatment method for OS, but the clinical results were not promising. Subsequently, the advent of chemotherapy has improved the prognosis of patients with OS. However, there is still a high incidence of metastasis or recurrence, and chemotherapy has several side effects, thus making the 5‑year survival rate markedly low. Recently, chimeric antigen receptor T (CAR‑T) cell therapy represents an alternative immunotherapy approach with significant potential for hematologic malignancies. Nevertheless, the application of CAR‑T cells in the treatment of OS faces numerous challenges. The present review focused on the advances in the development of CAR‑T cells to improve their clinical efficacy, and discussed ways to overcome the difficulties faced by CAR T‑cell therapy for OS.
Collapse
Affiliation(s)
- Tong Yu
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Weibo Jiang
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yang Wang
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Ying Zhou
- Department of Operating Room, The Third Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Minfei Wu
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
22
|
Wang L, Zhang H, Li Y, Li L. TPX2 influences the regulation of macrophage polarization via the NF-κB pathway in lung adenocarcinoma. Life Sci 2024; 340:122437. [PMID: 38266813 DOI: 10.1016/j.lfs.2024.122437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer. Xklp2 targeting protein (TPX2), a crucial oncogene exhibits high expression levels in various cancers including LUAD, may serve as a potential target for clinical intervention. Additionally, the growth of lung cancer is significantly influenced by the tumor microenvironment (TME). However, there have been no reports on experiments investigating TPX2 in tumor-infiltrating immune cells (TIICs) in LUAD. Therefore, we verified the effect of TPX2 on macrophage polarization both in vitro and in vivo. METHODS We silenced TPX2 the gene in A549 cells and collected supernatants for macrophage culture. We then used flow cytometry and Western blot analysis to assess macrophage polarization. Additionally, we verified the expression of macrophage colony-stimulating factor (M-CSF), and CD163 by immunohistochemistry (IHC) in tissue specimens from LUAD patients. Finally, pathways related to TPX2's regulatory function in macrophage polarization were analyzed through whole genome sequencing, Western blotting, and immunofluorescence (IF). RESULTS Silencing TPX2 can affect the ratio of CD80+ M1/CD163+ M2 and reduce the polarization of M0 macrophages to CD163+ M2 macrophages mainly by inhibiting the expression of M-CSF. In human LUAD tissues, the expression levels of TPX2, M-CSF and CD163 increased with the degree of differentiation. Silencing TPX2 inhibits the NF-κB signaling pathway, thereby reducing the expression of M-CSF, and affecting macrophage polarization. CONCLUSION Silencing TPX2 can inhibit the expression of M-CSF by blocking the NF-κB signal, thereby reducing CD163+ M2 macrophage polarization. The TPX2/NF-κB/M-CSF signaling axis may be involved in regulating macrophage polarization.
Collapse
Affiliation(s)
- Lina Wang
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
23
|
Wang Y, Cho JW, Kastrunes G, Buck A, Razimbaud C, Culhane AC, Sun J, Braun DA, Choueiri TK, Wu CJ, Jones K, Nguyen QD, Zhu Z, Wei K, Zhu Q, Signoretti S, Freeman GJ, Hemberg M, Marasco WA. Immune-restoring CAR-T cells display antitumor activity and reverse immunosuppressive TME in a humanized ccRCC mouse model. iScience 2024; 27:108879. [PMID: 38327771 PMCID: PMC10847687 DOI: 10.1016/j.isci.2024.108879] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
One of the major barriers that have restricted successful use of chimeric antigen receptor (CAR) T cells in the treatment of solid tumors is an unfavorable tumor microenvironment (TME). We engineered CAR-T cells targeting carbonic anhydrase IX (CAIX) to secrete anti-PD-L1 monoclonal antibody (mAb), termed immune-restoring (IR) CAR G36-PDL1. We tested CAR-T cells in a humanized clear cell renal cell carcinoma (ccRCC) orthotopic mouse model with reconstituted human leukocyte antigen (HLA) partially matched human leukocytes derived from fetal CD34+ hematopoietic stem cells (HSCs) and bearing human ccRCC skrc-59 cells under the kidney capsule. G36-PDL1 CAR-T cells, haploidentical to the tumor cells, had a potent antitumor effect compared to those without immune-restoring effect. Analysis of the TME revealed that G36-PDL1 CAR-T cells restored active antitumor immunity by promoting tumor-killing cytotoxicity, reducing immunosuppressive cell components such as M2 macrophages and exhausted CD8+ T cells, and enhancing T follicular helper (Tfh)-B cell crosstalk.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Jae-Won Cho
- Harvard Medical School, Boston, MA 02215, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gabriella Kastrunes
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alicia Buck
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Cecile Razimbaud
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Aedin C. Culhane
- School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
| | - Jiusong Sun
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David A. Braun
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06525, USA
| | - Toni K. Choueiri
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Catherine J. Wu
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kristen Jones
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zhu Zhu
- Harvard Medical School, Boston, MA 02215, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Kevin Wei
- Harvard Medical School, Boston, MA 02215, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Quan Zhu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Sabina Signoretti
- Harvard Medical School, Boston, MA 02215, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gordon J. Freeman
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Martin Hemberg
- Harvard Medical School, Boston, MA 02215, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Wayne A. Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
24
|
Zheng C, Li H, Zhao X, Yang S, Zhan J, Liu H, Jiang Y, shi L, Song Y, Lei Y, Yu T, Wang X, Li H, Wang X, Xu Y, Yao Z. Expression of PD-1 mitigates phagocytic activities TAM in osteosarcoma. Heliyon 2024; 10:e23498. [PMID: 38223729 PMCID: PMC10784140 DOI: 10.1016/j.heliyon.2023.e23498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/16/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024] Open
Abstract
The high expression of programmed death 1 (PD-1) is a hallmark of T cell exhaustion, consequently inhibiting the anti-tumor immunity, tumor-associated macrophages (TAMs) aggravate Osteosarcoma (OS) progression. However, PD-1 expression on TAMs in OS metastasis remains unclear. Here, we used scRNA-Seq of 15500 individual cells from human OS lung metastatic lesion, identified thirteen major cell clusters. Our data revealed that tumor-infiltrating lymphocytes (TILs) OS lung metastatic accompanied by accumulation of exhausted T cells and regulatory T cells (Tregs). CD3+ T cells from human OS lung metastatic exhibited lower proliferation than in primary tissue. Importantly, TAMs mainly comprise immunosuppressive M2 phenotype in OS metastasis. Mechanistically, we found that PD-1 of TAMs inhibits the phagocytic potency, further promoting the progression of OS metastasis. Therefore, the study provides a strong technical support for OS immunotherapy based on PD-1 inhibitors.
