1
|
Lim G, Calabrese D, Wolder A, Cordero PRF, Rother D, Mulks FF, Paul CE, Lauterbach L. H 2-driven biocatalysis for flavin-dependent ene-reduction in a continuous closed-loop flow system utilizing H 2 from water electrolysis. Commun Chem 2024; 7:200. [PMID: 39244618 PMCID: PMC11380674 DOI: 10.1038/s42004-024-01288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Despite the increasing demand for efficient and sustainable chemical processes, the development of scalable systems using biocatalysis for fine chemical production remains a significant challenge. We have developed a scalable flow system using immobilized enzymes to facilitate flavin-dependent biocatalysis, targeting as a proof-of-concept asymmetric alkene reduction. The system integrates a flavin-dependent Old Yellow Enzyme (OYE) and a soluble hydrogenase to enable H2-driven regeneration of the OYE cofactor FMNH2. Molecular hydrogen was produced by water electrolysis using a proton exchange membrane (PEM) electrolyzer and introduced into the flow system via a designed gas membrane addition module at a high diffusion rate. The flow system shows remarkable stability and reusability, consistently achieving >99% conversion of ketoisophorone to levodione. It also demonstrates versatility and selectivity in reducing various cyclic enones and can be extended to further flavin-based biocatalytic approaches and gas-dependent reactions. This electro-driven continuous flow system, therefore, has significant potential for advancing sustainable processes in fine chemical synthesis.
Collapse
Affiliation(s)
- Guiyeoul Lim
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
| | - Donato Calabrese
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
| | - Allison Wolder
- Biocatalysis Section, Department Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Paul R F Cordero
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
| | - Dörte Rother
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
- Institute for Bio-and Geosciences 1: Biotechnology Forschungzentrum Jülich GmbH, Jülich, Germany
| | - Florian F Mulks
- Institute of Organic Chemistry-iOC RWTH Aachen University, Aachen, Germany
| | - Caroline E Paul
- Biocatalysis Section, Department Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Lars Lauterbach
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
2
|
Brachi M, El Housseini W, Beaver K, Jadhav R, Dantanarayana A, Boucher DG, Minteer SD. Advanced Electroanalysis for Electrosynthesis. ACS ORGANIC & INORGANIC AU 2024; 4:141-187. [PMID: 38585515 PMCID: PMC10995937 DOI: 10.1021/acsorginorgau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 04/09/2024]
Abstract
Electrosynthesis is a popular, environmentally friendly substitute for conventional organic methods. It involves using charge transfer to stimulate chemical reactions through the application of a potential or current between two electrodes. In addition to electrode materials and the type of reactor employed, the strategies for controlling potential and current have an impact on the yields, product distribution, and reaction mechanism. In this Review, recent advances related to electroanalysis applied in electrosynthesis were discussed. The first part of this study acts as a guide that emphasizes the foundations of electrosynthesis. These essentials include instrumentation, electrode selection, cell design, and electrosynthesis methodologies. Then, advances in electroanalytical techniques applied in organic, enzymatic, and microbial electrosynthesis are illustrated with specific cases studied in recent literature. To conclude, a discussion of future possibilities that intend to advance the academic and industrial areas is presented.
Collapse
Affiliation(s)
- Monica Brachi
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Wassim El Housseini
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Kevin Beaver
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Rohit Jadhav
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Ashwini Dantanarayana
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Dylan G. Boucher
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
3
|
Kerschbaumer B, Totaro MG, Friess M, Breinbauer R, Bijelic A, Macheroux P. Loop 6 and the β-hairpin flap are structural hotspots that determine cofactor specificity in the FMN-dependent family of ene-reductases. FEBS J 2024; 291:1560-1574. [PMID: 38263933 DOI: 10.1111/febs.17055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Flavin mononucleotide (FMN)-dependent ene-reductases constitute a large family of oxidoreductases that catalyze the enantiospecific reduction of carbon-carbon double bonds. The reducing equivalents required for substrate reduction are obtained from reduced nicotinamide by hydride transfer. Most ene-reductases significantly prefer, or exclusively accept, either NADPH or NADH. Despite their usefulness in biocatalytic applications, the structural determinants for cofactor preference remain elusive. We employed the NADPH-preferring 12-oxophytodienoic acid reductase 3 from Solanum lycopersicum (SlOPR3) as a model enzyme of the ene-reductase family and applied computational and structural methods to investigate the binding specificity of the reducing coenzymes. Initial docking results indicated that the arginine triad R283, R343, and R366 residing on and close to a critical loop at the active site (loop 6) are the main contributors to NADPH binding. In contrast, NADH binds unfavorably in the opposite direction toward the β-hairpin flap within a largely hydrophobic region. Notably, the crystal structures of SlOPR3 in complex with either NADPH4 or NADH4 corroborated these different binding modes. Molecular dynamics simulations confirmed NADH binding near the β-hairpin flap and provided structural explanations for the low binding affinity of NADH to SlOPR3. We postulate that cofactor specificity is determined by the arginine triad/loop 6 and the residue(s) controlling access to a hydrophobic cleft formed by the β-hairpin flap. Thus, NADPH preference depends on a properly positioned arginine triad, whereas granting access to the hydrophobic cleft at the β-hairpin flap favors NADH binding.
