1
|
Albahri J, Allison H, Whitehead KA, Muhamadali H. The role of salivary metabolomics in chronic periodontitis: bridging oral and systemic diseases. Metabolomics 2025; 21:24. [PMID: 39920480 PMCID: PMC11805826 DOI: 10.1007/s11306-024-02220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND Chronic periodontitis is a condition impacting approximately 50% of the world's population. As chronic periodontitis progresses, the bacteria in the oral cavity change resulting in new microbial interactions which in turn influence metabolite production. Chronic periodontitis manifests with inflammation of the periodontal tissues, which is progressively developed due to bacterial infection and prolonged bacterial interaction with the host immune response. The bi-directional relationship between periodontitis and systemic diseases has been reported in many previous studies. Traditional diagnostic methods for chronic periodontitis and systemic diseases such as chronic kidney diseases (CKD) have limitations due to their invasiveness, requiring practised individuals for sample collection, frequent blood collection, and long waiting times for the results. More rapid methods are required to detect such systemic diseases, however, the metabolic profiles of the oral cavity first need to be determined. AIM OF REVIEW In this review, we explored metabolomics studies that have investigated salivary metabolic profiles associated with chronic periodontitis and systemic illnesses including CKD, oral cancer, Alzheimer's disease, Parkinsons's disease, and diabetes to highlight the most recent methodologies that have been applied in this field. KEY SCIENTIFIC CONCEPTS OF THE REVIEW Of the rapid, high throughput techniques for metabolite profiling, Nuclear magnetic resonance (NMR) spectroscopy was the most applied technique, followed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). Furthermore, Raman spectroscopy was the most used vibrational spectroscopic technique for comparison of the saliva from periodontitis patients to healthy individuals, whilst Fourier Transform Infra-Red Spectroscopy (FT-IR) was not utilised as much in this field. A recommendation for cultivating periodontal bacteria in a synthetic medium designed to replicate the conditions and composition of saliva in the oral environment is suggested to facilitate the identification of their metabolites. This approach is instrumental in assessing the potential of these metabolites as biomarkers for systemic illnesses.
Collapse
Affiliation(s)
- Jawaher Albahri
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Heather Allison
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kathryn A Whitehead
- Microbiology at Interfaces, Department of Life Sciences, Manchester Metropolitan University, Chester St, Manchester, M1 5GD, UK.
| | - Howbeer Muhamadali
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
2
|
Xu K, Berthiller F, Metzler-Zebeli BU, Schwartz-Zimmermann HE. Development and Validation of Targeted Metabolomics Methods Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for the Quantification of 235 Plasma Metabolites. Molecules 2025; 30:706. [PMID: 39942809 PMCID: PMC11820780 DOI: 10.3390/molecules30030706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Plasma contains metabolites with diverse physicochemical properties, ranging from highly polar to highly apolar, and concentrations spanning at least nine orders of magnitude. Plasma metabolome analysis is valuable for monitoring health and evaluating medical interventions but is challenging due to the metabolome's diversity and complexity. This study aims to develop and validate targeted LC-MS/MS methods for quantifying 235 mammalian metabolites from 17 compound classes in porcine plasma without prior derivatization. Utilizing reversed-phase and hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry, each analyte is identified and quantified using two selected reaction monitoring (SRM) transitions. Fast polarity switching and scheduled SRM enhance the metabolome coverage and throughput, enabling the analysis of one sample in about 40 min. A simple "dilute and shoot" sample preparation protocol was employed, with samples injected at two dilution levels to align metabolite concentrations within calibration curve ranges. Validation in porcine plasma included assessments of carryover, linearity, detection and quantification limits, repeatability and recovery. The method was further applied to plasma samples from various animal species, demonstrating its applicability to human and animal studies. This study establishes two robust LC-MS/MS methods for comprehensive porcine plasma metabolome quantification, advancing large-scale targeted metabolomics in biomedical research.
Collapse
Affiliation(s)
- Kangkang Xu
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agricultural Sciences, BOKU University, 3430 Tulln, Austria; (K.X.); (F.B.)
