1
|
Omwenga EO, Awuor SO. The Bacterial Biofilms: Formation, Impacts, and Possible Management Targets in the Healthcare System. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:1542576. [PMID: 39717533 PMCID: PMC11666319 DOI: 10.1155/cjid/1542576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024]
Abstract
Introduction: The persistent increase in multidrug-resistant pathogens has catalyzed the creation of novel strategies to address antivirulence and anti-infective elements. Such methodologies aim to diminish the selective pressure exerted on bacterial populations, decreasing the likelihood of resistance emergence. This review explores the role of biofilm formation as a significant virulence factor and its impact on the development of antimicrobial resistance (AMR). Case Presentation: The ability of bacteria to form a superstructure-biofilm-has made resistance cases in the microbial world a big concern to public health and other sectors as it is a crucial virulence factor that causes difficulties in the management of infections, hence enhancing chronic infection occurrence. Biofilm formation dates to about 3.4 billion years when prokaryotes were discovered to be forming them and since then due to evolution and growth in science, they are more understood. Management and Outcome: The unique microenvironments within bacterial biofilms diminish antibiotic effectiveness and help bacteria evade the host immune system. Biofilm production is a widespread capability among diverse bacterial species. Biofilm formation is enhanced by quorum sensing (QS), reduction of nutrients, or harsh environments for the bacteria. Conclusion: The rise of severe, treatment-resistant biofilm infections poses major challenges in medicine and agriculture, yet much about how these biofilms form remains unknown.
Collapse
Affiliation(s)
- Eric Omori Omwenga
- Department of Medical Microbiology & Parasitology, School of Health Sciences, Kisii University, Kisii, Kenya
| | - Silas Onyango Awuor
- Department of Applied Health Sciences, School of Health Sciences, Kisii University, Kisii, Kenya
- Department of Medical Microbiology, Jaramogi Oginga Odinga Teaching and Referral Hospital, Kisumu, Kenya
| |
Collapse
|
2
|
Aboelnaga N, Elsayed SW, Abdelsalam NA, Salem S, Saif NA, Elsayed M, Ayman S, Nasr M, Elhadidy M. Deciphering the dynamics of methicillin-resistant Staphylococcus aureus biofilm formation: from molecular signaling to nanotherapeutic advances. Cell Commun Signal 2024; 22:188. [PMID: 38519959 PMCID: PMC10958940 DOI: 10.1186/s12964-024-01511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/01/2024] [Indexed: 03/25/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) represents a global threat, necessitating the development of effective solutions to combat this emerging superbug. In response to selective pressures within healthcare, community, and livestock settings, MRSA has evolved increased biofilm formation as a multifaceted virulence and defensive mechanism, enabling the bacterium to thrive in harsh conditions. This review discusses the molecular mechanisms contributing to biofilm formation across its developmental stages, hence representing a step forward in developing promising strategies for impeding or eradicating biofilms. During staphylococcal biofilm development, cell wall-anchored proteins attach bacterial cells to biotic or abiotic surfaces; extracellular polymeric substances build scaffolds for biofilm formation; the cidABC operon controls cell lysis within the biofilm, and proteases facilitate dispersal. Beside the three main sequential stages of biofilm formation (attachment, maturation, and dispersal), this review unveils two unique developmental stages in the biofilm formation process for MRSA; multiplication and exodus. We also highlighted the quorum sensing as a cell-to-cell communication process, allowing distant bacterial cells to adapt to the conditions surrounding the bacterial biofilm. In S. aureus, the quorum sensing process is mediated by autoinducing peptides (AIPs) as signaling molecules, with the accessory gene regulator system playing a pivotal role in orchestrating the production of AIPs and various virulence factors. Several quorum inhibitors showed promising anti-virulence and antibiofilm effects that vary in type and function according to the targeted molecule. Disrupting the biofilm architecture and eradicating sessile bacterial cells are crucial steps to prevent colonization on other surfaces or organs. In this context, nanoparticles emerge as efficient carriers for delivering antimicrobial and antibiofilm agents throughout the biofilm architecture. Although metal-based nanoparticles have been previously used in combatting biofilms, its non-degradability and toxicity within the human body presents a real challenge. Therefore, organic nanoparticles in conjunction with quorum inhibitors have been proposed as a promising strategy against biofilms. As nanotherapeutics continue to gain recognition as an antibiofilm strategy, the development of more antibiofilm nanotherapeutics could offer a promising solution to combat biofilm-mediated resistance.
Collapse
Affiliation(s)
- Nirmeen Aboelnaga
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Salma W Elsayed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nehal Adel Abdelsalam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Salma Salem
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nehal A Saif
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Manar Elsayed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Shehab Ayman
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed Elhadidy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
3
|
Kaliniak S, Fiedoruk K, Spałek J, Piktel E, Durnaś B, Góźdź S, Bucki R, Okła S. Remodeling of Paranasal Sinuses Mucosa Functions in Response to Biofilm-Induced Inflammation. J Inflamm Res 2024; 17:1295-1323. [PMID: 38434581 PMCID: PMC10906676 DOI: 10.2147/jir.s443420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024] Open
Abstract
Rhinosinusitis (RS) is an acute (ARS) or chronic (CRS) inflammatory disease of the nasal and paranasal sinus mucosa. CRS is a heterogeneous condition characterized by distinct inflammatory patterns (endotypes) and phenotypes associated with the presence (CRSwNP) or absence (CRSsNP) of nasal polyps. Mucosal barrier and mucociliary clearance dysfunction, inflammatory cell infiltration, mucus hypersecretion, and tissue remodeling are the hallmarks of CRS. However, the underlying factors, their priority, and the mechanisms of inflammatory responses remain unclear. Several hypotheses have been proposed that link CRS etiology and pathogenesis with host (eg, "immune barrier") and exogenous factors (eg, bacterial/fungal pathogens, dysbiotic microbiota/biofilms, or staphylococcal superantigens). The abnormal interplay between these factors is likely central to the pathophysiology of CRS by triggering compensatory immune responses. Here, we discuss the role of the sinonasal microbiota in CRS and its biofilms in the context of mucosal zinc (Zn) deficiency, serving as a possible unifying link between five host and "bacterial" hypotheses of CRS that lead to sinus mucosa remodeling. To date, no clear correlation between sinonasal microbiota and CRS has been established. However, the predominance of Corynebacteria and Staphylococci and their interspecies relationships likely play a vital role in the formation of the CRS-associated microbiota. Zn-mediated "nutritional immunity", exerted via calprotectin, alongside the dysregulation of Zn-dependent cellular processes, could be a crucial microbiota-shaping factor in CRS. Similar to cystic fibrosis (CF), the role of SPLUNC1-mediated regulation of mucus volume and pH in CRS has been considered. We complement the biofilms' "mechanistic" and "mucin" hypotheses behind CRS pathogenesis with the "structural" one - associated with bacterial "corncob" structures. Finally, microbiota restoration approaches for CRS prevention and treatment are reviewed, including pre- and probiotics, as well as Nasal Microbiota Transplantation (NMT).
Collapse
Affiliation(s)
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Jakub Spałek
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Bonita Durnaś
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Stanisław Góźdź
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Sławomir Okła
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| |
Collapse
|
4
|
Jin M, Zhu S, Tang Y, Kong X, Wang X, Li Y, Jiang S, Wei L, Hu C, Wang B, Song W. Ayanin, a natural flavonoid inhibitor of Caseinolytic protease, is a promising therapeutic agent to combat methicillin-resistant Staphylococcus aureus infections. Biochem Pharmacol 2023; 217:115814. [PMID: 37769713 DOI: 10.1016/j.bcp.2023.115814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Antimicrobial resistance (AMR) is a global health threat. The dramatic increase of Methicillin-resistant Staphylococcus aureus (MRSA) infections emphasizes the need to find new anti-infective agents with a novel mode of action. The Caseinolytic protease (ClpP) is a central virulence factor in stress survival, virulence, and antibiotic resistance of MRSA. Here, we found ayanin, a flavonoid isolated from Callicarpa nudiflora, was an inhibitor of MRSA ClpP with an IC50 of 19.63 μM. Using quantitative real-time PCR, ayanin reduced the virulence of Staphylococcus aureus (S. aureus) by down-regulating the level of some important virulence factors, including agrA, RNAⅢ, hla, pvl, psmα and spa. The results of cellular thermal shift assay and thermal shift assay revealed a binding between ayanin and ClpP. Molecular docking showed that ASP-168, ASN-173 and ARG-171 were the potential binding sites for ClpP binding to ayanin. ClpP mutagenesis study further indicated that ARG-171 and ASN-173 were the main active sites of ClpP. The affinity constant (KD) value of ayanin with ClpP was 3.15 × 10-5 M measured by surface plasmon resonance. In addition, ayanin exhibited a significant therapeutic effect on pneumonia infection induced by S. aureus in mice in vivo, especially in combination with vancomycin. This is the first report of ayanin with in vivo and in vitro efficacy against S. aureus infection. In conclusion, ayanin is a promising therapeutic agent to combat MRSA infections by targeting ClpP.
Collapse
Affiliation(s)
- Mengli Jin
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shuyue Zhu
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yating Tang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangri Kong
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xingye Wang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yufen Li
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shuang Jiang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Lin Wei
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chunjie Hu
- Changchun University of Chinese Medicine, Changchun 130117, China; Proctology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China.
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
5
|
Polaske TJ, West KHJ, Zhao K, Widner DL, York JT, Blackwell HE. Chemical and biomolecular insights into the Staphylococcus aureus agr quorum sensing system: Current progress and ongoing challenges. Isr J Chem 2023; 63:e202200096. [PMID: 38765792 PMCID: PMC11101167 DOI: 10.1002/ijch.202200096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 03/19/2023]
Abstract
Staphylococcus aureus is a ubiquitous bacterium that has become a major threat to human health due to its extensive toxin production and tremendous capacity for antibiotic resistance (e.g., MRSA "superbug" infections). Amid a worsening antibiotic resistance crisis, new strategies to combat this deadly microbe that remove the selective pressure of traditional approaches are in high demand. S. aureus utilizes an accessory gene regulator (agr) quorum sensing network to monitor its local cellular population and trigger a devastating communal attack, like an invading horde, once a threshold cell density has been reached. The role of the agr system in a range of disease types is still being unraveled. Herein, we discuss the present-day biochemical understanding of agr along with unresolved details, describe its connection to the progression of infection, and review how chemical strategies have been implemented to study and intercept this signaling pathway. This research is illuminating the potential of agr as an anti-virulence target in S. aureus and should inform the study of similar, yet less studied, agr systems in related bacterial pathogens.