Collapse
Affiliation(s)
- Chenhong Zheng
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, China
| | - Heng Li
- Department of Thoracic Surgery I&II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, 650118, China
| | - Xiaohui Zhao
- Department of Ultrasound, Hohhot First Hospital, Hohhot City, 010059, Inner Mongolia Autonomous Region, China Ultrasonic Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Siyu Yang
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, China
| | - Jinqin Zhan
- Ultrasonic Department, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Huaie Liu
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Yan Jiang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Li shi
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Yaxian Song
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Yujie Lei
- Department of Thoracic Surgery I&II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, 650118, China
| | - Tingdong Yu
- Department of Thoracic Surgery I&II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, 650118, China
| | - Xiaoxiong Wang
- Molecular Diagnostic Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Hongsheng Li
- Molecular Diagnostic Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Xi Wang
- Department of Thoracic Surgery I&II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, 650118, China
| | - Yushan Xu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, 650118, China
- Department of Cancer Center Office, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| |
Collapse
|
25
|
Lee SI, Kim H, Lim CK, Kim JD, Heo JS, Jung J, Kim C, Chon HJ, Jeon JW. Engagement of CD300c by a novel monoclonal antibody induces the differentiation of monocytes to M1 macrophages. Immunobiology 2024; 229:152780. [PMID: 38159528 DOI: 10.1016/j.imbio.2023.152780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Human CD300c is expressed on various immune or cancer cells and is a novel B7 family member, functioning as an activity modulator on immune cells. To elucidate the function of CD300c, we developed CL7, a human CD300c-specific monoclonal antibody, and assessed its biological activity. The specific binding of CL7 monoclonal antibody against recombinant CD300c antigen was confirmed using enzyme-linked immunosorbent assay and surface plasmon resonance analysis. The binding affinity of CL7 was strong at the sub-nanomolar level. Furthermore, CL7 effectively bound to exogenously expressed CD300c on 293T cells. CL7 antibody differentiated monocytes to M1 macrophages, as evidenced by the upregulated expression of M1-specific cell surface markers and increased secretion of M1-specific cytokines in vitro in THP-1 cells and primary macrophages, as well as the increased population size of M1 macrophages in tumors grafted into mice. Additionally, CL7 treatment upregulated PD-L1 expression on THP-1 cells. We confirmed that the mechanism of M1 macrophage differentiation was through the mitogen-activated protein kinase and NF-κB signaling pathways. CD300c expression on various immune and cancer cells was similar to that of the well-known immune checkpoint PD-L1, suggesting the possibility of CD300c as a novel tumor biomarker. We also confirmed that the tumor size was substantially reduced by CL7 antibody treatment in the CT26 mouse model. Our study supports that CD300c is a potential therapeutic target in immuno-oncology. Overall, the CD300c-specific monoclonal antibody, CL7, is a promising immunotherapeutic agent, and it induces enhanced differentiation of M1 macrophages and/or their infiltration into the tumor microenvironment.
Collapse
Affiliation(s)
- Su In Lee
- CentricsBio Inc., Songpa-gu, Seoul 05836, Republic of Korea
| | - Haneul Kim
- CentricsBio Inc., Songpa-gu, Seoul 05836, Republic of Korea
| | - Chang Ki Lim
- CentricsBio Inc., Songpa-gu, Seoul 05836, Republic of Korea
| | - Jae Dong Kim
- CentricsBio Inc., Songpa-gu, Seoul 05836, Republic of Korea
| | - Jeong Seok Heo
- CentricsBio Inc., Songpa-gu, Seoul 05836, Republic of Korea
| | - Joongoo Jung
- CentricsBio Inc., Songpa-gu, Seoul 05836, Republic of Korea
| | - Chan Kim
- Laboratory of Translational Immuno-Oncology, Medical Oncology, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Hong Jae Chon
- Laboratory of Translational Immuno-Oncology, Medical Oncology, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Jae-Won Jeon
- CentricsBio Inc., Songpa-gu, Seoul 05836, Republic of Korea.
| |
Collapse
|
26
|
Wang C, Xu YH, Xu HZ, Li K, Zhang Q, Shi L, Zhao L, Chen X. PD-L1 blockade TAM-dependently potentiates mild photothermal therapy against triple-negative breast cancer. J Nanobiotechnology 2023; 21:476. [PMID: 38082443 PMCID: PMC10712197 DOI: 10.1186/s12951-023-02240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
The present work was an endeavor to shed light on how mild photothermia possibly synergizes with immune checkpoint inhibition for tumor therapy. We established mild photothermal heating protocols to generate temperatures of 43 °C and 45 °C in both in vitro and in vivo mouse 4T1 triple-negative breast cancer (TNBC) models using polyglycerol-coated carbon nanohorns (CNH-PG) and 808 nm laser irradiation. Next, we found that 1) CNH-PG-mediated mild photothermia (CNH-PG-mPT) significantly increased expression of the immune checkpoint PD-L1 and type-1 macrophage (M1) markers in the TNBC tumors; 2) CNH-PG-mPT had a lower level of anti-tumor efficacy which was markedly potentiated by BMS-1, a PD-L1 blocker. These observations prompted us to explore the synergetic mechanisms of CNH-PG-mPT and BMS-1 in the context of tumor cell-macrophage interactions mediated by PD-L1 since tumor-associated macrophages (TAMs) are a major source of PD-L1 expression in tumors. In vitro, the study then identified two dimensions where BMS-1 potentiated CNH-PG-mPT. First, CNH-PG-mPT induced PD-L1 upregulation in the tumor cells and showed a low level of cytotoxicity which was potentiated by BMS-1. Second, CNH-PG-mPT skewed TAMs towards an M1-like anti-tumor phenotype with upregulated PD-L1, and BMS-1 bolstered the M1-like phenotype. The synergistic effects of BMS-1 and CNH-PG-mPT both on the tumor cells and TAMs were more pronounced when the two cell populations were in co-culture. Further in vivo study confirmed PD-L1 upregulation both in tumor cells and TAMs in the TNBC tumors following treatment of CNH-PG-mPT. Significantly, TAMs depletion largely abolished the anti-TNBC efficacy of CNH-PG-mPT alone and in synergy with BMS-1. Collectively, our findings reveal PD-L1 upregulation to be a key response of TNBC to mild photothermal stress, which plays a pro-survival role in the tumor cells while also acting as a brake on the M1-like activation of the TAMs. Blockade of mPT‑induced PD‑L1 achieves synergistic anti-TNBC efficacy by taking the intrinsic survival edge off the tumor cells on one hand and taking the brakes off the M1-like TAMs on the other. Our findings reveal a novel way (i.e. mild thermia plus PD-L1 blockade) to modulate the TAMs-tumor cell interaction to instigate a mutiny of the TAMs against their host tumor cells.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China
- Grand Pharma (China) Co., Ltd, Hubei, China
| | - Yong-Hong Xu
- Department of Ophthalmology, Institute of Ophthalmological Research, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China
| | - Ke Li
- Center for Lab Teaching, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China
| | - Quan Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China
| | - Lin Shi
- Grand Pharma (China) Co., Ltd, Hubei, China
| | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430072, China.
| |
Collapse
|
27
|
Luo Y, Sun M, Tan L, Li T, Min L. Nano-Based Drug Delivery Systems: Potential Developments in the Therapy of Metastatic Osteosarcoma-A Narrative Review. Pharmaceutics 2023; 15:2717. [PMID: 38140058 PMCID: PMC10747574 DOI: 10.3390/pharmaceutics15122717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Osteosarcoma, a predominant malignant bone tumor, poses significant challenges due to its high metastatic and recurrent nature. Although various therapeutic strategies are currently in use, they often inadequately target osteosarcoma metastasis. This review focuses on the potential of nanoscale drug delivery systems to bridge this clinical gap. It begins with an overview of the molecular mechanisms underlying metastatic osteosarcoma, highlighting the limitations of existing treatments. The review then transitions to an in-depth examination of nanoscale drug delivery technologies, emphasizing their potential to enhance drug bioavailability and reduce systemic toxicity. Central to this review is a discussion of recent advancements in utilizing nanotechnology for the potential intervention of metastatic osteosarcoma, with a critical analysis of several preclinical studies. This review aims to provide insights into the potential applications of nanotechnology in metastatic osteosarcoma therapy, setting the stage for future clinical breakthroughs and innovative cancer treatments.