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, 1210 Vienna, Austria;
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation (FFoQSI), 3430 Tulln, Austria
| | - Franz Berthiller
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agricultural Sciences, BOKU University, 3430 Tulln, Austria; (K.X.); (F.B.)
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, 1210 Vienna, Austria;
| | - Barbara U. Metzler-Zebeli
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, 1210 Vienna, Austria;
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Heidi E. Schwartz-Zimmermann
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agricultural Sciences, BOKU University, 3430 Tulln, Austria; (K.X.); (F.B.)
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, 1210 Vienna, Austria;
| |
Collapse
|
3
|
Pedroso LC, Bedore GC, da Cruz JP, Sousa FAB, Scariot PPM, Dos Reis IGM, Silva ÁAR, M Porcari A, Messias LHD. Metabolomics analyses and physical interventions in soccer: a systematic review. Metabolomics 2024; 21:7. [PMID: 39676125 DOI: 10.1007/s11306-024-02202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Soccer is the most recognized sports worldwide. It is a fertile ground for the use of metabolomics analyses, considering the multifactorial nature of soccer's physical demands on the body. Although scientific studies have tried using it to better understand the impacts of soccer into different contexts of the sport, no systematic review is available on metabolomics analyses in soccer athletes subjected to physical exertion interventions. AIM OF REVIEW Retrieve scientific articles that conducted metabolomics analyses on soccer athletes subjected to physical exertion interventions. KEY SCIENTIFIC CONCEPTS OF REVIEW Initially, 271 studies were screened, and 48 were retrieved for abstract analysis. Of these, 26 met the eligibility criteria, but 5 failed to meet inclusion criteria. The 21 studies included in this systematic review demonstrate that responses from physical training or acute exercise sessions, followed by the effects of soccer matches, have been the primary focus of researchers to date, highlighting alterations on metabolites from the energy metabolism, immunological pathway, purines, tryptophan/phenylalanine metabolism, as well as oxidative species and antioxidant capacity. Other studies suggest, albeit preliminarily, that organic metabolites have the potential to distinguish soccer players' performance and physical fitness, as well as provide valuable insights into diet, physical condition, training load, and recovery throughout the season. Despite metabolomics great potential to understand physiological alterations provoked by soccer as shown by the included studies, future studies should consider female athletes, explore the cause-and-effect relationship between metabolites and soccer performance more deeply, and examine the effects of different training periodizations on these markers.
Collapse
Affiliation(s)
- Larissa Castro Pedroso
- Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, São Francisco de Assis av, 218, Taboão, Bragança Paulista, SP, 12916900, Brazil
| | - Gabriel Chabaribery Bedore
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, 12916-900, Brazil
| | - João Pedro da Cruz
- Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, São Francisco de Assis av, 218, Taboão, Bragança Paulista, SP, 12916900, Brazil
| | | | - Pedro Paulo Menezes Scariot
- Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, São Francisco de Assis av, 218, Taboão, Bragança Paulista, SP, 12916900, Brazil
| | - Ivan Gustavo Masselli Dos Reis
- Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, São Francisco de Assis av, 218, Taboão, Bragança Paulista, SP, 12916900, Brazil
| | - Álex Ap Rosini Silva
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, 12916-900, Brazil
| | - Andreia M Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, 12916-900, Brazil
| | - Leonardo Henrique Dalcheco Messias
- Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, São Francisco de Assis av, 218, Taboão, Bragança Paulista, SP, 12916900, Brazil.