Collapse
Affiliation(s)
| | - Massimo G Totaro
- Institute of Biochemistry, Graz University of Technology, Austria
| | - Michael Friess
- Institute of Organic Chemistry, Graz University of Technology, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Austria
| | | | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Austria
| |
Collapse
|
4
|
Guo YY, Tian ZH, Han YC, Ma D, Shao T, Jiang Z. Hantzsch Ester as Efficient and Economical NAD(P)H Mimic for In Vitro Bioredox Reactions. Chemistry 2023; 29:e202301180. [PMID: 37263982 DOI: 10.1002/chem.202301180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/03/2023]
Abstract
Biocatalysis has emerged as a valuable and reliable tool for industrial and academic societies, particularly in fields related to bioredox reactions. The cost of cofactors, especially those needed to be replenished at stoichiometric amounts or more, is the chief economic concern for bioredox reactions. In this study, a readily accessible, inexpensive, and bench-stable Hantzsch ester is verified as the viable and efficient NAD(P)H mimic by four enzymatic redox transformations, including two non-heme diiron N-oxygenases and two flavin-dependent reductases. This finding provides the potential to significantly reduce the costs of NAD(P)H-relying bioredox reactions.
Collapse
Affiliation(s)
- Yuan-Yang Guo
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education NMPA Key Laboratory for Research and Evaluation of Innovative Drug Henan Key Laboratory of Organic Functional Molecule and Drug Innovation School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Ze-Hua Tian
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education NMPA Key Laboratory for Research and Evaluation of Innovative Drug Henan Key Laboratory of Organic Functional Molecule and Drug Innovation School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yu-Chen Han
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education NMPA Key Laboratory for Research and Evaluation of Innovative Drug Henan Key Laboratory of Organic Functional Molecule and Drug Innovation School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Dandan Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education NMPA Key Laboratory for Research and Evaluation of Innovative Drug Henan Key Laboratory of Organic Functional Molecule and Drug Innovation School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Tianju Shao
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education NMPA Key Laboratory for Research and Evaluation of Innovative Drug Henan Key Laboratory of Organic Functional Molecule and Drug Innovation School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zhiyong Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education NMPA Key Laboratory for Research and Evaluation of Innovative Drug Henan Key Laboratory of Organic Functional Molecule and Drug Innovation School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
5
|
Kumar Roy T, Sreedharan R, Ghosh P, Gandhi T, Maiti D. Ene-Reductase: A Multifaceted Biocatalyst in Organic Synthesis. Chemistry 2022; 28:e202103949. [PMID: 35133702 DOI: 10.1002/chem.202103949] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Biocatalysis integrate microbiologists, enzymologists, and organic chemists to access the repertoire of pharmaceutical and agrochemicals with high chemoselectivity, regioselectivity, and enantioselectivity. The saturation of carbon-carbon double bonds by biocatalysts challenges the conventional chemical methodology as it bypasses the use of precious metals (in combination with chiral ligands and molecular hydrogen) or organocatalysts. In this line, Ene-reductases (ERs) from the Old Yellow Enzymes (OYEs) family are found to be a prominent asymmetric biocatalyst that is increasingly used in academia and industries towards unparalleled stereoselective trans-hydrogenations of activated C=C bonds. ERs gained prominence as they were used as individual catalysts, multi-enzyme cascades, and in conjugation with chemical reagents (chemoenzymatic approach). Besides, ERs' participation in the photoelectrochemical and radical-mediated process helps to unlock many scopes outside traditional biocatalysis. These up-and-coming methodologies entice the enzymologists and chemists to explore, expand and harness the chemistries displayed by ERs for industrial settings. Herein, we reviewed the last five year's exploration of organic transformations using ERs.
Collapse
Affiliation(s)
- Triptesh Kumar Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Pintu Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Debabrata Maiti
- Chemistry Department and Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
6
|
Reeve HA, Nicholson J, Altaf F, Lonsdale TH, Preissler J, Lauterbach L, Lenz O, Leimkühler S, Hollmann F, Paul CE, Vincent KA. A hydrogen-driven biocatalytic approach to recycling synthetic analogues of NAD(P)H. Chem Commun (Camb) 2022; 58:10540-10543. [DOI: 10.1039/d2cc02411j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soluble hydrogenase enables atom efficient, H2-driven, recycling of synthetic nicotinamide cofactors.