Collapse
Affiliation(s)
- Thomas J. Polaske
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706 USA
| | - Korbin H. J. West
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706 USA
| | - Ke Zhao
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706 USA
| | - Danielle L. Widner
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706 USA
| | - Jordan T. York
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706 USA
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706 USA
| |
Collapse
|
6
|
Zhang Y, Ma N, Tan P, Ma X. Quorum sensing mediates gut bacterial communication and host-microbiota interaction. Crit Rev Food Sci Nutr 2022; 64:3751-3763. [PMID: 36239296 DOI: 10.1080/10408398.2022.2134981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gut bacteria employ quorum sensing (QS) to coordinate their activities and communicate with one another, this process relies on the production, detection, and response to autoinducers, which are extracellular signaling molecules. In addition to synchronizing behavioral activities within the species, QS plays a crucial role in the gut host-microbiota interaction. In this review, an overview of classical QS systems is presented as well as the interspecies communication mediated by QS, and recent advances in the host-microbiota interaction mediated by QS. A greater knowledge of the communication network of gut microbiota is not only an opportunity and a challenge for developing nutritional and therapeutic strategies against bacterial illnesses, but also a means for improving gut health.
Collapse
Affiliation(s)
- Yucheng Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Turner AB, Gerner E, Firdaus R, Echeverz M, Werthén M, Thomsen P, Almqvist S, Trobos M. Role of sodium salicylate in Staphylococcus aureus quorum sensing, virulence, biofilm formation and antimicrobial susceptibility. Front Microbiol 2022; 13:931839. [PMID: 35992652 PMCID: PMC9384861 DOI: 10.3389/fmicb.2022.931839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023] Open
Abstract
The widespread threat of antibiotic resistance requires new treatment options. Disrupting bacterial communication, quorum sensing (QS), has the potential to reduce pathogenesis by decreasing bacterial virulence. The aim of this study was to investigate the influence of sodium salicylate (NaSa) on Staphylococcus aureus QS, virulence production and biofilm formation. In S. aureus ATCC 25923 (agr III), with or without serum, NaSa (10 mM) downregulated the agr QS system and decreased the secretion levels of alpha-hemolysin, staphopain A and delta-hemolysin. Inhibition of agr expression caused a downregulation of delta-hemolysin, decreasing biofilm dispersal and increasing biofilm formation on polystyrene and titanium under static conditions. In contrast, NaSa did not increase biofilm biomass under flow but caused one log10 reduction in biofilm viability on polystyrene pegs, resulting in biofilms being twice as susceptible to rifampicin. A concentration-dependent effect of NaSa was further observed, where high concentrations (10 mM) decreased agr expression, while low concentrations (≤0.1 mM) increased agr expression. In S. aureus 8325-4 (agr I), a high concentration of NaSa (10 mM) decreased hla expression, and a low concentration of NaSa (≤1 mM) increased rnaIII and hla expression. The activity of NaSa on biofilm formation was dependent on agr type and material surface. Eight clinical strains isolated from prosthetic joint infection (PJI) or wound infection belonging to each of the four agr types were evaluated. The four PJI S. aureus strains did not change their biofilm phenotype with NaSa on the clinically relevant titanium surface. Half of the wound strains (agr III and IV) did not change the biofilm phenotype in the 3D collagen wound model. In addition, compared to the control, ATCC 25923 biofilms formed with 10 mM NaSa in the collagen model were more susceptible to silver. It is concluded that NaSa can inhibit QS in S. aureus, decreasing the levels of toxin production with certain modulation of biofilm formation. The effect on biofilm formation was dependent on the strain and material surface. It is suggested that the observed NaSa inhibition of bacterial communication is a potential alternative or adjuvant to traditional antibiotics.
Collapse
Affiliation(s)
- Adam Benedict Turner
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Erik Gerner
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Mölnlycke Health Care AB, Gothenburg, Sweden
| | - Rininta Firdaus
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Maite Echeverz
- Microbial Pathogenesis Research Unit, Public University of Navarre, Pamplona, Spain
| | - Maria Werthén
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
| | | | - Margarita Trobos
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Margarita Trobos,
| |
Collapse
|
8
|
Chen H, Yu C, Wu H, Li G, Li C, Hong W, Yang X, Wang H, You X. Recent Advances in Histidine Kinase-Targeted Antimicrobial Agents. Front Chem 2022; 10:866392. [PMID: 35860627 PMCID: PMC9289397 DOI: 10.3389/fchem.2022.866392] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
The prevalence of antimicrobial-resistant pathogens significantly limited the number of effective antibiotics available clinically, which urgently requires new drug targets to screen, design, and develop novel antibacterial drugs. Two-component system (TCS), which is comprised of a histidine kinase (HK) and a response regulator (RR), is a common mechanism whereby bacteria can sense a range of stimuli and make an appropriate adaptive response. HKs as the sensor part of the bacterial TCS can regulate various processes such as growth, vitality, antibiotic resistance, and virulence, and have been considered as a promising target for antibacterial drugs. In the current review, we highlighted the structural basis and functional importance of bacterial TCS especially HKs as a target in the discovery of new antimicrobials, and summarize the latest research progress of small-molecule HK-inhibitors as potential novel antimicrobial drugs reported in the past decade.
Collapse
Affiliation(s)
- Hongtong Chen
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengqi Yu
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Han Wu
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Guoqing Li
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congran Li
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Hong
- Beijing Institute of Collaborative Innovation, Beijing, China
| | - Xinyi Yang
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Wang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
| | - Xuefu You
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Kwiatkowski P, Tabiś A, Fijałkowski K, Masiuk H, Łopusiewicz Ł, Pruss A, Sienkiewicz M, Wardach M, Kurzawski M, Guenther S, Bania J, Dołęgowska B, Wojciechowska-Koszko I. Regulatory and Enterotoxin Gene Expression and Enterotoxins Production in Staphylococcus aureus FRI913 Cultures Exposed to a Rotating Magnetic Field and trans-Anethole. Int J Mol Sci 2022; 23:6327. [PMID: 35683006 PMCID: PMC9181688 DOI: 10.3390/ijms23116327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/29/2022] Open
Abstract
The study aimed to examine the influence of a rotating magnetic field (RMF) of two different frequencies (5 and 50 Hz) on the expression of regulatory (agrA, hld, rot) and staphylococcal enterotoxin (SE-sea, sec, sel) genes as well as the production of SEs (SEA, SEC, SEL) by the Staphylococcus aureus FRI913 strain cultured on a medium supplemented with a subinhibitory concentration of trans-anethole (TA). Furthermore, a theoretical model of interactions between the bacterial medium and bacterial cells exposed to RMF was proposed. Gene expression and SEs production were measured using quantitative real-time PCR and ELISA techniques, respectively. Based on the obtained results, it was found that there were no significant differences in the expression of regulatory and SE genes in bacteria simultaneously cultured on a medium supplemented with TA and exposed to RMF at the same time in comparison to the control (unexposed to TA and RMF). In contrast, when the bacteria were cultured on a medium supplemented with TA but were not exposed to RMF or when they were exposed to RMF of 50 Hz (but not to TA), a significant increase in agrA and sea transcripts as compared to the unexposed control was found. Moreover, the decreased level of sec transcripts in bacteria cultured without TA but exposed to RMF of 50 Hz was also revealed. In turn, a significant increase in SEA and decrease in SEC and SEL production was observed in bacteria cultured on a medium supplemented with TA and simultaneously exposed to RMFs. It can be concluded, that depending on SE and regulatory genes expression as well as production of SEs, the effect exerted by the RMF and TA may be positive (i.e., manifests as the increase in SEs and/or regulatory gene expression of SEs production) or negative (i.e., manifests as the reduction in both aforementioned features) or none.
Collapse
Affiliation(s)
- Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Aleksandra Tabiś
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wroclaw, Poland; (A.T.); (J.B.)
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Piastow 45, 70-311 Szczecin, Poland
| | - Helena Masiuk
- Department of Medical Microbiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Janickiego 35, 71-270 Szczecin, Poland;
| | - Agata Pruss
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (A.P.); (B.D.)
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Marcin Wardach
- Faculty of Electrical Engineering, West Pomeranian University of Technology, Sikorskiego 37, 70-313 Szczecin, Poland;
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Sebastian Guenther
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany;
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wroclaw, Poland; (A.T.); (J.B.)
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (A.P.); (B.D.)
| | - Iwona Wojciechowska-Koszko
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| |
Collapse
|
10
|
Meroni G, Tsikopoulos A, Tsikopoulos K, Allemanno F, Martino PA, Soares Filipe JF. A Journey into Animal Models of Human Osteomyelitis: A Review. Microorganisms 2022; 10:1135. [PMID: 35744653 PMCID: PMC9228829 DOI: 10.3390/microorganisms10061135] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Osteomyelitis is an infection of the bone characterized by progressive inflammatory destruction and apposition of new bone that can spread via the hematogenous route (hematogenous osteomyelitis (HO)), contiguous spread (contiguous osteomyelitis (CO)), and direct inoculation (osteomyelitis associated with peripheral vascular insufficiency (PVI)). Given the significant financial burden posed by osteomyelitis patient management, the development of new preventive and treatment methods is warranted. To achieve this objective, implementing animal models (AMs) of infection such as rats, mice, rabbits, avians, dogs, sheep, goats, and pigs might be of the essence. This review provides a literature analysis of the AMs developed and used to study osteomyelitis. Historical relevance and clinical applicability were taken into account to choose the best AMs, and some study methods are briefly described. Furthermore, the most significant strengths and limitations of each species as AM are discussed, as no single model incorporates all features of osteomyelitis. HO's clinical manifestation results in extreme variability between patients due to multiple variables (e.g., age, sex, route of infection, anatomical location, and concomitant diseases) that could alter clinical studies. However, these variables can be controlled and tested through different animal models.
Collapse
Affiliation(s)
- Gabriele Meroni
- One Health Unit, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (F.A.); (P.A.M.)
| | - Alexios Tsikopoulos
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Francesca Allemanno
- One Health Unit, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (F.A.); (P.A.M.)
| | - Piera Anna Martino
- One Health Unit, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (F.A.); (P.A.M.)
| | - Joel Fernando Soares Filipe
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy;
| |
Collapse
|
11
|
Herrera AL, Chaussee MS. Signaling Peptide SpoV Is Essential for Streptococcus pyogenes Virulence, and Prophylaxis with Anti-SpoV Decreases Disease Severity. Microorganisms 2021; 9:microorganisms9112321. [PMID: 34835447 PMCID: PMC8619256 DOI: 10.3390/microorganisms9112321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022] Open
Abstract
Streptococcal peptide of virulence (SpoV) is a Streptococcus pyogenes (group A streptococcus (GAS))-specific peptide that is important for GAS survival in murine blood, and the expression of the virulence factors streptolysin O (slo) and streptolysin S (sagA). We used a spoV mutant in isolate MGAS315 to assess the contribution of the SpoV peptide to virulence by using a murine model of invasive disease and an ex vivo human model (Lancefield assay). We then used antibodies to SpoV in both models to evaluate their ability to decrease morbidity and mortality. Results showed that SpoV is essential for GAS virulence, and targeting the peptide has therapeutic potential.