| |
Collapse
|
4
|
Al-Ishaq RK, Ferrara CR, Stephan N, Krumsiek J, Suhre K, Montrose DC. A Comprehensive Metabolomic and Microbial Analysis Following Dietary Amino Acid Reduction in Mice. Metabolites 2024; 14:706. [PMID: 39728487 DOI: 10.3390/metabo14120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction: Nutritional metabolomics provides a comprehensive overview of the biochemical processes that are induced by dietary intake through the measurement of metabolite profiles in biological samples. However, there is a lack of deep phenotypic analysis that shows how dietary interventions influence the metabolic state across multiple physiologic sites. Dietary amino acids have emerged as important nutrients for physiology and pathophysiology given their ability to impact cell metabolism. Methods: The aim of the current study is to evaluate the effect of modulating amino acids in diet on the metabolome and microbiome of mice. Here, we report a comprehensive metabolite profiling across serum, liver, and feces, in addition to gut microbial analyses, following a reduction in either total dietary protein or diet-derived non-essential amino acids in mice. Results: We observed both distinct and overlapping patterns in the metabolic profile changes across the three sample types, with the strongest signals observed in liver and serum. Although amino acids and related molecules were the most commonly and strongly altered group of metabolites, additional small molecule changes included those related to glycolysis and the tricarboxylic acid cycle. Microbial profiling of feces showed significant differences in the abundance of select species across groups of mice. Conclusions: Our results demonstrate how changes in dietary amino acids influence the metabolic profiles across organ systems and the utility of metabolomic profiling for assessing diet-induced alterations in metabolism.
Collapse
Affiliation(s)
- Raghad Khalid Al-Ishaq
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Cornell University, Education City, Doha 24144, Qatar
| | - Carmen R Ferrara
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, MART Building, 9M-0816, Lauterbur Dr., Stony Brook, NY 11794, USA
| | - Nisha Stephan
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Cornell University, Education City, Doha 24144, Qatar
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, New York, NY 11215, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY 10021, USA
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Cornell University, Education City, Doha 24144, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY 10021, USA
| | - David C Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, MART Building, 9M-0816, Lauterbur Dr., Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Stony Brook, NY 11794, USA
| |
Collapse
|
5
|
Mohammed HS, Elariny HA, Seif-Eldein NA, Mahgoub S, El-Said NT, Abu El Wafa SA, Taha EF. Investigating the involvement of the NLRP3/ASC/caspase-1 and NF-κb/MAPK pathways in the pathogenesis of gouty arthritis: Insights from irradiated and non-irradiated Trifolium alexandrium L. extracts and some metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118566. [PMID: 39002823 DOI: 10.1016/j.jep.2024.118566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Trifolium alexandrinum L. (TA), has traditionally been used in folk medicine for its anti-inflammatory properties against hyperuricemia and gout. However, the specific mechanisms of action of TA have not been thoroughly studied. AIM OF THE WORK This study aimed to evaluate the protective effects of irradiated (TR25) and non-irradiated (TR0) Trifolium alexandrinum L. aqueous extract (TAAE), along with two isolated compounds, caffeine (CAF) and saponin (SAP), in a rat model of acute gouty arthritis (GA). MATERIALS AND METHODS The GA model was established by injecting a monosodium urate (MSU) suspension into the knee joint. Synovial tissue pathology was assessed, and levels of TNF-α, IL-6, IL-1β, NF-κB, mTOR, AKT1, PI3K, NLRP3, and ASC were measured by ELISA. mRNA expression of ERK1, JNK, and p-38 MAPK was detected using qRT-PCR, and Caspase-1 protein expression was assessed by immunohistochemical analysis. Knee swelling, uric acid levels, liver and kidney function, and oxidative stress markers were also evaluated. RESULTS TAAE analysis identified 170 compounds, with 73 successfully identified using LC-HR-MS/MS, including caffeine citrate and theasapogenol B glycoside as the main constituents. The studied materials demonstrated significant protective effects against GA. TR25 administration significantly mitigated knee joint circumference compared to other treatments. It demonstrated potential in alleviating hyperuricemia, renal and hepatic impairments induced by MSU crystals. TR25 also alleviated oxidative stress and reduced levels of IL1β, IL-6, TNF-α, and NF-κB. Weak Caspase-1 immune-positive staining was observed in the TR25 group. TR25 decreased NLRP3 and ASC expression, reducing inflammatory cytokine levels in GA. It effectively inhibited the PI3K, AKT, and mTOR signaling pathways, promoting autophagy. Additionally, TR25 suppressed ERK1, JNK, and p-38 MAPK gene expression in synovial tissue. These effects were attributed to various components in TAAE, such as flavonoids, phenolic acids, tannins, alkaloids, and triterpenes. CONCLUSION Importantly, irradiation (25 KGy) enhanced the antioxidant effects and phtchemical contents of TAAE. Additionally, TR0, TR25, CAF, and SAP exhibited promising protective effects against GA, suggesting their therapeutic potential for managing this condition. These effects were likely mediated through modulation of the NLRP3/ASC/Caspase-1 and ERK/JNK/p-38 MAPK signaling pathways, as well as regulation of the PI3K/AKT/mTOR pathway. Further research is warranted to fully elucidate the underlying mechanisms and optimize their clinical applications.