Collapse
Affiliation(s)
- Holly A. Reeve
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Jake Nicholson
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Farieha Altaf
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Thomas H. Lonsdale
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Janina Preissler
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Lars Lauterbach
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
- RWTH Aachen University iAMB – Institute of Applied Microbiology Worringer Weg 1, 52074 Aachen, Germany
| | - Oliver Lenz
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Caroline E. Paul
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Kylie A. Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
7
|
Abstract
Biocatalysis has an enormous impact on chemical synthesis. The waves in which biocatalysis has developed, and in doing so changed our perception of what organic chemistry is, were reviewed 20 and 10 years ago. Here we review the consequences of these waves of development. Nowadays, hydrolases are widely used on an industrial scale for the benign synthesis of commodity and bulk chemicals and are fully developed. In addition, further enzyme classes are gaining ever increasing interest. Particularly, enzymes catalysing selective C-C-bond formation reactions and enzymes catalysing selective oxidation and reduction reactions are solving long-standing synthetic challenges in organic chemistry. Combined efforts from molecular biology, systems biology, organic chemistry and chemical engineering will establish a whole new toolbox for chemistry. Recent developments are critically reviewed.
Collapse
Affiliation(s)
- Ulf Hanefeld
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Frank Hollmann
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| |
Collapse
|
8
|
Tan Z, Han Y, Fu Y, Zhang X, Xu M, Na Q, Zhuang W, Qu X, Ying H, Zhu C. Investigating the Structure‐Reactivity Relationships Between Nicotinamide Coenzyme Biomimetics and Pentaerythritol Tetranitrate Reductase. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhuotao Tan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing People's Republic of China
| | - Yaoying Han
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing People's Republic of China
| | - Yaping Fu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing People's Republic of China
| | - Xiaowang Zhang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing People's Republic of China
| | - Mengjiao Xu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing People's Republic of China
| | - Qi Na
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing People's Republic of China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing People's Republic of China
| | - Xudong Qu
- School of Life Sciences and Biotechnology Shanghai Jiao Tong University 200240 Shanghai People's Republic of China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing People's Republic of China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing People's Republic of China
| |
Collapse
|
9
|
Parmeggiani F, Brenna E, Colombo D, Gatti FG, Tentori F, Tessaro D. "A Study in Yellow": Investigations in the Stereoselectivity of Ene-Reductases. Chembiochem 2021; 23:e202100445. [PMID: 34586700 PMCID: PMC9292831 DOI: 10.1002/cbic.202100445] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Indexed: 12/11/2022]
Abstract
Ene‐reductases from the Old Yellow Enzyme (OYE) superfamily are a well‐known and efficient biocatalytic alternative for the asymmetric reduction of C=C bonds. Considering the broad variety of substituents that can be tolerated, and the excellent stereoselectivities achieved, it is apparent why these enzymes are so appealing for preparative and industrial applications. Different classes of C=C bonds activated by at least one electron‐withdrawing group have been shown to be accepted by these versatile biocatalysts in the last decades, affording a vast range of chiral intermediates employed in the synthesis of pharmaceuticals, agrochemicals, flavours, fragrances and fine chemicals. In order to access both enantiomers of reduced products, stereodivergent pairs of OYEs are desirable, but their natural occurrence is limited. The detailed knowledge of the stereochemical course of the reaction can uncover alternative strategies to orient the selectivity via mutagenesis, evolution, and substrate engineering. An overview of the ongoing studies on OYE‐mediated bioreductions will be provided, with particular focus on stereochemical investigations by deuterium labelling.
Collapse
Affiliation(s)
- Fabio Parmeggiani
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Elisabetta Brenna
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Danilo Colombo
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Francesco G Gatti
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Francesca Tentori
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Davide Tessaro
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| |
Collapse
|
10
|
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021; 60:5644-5665. [PMID: 32330347 PMCID: PMC7983917 DOI: 10.1002/anie.202001876] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
11
|
Hollmann F, Opperman DJ, Paul CE. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
12
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
13
|
Song H, Ma C, Wang L, Zhu Z. Platinum nanoparticle-deposited multi-walled carbon nanotubes as a NADH oxidase mimic: characterization and applications. NANOSCALE 2020; 12:19284-19292. [PMID: 32935692 DOI: 10.1039/d0nr04060f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effective regeneration of bioactive NAD+ plays an important role in numerous dehydrogenase-dependent applications including biocatalysis and biosensing. However, this process usually suffers from high thermodynamic barrier, instability and high cost associated with natural enzymes. The emergence of nanomaterials with enzyme mimic characteristics has offered a potential alternative to many enzyme-catalyzed processes. Platinum nanoparticles (PtNPs), for example, have been extensively studied for their peroxidase- and oxidase-like activities. However, their behavior as a NADH oxidase mimic has barely been characterized in detail. Herein, we report a facile approach for preparing PtNP-deposited multi-walled carbon nanotubes (PtNPs@MWCNTs) as the nanozyme for NADH oxidation. Its enzymatic activity was investigated in depth, revealing that it is a NADH oxidase instead of a peroxidase and the catalytic process generates O2˙-, rather than OH˙ or 1O2, from dissolved O2. The recovery yield of bioactive NAD+ regeneration by the nanozyme could reach ∼100% with a total turnover number of ∼6000. Besides, it exhibited terrific electrochemical performance for NADH oxidation and sensing by greatly boosting the response and lowering the oxidation overpotential. It could also work on biomimetic cofactors with even higher activity. Finally, xylose dehydrogenase was immobilized with the nanozyme to constitute a hybrid bioelectrode for xylose sensing. The biosensor had a xylose detecting range of 5-400 μM with the limit of detection as low as 1 μM and can retain its performance after being reused several times. Our results suggest that the PtNPs@MWCNTs characterized as a NADH oxidase nanozyme hold great promise in the applications of biocatalysis and biosensing, which intensively deal with dehydrogenases and natural or biomimetic cofactors.