Collapse
Affiliation(s)
- Yuanrui Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
| | - Minghao Sun
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Linyun Tan
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Tao Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
28
|
Zhu L, Li XJ, Gangadaran P, Jing X, Ahn BC. Tumor-associated macrophages as a potential therapeutic target in thyroid cancers. Cancer Immunol Immunother 2023; 72:3895-3917. [PMID: 37796300 PMCID: PMC10992981 DOI: 10.1007/s00262-023-03549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Macrophages are important precursor cell types of the innate immune system and bridge adaptive immune responses through the antigen presentation system. Meanwhile, macrophages constitute substantial portion of the stromal cells in the tumor microenvironment (TME) (referred to as tumor-associated macrophages, or TAMs) and exhibit conflicting roles in the development, invasion, and metastasis of thyroid cancer (TC). Moreover, TAMs play a crucial role to the behavior of TC due to their high degree of infiltration and prognostic relevance. Generally, TAMs can be divided into two subgroups; M1-like TAMs are capable of directly kill tumor cells, and recruiting and activating other immune cells in the early stages of cancer. However, due to changes in the TME, M2-like TAMs gradually increase and promote tumor progression. This review aims to discuss the impact of TAMs on TC, including their role in tumor promotion, gene mutation, and other factors related to the polarization of TAMs. Finally, we will explore the M2-like TAM-centered therapeutic strategies, including chemotherapy, clinical trials, and combinatorial immunotherapy.
Collapse
Affiliation(s)
- Liya Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Xiu Juan Li
- Department of Radiology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shan-Dong Province, People's Republic of China
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Xiuli Jing
- Center for Life Sciences Research, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shan-Dong Province, 271000, People's Republic of China.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
| |
Collapse
|
29
|
Calvillo-Rodríguez KM, Lorenzo-Anota HY, Rodríguez-Padilla C, Martínez-Torres AC, Scott-Algara D. Immunotherapies inducing immunogenic cell death in cancer: insight of the innate immune system. Front Immunol 2023; 14:1294434. [PMID: 38077402 PMCID: PMC10701401 DOI: 10.3389/fimmu.2023.1294434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer immunotherapies include monoclonal antibodies, cytokines, oncolytic viruses, cellular therapies, and other biological and synthetic immunomodulators. These are traditionally studied for their effect on the immune system's role in eliminating cancer cells. However, some of these therapies have the unique ability to directly induce cytotoxicity in cancer cells by inducing immunogenic cell death (ICD). Unlike general immune stimulation, ICD triggers specific therapy-induced cell death pathways, based on the release of damage-associated molecular patterns (DAMPs) from dying tumour cells. These activate innate pattern recognition receptors (PRRs) and subsequent adaptive immune responses, offering the promise of sustained anticancer drug efficacy and durable antitumour immune memory. Exploring how onco-immunotherapies can trigger ICD, enhances our understanding of their mechanisms and potential for combination strategies. This review explores the complexities of these immunotherapeutic approaches that induce ICD, highlighting their implications for the innate immune system, addressing challenges in cancer treatment, and emphasising the pivotal role of ICD in contemporary cancer research.
Collapse
Affiliation(s)
- Kenny Misael Calvillo-Rodríguez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Helen Yarimet Lorenzo-Anota
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
- The Institute for Obesity Research, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - Cristina Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Ana Carolina Martínez-Torres
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Daniel Scott-Algara
- Département d'Immunologie, Unité de Biologie Cellulaire des Lymphocytes, Pasteur Institute, Paris, France
| |
Collapse
|
30
|
Zając AE, Czarnecka AM, Rutkowski P. The Role of Macrophages in Sarcoma Tumor Microenvironment and Treatment. Cancers (Basel) 2023; 15:5294. [PMID: 37958467 PMCID: PMC10648209 DOI: 10.3390/cancers15215294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Sarcomas are a heterogeneous group of malignant mesenchymal tumors, including soft tissue and bone sarcomas. Macrophages in the tumor microenvironment, involved in immunosuppression and leading to tumor development, are called tumor-associated macrophages (TAMs). TAMs are very important in modulating the microenvironment of sarcomas by expressing specific markers and secreting factors that influence immune and tumor cells. They are involved in many signaling pathways, such as p-STAT3/p-Erk1/2, PI3K/Akt, JAK/MAPK, and JAK/STAT3. TAMs also significantly impact the clinical outcomes of patients suffering from sarcomas and are mainly related to poor overall survival rates among bone and soft tissue sarcomas, for example, chondrosarcoma, osteosarcoma, liposarcoma, synovial sarcoma, and undifferentiated pleomorphic sarcoma. This review summarizes the current knowledge on TAMs in sarcomas, focusing on specific markers on sarcoma cells, cell-cell interactions, and the possibly involved molecular pathways. Furthermore, we discuss the clinical significance of macrophages in sarcomas as a potential target for new therapies, presenting clinical relevance, possible new treatment options, and ongoing clinical trials using TAMs in sarcoma treatment.
Collapse
Affiliation(s)
- Agnieszka E. Zając
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-176 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (P.R.)
| |
Collapse
|
31
|
Kwantwi LB. Overcoming anti-PD-1/PD-L1 immune checkpoint blockade resistance: the role of macrophage, neutrophils and mast cells in the tumor microenvironment. Clin Exp Med 2023; 23:3077-3091. [PMID: 37022584 DOI: 10.1007/s10238-023-01059-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023]
Abstract
In recent years, the anti-PD-1/PD-L1 blockade has become a game changer in cancer treatment following the unprecedented response rate. Regardless of the substantial therapy efficacy across various cancer types, some patients do not still respond to these therapies, indicating that a deeper understanding of the mechanisms of anti-PD-1/PD-L1 resistance is highly important. To overcome such resistance, the tumor-induced immunosuppressive mechanisms have been focused and several suppressor cell populations in the tumor microenvironment have been identified. Among these cells, macrophages, neutrophils, and mast cells are known to play key roles in anti-PD-1/PD-L1 resistance. Hence, gaining control over these innate immune cells can open opportunities for breaking tumor resistance to immune checkpoint inhibitors. Herein, a summary of the role of macrophages, neutrophils, and mast cells in anti-PD-1/PD-L1 resistance has been described. Also, strategies to overcome their therapeutic resistance to anti-PD-1/PD-L1 have been discussed.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Medical Imaging Sciences, Klintaps College of Health and Allied Sciences, Accra, DTD. TDC, 30A Klagon, Com. 19, Tema, Ghana.