Collapse
Affiliation(s)
- Hala Sh Mohammed
- Department of Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Hemat A Elariny
- Department of Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Noha A Seif-Eldein
- Department of Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Sebaey Mahgoub
- Food Analysis Laboratory, Ministry of Health, Zagazig, 44511, Egypt.
| | - Nermin T El-Said
- Department of Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Salwa A Abu El Wafa
- Department of Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Eman Fs Taha
- Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
6
|
Tesfamariam K, Plekhova V, Gebreyesus SH, Lachat C, Alladio E, Argaw A, Endris BS, Roro M, De Saeger S, Vanhaecke L, De Boevre M. Rapid LA-REIMS-based metabolic fingerprinting of serum discriminates aflatoxin-exposed from non-exposed pregnant women: a prospective cohort from the Butajira Nutrition, Mental Health, and Pregnancy (BUNMAP) Study in rural Ethiopia. Mycotoxin Res 2024; 40:681-691. [PMID: 39259493 PMCID: PMC11480126 DOI: 10.1007/s12550-024-00558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
To date, the changes in maternal metabolic response associated with prenatal aflatoxin exposure remain largely unknown. This study investigated the effects of prenatal aflatoxin exposure on the maternal serum metabolome in rural Ethiopia. A total of 309 pregnant women were enrolled prospectively, and their serum aflatoxin concentrations were measured using targeted liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Serum metabolic fingerprints were obtained using laser-assisted rapid evaporative ionization mass spectrometry (LA-REIMS), followed by combination of univariate and multivariate statistical modelling to evaluate changes in circulating metabolic features between aflatoxin-exposed and unexposed mothers and to select discriminatory metabolic features. The analysis revealed that 81.8% of women were exposed to aflatoxins, with a median concentration of 12.9 pg/mg albumin. The orthogonal partial least square discriminant analysis (OPLS-DA) regression model demonstrated significant disparities in the serum metabolome when comparing Ethiopian pregnant women with low vs high aflatoxin exposure. Thirty-two differentially expressed metabolic features were identified, affecting aminoacyl-tRNA biosynthesis pathway. Several discriminatory metabolites have been identified, including glutamine, tryptophan, tyrosine, carnosine, and 1-methylnicotinamide. In conclusion, our findings indicate that aflatoxin exposure during pregnancy have shown disparities in the maternal serum metabolome, primarily affecting protein synthesis. Further research is needed to identify specific metabolite biomarkers and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Kokeb Tesfamariam
- Department of Food Technology, Safety, and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Vera Plekhova
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Integrative Metabolomics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Seifu H Gebreyesus
- Department of Nutrition and Dietetics, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Carl Lachat
- Department of Food Technology, Safety, and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Alemayehu Argaw
- Department of Food Technology, Safety, and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bilal Shikur Endris
- Department of Nutrition and Dietetics, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Meselech Roro
- Department of Reproductive Health and Health Service Management, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sarah De Saeger
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, MYTOX-SOUTH® Coordination Unit, Ghent, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa
| | - Lynn Vanhaecke
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Integrative Metabolomics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- School of Biological Sciences, Queen's University Belfast, Lisburn Road 97, Belfast, UK
| | - Marthe De Boevre
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, MYTOX-SOUTH® Coordination Unit, Ghent, Belgium.