Collapse
Affiliation(s)
- Haiyan Song
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China.
| | - Chunling Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China.
| | - Lei Wang
- National Human Genetic Resource Center, 12 Dahuisi Road, Haidian District, Beijing 100081, P.R. China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China. and School of Chemical Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|
14
|
Thermal, electrochemical and photochemical reactions involving catalytically versatile ene reductase enzymes. Enzymes 2020; 47:491-515. [PMID: 32951833 DOI: 10.1016/bs.enz.2020.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Successful exploitation of biocatalytic processes employing flavoproteins requires the implementation of cost-effective solutions to circumvent the need to supply costly nicotinamide coenzymes as reducing equivalents. Chemical syntheses harnessing the power of the flavoprotein ene reductases will likely increase the range and/or optical purity of available fine chemicals and pharmaceuticals due to their ability to catalyze asymmetric bioreductions. This review will outline current progress in the design of alternative routes to ene reductase flavin activation, most notably within the Old Yellow Enzyme family. A variety of chemical, enzymatic, electrochemical and photocatalytic routes have been employed, designed to eliminate the need for nicotinamide coenzymes or provide cost-effective alternatives to efficient recycling. Photochemical approaches have also enabled novel mechanistic routes of ene reductases to become available, opening up the possibility of accessing a wider range of non-natural chemical diversity.
Collapse
|
15
|
Rauch MCR, Gallou Y, Delorme L, Paul CE, Arends IWCE, Hollmann F. Metals in Biotechnology: Cr-Driven Stereoselective Reduction of Conjugated C=C Double Bonds. Chembiochem 2020; 21:1112-1115. [PMID: 31713969 PMCID: PMC7217005 DOI: 10.1002/cbic.201900685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Indexed: 11/13/2022]
Abstract
Elemental metals are shown to be suitable sacrificial electron donors to drive the stereoselective reduction of conjugated C=C double bonds using Old Yellow Enzymes as catalysts. Both direct electron transfer from the metal to the enzyme as well as mediated electron transfer is feasible, although the latter excels by higher reaction rates. The general applicability of this new chemoenzymatic reduction method is demonstrated, and current limitations are outlined.
Collapse
Affiliation(s)
- Marine C. R. Rauch
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Yann Gallou
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Léna Delorme
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | | | - Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| |
Collapse
|
16
|
Chen H, Dong F, Minteer SD. The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials. Nat Catal 2020. [DOI: 10.1038/s41929-019-0408-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Rauch MCR, Huijbers MME, Pabst M, Paul CE, Pešić M, Arends IWCE, Hollmann F. Photochemical regeneration of flavoenzymes - An Old Yellow Enzyme case-study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140303. [PMID: 31678192 DOI: 10.1016/j.bbapap.2019.140303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/01/2022]
Abstract
Direct, NAD(P)H-independent regeneration of Old Yellow Enzymes represents an interesting approach for simplified reaction schemes for the stereoselective reduction of conjugated C=C-double bonds. Simply by illuminating the reaction mixtures with blue light in the presence of sacrificial electron donors enables to circumvent the costly and unstable nicotinamide cofactors and a corresponding regeneration system. In the present study, we characterise the parameters determining the efficiency of this approach and outline the current limitations. Particularly, the photolability of the flavin photocatalyst and the (flavin-containing) biocatalyst represent the major limitation en route to preparative application.