Collapse
|
12
|
Warrier A, Satyamoorthy K, Murali TS. Quorum-sensing regulation of virulence factors in bacterial biofilm. Future Microbiol 2021; 16:1003-1021. [PMID: 34414776 DOI: 10.2217/fmb-2020-0301] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic polymicrobial wound infections are often characterized by the presence of bacterial biofilms. They show considerable structural and functional heterogeneity, which influences the choice of antimicrobial therapy and wound healing dynamics. The hallmarks of biofilm-associated bacterial infections include elevated antibiotic resistance and extreme pathogenicity. Biofilm helps bacteria to evade the host defense mechanisms and persist longer in the host. Quorum-sensing (QS)-mediated cell signaling primarily regulates biofilm formation in chronic infections and plays a major role in eliciting virulence. This review focuses on the QS mechanisms of two major bacterial pathogens, Staphylococcus aureus and Pseudomonas aeruginosa and explains how they interact in the wound microenvironment to regulate biofilm development and virulence. The review also provides an insight into the treatment modalities aimed at eradicating polymicrobial biofilms. This information will help us develop better diagnostic modalities and devise effective treatment regimens to successfully manage and overcome severe life-threatening bacterial infections.
Collapse
Affiliation(s)
- Anjali Warrier
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Manipal Center for Infectious Diseases (MAC ID), Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
13
|
Vila T, Kong EF, Montelongo-Jauregui D, Van Dijck P, Shetty AC, McCracken C, Bruno VM, Jabra-Rizk MA. Therapeutic implications of C. albicans-S. aureus mixed biofilm in a murine subcutaneous catheter model of polymicrobial infection. Virulence 2021; 12:835-851. [PMID: 33682623 PMCID: PMC7946022 DOI: 10.1080/21505594.2021.1894834] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Biofilm-associated polymicrobial infections tend to be challenging to treat. Candida albicans and Staphylococcus aureus are leading pathogens due to their ability to form biofilms on medical devices. However, the therapeutic implications of their interactions in a host is largely unexplored. In this study, we used a mouse subcutaneous catheter model for in vivo-grown polymicrobial biofilms to validate our in vitro findings on C. albicans-mediated enhanced S. aureus tolerance to vancomycin in vivo. Comparative assessment of S. aureus recovery from catheters with single- or mixed-species infection demonstrated failure of vancomycin against S. aureus in mice with co-infected catheters. To provide some mechanistic insights, RNA-seq analysis was performed on catheter biofilms to delineate transcriptional modulations during polymicrobial infections. C. albicans induced the activation of the S. aureus biofilm formation network via down-regulation of the lrg operon, repressor of autolysis, and up-regulation of the ica operon and production of polysaccharide intercellular adhesin (PIA), indicating an increase in eDNA production, and extracellular polysaccharide matrix, respectively. Interestingly, virulence factors important for disseminated infections, and superantigen-like proteins were down-regulated during mixed-species infection, whereas capsular polysaccharide genes were up-regulated, signifying a strategy favoring survival, persistence and host immune evasion. In vitro follow-up experiments using DNA enzymatic digestion, lrg operon mutant strains, and confocal scanning microscopy confirmed the role of C. albicans-mediated enhanced eDNA production in mixed-biofilms on S. aureus tolerance to vancomycin. Combined, these findings provide mechanistic insights into the therapeutic implications of interspecies interactions, underscoring the need for novel strategies to overcome limitations of current therapies.
Collapse
Affiliation(s)
- Taissa Vila
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Eric F Kong
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium.,VIB-KU Leuven Center for Microbiology, Flanders, Belgium
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vincent M Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Rossi BF, Bonsaglia ECR, Pantoja JCF, Santos MV, Gonçalves JL, Fernandes Júnior A, Rall VLM. Short communication: Association between the accessory gene regulator (agr) group and the severity of bovine mastitis caused by Staphylococcus aureus. J Dairy Sci 2020; 104:3564-3568. [PMID: 33358797 DOI: 10.3168/jds.2020-19275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/15/2020] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus can elicit mild to more severe degrees of mastitis in cattle, depending on the response of the host's immune system and the virulence factors of the specific isolate. Several virulence factors are controlled by a global regulatory system, designated accessory gene regulator (agr). Thus, the objective was to examine associations between different capsular and agr types and the severity of bovine mastitis caused by S. aureus. All isolates were obtained from bovine subclinical (n = 50), mild clinical (n = 73), and moderate clinical mastitis cases (n = 28). Isolates containing the agrI gene and lacking the agr locus (agr-) were more prevalent among subclinical than clinical mastitis cases, whereas isolates containing the agrII and agrIII genes were more prevalent among clinical mastitis cases. The capsular types 5 (cap5) and 8 (cap8) were found in 42 and 44%, respectively, of the isolates obtained from subclinical cases and in 38.6 and 58.4%, respectively, of those isolated from clinical mastitis cases. Capsular type was not associated with type of mastitis (subclinical, mild clinical, or moderate clinical). We found a strong association between agr type and type of mastitis, suggesting that knowledge of S. aureus genetic profiles could be an additional tool to control this disease.
Collapse
Affiliation(s)
- Bruna F Rossi
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Rua Dr. Plínio Pinto e Silva, 18618-691, Botucatu-SP, Brazil
| | - Erika C R Bonsaglia
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Rua Dr. Plínio Pinto e Silva, 18618-691, Botucatu-SP, Brazil
| | - Jose C F Pantoja
- Department of Animal Production and Preventive Veterinary Medicine, São Paulo State University, Rua Prof. Dr. Walter Mauricio Correa, 18618-681, Botucatu-SP, Brazil
| | - Marcos V Santos
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Duque de Caxias Norte, 225, 13635-900, Pirassununga, São Paulo, Brazil
| | - Juliano L Gonçalves
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Duque de Caxias Norte, 225, 13635-900, Pirassununga, São Paulo, Brazil
| | - Ary Fernandes Júnior
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Rua Dr. Plínio Pinto e Silva, 18618-691, Botucatu-SP, Brazil
| | - Vera L M Rall
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Rua Dr. Plínio Pinto e Silva, 18618-691, Botucatu-SP, Brazil.
| |
Collapse
|
15
|
Liu B, Sun B. Rsp promotes the transcription of virulence factors in an agr-independent manner in Staphylococcus aureus. Emerg Microbes Infect 2020; 9:796-812. [PMID: 32248753 PMCID: PMC7241556 DOI: 10.1080/22221751.2020.1752116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus is a major human pathogen that causes a great diversity of community- and hospital-acquired infections. Rsp, a member of AraC/XylS family of transcriptional regulators (AFTRs), has been reported to play an important role in the regulation of virulence determinants in S. aureus via an agr-dependent pathway. Here we demonstrated that Rsp could bind to the rsp promoter to positively regulate its own expression. We then constructed an isogenic rsp deletion strain and compared the haemolysis in the wild-type and rsp mutant strains. Our results indicated that the rsp mutant strain displayed decreased haemolytic activity, which was correlated with a dramatic decrease in the expression of hla and psm. Furthermore, we analysed the regulatory effects of Rsp in the agr mutant strain and found that they are agr-independent. Electrophoretic mobility shift assay indicated that Rsp can directly bind to the promoter regions of hla and psm. The mouse model of subcutaneous abscess showed that the rsp mutant strain displayed a significant defect in virulence compared to the wild-type strain. These findings reveal that Rsp positively regulates the virulence of S. aureus by promoting the expression of hla and psm through direct binding to their promoter regions.
Collapse
Affiliation(s)
- Banghui Liu
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People's Republic of China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People's Republic of China
| |
Collapse
|
16
|
Rossato AM, Primon-Barros M, Dias CAG, d'Azevedo PA. Vancomycin MIC and agr dysfunction in invasive MRSA infections in southern Brazil. Braz J Microbiol 2020; 51:1819-1823. [PMID: 33074551 DOI: 10.1007/s42770-020-00384-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022] Open
Abstract
In methicillin-resistant Staphylococcus aureus (MRSA) treatment, the vancomycin minimum inhibitory concentration (MIC) increase, vancomycin heteroresistance (hVISA) presence, and accessory gene regulator (agr) dysfunction are predictors of vancomycin therapy failure. This study evaluated the association between vancomycin MIC (≥ 1.0 μg/mL) and agr dysfunction in invasive MRSA isolates. Vancomycin MIC, hVISA phenotype, agr group, and function were determined in 171 MRSA isolates obtained between 2014 and 2019 from hospitals in Porto Alegre, Brazil. All MRSA were susceptible to vancomycin; 16.4% of these had MIC ≥ 1.0 μg/mL. Seventeen MRSA isolates expressed the hVISA phenotype; 35.3% of them had MIC of 1.5 μg/mL. agr groups I (40.9%) and II (47.1%) were the most found groups for MRSA and hVISA isolates, respectively. The proportion of MRSA with vancomycin MIC ≥ 1.0 μg/mL in agr group II was significantly higher than in agr groups I and III (p = 0.002). agr dysfunction was observed in 4.7% (8/171) of MRSA, especially those with vancomycin MIC ≥ 1.0 μg/mL (p < 0.001). In addition, six isolates (35.3%; 6/17) with hVISA phenotype presented agr dysfunction, which was significantly higher than that in non-hVISA phenotype (p < 0.001). In conclusion, agr dysfunction in MRSA is associated with vancomycin MIC ≥ 1.0 μg/mL and hVISA phenotype, which suggests that agr dysfunction might confer potential advantages on MRSA to survive in invasive infections.
Collapse
Affiliation(s)
- Adriana Medianeira Rossato
- Basic Health Department, Postgraduate Program in Health Sciences of Porto Alegre (PPGCS), Federal University of Health Science of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| | - Muriel Primon-Barros
- Basic Health Department, Postgraduate Program in Health Sciences of Porto Alegre (PPGCS), Federal University of Health Science of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Cícero Armídio Gomes Dias
- Basic Health Department, Postgraduate Program in Health Sciences of Porto Alegre (PPGCS), Federal University of Health Science of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Pedro Alves d'Azevedo
- Basic Health Department, Postgraduate Program in Health Sciences of Porto Alegre (PPGCS), Federal University of Health Science of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Qian Y, Xia L, Wei L, Li D, Jiang W. Artesunate inhibits Staphylococcus aureus biofilm formation by reducing alpha-toxin synthesis. Arch Microbiol 2020; 203:707-717. [PMID: 33040179 DOI: 10.1007/s00203-020-02077-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/13/2020] [Accepted: 10/01/2020] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus is one of the most common pathogens in bacterial biofilm infections. Antibiotic treatment for infection caused by S. aureus biofilms is challenging, and few effective strategies have been developed to combat these infections. The aim of this study was to investigate the effect and possible mechanisms of artesunate on the biofilm formation of S. aureus. Bacterial growth curves were determined by a microtiter plate. Biofilm formation was determined by the crystal violet staining method and confocal laser scanning microscopy. Bacterial adhesion was assayed by the colony-counting method. The expression of virulence and adhesion genes was determined by real-time PCR. The hemolytic activity and expression of ɑ-hemolysin were analyzed using rabbit erythrocytes and Western blotting. The results showed that artesunate could significantly inhibit the biofilm formation of S. aureus in a dose-dependent manner. Artesunate could also inhibit bacterial adhesion and the expression of hla, RNAIII and agrA as well as ɑ-hemolysin production. The effect of artesunate on adhesion genes (clfA, clfB, fnbA, fnbB) had strain specificity, but it did not affect the expression of ica genes. The results indicated that artesunate might inhibit ɑ-hemolysin synthesis by the agr system, which inhibits biofilm formation.