| |
Collapse
|
7
|
Marwani E, Syamsudin TS, Awaliyah S, Maulani RR, Hidayat A, Husyari UD, Widiyanto S. Volatile Metabolite Profiles of Robusta Green Bean Coffee From Different Geographical Origins in West Java and Their Correlation With Temperature, Rainfall, and Altitudes Using SPME GC-MS-Based Metabolomics. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6908059. [PMID: 39494365 PMCID: PMC11531365 DOI: 10.1155/2024/6908059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024]
Abstract
The chemical composition, including volatile metabolites of green coffee beans, is influenced by geographic origin. The aim of this study was to reveal the volatile metabolite profile of a single variety of Robusta green bean coffee from five major plantation regions in West Java and to correlate these profiles with temperature, rainfall, and altitude. By using solid phase micro extractions and gas chromatography-mass spectrometry, 143 different volatile compounds were detected, with aromatic hydrocarbon, alcohols, monoterpene, pyrazines, sesquiterpenes, carboxylic acids, and terpene the most dominant. Principal component analysis (PCA) indicated 64.3% variability, showing that the metabolite profile of Robusta green coffee from the Bogor region was distinctly different from those in Ciamis, Kuningan, Sumedang, and Tasikmalaya, which were more similar to each other. Metabolites such as benzaldehyde, isovaleric acid, toluene, diisobutyl succinate, 1-heptene, 4-dodecene, caffeine, acetic acid, and methyl benzoate were identified as key discriminants, with a VIP score greater than 1.5. Temperature increases were linked to higher levels of isovaleric acid, diisobutyl succinate, 4-dodecene, toluene, and acetic acid, while other discriminant metabolites declined. Increased rainfall was associated with higher levels of benzaldehyde, 1-heptene, caffeine, and methyl benzoate, but lower levels of the other discriminants. Altitude had a positive correlation with methyl benzoate and 1-heptene, and a negative correlation with isovaleric acid and 4-dodecene, with weaker correlations for other compounds. In summary, Robusta green coffee beans from different regions of West Java can be distinguished by their volatile metabolites. Bogor green coffee beans had higher levels of benzaldehyde, 1-heptene, caffeine, and methyl benzoate, Kuningan beans had more diisobutyl succinate and 4-dodecene, Ciamis beans had higher levels of isovaleric acid, diisobutyl succinate, and 4-dodecene, while Sumedang and Tasikmalaya beans were similar, with higher levels of isovaleric acid, diisobutyl succinate, 4-dodecene, toluene, and acetic acid. This difference is related to the climatic factors of temperature and rainfall, as well as the altitude at which Robusta coffee is grown.
Collapse
Affiliation(s)
- Erly Marwani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | | | - Suci Awaliyah
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | | | - Asep Hidayat
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Ujang Dinar Husyari
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Srinanan Widiyanto
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
8
|
De S, Rai V, Ahmed F, Basak M, Bose S. Deciphering the Nanometabolomics Paradigm: Understanding the Role of Pathophysiology and Biomarkers in Predicting Oral Cancer. J Maxillofac Oral Surg 2024. [DOI: 10.1007/s12663-024-02348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/08/2024] [Indexed: 01/03/2025] Open
|
9
|
Wu Y, Li H, Ma S, Ma H, Tan L. Physiological and differential protein expression analyses of the calcium stress response in the Drynaria roosii rhizome. Heliyon 2024; 10:e38260. [PMID: 39386768 PMCID: PMC11462351 DOI: 10.1016/j.heliyon.2024.e38260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
High concentration Ca2+ in karst soil is harmful to agriculture. Some dominant plants can adapt well to karst soil, but how Ca2+ affect plant is unknown. Drynaria roosii is a Ca2+-tolerant fern and its dry rhizome is a common Chinese medicine of Miao nationality in Guizhou, China. This study analyzed the physiological and proteomic characteristics of the rhizome of D. roosii under calcium stress. Physiological results indicated that calcium stress may lead to osmotic stress. Proteomic results showed that 147 differentially expressed proteins (96 increased, 51decreased) were identified under calcium stress, and these proteins mainly involved in signal transduction, protein translation, material transport, antioxidant defense and secondary metabolism. This study will lay a foundation for studying the calcium adaptation mechanism of D. roosii at the molecular level.