| |
Collapse
|
32
|
Banerjee A, Narasimhulu CA, Singla DK. Immune interactions in pembrolizumab (PD-1 inhibitor) cancer therapy and cardiovascular complications. Am J Physiol Heart Circ Physiol 2023; 325:H751-H767. [PMID: 37594487 PMCID: PMC10659324 DOI: 10.1152/ajpheart.00378.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
The use of immunotherapies like pembrolizumab (PEM) is increasingly common for the management of numerous cancer types. The use of PEM to bolster T-cell response against tumor growth is well documented. However, the interactions PEM has on other immune cells to facilitate tumor regression and clearance is unknown and warrants further investigation. In this review, we present literature findings that have reported the interactions of PEM in stimulating innate and adaptive immune cells, which enhance cytotoxic phenotypes. This triggers secretion of cytokines and chemokines, which have both beneficial and detrimental effects. We also describe how this leads to the development of rare but underreported occurrence of PEM-induced immune-related cardiovascular complications that arise suddenly and progress rapidly to debilitating and fatal consequences. This review encourages further research and investigation of PEM-induced cardiovascular complications and other immune cell interactions in patients with cancer. As PEM therapy in treating cancer types is expanding, we expect that this review will inform health care professionals of diverse specializations of medicine like dermatology (melanoma skin cancers), ophthalmology (eye cancers), and pathology (hematological malignancies) about PEM-induced cardiac complications.
Collapse
Affiliation(s)
- Abha Banerjee
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Chandrakala Aluganti Narasimhulu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| |
Collapse
|
33
|
Gunalp S, Helvaci DG, Oner A, Bursalı A, Conforte A, Güner H, Karakülah G, Szegezdi E, Sag D. TRAIL promotes the polarization of human macrophages toward a proinflammatory M1 phenotype and is associated with increased survival in cancer patients with high tumor macrophage content. Front Immunol 2023; 14:1209249. [PMID: 37809073 PMCID: PMC10551148 DOI: 10.3389/fimmu.2023.1209249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Background TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can either induce cell death or activate survival pathways after binding to death receptors (DRs) DR4 or DR5. TRAIL is investigated as a therapeutic agent in clinical trials due to its selective toxicity to transformed cells. Macrophages can be polarized into pro-inflammatory/tumor-fighting M1 macrophages or anti-inflammatory/tumor-supportive M2 macrophages and an imbalance between M1 and M2 macrophages can promote diseases. Therefore, identifying modulators that regulate macrophage polarization is important to design effective macrophage-targeted immunotherapies. The impact of TRAIL on macrophage polarization is not known. Methods Primary human monocyte-derived macrophages were pre-treated with either TRAIL or with DR4 or DR5-specific ligands and then polarized into M1, M2a, or M2c phenotypes in vitro. The expression of M1 and M2 markers in macrophage subtypes was analyzed by RNA sequencing, qPCR, ELISA, and flow cytometry. Furthermore, the cytotoxicity of the macrophages against U937 AML tumor targets was assessed by flow cytometry. TCGA datasets were also analyzed to correlate TRAIL with M1/M2 markers, and the overall survival of cancer patients. Results TRAIL increased the expression of M1 markers at both mRNA and protein levels while decreasing the expression of M2 markers at the mRNA level in human macrophages. TRAIL also shifted M2 macrophages towards an M1 phenotype. Our data showed that both DR4 and DR5 death receptors play a role in macrophage polarization. Furthermore, TRAIL enhanced the cytotoxicity of macrophages against the AML cancer cells in vitro. Finally, TRAIL expression was positively correlated with increased expression of M1 markers in the tumors from ovarian and sarcoma cancer patients and longer overall survival in cases with high, but not low, tumor macrophage content. Conclusions TRAIL promotes the polarization of human macrophages toward a proinflammatory M1 phenotype via both DR4 and DR5. Our study defines TRAIL as a new regulator of macrophage polarization and suggests that targeting DRs can enhance the anti-tumorigenic response of macrophages in the tumor microenvironment by increasing M1 polarization.
Collapse
Affiliation(s)
- Sinem Gunalp
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Department of Genomic Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Derya Goksu Helvaci
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Faculty of Medicine, Dokuz Eylul University, Izmir, Türkiye
| | - Aysenur Oner
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Department of Genomic Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | | | - Alessandra Conforte
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Hüseyin Güner
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Science, Abdullah Gül University, Kayseri, Türkiye
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Department of Genomic Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Eva Szegezdi
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Duygu Sag
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Department of Genomic Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Türkiye
| |
Collapse
|
34
|
Park JA, Cheung NKV. Promise and Challenges of T Cell Immunotherapy for Osteosarcoma. Int J Mol Sci 2023; 24:12520. [PMID: 37569894 PMCID: PMC10419531 DOI: 10.3390/ijms241512520] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The cure rate for metastatic or relapsed osteosarcoma has not substantially improved over the past decades despite the exploitation of multimodal treatment approaches, allowing long-term survival in less than 30% of cases. Patients with osteosarcoma often develop resistance to chemotherapeutic agents, where personalized targeted therapies should offer new hope. T cell immunotherapy as a complementary or alternative treatment modality is advancing rapidly in general, but its potential against osteosarcoma remains largely unexplored. Strategies incorporating immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR) modified T cells, and T cell engaging bispecific antibodies (BsAbs) are being explored to tackle relapsed or refractory osteosarcoma. However, osteosarcoma is an inherently heterogeneous tumor, both at the intra- and inter-tumor level, with no identical driver mutations. It has a pro-tumoral microenvironment, where bone cells, stromal cells, neovasculature, suppressive immune cells, and a mineralized extracellular matrix (ECM) combine to derail T cell infiltration and its anti-tumor function. To realize the potential of T cell immunotherapy in osteosarcoma, an integrated approach targeting this complex ecosystem needs smart planning and execution. Herein, we review the current status of T cell immunotherapies for osteosarcoma, summarize the challenges encountered, and explore combination strategies to overcome these hurdles, with the ultimate goal of curing osteosarcoma with less acute and long-term side effects.