Collapse
Affiliation(s)
- Yan Qian
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, No. 76, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Li Xia
- Department of Liver Disease, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Lai Wei
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, No. 76, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Di Li
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, No. 76, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Weiwei Jiang
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, No. 76, Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
18
|
Masters EA, de Mesy Bentley KL, Gill AL, Hao SP, Galloway CA, Salminen AT, Guy DR, McGrath JL, Awad HA, Gill SR, Schwarz EM. Identification of Penicillin Binding Protein 4 (PBP4) as a critical factor for Staphylococcus aureus bone invasion during osteomyelitis in mice. PLoS Pathog 2020; 16:e1008988. [PMID: 33091079 PMCID: PMC7608983 DOI: 10.1371/journal.ppat.1008988] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/03/2020] [Accepted: 09/17/2020] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus aureus infection of bone is challenging to treat because it colonizes the osteocyte lacuno-canalicular network (OLCN) of cortical bone. To elucidate factors involved in OLCN invasion and identify novel drug targets, we completed a hypothesis-driven screen of 24 S. aureus transposon insertion mutant strains for their ability to propagate through 0.5 μm-sized pores in the Microfluidic Silicon Membrane Canalicular Arrays (μSiM-CA), developed to model S. aureus invasion of the OLCN. This screen identified the uncanonical S. aureus transpeptidase, penicillin binding protein 4 (PBP4), as a necessary gene for S. aureus deformation and propagation through nanopores. In vivo studies revealed that Δpbp4 infected tibiae treated with vancomycin showed a significant 12-fold reduction in bacterial load compared to WT infected tibiae treated with vancomycin (p<0.05). Additionally, Δpbp4 infected tibiae displayed a remarkable decrease in pathogenic bone-loss at the implant site with and without vancomycin therapy. Most importantly, Δpbp4 S. aureus failed to invade and colonize the OLCN despite high bacterial loads on the implant and in adjacent tissues. Together, these results demonstrate that PBP4 is required for S. aureus colonization of the OLCN and suggest that inhibitors may be synergistic with standard of care antibiotics ineffective against bacteria within the OLCN.
Collapse
Affiliation(s)
- Elysia A. Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Karen L. de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Ann Lindley Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Stephanie P. Hao
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Chad A. Galloway
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Alec T. Salminen
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Diamond R. Guy
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Hani A. Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States of America
| |
Collapse
|
19
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020; 84:e00026-19. [PMID: 32792334 PMCID: PMC7430342 DOI: 10.1128/mmbr.00026-19] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
20
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020. [PMID: 32792334 DOI: 10.1128/mmbr.00026-19/asset/e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
21
|
Moura MC, Procópio TF, Ferreira GRS, Alves RRV, Sá RA, Paiva PMG, Ingmer H, Coelho LCBB, Napoleão TH. Anti-staphylococcal effects of Myracrodruon urundeuva lectins on nonresistant and multidrug resistant isolates. J Appl Microbiol 2020; 130:745-754. [PMID: 32750211 DOI: 10.1111/jam.14811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022]
Abstract
AIMS To evaluate the anti-staphylococcal effects of lectins isolated from bark (MuBL), heartwood (MuHL) and leaves (MuLL) of Myracrodruon urundeuva. METHODS AND RESULTS The lectins were evaluated for: effects on growth, aggregation, haemolytic activity and biofilm-forming ability of Staphylococcus aureus clinical isolates nonresistant (8325-4) and multidrug resistant (LAC USA300); interference with the expression of virulence genes (hla, rnaIII and spa) of the Agr system of S. aureus; and synergistic effect with the antibiotics cefoxitin and cefotaxime. MuBL, MuHL and MuLL reduced growth (minimal inhibitory concentration (MIC): 12·5-50 µg ml-1 ) and viability (minimal bactericidal concentration (MBC): 100 µg ml-1 ) of 8325-4 and LAC USA300 cells. MuLL (at ½MIC and MIC) reduced LAC USA300 agglutination. The lectins did not interfere with haemolytic activity and expression of hla, rnaIII and spa genes. Only MuHL was able to reduce the biofilm production by 8325-4 (50-400 µg ml-1 ) and LAC USA300 (400 µg ml-1 ). CONCLUSION The M. urundeuva lectins showed antibacterial activity against nonresistant and resistant clinical isolates of S. aureus and synergistic effects with antibiotics in reducing growth and biofilm formation. SIGNIFICANCE AND IMPACT OF THE STUDY This work reports bioactive molecules capable of acting as anti-staphylococcal agents, since there are increasing reports of multiresistant isolates of this bacterium.
Collapse
Affiliation(s)
- M C Moura
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - T F Procópio
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - G R S Ferreira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - R R V Alves
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - R A Sá
- Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Caruaru, Pernambuco, Brazil
| | - P M G Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - H Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - L C B B Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - T H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
22
|
Vasquez JK, West KHJ, Yang T, Polaske TJ, Cornilescu G, Tonelli M, Blackwell HE. Conformational Switch to a β-Turn in a Staphylococcal Quorum Sensing Signal Peptide Causes a Dramatic Increase in Potency. J Am Chem Soc 2020; 142:750-761. [PMID: 31859506 DOI: 10.1021/jacs.9b05513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report the solution-phase structures of native signal peptides and related analogs capable of either strongly agonizing or antagonizing the AgrC quorum sensing (QS) receptor in the emerging pathogen Staphylococcus epidermidis. Chronic S. epidermidis infections are often recalcitrant to traditional therapies due to antibiotic resistance and formation of robust biofilms. The accessory gene regulator (agr) QS system plays an important role in biofilm formation in this opportunistic pathogen, and the binding of an autoinducing peptide (AIP) signal to its cognate transmembrane receptor (AgrC) is responsible for controlling agr. Small molecules or peptides capable of modulating this binding event are of significant interest as probes to investigate both the agr system and QS as a potential antivirulence target. We used NMR spectroscopy to characterize the structures of the three native S. epidermidis AIP signals and five non-native analogs with distinct activity profiles in the AgrC-I receptor from S. epidermidis. These studies revealed a suite of structural motifs critical for ligand activity. Interestingly, a unique β-turn was present in the macrocycles of the two most potent AgrC-I modulators, in both an agonist and an antagonist, which was distinct from the macrocycle conformation in the less-potent AgrC-I modulators and in the native AIP-I itself. This previously unknown β-turn provides a structural rationale for these ligands' respective biological activity profiles. Development of analogs to reinforce the β-turn resulted in our first antagonist with subnanomolar potency in AgrC-I, while analogs designed to contain a disrupted β-turn were dramatically less potent relative to their parent compounds. Collectively, these studies provide new insights into the AIP:AgrC interactions crucial for QS activation in S. epidermidis and advance the understanding of QS at the molecular level.
Collapse
Affiliation(s)
- Joseph K Vasquez
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Korbin H J West
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Tian Yang
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Thomas J Polaske
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Helen E Blackwell
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
23
|
The Nature of Antibacterial Adaptive Immune Responses against Staphylococcus aureus Is Dependent on the Growth Phase and Extracellular Peptidoglycan. Infect Immun 2019; 88:IAI.00733-19. [PMID: 31685545 DOI: 10.1128/iai.00733-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus has evolved different strategies to evade the immune response, which play an important role in its pathogenesis. The bacteria express and shed various cell wall components and toxins during different stages of growth that may affect the protective T cell responses to extracellular and intracellular S. aureus However, if and how the dendritic cell (DC)-mediated T cell response against S. aureus changes during growth of the bacterium remain elusive. In this study, we show that exponential-phase (EP) S. aureus bacteria were endocytosed very efficiently by human DCs, and these DCs strongly promoted production of the T cell polarizing factor interleukin-12 (IL-12). In contrast, stationary-phase (SP) S. aureus bacteria were endocytosed less efficiently by DCs, and these DCs produced small amounts of IL-12. The high level of IL-12 production induced by EP S. aureus led to the development of a T helper 1 (Th1) cell response, which was inhibited after neutralization of IL-12. Furthermore, preincubation with the staphylococcal cell wall component peptidoglycan (PGN), characteristically shed during the exponential growth phase, modulated the DC response to EP S. aureus PGN preincubation appeared to inhibit IL-12p35 expression, leading to downregulation of IL-12 and an increase of IL-23 production by DCs, enhancing Th17 cell development. Taken together, our data indicate that exponential-phase S. aureus bacteria induce a stronger IL-12-dependent Th1 cell response than stationary-phase S. aureus and that this Th1 cell response shifted toward a Th17 cell response in the presence of PGN.
Collapse
|
24
|
Horswill AR, Gordon CP. Structure-Activity Relationship Studies of Small Molecule Modulators of the Staphylococcal Accessory Gene Regulator. J Med Chem 2019; 63:2705-2730. [PMID: 31658413 DOI: 10.1021/acs.jmedchem.9b00798] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The accessory gene regulator (agr) quorum-sensing system is arguably the most important regulator of Staphylococcus virulence. The agr-system serves a crucial role in pathogenesis by triggering substantive gene expression alterations to up-regulate the production of a wide variety of virulence determinants such as exoenzymes (proteases, lipases, nucleases) and downregulate the expression of surface binding proteins. Accordingly, the agr-system represents a compelling target for the development of antivirulence therapeutics as potential adjuncts, or alternatives, to conventional bactericidal and bacteriostatic antibiotics. Despite this potential, to date, no agr-system inhibitors have progressed to the clinic; however, several promising lead compounds have been identified through screens of synthetic and natural product libraries. On the basis of the molecular components within the agr-system, the current contingent of regulating compounds can be clustered into three broad groups, AgrA-P3 activation inhibitors, AgrB-AgrD processing inhibitors, and AgrC-AIP interaction inhibitors. This review aims to provide an overview of the development, structure-activity-relationships, and limitations of compounds within each of these groups in addition to the current opportunities for developing next-generation anologs.