Collapse
Affiliation(s)
- M C R Rauch
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - M M E Huijbers
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - M Pabst
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - C E Paul
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - M Pešić
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - I W C E Arends
- Faculty of Science, Utrecht University, Budapestlaan 6, 3584 CD Utrecht, the Netherlands
| | - F Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
18
|
Schmitz LM, Rosenthal K, Lütz S. Enzyme-Based Electrobiotechnological Synthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 167:87-134. [PMID: 29134460 DOI: 10.1007/10_2017_33] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidoreductases are enzymes with a high potential for organic synthesis, as their selectivity often exceeds comparable chemical syntheses. The biochemical cofactors of these enzymes need regeneration during synthesis. Several regeneration methods are available but the electrochemical approach offers an efficient and quasi mass-free method for providing the required redox equivalents. Electron transfer systems involving direct regeneration of natural and artificial cofactors, indirect electrochemical regeneration via a mediator, and indirect electroenzymatic cofactor regeneration via enzyme and mediator have been investigated. This chapter gives an overview of electroenzymatic syntheses with oxidoreductases, structured by the enzyme subclass and their usage of cofactors for electron relay. Particular attention is given to the productivity of electroenzymatic biotransformation processes. Because most electroenzymatic syntheses suffer from low productivity, we discuss reaction engineering concepts to overcome the main limiting factors, with a focus on media conductivity optimization, approaches to prevent enzyme inactivation, and the application of advanced cell designs. Graphical Abstract.
Collapse
Affiliation(s)
- Lisa Marie Schmitz
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Katrin Rosenthal
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Stephan Lütz
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
19
|
Toogood HS, Scrutton NS. Discovery, Characterisation, Engineering and Applications of Ene Reductases for Industrial Biocatalysis. ACS Catal 2019; 8:3532-3549. [PMID: 31157123 PMCID: PMC6542678 DOI: 10.1021/acscatal.8b00624] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent studies of multiple enzyme families collectively referred to as ene-reductases (ERs) have highlighted potential industrial application of these biocatalysts in the production of fine and speciality chemicals. Processes have been developed whereby ERs contribute to synthetic routes as isolated enzymes, components of multi-enzyme cascades, and more recently in metabolic engineering and synthetic biology programmes using microbial cell factories to support chemicals production. The discovery of ERs from previously untapped sources and the expansion of directed evolution screening programmes, coupled to deeper mechanistic understanding of ER reactions, have driven their use in natural product and chemicals synthesis. Here we review developments, challenges and opportunities for the use of ERs in fine and speciality chemicals manufacture. The ER research field is rapidly expanding and the focus of this review is on developments that have emerged predominantly over the last 4 years.
Collapse
Affiliation(s)
- Helen S. Toogood
- School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Nigel S. Scrutton
- School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
20
|
Iorgu AI, Hedison TM, Hay S, Scrutton NS. Selectivity through discriminatory induced fit enables switching of NAD(P)H coenzyme specificity in Old Yellow Enzyme ene-reductases. FEBS J 2019; 286:3117-3128. [PMID: 31033202 PMCID: PMC6767020 DOI: 10.1111/febs.14862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/22/2019] [Accepted: 04/24/2019] [Indexed: 11/30/2022]
Abstract
Most ene‐reductases belong to the Old Yellow Enzyme (OYE) family of flavin‐dependent oxidoreductases. OYEs use nicotinamide coenzymes as hydride donors to catalyze the reduction of alkenes that contain an electron‐withdrawing group. There have been many investigations of the structures and catalytic mechanisms of OYEs. However, the origin of coenzyme specificity in the OYE family is unknown. Structural NMR and X‐ray crystallographic data were used to rationally design variants of two OYEs, pentaerythritol tetranitrate reductase (PETNR) and morphinone reductase (MR), to discover the basis of coenzyme selectivity. PETNR has dual‐specificity and reacts with NADH and NADPH; MR accepts only NADH as hydride donor. Variants of a β‐hairpin motif in an active site loop of both these enzymes were studied using stopped‐flow spectroscopy. Specific attention was placed on the potential role of arginine residues within the β‐hairpin motif. Mutagenesis demonstrated that Arg130 governs the preference of PETNR for NADPH, and that Arg142 interacts with the coenzyme pyrophosphate group. These observations were used to switch coenzyme specificity in MR by replacing either Glu134 or Leu146 with arginine residues. These variants had increased (~15‐fold) affinity for NADH. Mutagenesis enabled MR to accept NADPH as a hydride donor, with E134R MR showing a significant (55‐fold) increase in efficiency in the reductive half‐reaction, when compared to the essentially unreactive wild‐type enzyme. Insight into the question of coenzyme selectivity in OYEs has therefore been addressed through rational redesign. This should enable coenzyme selectivity to be improved and switched in other OYEs.