Collapse
Affiliation(s)
- Jeong A Park
- Department of Pediatrics, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Nai-Kong V. Cheung
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
35
|
Ji Z, Shen J, Lan Y, Yi Q, Liu H. Targeting signaling pathways in osteosarcoma: Mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e308. [PMID: 37441462 PMCID: PMC10333890 DOI: 10.1002/mco2.308] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
Osteosarcoma (OS) is a highly prevalent bone malignancy among adolescents, accounting for 40% of all primary malignant bone tumors. Neoadjuvant chemotherapy combined with limb-preserving surgery has effectively reduced patient disability and mortality, but pulmonary metastases and OS cells' resistance to chemotherapeutic agents are pressing challenges in the clinical management of OS. There has been an urgent need to identify new biomarkers for OS to develop specific targeted therapies. Recently, the continued advancements in genomic analysis have contributed to the identification of clinically significant molecular biomarkers for diagnosing OS, acting as therapeutic targets, and predicting prognosis. Additionally, the contemporary molecular classifications have revealed that the signaling pathways, including Wnt/β-catenin, PI3K/AKT/mTOR, JAK/STAT3, Hippo, Notch, PD-1/PD-L1, MAPK, and NF-κB, have an integral role in OS onset, progression, metastasis, and treatment response. These molecular classifications and biological markers have created new avenues for more accurate OS diagnosis and relevant treatment. We herein present a review of the recent findings for the modulatory role of signaling pathways as possible biological markers and treatment targets for OS. This review also discusses current OS therapeutic approaches, including signaling pathway-based therapies developed over the past decade. Additionally, the review covers the signaling targets involved in the curative effects of traditional Chinese medicines in the context of expression regulation of relevant genes and proteins through the signaling pathways to inhibit OS cell growth. These findings are expected to provide directions for integrating genomic, molecular, and clinical profiles to enhance OS diagnosis and treatment.
Collapse
Affiliation(s)
- Ziyu Ji
- School of Integrated Traditional Chinese and Western MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Jianlin Shen
- Department of OrthopaedicsAffiliated Hospital of Putian UniversityPutianFujianChina
| | - Yujian Lan
- School of Integrated Traditional Chinese and Western MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Qian Yi
- Department of PhysiologySchool of Basic Medical ScienceSouthwest Medical UniversityLuzhouSichuanChina
| | - Huan Liu
- Department of OrthopaedicsThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
36
|
Ying H, Li ZQ, Li MP, Liu WC. Metabolism and senescence in the immune microenvironment of osteosarcoma: focus on new therapeutic strategies. Front Endocrinol (Lausanne) 2023; 14:1217669. [PMID: 37497349 PMCID: PMC10366376 DOI: 10.3389/fendo.2023.1217669] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Osteosarcoma is a highly aggressive and metastatic malignant tumor. It has the highest incidence of all malignant bone tumors and is one of the most common solid tumors in children and adolescents. Osteosarcoma tissues are often richly infiltrated with inflammatory cells, including tumor-associated macrophages, lymphocytes, and dendritic cells, forming a complex immune microenvironment. The expression of immune checkpoint molecules is also high in osteosarcoma tissues, which may be involved in the mechanism of anti-tumor immune escape. Metabolism and senescence are closely related to the immune microenvironment, and disturbances in metabolism and senescence may have important effects on the immune microenvironment, thereby affecting immune cell function and immune responses. Metabolic modulation and anti-senescence therapy are gaining the attention of researchers as emerging immunotherapeutic strategies for tumors. Through an in-depth study of the interconnection of metabolism and anti- senescence in the tumor immune microenvironment and its regulatory mechanism on immune cell function and immune response, more precise therapeutic strategies can be developed. Combined with the screening and application of biomarkers, personalized treatment can be achieved to improve therapeutic efficacy and provide a scientific basis for clinical decision-making. Metabolic modulation and anti- senescence therapy can also be combined with other immunotherapy approaches, such as immune checkpoint inhibitors and tumor vaccines, to form a multi-level and multi-dimensional immunotherapy strategy, thus further enhancing the effect of immunotherapy. Multidisciplinary cooperation and integrated treatment can optimize the treatment plan and maximize the survival rate and quality of life of patients. Future research and clinical practice will further advance this field, promising more effective treatment options for patients with osteosarcoma. In this review, we reviewed metabolic and senescence characteristics in the immune microenvironment of osteosarcoma and related immunotherapies, and provide a reference for development of more personalized and effective therapeutic strategies.
Collapse
Affiliation(s)
- Hui Ying
- Department of Emergency Trauma Surgery, Ganzhou People’s Hospital, Ganzhou, China
- Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, China
| | - Zhi-Qiang Li
- Department of Emergency Trauma Surgery, Ganzhou People’s Hospital, Ganzhou, China
- Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, China
| | - Meng-Pan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen-Cai Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
37
|
Smithy JW, Luke JJ. CD16+ Macrophages: An Emerging Biomarker for Combined CTLA-4 and PD-1 Blockade. Clin Cancer Res 2023; 29:2345-2347. [PMID: 37097465 PMCID: PMC10330271 DOI: 10.1158/1078-0432.ccr-23-0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023]
Abstract
In a retrospective analysis of patients with unresectable melanoma, higher pretreatment tissue densities of CD16+ macrophages were associated with clinical benefit from combined CTLA-4 and PD-1 blockade. With further validation, this biomarker could serve as a tool in selecting between immune checkpoint inhibitor regimens. See related article by Lee et al., p. 2513.
Collapse
Affiliation(s)
- James W. Smithy
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jason J. Luke
- UPMC Hillman Cancer Center, Pittsburgh, PA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
38
|
Weil R, Loeb D. Breaking down the tumor immune infiltration within pediatric sarcomas. Front Endocrinol (Lausanne) 2023; 14:1187289. [PMID: 37424864 PMCID: PMC10324675 DOI: 10.3389/fendo.2023.1187289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Immunotherapies are a promising therapeutic option, yet for a variety of reasons, these treatments have achieved limited success against sarcomas. The immunosuppressive tumor microenvironment (TME) of sarcomas as well as lack of predictive biomarkers, decreased T-cell clonal frequency, and high expression of immunosuppressive infiltrating cells has thus far prevented major success using immunotherapies. By breaking down the TME into its individual components and understanding how the various cell types interact with each other as well as in the context of the complex immune microenvironment, can lead to effective therapeutic immunotherapy treatments, potentially improving outcomes for those with metastatic disease.
Collapse
Affiliation(s)
- Rachel Weil
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - David Loeb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
39
|
Panez-Toro I, Muñoz-García J, Vargas-Franco JW, Renodon-Cornière A, Heymann MF, Lézot F, Heymann D. Advances in Osteosarcoma. Curr Osteoporos Rep 2023:10.1007/s11914-023-00803-9. [PMID: 37329384 PMCID: PMC10393907 DOI: 10.1007/s11914-023-00803-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
PURPOSE OF REVIEW This article gives a brief overview of the most recent developments in osteosarcoma treatment, including targeting of signaling pathways, immune checkpoint inhibitors, drug delivery strategies as single or combined approaches, and the identification of new therapeutic targets to face this highly heterogeneous disease. RECENT FINDINGS Osteosarcoma is one of the most common primary malignant bone tumors in children and young adults, with a high risk of bone and lung metastases and a 5-year survival rate around 70% in the absence of metastases and 30% if metastases are detected at the time of diagnosis. Despite the novel advances in neoadjuvant chemotherapy, the effective treatment for osteosarcoma has not improved in the last 4 decades. The emergence of immunotherapy has transformed the paradigm of treatment, focusing therapeutic strategies on the potential of immune checkpoint inhibitors. However, the most recent clinical trials show a slight improvement over the conventional polychemotherapy scheme. The tumor microenvironment plays a crucial role in the pathogenesis of osteosarcoma by controlling the tumor growth, the metastatic process and the drug resistance and paved the way of new therapeutic options that must be validated by accurate pre-clinical studies and clinical trials.