Collapse
Affiliation(s)
| | | | - Shanshan Ma
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hongna Ma
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Longyan Tan
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
10
|
Garcia PN, de Souza MM, Izidoro MA, Juliano L, Lourenço SV, Camillo CMC. Saliva metabolomics: concepts and applications in oral disorders. Clin Oral Investig 2024; 28:579. [PMID: 39377832 DOI: 10.1007/s00784-024-05990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
OBJECTIVES The purpose of this review was to present the basic concepts of metabolomics methodology and the use of saliva for diagnostic, prognostic, and predictive strategies. MATERIAL AND METHODS This review followed the focus in: "saliva metabolomics" and "oral diseases". The authors searched studies on PubMed database. The inclusion criteria were original studies and reviews that assessed metabolomics techniques. A descriptive analysis was performed considering the study design, approach system, clinical steps, and tools for the determination of profile or biomarkers metabolites, and the advantages and disadvantages. RESULTS Metabolomic analyses use a combination of analytical instrumentation and informatic tools to provide information on metabolite characteristics. In this review we described different technologies applied and the advantages and limitations of each technique. Furthermore, in the literature search, we retrieved 25 studies that investigated saliva metabolites in oral diseases: 8 studies used targeted analysis and 17 untargeted metabolomics approaches. Most studies included patients with periodontal diseases, oral squamous cell carcinoma, and Sjögren Syndrome. The most frequently reported metabolites were glycine, leucine, phenylalanine, dipeptides, linoleic acid, arachidonic acid, tyrosine, choline, taurine, lactate, valine, and proline. CONCLUSIONS Metabolomics analysis has emerged as a powerful tool for tumor diagnosis and to enhance tumor classification, including salivary gland tumors (SGTs). It also holds promise for developing personalized treatment plans and defining more precise prognostic categories. CLINICAL RELEVANCE Metabolomics is the most functional and comprehensive technique for monitoring and understanding gene functions and identifying the biochemical state of an organism in response to genetic and environmental changes.
Collapse
Affiliation(s)
- Pedro Nunes Garcia
- International Research Center, Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, Rua Taguá, 440 - Primeiro andar, São Paulo, 01508-010, Brazil
| | - Milena Monteiro de Souza
- International Research Center, Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, Rua Taguá, 440 - Primeiro andar, São Paulo, 01508-010, Brazil.
| | | | - Luiz Juliano
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | | | - Cláudia Malheiros Coutinho Camillo
- International Research Center, Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, Rua Taguá, 440 - Primeiro andar, São Paulo, 01508-010, Brazil
| |
Collapse
|
11
|
Qiu S, Liu Z, Wang CT, Sun XD, Liu ZQ, Liu W. The potential protective effect of 3-Hydroxybutyrate against aortic dissection: a mendelian randomization analysis. Nutr Metab (Lond) 2024; 21:75. [PMID: 39304912 DOI: 10.1186/s12986-024-00853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND 3-Hydroxybutyrate, also called β-hydroxybutyrate, is a significant constituent of ketone bodies. Previous observational and experimental studies have suggested that ketogenic diet, especially 3-hydroxybutyrate, may have a protective effect against cardiovascular disease. However, the relationship between ketone bodies, especially 3-hydroxybutyrate, and aortic dissection remains uncertain. MATERIALS AND METHODS Publicly accessible data from genome-wide association study (GWAS) was utilized to obtain information on ketone bodies, including 3-hydroxybutyrate, acetoacetate and acetone as exposure respectively, while GWAS data on aortic dissection was used as outcome. Subsequently, two-sample Mendelian randomization (MR) analysis was conducted to examine the potential relationship between ketone bodies and aortic dissection. Then, reverse and multivariate Mendelian randomization analyses were performed. Additionally, sensitivity tests were conducted to assess the robustness of MR study. RESULTS The inverse-variance weighted (IVW) method of Mendelian randomization analysis of gene prediction observed a negative correlation between 3-hydroxybutyrate and risk of aortic dissection (OR 0.147, 95% CI 0.053-0.410). Furthermore, consistent findings were obtained through the implementation of the weighted median, simple mode, Mendelian randomization-Egger (MR-Egger), and weighted mode methods. After adjusting acetoacetate (OR 0.143, 95% CI 0.023-0.900) or acetone (OR 0.100, 95% CI 0.025-0.398), MR analysis of gene prediction still observed a negative correlation between 3-hydroxybutyrate and risk of aortic dissection. No indications of heterogeneity or pleiotropy among the SNPs were detected. CONCLUSION The findings from the MR analysis demonstrated that genetically predicted 3-hydroxybutyrate exhibits a protective effect against aortic dissection.