Collapse
Affiliation(s)
- Alexander R Horswill
- Veterans Affairs Eastern Colorado Health Care System, Aurora, Colorado 80045, United States.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Christopher P Gordon
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith South DC, NSW 2751, Australia.,Molecular Medicine Research Group, School of Medicine, Westerm Sydney University, Building 30, Campbelltown, NSW 2560, Australia
| |
Collapse
|
25
|
Singh V, Phukan UJ. Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity. Med Microbiol Immunol 2019; 208:585-607. [PMID: 30483863 DOI: 10.1007/s00430-018-0573-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus causes various health care- and community-associated infections as well as certain chronic TH2 driven inflammatory diseases. It is a potent pathogen with serious virulence and associated high morbidity. Severe pathogenicity is accredited to the S. aureus secreted virulence factors such as proteases and host protease modulators. These virulence factors promote adhesion and invasion of bacteria through damage of tight junction barrier and keratinocytes. They inhibit activation and transmigration of various immune cells such as neutrophils (and neutrophil proteases) to evade opsono-phagocytosis and intracellular bacterial killing. Additionally, they protect the bacteria from extracellular killing by disrupting integrity of extracellular matrix. Platelet activation and agglutination is also impaired by these factors. They also block the classical as well as alternative pathways of complement activation and assist in spread of infection through blood and tissue. As these factors are exquisite factors of S. aureus mediated disease development, we have focused on review of diversification of various protease-system associated virulence factors, their structural building, diverse role in disease development and available therapeutic counter measures. This review summarises the role of protease-associated virulence factors during invasion and progression of disease.
Collapse
Affiliation(s)
- Vigyasa Singh
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - Ujjal Jyoti Phukan
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
26
|
Masters EA, Trombetta RP, de Mesy Bentley KL, Boyce BF, Gill AL, Gill SR, Nishitani K, Ishikawa M, Morita Y, Ito H, Bello-Irizarry SN, Ninomiya M, Brodell JD, Lee CC, Hao SP, Oh I, Xie C, Awad HA, Daiss JL, Owen JR, Kates SL, Schwarz EM, Muthukrishnan G. Evolving concepts in bone infection: redefining "biofilm", "acute vs. chronic osteomyelitis", "the immune proteome" and "local antibiotic therapy". Bone Res 2019; 7:20. [PMID: 31646012 PMCID: PMC6804538 DOI: 10.1038/s41413-019-0061-z] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023] Open
Abstract
Osteomyelitis is a devastating disease caused by microbial infection of bone. While the frequency of infection following elective orthopedic surgery is low, rates of reinfection are disturbingly high. Staphylococcus aureus is responsible for the majority of chronic osteomyelitis cases and is often considered to be incurable due to bacterial persistence deep within bone. Unfortunately, there is no consensus on clinical classifications of osteomyelitis and the ensuing treatment algorithm. Given the high patient morbidity, mortality, and economic burden caused by osteomyelitis, it is important to elucidate mechanisms of bone infection to inform novel strategies for prevention and curative treatment. Recent discoveries in this field have identified three distinct reservoirs of bacterial biofilm including: Staphylococcal abscess communities in the local soft tissue and bone marrow, glycocalyx formation on implant hardware and necrotic tissue, and colonization of the osteocyte-lacuno canalicular network (OLCN) of cortical bone. In contrast, S. aureus intracellular persistence in bone cells has not been substantiated in vivo, which challenges this mode of chronic osteomyelitis. There have also been major advances in our understanding of the immune proteome against S. aureus, from clinical studies of serum antibodies and media enriched for newly synthesized antibodies (MENSA), which may provide new opportunities for osteomyelitis diagnosis, prognosis, and vaccine development. Finally, novel therapies such as antimicrobial implant coatings and antibiotic impregnated 3D-printed scaffolds represent promising strategies for preventing and managing this devastating disease. Here, we review these recent advances and highlight translational opportunities towards a cure.
Collapse
Affiliation(s)
- Elysia A. Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
| | - Ryan P. Trombetta
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
| | - Karen L. de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Brendan F Boyce
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Ann Lindley Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Steven R. Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Kohei Nishitani
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Masahiro Ishikawa
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Yugo Morita
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | | | - Mark Ninomiya
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - James D. Brodell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Charles C. Lee
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Stephanie P. Hao
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Irvin Oh
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Hani A. Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
27
|
Masters EA, Salminen AT, Begolo S, Luke EN, Barrett SC, Overby CT, Gill AL, de Mesy Bentley KL, Awad HA, Gill SR, Schwarz EM, McGrath JL. An in vitro platform for elucidating the molecular genetics of S. aureus invasion of the osteocyte lacuno-canalicular network during chronic osteomyelitis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102039. [PMID: 31247310 DOI: 10.1016/j.nano.2019.102039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus osteomyelitis is a devasting disease that often leads to amputation. Recent findings have shown that S. aureus is capable of invading the osteocyte lacuno-canalicular network (OLCN) of cortical bone during chronic osteomyelitis. Normally a 1 μm non-motile cocci, S. aureus deforms smaller than 0.5 μm in the sub-micron channels of the OLCN. Here we present the μSiM-CA (Microfluidic - Silicon Membrane - Canalicular Array) as an in vitro screening platform for the genetic mechanisms of S. aureus invasion. The μSiM-CA platform features an ultrathin silicon membrane with defined pores that mimic the openings of canaliculi. While we anticipated that S. aureus lacking the accessory gene regulator (agr) quorum-sensing system would not be capable of invading the OLCN, we found no differences in propagation compared to wild type in the μSiM-CA. However the μSiM-CA proved predictive as we also found that the agr mutant strain invaded the OLCN of murine tibiae.
Collapse
Affiliation(s)
- Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY; Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY
| | - Alec T Salminen
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY
| | | | - Emma N Luke
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY
| | - Sydney C Barrett
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
| | - Clyde T Overby
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY; Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY
| | - Ann Lindley Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY; Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY
| | - Hani A Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY; Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY
| | - Steven R Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY; Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY; Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
28
|
Castillo JA, Agathos SN. A genome-wide scan for genes under balancing selection in the plant pathogen Ralstonia solanacearum. BMC Evol Biol 2019; 19:123. [PMID: 31208326 PMCID: PMC6580516 DOI: 10.1186/s12862-019-1456-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background Plant pathogens are under significant selective pressure by the plant host. Consequently, they are expected to have adapted to this condition or contribute to evading plant defenses. In order to acquire long-term fitness, plant bacterial pathogens are usually forced to maintain advantageous genetic diversity in populations. This strategy ensures that different alleles in the pathogen’s gene pool are maintained in a population at frequencies larger than expected under neutral evolution. This selective process, known as balancing selection, is the subject of this work in the context of a common bacterial phytopathogen. We performed a genome-wide scan of Ralstonia solanacearum species complex, an aggressive plant bacterial pathogen that shows broad host range and causes a devastating disease called ‘bacterial wilt’. Results Using a sliding window approach, we analyzed 57 genomes from three phylotypes of the R. solanacearum species complex to detect signatures of balancing selection. A total of 161 windows showed extreme values in three summary statistics of population genetics: Tajima’s D, θw and Fu & Li’s D*. We discarded any confounding effects due to demographic events by means of coalescent simulations of genetic data. The prospective windows correspond to 78 genes with known function that map in any of the two main replicons (1.7% of total number of genes). The candidate genes under balancing selection are related to primary metabolism and other basal activities (51.3%) or directly associated to virulence (48.7%), the latter being involved in key functions targeted to dismantle plant defenses or to participate in critical stages in the pathogenic process. Conclusions We identified various genes under balancing selection that play a significant role in basic metabolism as well as in virulence of the R. solanacearum species complex. These genes are useful to understand and monitor the evolution of bacterial pathogen populations and emerge as potential candidates for future treatments to induce specific plant immune responses. Electronic supplementary material The online version of this article (10.1186/s12862-019-1456-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José A Castillo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San Jose s/n and Proyecto Yachay, Urcuquí, Ecuador.
| | - Spiros N Agathos
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San Jose s/n and Proyecto Yachay, Urcuquí, Ecuador
| |
Collapse
|
29
|
Haque S, Yadav DK, Bisht SC, Yadav N, Singh V, Dubey KK, Jawed A, Wahid M, Dar SA. Quorum sensing pathways in Gram-positive and -negative bacteria: potential of their interruption in abating drug resistance. J Chemother 2019; 31:161-187. [DOI: 10.1080/1120009x.2019.1599175] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gene Expression Laboratory, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Dinesh K. Yadav
- Department of Botany, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Shekhar C. Bisht
- Department of Biotechnology, H.N.B Garhwal University, Srinagar, Uttarakhand, India
| | - Neelam Yadav
- Department of Botany, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Vineeta Singh
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Kashyap Kumar Dubey
- Industrial Biotechnology Laboratory, University Institute of Engineering and Technology, M.D. University, Rohtak, Haryana, India
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Departments of Microbiology, University College of Medical Sciences (University of Delhi), Delhi, India
| |
Collapse
|
30
|
Little SV, Bryan LK, Hillhouse AE, Cohen ND, Lawhon SD. Characterization of agr Groups of Staphylococcus pseudintermedius Isolates from Dogs in Texas. mSphere 2019; 4:e00033-19. [PMID: 30918056 PMCID: PMC6437270 DOI: 10.1128/msphere.00033-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus pseudintermedius is an important canine pathogen implicated in an increasing number of human infections. Along with rising levels of methicillin and multidrug resistance, staphylococcal biofilms are a complicating factor for treatment and contribute to device, implant, and surgical infections. Staphylococcal virulence, including biofilm formation, is regulated in part by the quorum sensing accessory gene regulator system (agr). The signal molecule for agr, known as the autoinducing peptide molecule, contains polymorphisms that result in the formation of distinct groups. In S. pseudintermedius, 4 groups (i.e., groups I, II, III, and IV) have been identified but not comprehensively examined for associations with infection type, virulence factor carriage, or phylogenetic relationships-all of which have been found to be significant in S. aureus In this study, 160 clinical canine isolates from Texas, including isolates from healthy dogs (n = 40) and 3 different infection groups (pyoderma, urinary tract, and surgical, n = 40 each), were sequenced. The agr group, biofilm-producing capabilities, toxin gene carriage, antimicrobial resistance, and sequence type (ST) were identified for all isolates. While no significant associations were discovered among the clinical infection types and agr groups, agr II isolates were significantly less common than any other group in diseased dogs. Furthermore, agr II isolates were less likely than other agr groups to be multidrug resistant and to carry toxin genes expA and sec-canine Fifty-two (33%) of the 160 isolates were methicillin resistant, and the main sequence types (ST64, ST68, ST71, ST84, ST150, and ST155) of methicillin-resistant strains of S. pseudintermedius (MRSP) were identified for the geographic region.IMPORTANCEStaphylococcus pseudintermedius is an important disease-causing bacterium in dogs and is recognized as a growing threat to human health. Due to increasing multidrug resistance, discovery of alternative methods for treatment of these infections is vital. Interference with one target for alternative treatment, the quorum sensing system agr, has demonstrated clinical improvement of infections in S. aureus animal models. In this study, we sequenced and characterized 160 clinical S. pseudintermedius isolates and their agr systems in order to increase understanding of the epidemiology of the agr group and clarify its associations with types of infection and antimicrobial resistance. We found that isolates with agr type II were significantly less common than other agr types in diseased dogs. This provides valuable information to veterinary clinical microbiologists and clinicians, especially as less research has been performed on infection associations of agr and its therapeutic potential in S. pseudintermedius than in S. aureus.