Collapse
Affiliation(s)
- Andreea I Iorgu
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, UK
| | - Tobias M Hedison
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, UK
| | - Sam Hay
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, UK
| |
Collapse
|
21
|
Kim J, Park CB. Shedding light on biocatalysis: photoelectrochemical platforms for solar-driven biotransformation. Curr Opin Chem Biol 2019; 49:122-129. [DOI: 10.1016/j.cbpa.2018.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 01/31/2023]
|
22
|
Falcone N, She Z, Syed J, Lough A, Kraatz HB. Synthesis and Biochemical Evaluation of Nicotinamide Derivatives as NADH Analogue Coenzymes in Ene Reductase. Chembiochem 2019; 20:838-845. [PMID: 30500101 DOI: 10.1002/cbic.201800661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Indexed: 12/31/2022]
Abstract
Nicotinamide and pyridine-containing conjugates have attracted a lot of attention in research as they have found use in a wide range of applications including as redox flow batteries and calcium channel blockers, in biocatalysis, and in metabolism. The interesting redox character of the compounds' pyridine/dihydropyridine system allows them to possess very similar characteristics to the natural chiral redox agents NAD+ /NADH, even mimicking their functions. There has been considerable interest in designing and synthesizing NAD+ /NADH mimetics with similar redox properties. In this research, three nicotinamide conjugates were designed, synthesized, and characterized. Molecular structures obtained through X-ray crystallography were obtained for two of the conjugates, thereby providing more detail on the bonding and structure of the compounds. The compounds were then further evaluated for biochemical properties, and it was found that one of the conjugates possessed similar functions and characteristics to the natural NADH. This compound was evaluated in the active enzyme, enoate reductase; like NADH, it was shown to help reduce the C=C double bond of three substrates and even outperformed the natural coenzyme. Kinetic data are reported.
Collapse
Affiliation(s)
- Natashya Falcone
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, M5S 3E5, Ontario, Canada.,Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Scarborough, M1C 1A4, Ontario, Canada
| | - Zhe She
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Scarborough, M1C 1A4, Ontario, Canada
| | - Jebreil Syed
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Scarborough, M1C 1A4, Ontario, Canada
| | - Alan Lough
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Ontario, Canada
| | - Heinz-Bernhard Kraatz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, M5S 3E5, Ontario, Canada.,Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Scarborough, M1C 1A4, Ontario, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Ontario, Canada
| |
Collapse
|
23
|
Kim J, Lee SH, Tieves F, Choi DS, Hollmann F, Paul CE, Park CB. Biocatalytic C=C Bond Reduction through Carbon Nanodot-Sensitized Regeneration of NADH Analogues. Angew Chem Int Ed Engl 2018; 57:13825-13828. [PMID: 30062834 DOI: 10.1002/anie.201804409] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/20/2018] [Indexed: 12/12/2022]
Abstract
Light-driven activation of redox enzymes is an emerging route for sustainable chemical synthesis. Among redox enzymes, the family of Old Yellow Enzyme (OYE) dependent on the nicotinamide adenine dinucleotide cofactor (NADH) catalyzes the stereoselective reduction of α,β-unsaturated hydrocarbons. Here, we report OYE-catalyzed asymmetric hydrogenation through light-driven regeneration of NADH and its analogues (mNADHs) by N-doped carbon nanodots (N-CDs), a zero-dimensional photocatalyst. Our spectroscopic and photoelectrochemical analyses verified the transfer of photo-induced electrons from N-CDs to an organometallic electron mediator (M) for highly regioselective regeneration of cofactors. Light triggered the reduction of NAD+ and mNAD+ s with the cooperation of N-CDs and M, and the reduction behaviors of cofactors were dependent on their own reduction peak potentials. The regenerated cofactors subsequently delivered hydrides to OYE for stereoselective conversions of a broad range of substrates with excellent biocatalytic efficiencies.
Collapse
Affiliation(s)
- Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Florian Tieves
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Da Som Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Caroline E Paul
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
24
|
Kim J, Lee SH, Tieves F, Choi DS, Hollmann F, Paul CE, Park CB. Biocatalytic C=C Bond Reduction through Carbon Nanodot‐Sensitized Regeneration of NADH Analogues. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804409] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jinhyun Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305–701 Republic of Korea
| | - Sahng Ha Lee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305–701 Republic of Korea
| | - Florian Tieves
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Da Som Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305–701 Republic of Korea
| | - Frank Hollmann
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Caroline E. Paul
- Laboratory of Organic ChemistryWageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Chan Beum Park
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305–701 Republic of Korea
| |
Collapse
|
25
|
Zhang W, Hollmann F. Nonconventional regeneration of redox enzymes - a practical approach for organic synthesis? Chem Commun (Camb) 2018; 54:7281-7289. [PMID: 29714371 DOI: 10.1039/c8cc02219d] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidoreductases have become useful tools in the hands of chemists to perform selective and mild oxidation and reduction reactions. Instead of mimicking native catalytic cycles, generally involving costly and unstable nicotinamide cofactors, more direct, NAD(P)-independent methodologies are being developed. The promise of these approaches not only lies with simpler and cheaper reaction schemes but also with higher selectivity as compared to whole cell approaches and their mimics.