Collapse
Affiliation(s)
- Shi Qiu
- Department of Cardiac Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Zhen Liu
- Department of Cadre Health Care, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shangdong, 250033, People's Republic of China
| | - Chun-Ting Wang
- Department of Cardiac Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xiao-di Sun
- Department of Cadre Health Care, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shangdong, 250033, People's Republic of China
| | - Zeng-Qiang Liu
- Department of Cadre Health Care, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shangdong, 250033, People's Republic of China
| | - Wen Liu
- Department of Cadre Health Care, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shangdong, 250033, People's Republic of China.
| |
Collapse
|
12
|
Zhang Z, Chen Y, Bian Y, Wang TT, Wang M. Cellular metabolomics study of the antitumor mechanism of Sijunzi decoction combined with mitomycin C. Biomed Chromatogr 2024; 38:e5941. [PMID: 38924132 DOI: 10.1002/bmc.5941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 06/28/2024]
Abstract
Mitomycin C (MMC) has an antitumor effect and is considered as a broad-spectrum antibiotic. Sijunzi Decoction (SJZD), a well-known ancient Chinese prescription, is widely used in the treatment of cancer when combined with chemotherapy drugs. Studies have shown that SJZD can be combined with other drugs to enhance the therapeutic effect against cancer and inhibit the toxicity of chemotherapy drugs, but the specific mechanism is not clear. Thus, we hope to further explore the antitumor mechanism of combined SJZD and MMC. 3-(4,5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide assay, flow cytometry, western blot, 1H NMR and HPLC-MS were used to study the mechanism at the cellular level. The results show that the combined administration can have a more significant effect on inhibiting the proliferation of cancer cells, promoting their apoptosis. Based on metabolomics, 38 biomarkers were found in the MMC group and 43 biomarkers were found in the combined administration group. Among them, 18 unique biomarkers were discovered in the combined administration group. Studies have shown that the antitumor mechanism of combined administration is related to amino acid metabolism, energy metabolism, lipid metabolism and nucleotide metabolism, among which amino acid metabolism is the most important. In addition, SJZD achieves the effect of toxin reduction and efficiency enhancement by improving the body's immunity and improving the oxidative stress environment.
Collapse
Affiliation(s)
- Zhiru Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Yu Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Yanggang Bian
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Tian Tian Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| |
Collapse
|
13
|
Sobolev AP, Acciaro E, Milutinović M, Božunović J, Aničić N, Mišić D, Mattoo AK. Maize Grain Metabolite Profiling by NMR: Effects of Growing Year, Variety, and Cropping System. Molecules 2024; 29:4097. [PMID: 39274945 PMCID: PMC11397060 DOI: 10.3390/molecules29174097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Considering that maize (Zea mays L.) is a staple food for a large segment of the population worldwide, many attempts have been made to improve the nutritional value of its grain and at the same time to achieve sustainable cropping systems. The present study aimed to characterize the composition and nutritional value of maize grain as influenced by cropping system, genetic background (variety), and growing year using untargeted NMR metabolomics. The composition of both water- (sugars and polyols, organic acids, and amino acids) and liposoluble metabolites (free and esterified fatty acids, sterols, and lipids) extracted from the maize grain was determined. Multivariate statistical analyses (PCA and ANOVA) pointed to the growing year and the variety as the most important random and fixed factors, respectively, influencing the metabolite profile. The samples were separated along PC1 and PC3 according to the growing year and the variety, respectively. A higher content of citric acid and diunsaturated fatty acids and a lower content of tyrosine, trigonelline, and monounsaturated fatty acids was observed in the organic with respect to the conventional variety. The effect of the cropping system was overwhelmed by the random effect of the growing year. The results provide novel knowledge on the influence of agronomic practices on maize micronutrient contents.