Collapse
Affiliation(s)
- Isidora Panez-Toro
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France
| | - Javier Muñoz-García
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France.
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France.
| | - Jorge W Vargas-Franco
- University of Antioquia, Department of Basic Studies, Faculty of Odontology, Medellin, Colombia
| | - Axelle Renodon-Cornière
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France
| | - Marie-Françoise Heymann
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France
| | - Frédéric Lézot
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), 75012, Paris, France
| | - Dominique Heymann
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France.
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France.
- University of Sheffield, Medical School, Department of Oncology and Metabolism, S10 2RX, Sheffield, UK.
| |
Collapse
|
40
|
Zhao YD, An HW, Mamuti M, Zeng XZ, Zheng R, Yang J, Zhou W, Liang Y, Qin G, Hou DY, Liu X, Wang H, Zhao Y, Fang X. Reprogramming Hypoxic Tumor-Associated Macrophages by Nanoglycoclusters for Boosted Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211332. [PMID: 36971342 DOI: 10.1002/adma.202211332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/27/2023] [Indexed: 06/16/2023]
Abstract
The tumor-associated macrophages (TAMs) in intratumoral hypoxic regions are key drivers of immune escape. Reprogramming the hypoxic TAMs to antitumor phenotype holds great therapeutic benefits but remains challenging for current drugs. Here, an in situ activated nanoglycocluster is reported to realize effective tumor penetration and potent repolarization of hypoxic TAMs. Triggered by the hypoxia-upregulated matrix metalloproteinase-2 (MMP-2), the nanoglycocluster is self-assembled from the administered mannose-containing precursor glycopeptides and presents densely-arrayed mannoses to multivalently engage with mannose receptors on M2-like TAMs for efficient phenotype switch. By virtue of the high diffusivity of precursor glycopeptides due to their low molecular mass and weak affinity with TAMs in perivascular regions, the nanoglycoclusters are capable of substantially accumulating in hypoxic areas to strongly interact with local TAMs. This enables the efficient repolarization of overall TAMs with a higher rate than the small-molecule drug R848 and CD40 antibody, and beneficial therapeutic effects in mouse tumor models especially when combining with PD-1 antibody. This on-demand activated immunoagent is endowed with tumor-penetrating properties and inspires the design of diverse intelligent nanomedicines for hypoxia-related cancer immunotherapy.
Collapse
Affiliation(s)
- Yong-Dan Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, PR China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- School of Pharmacy, Shanxi Medical University, Shanxi, 030009, PR China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Muhetaerjiang Mamuti
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiang-Zhong Zeng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Rui Zheng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jia Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wei Zhou
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Yuxin Liang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, PR China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Gege Qin
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, PR China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Da-Yong Hou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China
| | - Xiaolong Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, PR China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, PR China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| |
Collapse
|
41
|
Wu C, Gong S, Duan Y, Deng C, Kallendrusch S, Berninghausen L, Osterhoff G, Schopow N. A tumor microenvironment-based prognostic index for osteosarcoma. J Biomed Sci 2023; 30:23. [PMID: 37055822 PMCID: PMC10099847 DOI: 10.1186/s12929-023-00917-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND The tumor microenvironment (TME) has a central role in the oncogenesis of osteosarcomas. The composition of the TME is essential for the interaction between tumor and immune cells. The aim of this study was to establish a prognostic index (TMEindex) for osteosarcoma based on the TME, from which estimates about patient survival and individual response to immune checkpoint inhibitor (ICI) therapy can be deduced. METHODS Based on osteosarcoma samples from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database, the ESTIMATE algorithm was used to estimate ImmuneScore and StromalScore. Combined differentially expressed gene analysis, weighted gene co-expression network analyses, the Least Absolute Shrinkage and Selection Operator regression and stepwise regression to construct the TMEindex. The prognostic role of TMEindex was validated in three independent datasets. The molecular and immune characteristics of TMEindex and the impact on immunotherapy were then comprehensively investigated. The expression of TMEindex genes in different cell types and its effects on osteosarcoma cells were explored by scRNA-Seq analysis and molecular biology experiments. RESULTS Fundamental is the expression of MYC, P4HA1, RAMP1 and TAC4. Patients with high TMEindex had worse overall survival, recurrence-free survival, and metastasis-free survival. TMEindex is an independent prognostic factor in osteosarcoma. TMEindex genes were mainly expressed in malignant cells. The knockdown of MYC and P4HA1 significantly inhibited the proliferation, invasion and migration of osteosarcoma cells. A high TME index is related to the MYC, mTOR, and DNA replication-related pathways. In contrast, a low TME index is related to immune-related signaling pathways such as the inflammatory response. The TMEindex was negatively correlated with ImmuneScore, StromalScore, immune cell infiltration, and various immune-related signature scores. Patients with a higher TMEindex had an immune-cold TME and higher invasiveness. Patients with a low TME index were more likely to respond to ICI therapy and achieve clinical benefit. In addition, the TME index correlated with response to 29 oncologic drugs. CONCLUSIONS The TMEindex is a promising biomarker to predict the prognosis of patients with osteosarcoma and their response to ICI therapy, and to distinguish the molecular and immune characteristics.
Collapse
Affiliation(s)
- Changwu Wu
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103, Leipzig, Germany
| | - Siming Gong
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103, Leipzig, Germany.