Collapse
Affiliation(s)
- Wuyuan Zhang
- Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands.
| | | |
Collapse
|
26
|
Lee SH, Choi DS, Kuk SK, Park CB. Photobiokatalyse: Aktivierung von Redoxenzymen durch direkten oder indirekten Transfer photoinduzierter Elektronen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710070] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Da Som Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Su Keun Kuk
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Chan Beum Park
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| |
Collapse
|
27
|
Lee SH, Choi DS, Kuk SK, Park CB. Photobiocatalysis: Activating Redox Enzymes by Direct or Indirect Transfer of Photoinduced Electrons. Angew Chem Int Ed Engl 2018; 57:7958-7985. [PMID: 29194901 DOI: 10.1002/anie.201710070] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/21/2017] [Indexed: 01/01/2023]
Abstract
Biocatalytic transformation has received increasing attention in the green synthesis of chemicals because of the diversity of enzymes, their high catalytic activities and specificities, and mild reaction conditions. The idea of solar energy utilization in chemical synthesis through the combination of photocatalysis and biocatalysis provides an opportunity to make the "green" process greener. Oxidoreductases catalyze redox transformation of substrates by exchanging electrons at the enzyme's active site, often with the aid of electron mediator(s) as a counterpart. Recent progress indicates that photoinduced electron transfer using organic (or inorganic) photosensitizers can activate a wide spectrum of redox enzymes to catalyze fuel-forming reactions (e.g., H2 evolution, CO2 reduction) and synthetically useful reductions (e.g., asymmetric reduction, oxygenation, hydroxylation, epoxidation, Baeyer-Villiger oxidation). This Review provides an overview of recent advances in light-driven activation of redox enzymes through direct or indirect transfer of photoinduced electrons.
Collapse
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Da Som Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Su Keun Kuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
28
|
Ni Y, Hollmann F. Artificial Photosynthesis: Hybrid Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 158:137-158. [PMID: 26987806 DOI: 10.1007/10_2015_5010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oxidoreductases are promising catalysts for organic synthesis. To sustain their catalytic cycles they require efficient supply with redox equivalents. Today classical biomimetic approaches utilizing natural electron supply chains prevail but artificial regeneration approaches bear the promise of simpler and more robust reaction schemes. Utilizing visible light can accelerate such artificial electron transport chains and even enable thermodynamically unfeasible reactions such as the use of water as reductant.This contribution critically summarizes the current state of the art in photoredoxbiocatalysis (i.e. light-driven biocatalytic oxidation and reduction reactions).
Collapse
Affiliation(s)
- Yan Ni
- Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
29
|
Pesic M, Fernández-Fueyo E, Hollmann F. Characterization of the Old Yellow Enzyme Homolog fromBacillus subtilis(YqjM). ChemistrySelect 2017. [DOI: 10.1002/slct.201700724] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Milja Pesic
- Department of Biotechnology; Delft University of Technology; Van der Maasewg 9 2629HZ Delft, The Netherlands
| | - Elena Fernández-Fueyo
- Department of Biotechnology; Delft University of Technology; Van der Maasewg 9 2629HZ Delft, The Netherlands
| | - Frank Hollmann
- Department of Biotechnology; Delft University of Technology; Van der Maasewg 9 2629HZ Delft, The Netherlands
| |
Collapse
|
30
|
Old Yellow Enzyme-Catalysed Asymmetric Hydrogenation: Linking Family Roots with Improved Catalysis. Catalysts 2017. [DOI: 10.3390/catal7050130] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Tosstorff A, Kroner C, Opperman DJ, Hollmann F, Holtmann D. Towards electroenzymatic processes involving old yellow enzymes and mediated cofactor regeneration. Eng Life Sci 2016; 17:71-76. [PMID: 32624730 DOI: 10.1002/elsc.201600158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/02/2016] [Accepted: 09/07/2016] [Indexed: 11/08/2022] Open
Abstract
Old yellow enzymes are able to catalyze asymmetric C=C reductions. A mediated electroenzymatic process to regenerate the NADPH in combination with an old yellow enzyme was investigated. Due to the fact that the overall process was affected by a broad set of parameters, a design of experiments (DoE) approach was chosen to identify suitable process conditions. Process conditions with high productivities of up to 2.27 mM/h in combination with approximately 90% electron transfer efficiency were identified.