Collapse
Affiliation(s)
- Sara V Little
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Laura K Bryan
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Andrew E Hillhouse
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
- Texas A&M Institute for Genome Sciences and Society, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Noah D Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
31
|
Paguigan ND, Rivera-Chávez J, Stempin JJ, Augustinović M, Noras AI, Raja HA, Todd DA, Triplett KD, Day C, Figueroa M, Hall PR, Cech NB, Oberlies NH. Prenylated Diresorcinols Inhibit Bacterial Quorum Sensing. JOURNAL OF NATURAL PRODUCTS 2019; 82:550-558. [PMID: 30730742 DOI: 10.1021/acs.jnatprod.8b00925] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Current treatment options for bacterial infections are dependent on antibiotics that inhibit microbial growth and viability. These approaches result in the evolution of drug-resistant strains of bacteria. An anti-infective strategy that is less likely to lead to the development of resistance is the disruption of quorum sensing mechanisms, which are involved in promoting virulence. The goal of this study was to identify fungal metabolites effective as quorum sensing inhibitors. Three new prenylated diresorcinols (1-3), along with two known compounds, (4 R) -regiolone and decarboxycitrinone, were isolated from a freshwater fungus (Helotiales sp.) from North Carolina. Their structures were assigned on the basis of HRESIMS and NMR experiments. The structure of compound 1 was confirmed via X-ray diffraction analysis, and its absolute configuration was established by TDDFT-ECD and optical rotation calculations. Compounds 1-3 suppressed quorum sensing in a clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA), with IC50 values ranging from 0.3 to 12.5 μM. These compounds represent potential leads in the development of antivirulence therapeutics.
Collapse
Affiliation(s)
- Noemi D Paguigan
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - José Rivera-Chávez
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Justin J Stempin
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Mario Augustinović
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Aleksandra I Noras
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Daniel A Todd
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Kathleen D Triplett
- Department of Pharmaceutical Sciences, College of Pharmacy , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Cynthia Day
- Department of Chemistry , Wake Forest University , Winston-Salem , North Carolina 27109 , United States
| | - Mario Figueroa
- Facultad de Química , Universidad Nacional Autónoma de México , Ciudad de México 04510 , México
| | - Pamela R Hall
- Department of Pharmaceutical Sciences, College of Pharmacy , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Nadja B Cech
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| |
Collapse
|
32
|
Punica granatum sarcotesta lectin (PgTeL) impairs growth, structure, viability, aggregation, and biofilm formation ability of Staphylococcus aureus clinical isolates. Int J Biol Macromol 2019; 123:600-608. [DOI: 10.1016/j.ijbiomac.2018.11.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 12/26/2022]
|
33
|
Hansen AM, Peng P, Baldry M, Perez-Gassol I, Christensen SB, Vinther JMO, Ingmer H, Franzyk H. Lactam hybrid analogues of solonamide B and autoinducing peptides as potent S. aureus AgrC antagonists. Eur J Med Chem 2018; 152:370-376. [DOI: 10.1016/j.ejmech.2018.04.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 01/04/2023]
|
34
|
Wermser C, Lopez D. Identification of Staphylococcus aureus genes involved in the formation of structured macrocolonies. MICROBIOLOGY-SGM 2018; 164:801-815. [PMID: 29638209 DOI: 10.1099/mic.0.000660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human pathogen Staphylococcus aureus causes difficult-to-eradicate biofilm-associated infections that generally become chronic. Understanding the genetic regulation of biofilm formation in S. aureus is central to a precise definition of the conditions and genes involved in development of chronic biofilm-associated infections. Biofilm-related genes have been detected by comparing mutants using the classical submerged biofilm formation assay, in which cells adhere to the bottom of a well containing culture medium. We recently developed an alternative biofilm formation model for S. aureus, based on macrocolony formation on agar plates, comparable to an assay used to study biofilm formation in a few other bacterial species. As organism features are the result of environmental conditions as well as of genes, we used a genome-wide collection of transposon-mapped mutants in this macrocolony assay to seek S. aureus developmental genes and pathways not identified by the classical biofilm formation assay. We identified routes related to glucose and purine metabolism and clarified their regulatory link to macrocolony formation. Our study demonstrates that formation of microbial communities must be correlated to specific growth conditions, and the role of metabolism must be considered in S. aureus biofilm formation and thus, in the development of chronic infections.
Collapse
Affiliation(s)
- Charlotte Wermser
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany.,Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Daniel Lopez
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany.,Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany.,National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid 28049, Spain
| |
Collapse
|
35
|
Hofbauer B, Vomacka J, Stahl M, Korotkov VS, Jennings MC, Wuest WM, Sieber SA. Dual Inhibitor of Staphylococcus aureus Virulence and Biofilm Attenuates Expression of Major Toxins and Adhesins. Biochemistry 2018; 57:1814-1820. [PMID: 29451388 DOI: 10.1021/acs.biochem.7b01271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Staphylococcus aureus is a major bacterial pathogen that invades and damages host tissue by the expression of devastating toxins. We here performed a phenotypic screen of 35 molecules that were structurally inspired by previous hydroxyamide-based S. aureus virulence inhibitors compiled from commercial sources or designed and synthesized de novo. One of the most potent compounds, AV73, not only reduced hemolytic alpha-hemolysin production in S. aureus but also impeded in vitro biofilm formation. The effect of AV73 on bacterial proteomes and extracellular protein levels was analyzed by quantitative proteomics and revealed a significant down-regulation of major virulence and biofilm promoting proteins. To elucidate the mode of action of AV73, target identification was performed using affinity-based protein profiling (AfBPP), where among others YidC was identified as a target.
Collapse
Affiliation(s)
- Barbara Hofbauer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Institute of Advanced Studies (IAS) , Technische Universität München (TUM) , Lichtenbergstraße 4 , D-85747 Garching , Germany
| | - Jan Vomacka
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Institute of Advanced Studies (IAS) , Technische Universität München (TUM) , Lichtenbergstraße 4 , D-85747 Garching , Germany
| | - Matthias Stahl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Institute of Advanced Studies (IAS) , Technische Universität München (TUM) , Lichtenbergstraße 4 , D-85747 Garching , Germany
| | - Vadim S Korotkov
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Institute of Advanced Studies (IAS) , Technische Universität München (TUM) , Lichtenbergstraße 4 , D-85747 Garching , Germany
| | - Megan C Jennings
- Department of Chemistry , Temple University , 1910 North 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - William M Wuest
- Department of Chemistry , Temple University , 1910 North 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Institute of Advanced Studies (IAS) , Technische Universität München (TUM) , Lichtenbergstraße 4 , D-85747 Garching , Germany
| |
Collapse
|
36
|
van Krüchten A, Wilden JJ, Niemann S, Peters G, Löffler B, Ludwig S, Ehrhardt C. Staphylococcus aureus triggers a shift from influenza virus-induced apoptosis to necrotic cell death. FASEB J 2018; 32:2779-2793. [PMID: 29401589 DOI: 10.1096/fj.201701006r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Superinfections with Staphylococcus aureus are a major complication of influenza disease, causing excessive inflammation and tissue damage. This enhanced cell-damaging effect is also observed in superinfected tissue cultures, leading to a strong decrease in overall cell viability. In our analysis of the underlying molecular mechanisms, we observed that, despite enhanced cell damage in superinfection, S. aureus did not increase but rather inhibited influenza virus (IV)-induced apoptosis in cells on the level of procaspase-8 activation. This apparent contradiction was solved when we observed that S. aureus mediated a switch from apoptosis to necrotic cell death of IV-infected cells, a mechanism that was dependent on the bacterial accessory gene regulator ( agr) locus that promotes bacterial survival and spread. This so far unknown action may be a bacterial strategy to enhance dissemination of intracellular S. aureus and may thereby contribute to increased tissue damage and severity of disease.-Van Krüchten, A., Wilden, J. J., Niemann, S., Peters, G., Löffler, B., Ludwig, S., Ehrhardt, C. Staphylococcus aureus triggers a shift from influenza virus-induced apoptosis to necrotic cell death.
Collapse
Affiliation(s)
- Andre van Krüchten
- Institute of Virology (IVM), Westfaelische Wilhelms-University (WWU) Münster, Muenster, Germany.,Institute of Medical Microbiology, WWU Münster, Münster, Germany
| | - Janine J Wilden
- Institute of Virology (IVM), Westfaelische Wilhelms-University (WWU) Münster, Muenster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, WWU Münster, Münster, Germany
| | - Georg Peters
- Institute of Medical Microbiology, WWU Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion Interfaculty Centre, WWU Münster, Muenster, Germany; and
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Stephan Ludwig
- Institute of Virology (IVM), Westfaelische Wilhelms-University (WWU) Münster, Muenster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion Interfaculty Centre, WWU Münster, Muenster, Germany; and
| | - Christina Ehrhardt
- Institute of Virology (IVM), Westfaelische Wilhelms-University (WWU) Münster, Muenster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion Interfaculty Centre, WWU Münster, Muenster, Germany; and
| |
Collapse
|
37
|
Xu T, Wang XY, Cui P, Zhang YM, Zhang WH, Zhang Y. The Agr Quorum Sensing System Represses Persister Formation through Regulation of Phenol Soluble Modulins in Staphylococcus aureus. Front Microbiol 2017; 8:2189. [PMID: 29163457 PMCID: PMC5681930 DOI: 10.3389/fmicb.2017.02189] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022] Open
Abstract
The opportunistic pathogen Staphylococcus aureus has become an increasing threat to public health. While the Agr quorum sensing (QS) system is a master regulator of S. aureus virulence, its dysfunction has been frequently reported to promote bacteremia and mortality in clinical infections. Here we show that the Agr system is involved in persister formation in S. aureus. Mutation of either agrCA or agrD but not RNAIII resulted in increased persister formation of stationary phase cultures. RNA-seq analysis showed that in stationary phase AgrCA/AgrD and RNAIII mutants showed consistent up-regulation of virulence associated genes (lip and splE, etc.) and down-regulation of metabolism genes (bioA and nanK, etc.). Meanwhile, though knockout of agrCA or agrD strongly repressed expression of phenol soluble modulin encoding genes psmα1-4, psmβ1-2 and phenol soluble modulins (PSM) transporter encoding genes in the pmt operon, mutation of RNAIII enhanced expression of the genes. We further found that knockout of psmα1-4 or psmβ1-2 augmented persister formation and that co-overexpression of PSMαs and PSMβs reversed the effects of AgrCA mutation on persister formation. We also detected the effects on persister formation by mutations of metabolism genes (arcA, hutU, narG, nanK, etc.) that are potentially regulated by Agr system. It was found that deletion of the ManNAc kinase encoding gene nanK decreased persister formation. Taken together, these results shed new light on the PSM dependent regulatory role of Agr system in persister formation and may have implications for clinical treatment of MRSA persistent infections.