| | - Yingjuan Duan
- Faculty of Chemistry and Mineralogy, University of Leipzig, 04103, Leipzig, Germany
| | - Chao Deng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Sonja Kallendrusch
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103, Leipzig, Germany
- Faculty of Medicine, Health and Medical University Potsdam, 14471, Potsdam, Germany
| | - Laura Berninghausen
- Department of Orthopedics, Trauma and Plastic Surgery, Sarcoma Center, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Georg Osterhoff
- Department of Orthopedics, Trauma and Plastic Surgery, Sarcoma Center, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Nikolas Schopow
- Department of Orthopedics, Trauma and Plastic Surgery, Sarcoma Center, University Hospital Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
42
|
Zhuang S, Russell A, Guo Y, Xu Y, Xiao W. IFN-γ blockade after genetic inhibition of PD-1 aggravates skeletal muscle damage and impairs skeletal muscle regeneration. Cell Mol Biol Lett 2023; 28:27. [PMID: 37016287 PMCID: PMC10071770 DOI: 10.1186/s11658-023-00439-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/15/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Innate immune responses play essential roles in skeletal muscle recovery after injury. Programmed cell death protein 1 (PD-1) contributes to skeletal muscle regeneration by promoting macrophage proinflammatory to anti-inflammatory phenotype transition. Interferon (IFN)-γ induces proinflammatory macrophages that appear to hinder myogenesis in vitro. Therefore, we tested the hypothesis that blocking IFN-γ in PD-1 knockout mice may dampen inflammation and promote skeletal muscle regeneration via regulating the macrophage phenotype and neutrophils. METHODS Anti-IFN-γ antibody was administered in PD-1 knockout mice, and cardiotoxin (CTX) injection was performed to induce acute skeletal muscle injury. Hematoxylin and eosin (HE) staining was used to view morphological changes of injured and regenerated skeletal muscle. Masson's trichrome staining was used to assess the degree of fibrosis. Gene expressions of proinflammatory and anti-inflammatory factors, fibrosis-related factors, and myogenic regulator factors were determined by real-time polymerase chain reaction (PCR). Changes in macrophage phenotype were examined by western blot and real-time PCR. Immunofluorescence was used to detect the accumulation of proinflammatory macrophages, anti-inflammatory macrophages, and neutrophils. RESULTS IFN-γ blockade in PD-1 knockout mice did not alleviate skeletal muscle damage or improve regeneration following acute cardiotoxin-induced injury. Instead, it exacerbated skeletal muscle inflammation and fibrosis, and impaired regeneration via inhibiting macrophage accumulation, blocking macrophage proinflammatory to anti-inflammatory transition, and enhancing infiltration of neutrophils. CONCLUSION IFN-γ is crucial for efficient skeletal muscle regeneration in the absence of PD-1.
Collapse
Affiliation(s)
- Shuzhao Zhuang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Ministry of Education, Shanghai, China
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Aaron Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Yifan Guo
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Ministry of Education, Shanghai, China
| | - Yingying Xu
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Ministry of Education, Shanghai, China
| | - Weihua Xiao
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China.
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Ministry of Education, Shanghai, China.
| |
Collapse
|
43
|
Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y, Huang C. Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment. Bone Res 2023; 11:11. [PMID: 36849442 PMCID: PMC9971189 DOI: 10.1038/s41413-023-00246-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023] Open
Abstract
Osteosarcoma, with poor survival after metastasis, is considered the most common primary bone cancer in adolescents. Notwithstanding the efforts of researchers, its five-year survival rate has only shown limited improvement, suggesting that existing therapeutic strategies are insufficient to meet clinical needs. Notably, immunotherapy has shown certain advantages over traditional tumor treatments in inhibiting metastasis. Therefore, managing the immune microenvironment in osteosarcoma can provide novel and valuable insight into the multifaceted mechanisms underlying the heterogeneity and progression of the disease. Additionally, given the advances in nanomedicine, there exist many advanced nanoplatforms for enhanced osteosarcoma immunotherapy with satisfactory physiochemical characteristics. Here, we review the classification, characteristics, and functions of the key components of the immune microenvironment in osteosarcoma. This review also emphasizes the application, progress, and prospects of osteosarcoma immunotherapy and discusses several nanomedicine-based options to enhance the efficiency of osteosarcoma treatment. Furthermore, we examine the disadvantages of standard treatments and present future perspectives for osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Hailong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Jiangjun Cao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Bowen Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Edouard C. Nice
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China.
| | - Yi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
44
|
Targeting Underlying Inflammation in Carcinoma Is Essential for the Resolution of Depressiveness. Cells 2023; 12:cells12050710. [PMID: 36899845 PMCID: PMC10000718 DOI: 10.3390/cells12050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
In modern clinical practice and research on behavioral changes in patients with oncological problems, there are several one-sided approaches to these problems. Strategies for early detection of behavioral changes are considered, but they must take into account the specifics of the localization and phase in the course and treatment of somatic oncological disease. Behavioral changes, in particular, may correlate with systemic proinflammatory changes. In the up-to-date literature, there are a lot of useful pointers on the relationship between carcinoma and inflammation and between depression and inflammation. This review is intended to provide an overview of these similar underlying inflammatory disturbances in both oncological disease and depression. The specificities of acute and chronic inflammation are considered as a basis for causal current and future therapies. Modern therapeutic oncology protocols may also cause transient behavioral changes, so assessment of the quality, quantity, and duration of behavioral symptoms is necessary to prescribe adequate therapy. Conversely, antidepressant properties could be used to ameliorate inflammation. We will attempt to provide some impetus and present some unconventional potential treatment targets related to inflammation. It is certain that only an integrative oncology approach is justifiable in modern patient treatment.
Collapse
|
45
|
Abstract
Tumour progression is modulated by the local microenvironment. This environment is populated by many immune cells, of which macrophages are among the most abundant. Clinical correlative data and a plethora of preclinical studies in mouse models of cancers have shown that tumour-associated macrophages (TAMs) play a cancer-promoting role. Within the primary tumour, TAMs promote tumour cell invasion and intravasation and tumour stem cell viability and induce angiogenesis. At the metastatic site, metastasis-associated macrophages promote extravasation, tumour cell survival and persistent growth, as well as maintain tumour cell dormancy in some contexts. In both the primary and metastatic sites, TAMs are suppressive to the activities of cytotoxic T and natural killer cells that have the potential to eradicate tumours. Such activities suggest that TAMs will be a major target for therapeutic intervention. In this Perspective article, we chronologically explore the evolution of our understanding of TAM biology put into the context of major enabling advances in macrophage biology.
Collapse
Affiliation(s)
| | - Jeffrey W Pollard
- MRC-Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
46
|
Fendl B, Berghoff AS, Preusser M, Maier B. Macrophage and monocyte subsets as new therapeutic targets in cancer immunotherapy. ESMO Open 2023; 8:100776. [PMID: 36731326 PMCID: PMC10024158 DOI: 10.1016/j.esmoop.2022.100776] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 02/04/2023] Open
Abstract
The introduction of immune checkpoint inhibitors (ICIs) for the treatment of solid cancers dramatically turned the tables in clinical routine. However, therapy success is still limited with up to 70% of non-responders in patients with ICI treatment. Traditionally, most immunotherapy approaches aim at directly stimulating anti-tumor T cell responses. More recently, tumor-associated macrophages have come into focus due to their predominance in solid tumors. Intensive cross-talk with tumor cells and immune as well as stromal cells within the tumor microenvironment can drive either pro- or anti-tumorigenic macrophage phenotypes. In turn, tumor-associated macrophages strongly shape cytokine and metabolite levels in the tumor microenvironment and thus are central players in anti-tumor immunity. Thus, ambivalent macrophage populations exist which raises therapeutic possibilities to either enhance or diminish their functionality. However, molecular signals controlling tumor-associated macrophage polarization are incompletely understood. Gaining in-depth understanding of monocyte/macrophage properties both in circulation and within distinct tumor microenvironments would (i) allow the development of new therapeutic approaches, and (ii) could additionally aid our understanding of underlying mechanisms limiting current therapy with the option of combinatorial therapies to increase efficacy. In this review, we summarize recent data addressing heterogeneity of tumor-associated macrophage populations and we discuss strategies to target macrophages using known molecular pathways with the potential for straight-forward clinical application.