Collapse
Affiliation(s)
| | - Cora Kroner
- DECHEMA Research Institute Frankfurt Germany
| | - Diederik J Opperman
- Department of Biotechnology, University of the Free State Bloemfontein South Africa
| | - Frank Hollmann
- Department of Biotechnology TU Delft Julianalaan BL Delft The Netherlands
| | | |
Collapse
|
32
|
Geddes A, Paul CE, Hay S, Hollmann F, Scrutton NS. Donor–Acceptor Distance Sampling Enhances the Performance of “Better than Nature” Nicotinamide Coenzyme Biomimetics. J Am Chem Soc 2016; 138:11089-92. [DOI: 10.1021/jacs.6b05625] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander Geddes
- BBSRC/EPSRC
Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Caroline E. Paul
- Department
of Biotechnology, Delft University of Technology, Julianalaan 136, 2628BL Delft, The Netherlands
| | - Sam Hay
- BBSRC/EPSRC
Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Frank Hollmann
- Department
of Biotechnology, Delft University of Technology, Julianalaan 136, 2628BL Delft, The Netherlands
| | - Nigel S. Scrutton
- BBSRC/EPSRC
Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
33
|
Basso AV, Nicotra VE, Parra A, Martínez A, Fernández-Vivas A. Biotransformation of Salpichrolides A, C, and G by Three Filamentous Fungi. JOURNAL OF NATURAL PRODUCTS 2016; 79:1658-67. [PMID: 27285201 DOI: 10.1021/acs.jnatprod.6b00310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Incubation of salpichrolide A (1) with Rhizomucor miehei produced hydroxylation in rings B and C (C-7 and C-12) and led to C-5-C-6 epoxide opening, while incubation of salpichrolides C (2) and G (3) with R. miehei led to epoxide opening at the C-24-C-25 and C-5-C-6 positions, respectively. Biotransformation of salpichrolide A (1) with Cunninghamella elegans produced stereoselective hydroxylated, oxidized, and reduced derivatives in different positions of the A, B, and C rings and C-5-C-6 epoxide opening. In addition, selective epoxide opening at the C-5-C-6 or C-24-C-25 positions was obtained from the incubation of salpichrolide A (1) with Curvularia lunata.
Collapse
Affiliation(s)
- Ana V Basso
- Facultad de Ciencias Químicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba , Casilla de Correo 495, 5000 Córdoba, Argentina
| | - Viviana E Nicotra
- Facultad de Ciencias Químicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba , Casilla de Correo 495, 5000 Córdoba, Argentina
| | | | | | | |
Collapse
|
34
|
Knaus T, Paul CE, Levy CW, de Vries S, Mutti FG, Hollmann F, Scrutton NS. Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes. J Am Chem Soc 2016; 138:1033-9. [PMID: 26727612 PMCID: PMC4731831 DOI: 10.1021/jacs.5b12252] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
![]()
The search for affordable, green
biocatalytic processes is a challenge
for chemicals manufacture. Redox biotransformations are potentially
attractive, but they rely on unstable and expensive nicotinamide coenzymes
that have prevented their widespread exploitation. Stoichiometric
use of natural coenzymes is not viable economically, and the instability
of these molecules hinders catalytic processes that employ coenzyme
recycling. Here, we investigate the efficiency of man-made synthetic
biomimetics of the natural coenzymes NAD(P)H in redox biocatalysis.
Extensive studies with a range of oxidoreductases belonging to the
“ene” reductase family show that these biomimetics are
excellent analogues of the natural coenzymes, revealed also in crystal
structures of the ene reductase XenA with selected biomimetics. In
selected cases, these biomimetics outperform the natural coenzymes.
“Better-than-Nature” biomimetics should find widespread
application in fine and specialty chemicals production by harnessing
the power of high stereo-, regio-, and chemoselective redox biocatalysts
and enabling reactions under mild conditions at low cost.
Collapse
Affiliation(s)
- Tanja Knaus
- BBSRC/EPSRC Centre for Synthetic Biology of Fine and Speciality Chemicals, Faculty of Life Sciences, Manchester Institute of Biotechnology , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology , Julianalaan 136, 2628BL Delft, The Netherlands
| | - Colin W Levy
- BBSRC/EPSRC Centre for Synthetic Biology of Fine and Speciality Chemicals, Faculty of Life Sciences, Manchester Institute of Biotechnology , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Simon de Vries
- Department of Biotechnology, Delft University of Technology , Julianalaan 136, 2628BL Delft, The Netherlands
| | - Francesco G Mutti
- BBSRC/EPSRC Centre for Synthetic Biology of Fine and Speciality Chemicals, Faculty of Life Sciences, Manchester Institute of Biotechnology , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology , Julianalaan 136, 2628BL Delft, The Netherlands
| | - Nigel S Scrutton
- BBSRC/EPSRC Centre for Synthetic Biology of Fine and Speciality Chemicals, Faculty of Life Sciences, Manchester Institute of Biotechnology , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
35
|
Pei XQ, Xu MY, Wu ZL. Two “classical” Old Yellow Enzymes from Chryseobacterium sp. CA49: Broad substrate specificity of Chr-OYE1 and limited activity of Chr-OYE2. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
|