Collapse
Affiliation(s)
- Tao Xu
- Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xu-Yang Wang
- Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Peng Cui
- Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yu-Meng Zhang
- Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wen-Hong Zhang
- Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ying Zhang
- Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
38
|
Abstract
Natural products have served as powerful therapeutics against pathogenic bacteria since the golden age of antibiotics of the mid-20th century. However, the increasing frequency of antibiotic-resistant infections clearly demonstrates that new antibiotics are critical for modern medicine. Because combinatorial approaches have not yielded effective drugs, we propose that the development of new antibiotics around proven natural scaffolds is the best short-term solution to the rising crisis of antibiotic resistance. We analyze herein synthetic approaches aiming to reengineer natural products into potent antibiotics. Furthermore, we discuss approaches in modulating quorum sensing and biofilm formation as a nonlethal method, as well as narrow-spectrum pathogen-specific antibiotics, which are of interest given new insights into the implications of disrupting the microbiome.
Collapse
Affiliation(s)
- Sean E. Rossiter
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Madison H. Fletcher
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
39
|
Liu D, Li Z, Wang G, Li T, Zhang L, Tang P. Virulence analysis of Staphylococcus aureus in a rabbit model of infected full-thickness wound under negative pressure wound therapy. Antonie Van Leeuwenhoek 2017; 111:161-170. [PMID: 28894985 PMCID: PMC5772129 DOI: 10.1007/s10482-017-0938-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022]
Abstract
The aim of this study was to evaluate the virulence of Staphylococcus aureus in a controlled animal study using the standard sterile gauze and negative pressure wound therapy (NPWT), including activation of agr, gene expression and production of virulence foctors and depth of bacterial invasion. The tissue specimens were harvested on days 0 (6 h after bacterial inoculation), 2, 4, 6, and 8 at the center of wound beds. Laser scanning confocal microscopy was performed to obtain bioluminescent images which were used to measure the depth of bacterial invasion. The agrA expression of S.aureus and the transcription and production of virulence factors including Eap, Spa and α-toxin were significantly different. The bacterial invasion depth was significantly less with effect of NPWT. The markedly different activation of quorum sensing systems that enable cell-to-cell communication and regulation of numerous colonization and virulence factors result in distinct gene expression and pathogenicity over time in different microenvironment. Thus, the agr system represents a fundamental regulatory paradigm that can encompass different adaptive strategies and accommodate horizontally acquired virulence determinants.
Collapse
Affiliation(s)
- Daohong Liu
- Department of Orthopedics, The 309th Hospital of PLA, Beijing, 100091, China
| | - Zhirui Li
- Department of Orthopedics, The General Hospital of People's Liberation Army, Beijing, 100853, China.,Department of Orthopedics, Chinese PLA General Hospital and Hainan Branch, Sanya, 572013, China
| | - Guoqi Wang
- Department of Orthopedics, The General Hospital of People's Liberation Army, Beijing, 100853, China
| | - Tongtong Li
- Department of Orthopedics, Tianjin Hospital, Tianjin, 300211, China
| | - Lihai Zhang
- Department of Orthopedics, The General Hospital of People's Liberation Army, Beijing, 100853, China
| | - Peifu Tang
- Department of Orthopedics, The General Hospital of People's Liberation Army, Beijing, 100853, China.
| |
Collapse
|
40
|
Khemiri M, Akrout Alhusain A, Abbassi MS, El Ghaieb H, Santos Costa S, Belas A, Pomba C, Hammami S. Clonal spread of methicillin-resistant Staphylococcus aureus-t6065-CC5-SCCmecV-agrII in a Libyan hospital. J Glob Antimicrob Resist 2017; 10:101-105. [PMID: 28729209 DOI: 10.1016/j.jgar.2017.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 03/21/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES The aim of this study was to characterize 32 MRSA isolates recovered from wound specimens of patients in a Hospital in Tripoli, Libya, during 2013. METHODS MRSA isolates were characterized by determining their antibiotic susceptibilities, genes encoding antibiotic resistance and virulence factors, the SCCmec class, agr type, spa typing, PFGE and MLST. RESULTS PFGE and MLST revealed that all isolates were clonal and belonged to the Clonal Complex 5 (CC5). They harboured the SCCmecV and the agrII and the spa type was t6065. The majority of isolates were resistant to cefoxitin (32, 100%), penicillin (32, 100%), ampicillin (32, 100%), enrofloxacin (32, 100%), ciprofloxacin (32, 100%), fusidic acid (32, 100%), gentamicin (32, 100%), kanamycin (32, 100%), trimethoprim (32, 100%), and erythromycin (30, 93.7%). The main genes encoding antibiotic resistance were: blaZ (31, 96.8%), ermC (30, 93.7%), aph(3')-III a (3, 9.4%), aac6-aph2 (32, 100%), InuA (3, 9.4%), tetM (3, 9.4%), tetL (3, 9.4%), dfrG (28, 87.5%), fusC (32, 100%). All isolates were PVL negative; however, exfoliative-encoding genes (eta: 25) and enterotxin genes (seb: 32, seo: 32, sei: 32, ser: 32, seu: 32, seg: 32, sej: 32, sed: 31, sen: 29, seh: 26, sec: 26, sea: 6, sek: 5), haemolysin (hla (32), hld (32), hlg (32)) and immune evasion cluster proteins (scn: 32, sak: 32) were relevant. CONCLUSION To the best of our knowledge this is the first report of a specific clonal spread of a multi-drug resistant MRSA-CC5- SCCmecV in a Libyan Hospital.
Collapse
Affiliation(s)
- Monia Khemiri
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis 1006, Tunisie; Laboratory of Antimicrobial and Biocide Resistance, CIISA, Faculty of Veterinary Medicine, University of Lisbon, Portugal
| | | | - Mohamed Salah Abbassi
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis 1006, Tunisie.
| | - Houyem El Ghaieb
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis 1006, Tunisie
| | - Sofia Santos Costa
- Laboratory of Antimicrobial and Biocide Resistance, CIISA, Faculty of Veterinary Medicine, University of Lisbon, Portugal
| | - Adriana Belas
- Laboratory of Antimicrobial and Biocide Resistance, CIISA, Faculty of Veterinary Medicine, University of Lisbon, Portugal
| | - Constança Pomba
- Laboratory of Antimicrobial and Biocide Resistance, CIISA, Faculty of Veterinary Medicine, University of Lisbon, Portugal
| | - Salah Hammami
- Université de la Manouba, IRESA, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet, Tunisie.
| |
Collapse
|
41
|
Kratochvil MJ, Yang T, Blackwell HE, Lynn DM. Nonwoven Polymer Nanofiber Coatings That Inhibit Quorum Sensing in Staphylococcus aureus: Toward New Nonbactericidal Approaches to Infection Control. ACS Infect Dis 2017; 3:271-280. [PMID: 28118541 PMCID: PMC5392134 DOI: 10.1021/acsinfecdis.6b00173] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report the fabrication and biological evaluation of nonwoven polymer nanofiber coatings that inhibit quorum sensing (QS) and virulence in the human pathogen Staphylococcus aureus. Our results demonstrate that macrocyclic peptide 1, a potent and synthetic nonbactericidal quorum sensing inhibitor (QSI) in S. aureus, can be loaded into degradable polymer nanofibers by electrospinning and that this approach can deposit QSI-loaded nanofiber coatings onto model nonwoven mesh substrates. The QSI was released over ∼3 weeks when these materials were incubated in physiological buffer, retained its biological activity, and strongly inhibited agr-based QS in a GFP reporter strain of S. aureus for at least 14 days without promoting cell death. These materials also inhibited production of hemolysins, a QS-controlled virulence phenotype, and reduced the lysis of erythrocytes when placed in contact with wild-type S. aureus growing on surfaces. This approach is modular and can be used with many different polymers, active agents, and processing parameters to fabricate nanofiber coatings on surfaces important in healthcare contexts. S. aureus is one of the most common causative agents of bacterial infections in humans, and strains of this pathogen have developed significant resistance to conventional antibiotics. The QSI-based strategies reported here thus provide springboards for the development of new anti-infective materials and novel treatment strategies that target virulence as opposed to growth in S. aureus. This approach also provides porous scaffolds for cell culture that could prove useful in future studies on the influence of QS modulation on the development and structure of bacterial communities.
Collapse
Affiliation(s)
- Michael J. Kratochvil
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Tian Yang
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Helen E. Blackwell
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - David M. Lynn
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, Wisconsin 53706
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin–Madison, Madison, Wisconsin 53706
| |
Collapse
|
42
|
Krysiak J, Stahl M, Vomacka J, Fetzer C, Lakemeyer M, Fux A, Sieber SA. Quantitative Map of β-Lactone-Induced Virulence Regulation. J Proteome Res 2017; 16:1180-1192. [DOI: 10.1021/acs.jproteome.6b00705] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Joanna Krysiak
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Matthias Stahl
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Jan Vomacka
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Christian Fetzer
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Markus Lakemeyer
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Anja Fux
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Stephan A. Sieber
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| |
Collapse
|
43
|
Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus. PLoS One 2016; 11:e0168305. [PMID: 28005941 PMCID: PMC5179057 DOI: 10.1371/journal.pone.0168305] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 11/30/2016] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a serious human pathogen and antibiotic resistant, community-associated strains, such as the methicillin resistant S. aureus (MRSA) strain USA300, continue to spread. To avoid resistance, anti-virulence therapy has been proposed where toxicity is targeted rather than viability. Previously we have shown that norlichexanthone, a small non-reduced tricyclic polyketide produced by fungi and lichens, reduces expression of hla encoding α-hemolysin as well as the regulatory RNAIII of the agr quorum sensing system in S. aureus 8325-4. The aim of the present study was to further characterise the mode of action of norlichexanthone and its effect on biofilm formation. We find that norlichexanthone reduces expression of both hla and RNAIII also in strain USA300. Structurally, norlichexanthone resembles ω-hydroxyemodin that recently was shown to bind the agr two component response regulator, AgrA, which controls expression of RNAIII and the phenol soluble modulins responsible for human neutrophil killing. We show that norlichexanthone reduces S. aureus toxicity towards human neutrophils and interferes directly with AgrA binding to its DNA target. In contrast to ω-hydroxyemodin however, norlichexanthone reduces staphylococcal biofilm formation. Transcriptomic analysis revealed that genes regulated by the SaeRS two-component system are repressed by norlichexanthone when compared to untreated cells, an effect that was mitigated in strain Newman carrying a partially constitutive SaeRS system. Our data show that norlichexanthone treatment reduces expression of key virulence factors in CA-MRSA strain USA300 via AgrA binding and represses biofilm formation.