Collapse
Affiliation(s)
- B Fendl
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - A S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - M Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - B Maier
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
47
|
A novel molecular classification method for osteosarcoma based on tumor cell differentiation trajectories. Bone Res 2023; 11:1. [PMID: 36588108 PMCID: PMC9806110 DOI: 10.1038/s41413-022-00233-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 01/03/2023] Open
Abstract
Subclassification of tumors based on molecular features may facilitate therapeutic choice and increase the response rate of cancer patients. However, the highly complex cell origin involved in osteosarcoma (OS) limits the utility of traditional bulk RNA sequencing for OS subclassification. Single-cell RNA sequencing (scRNA-seq) holds great promise for identifying cell heterogeneity. However, this technique has rarely been used in the study of tumor subclassification. By analyzing scRNA-seq data for six conventional OS and nine cancellous bone (CB) samples, we identified 29 clusters in OS and CB samples and discovered three differentiation trajectories from the cancer stem cell (CSC)-like subset, which allowed us to classify OS samples into three groups. The classification model was further examined using the TARGET dataset. Each subgroup of OS had different prognoses and possible drug sensitivities, and OS cells in the three differentiation branches showed distinct interactions with other clusters in the OS microenvironment. In addition, we verified the classification model through IHC staining in 138 OS samples, revealing a worse prognosis for Group B patients. Furthermore, we describe the novel transcriptional program of CSCs and highlight the activation of EZH2 in CSCs of OS. These findings provide a novel subclassification method based on scRNA-seq and shed new light on the molecular features of CSCs in OS and may serve as valuable references for precision treatment for and therapeutic development in OS.
Collapse
|
48
|
Xie T, Feng W, He M, Zhan X, Liao S, He J, Qin Z, Li F, Xu J, Liu Y, Wei Q. Analysis of scRNA-seq and bulk RNA-seq demonstrates the effects of EVI2B or CD361 on CD8 + T cells in osteosarcoma. Exp Biol Med (Maywood) 2023; 248:130-145. [PMID: 36511103 PMCID: PMC10041056 DOI: 10.1177/15353702221142607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is a common primary malignant tumor of the bone in children and adolescents. The five-year survival rate is estimated to be ~70% based on the currently available treatment modalities. It is well known that tumor-infiltrating immune cells (TIICs) that are the most important components in the tumor microenvironment can exert a killing effect on tumor cells. Therefore, in the present study, 85 RNA-sequencing OS samples were categorized into high- and low-immune score groups with ESTIAMATE. Based on the immune score groups, 474 differentially expressed genes (DEGs) were acquired using the LIMMA package of R language. Subsequently, 86 DEGs were taken through univariate COX regression analysis, of which 14 were screened out by least absolute shrinkage and selection operator regression analysis. Furthermore, multivariate COX regression analysis was performed to obtain 4 DEGs. Finally, ecotropic virus integration site 2B (EVI2B) or CD361 gene was screened out via Kaplan-Meier analysis. In addition, CIBERSORT algorithm was used to evaluate the proportion of 22 kinds of TIICs in OS. Correlation analysis revealed that the high expression level of EVI2B can elevate the infiltrated proportion of CD8+ T cells. Moreover, analysis of single cell RNA-sequencing transcriptome datasets and immunohistochemical staining uncovered that EVI2B was mainly expressed on CD8+ T cells and that EVI2B could promote the expression of granzyme A and K of CD8+ T cells to exhibit a potent killing effect on tumor cells. Therefore, EVI2B was identified as a protective immune-related gene and contributed to good prognosis in OS patients.
Collapse
Affiliation(s)
- Tianyu Xie
- Department of Traumatic Orthopaedic, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wenyu Feng
- Department of Orthopaedic, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530005, China
| | - Mingwei He
- Department of Traumatic Orthopaedic, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xinli Zhan
- Department of Spine and Bone Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shijie Liao
- Department of Traumatic Orthopaedic, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Juliang He
- Department of Bone and Soft Tissue, Affiliated Tumour Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhaojie Qin
- Department of Spine and Bone Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Feicui Li
- Department of Spine and Bone Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Yun Liu
- Department of Spine and Bone Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qingjun Wei
- Department of Traumatic Orthopaedic, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
49
|
Supra R, Agrawal DK. Immunotherapeutic Strategies in the Management of Osteosarcoma. JOURNAL OF ORTHOPAEDICS AND SPORTS MEDICINE 2023; 5:32-40. [PMID: 36937115 PMCID: PMC10018813 DOI: 10.26502/josm.511500076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone cancer with a high tendency for metastasis. Although treatment strategies involving surgery and chemotherapy have improved outcomes for patients with OS, the prognosis of recurrent OS is quite unsatisfactory. Primary reasons leading to mortality in OS patients are resistance to currently used therapies and the subsequent lung metastasis. Immunotherapy, however, has been shown to be a promising therapeutic strategy against OS. As research progresses, immunotherapy is gradually becoming irreplaceable. This article provides a critical evaluation of several therapeutic strategies for OS including immunomodulation, vaccine therapy, and immunologic checkpoint blockade.
Collapse
Affiliation(s)
- Rajiv Supra
- College of Osteopathic Medicine, Touro University, Henderson, Nevada
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, California 91766-1854, USA
| |
Collapse
|
50
|
PD-1 + mast cell enhanced by PD-1 blocking therapy associated with resistance to immunotherapy. Cancer Immunol Immunother 2023; 72:633-645. [PMID: 36018370 PMCID: PMC9947072 DOI: 10.1007/s00262-022-03282-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Programmed cell death protein 1 (PD-1) antibody has been approved for a variety of tumors, but its effective rate is unsatisfactory. New evidence suggests that mast cells are an important component of the tumor microenvironment and are associated with resistance to immunotherapy, but the underlying mechanism is not clear. METHODS Bioinformatics analysis of patients with melanoma in TCGA-SKCM and GSE91061 was used to determine the prognostic value of mast cells and their association with anti-PD-1 immunotherapy. HMC-1 cells (mast cell line) and bone marrow-derived mast cells (BMMCs) were used to verify the effect of PD-1 antibody and cromolyn sodium in vitro. The mouse subcutaneous melanoma model was used to verify the effect of the PD-1 antibody on mast cells in vivo. RESULTS Bioinformatics analysis showed that mast cells were a poor prognostic factor associated with resistance to anti-PD-1 immunotherapy. PD-1 was expressed on the mast cell membrane. The PD-1 antibody promoted the release of histamine and cytokines from mast cells via the PI3K/AKT pathway and calcium signaling pathway. The activation of mast cells induced by PD-1 antibody could be partially inhibited by cromolyn sodium. In vivo, cromolyn sodium increased the efficacy of PD-1 antibody and decreased the infiltration of mast cells and the density of microvessels. CONCLUSION PD-1+ mast cell activated by PD-1 antibody plays a negative role in the tumor microenvironment via the enhanced function of releasing histamine and cytokines. Inhibition of mast cell may provide a new solution to solve the low response rate of anti-PD-1 immunotherapy.
Collapse
|