Collapse
|
44
|
Thompson TA, Brown PD. Association between the agr locus and the presence of virulence genes and pathogenesis in Staphylococcus aureus using a Caenorhabditis elegans model. Int J Infect Dis 2016; 54:72-76. [PMID: 27915107 DOI: 10.1016/j.ijid.2016.11.411] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/03/2016] [Accepted: 11/21/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a commensal pathogen with a virulon that is under agr control. agr dysfunction has been seen in clinical strains that do not respond positively to treatment. This study aimed to establish the association between the genes in the virulon and the presence of agr and to determine the relationship between the presence or absence of agr and pathogenicity. METHODS PCR was used to identify the presence of the agr operon in 101 clinical S. aureus strains. δ-Haemolysin screening was conducted on all agr-positive strains using the blood agar assay. Singleplex and/or multiplex PCR was used to determine the presence of 31 virulence genes in the strains. Caenorhabditis elegans infectivity and lifespan assays were conducted using 30 CF512 nematodes per strain in triplicate. Significance associated with the carriage of virulence and agr genes was determined using the Chi-square test. Nematode survival was measured using Kaplan-Meier survival estimates and differences in survival were assessed using the log-rank test. RESULTS The frequency of agr-negative strains was 20%. All groups of virulence genes were significantly associated with agr-positive strains: enterotoxin (p<0.001), toxins (p<0.001), capsule (p=0.036), and microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) (p=0.0026). The median lifespan (q=0.5) of agr-negative strains was 15.5 days and of agr-positive strains was 6.5 days. The log-rank test showed a significant difference in the survival rate of nematodes exposed to the two groups (p=0.006). CONCLUSIONS There was a strong association between the carriage of virulence genes and the presence of the agr operon in clinical strains of S. aureus. Further, agr-positive strains were more pathogenic than agr-negative strains, suggesting a correlation between the presence of agr, carriage of virulence determinants, and pathogenicity.
Collapse
Affiliation(s)
- Terissa A Thompson
- Department of Basic Medical Sciences (Biochemistry Section), University of the West Indies, Mona, Jamaica
| | - Paul D Brown
- Department of Basic Medical Sciences (Biochemistry Section), University of the West Indies, Mona, Jamaica.
| |
Collapse
|
45
|
Multidrug Intrinsic Resistance Factors in Staphylococcus aureus Identified by Profiling Fitness within High-Diversity Transposon Libraries. mBio 2016; 7:mBio.00950-16. [PMID: 27531908 PMCID: PMC4992970 DOI: 10.1128/mbio.00950-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Staphylococcus aureus is a leading cause of life-threatening infections worldwide. The MIC of an antibiotic against S. aureus, as well as other microbes, is determined by the affinity of the antibiotic for its target in addition to a complex interplay of many other cellular factors. Identifying nontarget factors impacting resistance to multiple antibiotics could inform the design of new compounds and lead to more-effective antimicrobial strategies. We examined large collections of transposon insertion mutants in S. aureus using transposon sequencing (Tn-Seq) to detect transposon mutants with reduced fitness in the presence of six clinically important antibiotics—ciprofloxacin, daptomycin, gentamicin, linezolid, oxacillin, and vancomycin. This approach allowed us to assess the relative fitness of many mutants simultaneously within these libraries. We identified pathways/genes previously known to be involved in resistance to individual antibiotics, including graRS and vraFG (graRS/vraFG), mprF, and fmtA, validating the approach, and found several to be important across multiple classes of antibiotics. We also identified two new, previously uncharacterized genes, SAOUHSC_01025 and SAOUHSC_01050, encoding polytopic membrane proteins, as important in limiting the effectiveness of multiple antibiotics. Machine learning identified similarities in the fitness profiles of graXRS/vraFG, SAOUHSC_01025, and SAOUHSC_01050 mutants upon antibiotic treatment, connecting these genes of unknown function to modulation of crucial cell envelope properties. Therapeutic strategies that combine a known antibiotic with a compound that targets these or other intrinsic resistance factors may be of value for enhancing the activity of existing antibiotics for treating otherwise-resistant S. aureus strains. Bacterial resistance to every major class of antibiotics has emerged, and we are entering a “post-antibiotic era” where relatively minor infections can lead to serious complications or even death. The utility of an antibiotic for a specific pathogen is limited by both intrinsic and acquired factors. Identifying the repertoire of intrinsic resistance factors of an antibiotic for Staphylococcus aureus, a leading cause of community- and hospital-acquired infections, would inform the design of new drugs as well as the identification of compounds that enhance the activity of existing drugs. To identify factors that limit the activity of antibiotics against S. aureus, we used Tn-Seq to simultaneously assess fitness of transposon mutants in every nonessential gene in the presence of six clinically important antibiotics. This work provides an efficient approach for identifying promising targets for drugs that can enhance susceptibility or restore sensitivity to existing antibiotics.
Collapse
|
46
|
Yang T, Tal-Gan Y, Paharik AE, Horswill AR, Blackwell HE. Structure-Function Analyses of a Staphylococcus epidermidis Autoinducing Peptide Reveals Motifs Critical for AgrC-type Receptor Modulation. ACS Chem Biol 2016; 11:1982-91. [PMID: 27159024 DOI: 10.1021/acschembio.6b00120] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus epidermidis is frequently implicated in human infections associated with indwelling medical devices due to its ubiquity in the skin flora and formation of robust biofilms. The accessory gene regulator (agr) quorum sensing (QS) system plays a prominent role in the establishment of biofilms and infection by this bacterium. Agr activation is mediated by the binding of a peptide signal (or autoinducing peptide, AIP) to its cognate AgrC receptor. Many questions remain about the role of QS in S. epidermidis infections, as well as in mixed-microbial populations on a host, and chemical modulators of its agr system could provide novel insights into this signaling network. The AIP ligand provides an initial scaffold for the development of such probes; however, the structure-activity relationships (SARs) for activation of S. epidermidis AgrC receptors by AIPs are largely unknown. Herein, we report the first SAR analyses of an S. epidermidis AIP by performing systematic alanine and d-amino acid scans of the S. epidermidis AIP-I. On the basis of these results, we designed and identified potent, pan-group inhibitors of the AgrC receptors in the three S. epidermidis agr groups, as well as a set of AIP-I analogs capable of selective AgrC inhibition in either specific S. epidermidis agr groups or in another common staphylococcal species, S. aureus. In addition, we uncovered a non-native peptide agonist of AgrC-I that can strongly inhibit S. epidermidis biofilm growth. Together, these synthetic analogs represent new and readily accessible probes for investigating the roles of QS in S. epidermidis colonization and infections.
Collapse
Affiliation(s)
- Tian Yang
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Yftah Tal-Gan
- Department
of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada 89557, United States
| | - Alexandra E. Paharik
- Department
of Microbiology, University of Iowa Carver College of Medicine, 431 Newton Rd., Iowa City, Iowa 52242, United States
| | - Alexander R. Horswill
- Department
of Microbiology, University of Iowa Carver College of Medicine, 431 Newton Rd., Iowa City, Iowa 52242, United States
| | - Helen E. Blackwell
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
47
|
Marchand N, Collins CH. Synthetic Quorum Sensing and Cell-Cell Communication in Gram-Positive Bacillus megaterium. ACS Synth Biol 2016. [PMID: 26203497 DOI: 10.1021/acssynbio.5b00099] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The components of natural quorum-sensing (QS) systems can be used to engineer synthetic communication systems that regulate gene expression in response to chemical signals. We have used the machinery from the peptide-based agr QS system from Staphylococcus aureus to engineer a synthetic QS system in Bacillus megaterium to enable autoinduction of a target gene at high cell densities. Growth and gene expression from these synthetic QS cells were characterized in both complex and minimal media. We also split the signal production and sensing components between two strains of B. megaterium to produce sender and receiver cells and characterized the resulting communication in liquid media and on semisolid agar. The system described in this work represents the first synthetic QS and cell-cell communication system that has been engineered to function in a Gram-positive host, and it has the potential to enable the generation of dynamic gene regulatory networks in B. megaterium and other Gram-positive organisms.
Collapse
Affiliation(s)
- Nicholas Marchand
- Department of Chemical and Biological Engineering, ‡Center for Biotechnology
and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Cynthia H. Collins
- Department of Chemical and Biological Engineering, ‡Center for Biotechnology
and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| |
Collapse
|
48
|
Regulation of Toxin Production in Clostridium perfringens. Toxins (Basel) 2016; 8:toxins8070207. [PMID: 27399773 PMCID: PMC4963840 DOI: 10.3390/toxins8070207] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/24/2016] [Indexed: 01/10/2023] Open
Abstract
The Gram-positive anaerobic bacterium Clostridium perfringens is widely distributed in nature, especially in soil and the gastrointestinal tracts of humans and animals. C. perfringens causes gas gangrene and food poisoning, and it produces extracellular enzymes and toxins that are thought to act synergistically and contribute to its pathogenesis. A complicated regulatory network of toxin genes has been reported that includes a two-component system for regulatory RNA and cell-cell communication. It is necessary to clarify the global regulatory system of these genes in order to understand and treat the virulence of C. perfringens. We summarize the existing knowledge about the regulatory mechanisms here.
Collapse
|
49
|
Soon RL, Lenhard JR, Reilly I, Brown T, Forrest A, Tsuji BT. Impact of Staphylococcus aureus accessory gene regulator (agr) system on linezolid efficacy by profiling pharmacodynamics and RNAIII expression. J Antibiot (Tokyo) 2016; 70:98-101. [DOI: 10.1038/ja.2016.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/16/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022]
|
50
|
Brooks JL, Jefferson KK. Staphylococcal biofilms: quest for the magic bullet. ADVANCES IN APPLIED MICROBIOLOGY 2016; 81:63-87. [PMID: 22958527 DOI: 10.1016/b978-0-12-394382-8.00002-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The biofilm phenotype has been recognized only relatively recently in medical history but it has rapidly become clear that the development of many, if not the majority of bacterial infections depends upon the formation of a biofilm. Medical device-related infections are one of the clearest examples of biofilm-dependent infections. Bacteria proficiently adhere to and establish biofilms on synthetic surfaces, and to date, no material has proven to completely preclude bacterial adherence. Any inserted device can be colonized but intravenous catheters, due to their widespread use, are the most commonly colonized devices. As many as half a million catheter-related infections occur each year in the United States and the staphylococci, in particular, Staphylococcus aureus and Staphylococcus epidermidis, are the leading cause. Biofilms exhibit tolerance to biocides, chemotherapeutic agents, and host-immune defenses and subsequently, biofilm-associated infections are extremely difficult to treat, frequently chronic, and often recurrent, making them a confounding clinical problem. Development of an effective strategy for preventing and/or treating these infections is of paramount importance and consequently, the search for novel approaches to target the biofilm phenotype has exploded in recent years. Because the biofilm phenotype is complex, targets for antibiofilm approaches are numerous and this line of research is significantly expanding our knowledge about the biofilm mode of growth and its role in disease. This review highlights a number of antibiofilm approaches that are currently under investigation as novel interventions for staphylococcal infections.
Collapse
|