Collapse
Affiliation(s)
- Anatoly Petrovich Sobolev
- Magnetic Resonance Laboratory “Annalaura Segre”, Institute for Biological Systems, National Research Council (CNR), Via Salaria km 29.300, 00015 Rome, Italy
| | - Erica Acciaro
- Magnetic Resonance Laboratory “Annalaura Segre”, Institute for Biological Systems, National Research Council (CNR), Via Salaria km 29.300, 00015 Rome, Italy
| | - Milica Milutinović
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (M.M.); (J.B.); (N.A.); (D.M.)
| | - Jelena Božunović
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (M.M.); (J.B.); (N.A.); (D.M.)
| | - Neda Aničić
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (M.M.); (J.B.); (N.A.); (D.M.)
| | - Danijela Mišić
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (M.M.); (J.B.); (N.A.); (D.M.)
| | - Autar K. Mattoo
- Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| |
Collapse
|
14
|
da Silva Rosa Freire S, Padilha M, Lima Ferreira AL, Machado Schincaglia R, Cunha Figueiredo AC, Freitas-Costa NC, Yin X, Brennan L, Kac G. Association between the third trimester maternal serum metabolome and child growth and development through the first year of life. Sci Rep 2024; 14:18360. [PMID: 39112666 PMCID: PMC11306240 DOI: 10.1038/s41598-024-69247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Evidence suggests that maternal metabolome may be associated with child health outcomes. We analyzed the association between the maternal metabolome between 28-35 gestational weeks and child growth and development during the first year. A prospective cohort of 98 mother-child dyads was followed at birth, 1, 6, and 12 months. Maternal serum samples were collected for targeted LC-MS/MS analysis, which measured 132 metabolites. The child's growth and development were assessed at each time-point. Z-scores were calculated based on WHO growth standards, and the domains of development were assessed using the Ages and Stages Questionnaires (ASQ-3). Multiple linear mixed-effects models were performed and confounders were identified using a Diagram Acyclic Graph. The Benjamini-Hochberg correction was used for multiple comparison adjustments. We found a positive association between lysophosphatidylcholines (14:0; 16:0; 16:1; 17:0; 18:0; 18:1; 18:2; 20:4) with the z-score of weight-for-age, and lysophosphatidylcholines (14:0; 16:0; 16:1; 18:0) and taurine with the z-score of weight-for-length, and lysophosphatidylcholines (14:0; 16:0; 16:1; 17:0; 18:0; 18:1; 18:2; 20:4) and glycine with the z-score of BMI-for-age. The leucine, methionine, tryptophan, and valine were negatively associated with the fine motor skills domain. We observed an association between maternal metabolome and the growth and child's development throughout the first year.
Collapse
Affiliation(s)
- Samary da Silva Rosa Freire
- Department of Social and Applied Nutrition, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marina Padilha
- Department of Social and Applied Nutrition, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Lorena Lima Ferreira
- Department of Social and Applied Nutrition, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Amanda Caroline Cunha Figueiredo
- Department of Social and Applied Nutrition, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Nathalia Cristina Freitas-Costa
- Department of Social and Applied Nutrition, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Xiaofei Yin
- UCD School of Agriculture and Food Science, Conway Institute, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Conway Institute, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Gilberto Kac
- Department of Social and Applied Nutrition, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- Nutritional Epidemiology, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, J2, Room 29, Cidade Universitária, Rio de Janeiro, RJ, 21941902, Brazil.
| |
Collapse
|
15
|
Wang X, Peng R, Zhao L. Multiscale metabolomics techniques: Insights into neuroscience research. Neurobiol Dis 2024; 198:106541. [PMID: 38806132 DOI: 10.1016/j.nbd.2024.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
The field of metabolomics examines the overall composition and dynamic patterns of metabolites in living organisms. The primary methods used in metabolomics include liquid chromatography (LC), nuclear magnetic resonance (NMR), and mass spectrometry (MS) analysis. These methods enable the identification and examination of metabolite types and contents within organisms, as well as modifications to metabolic pathways and their connection to the emergence of diseases. Research in metabolomics has extensive value in basic and applied sciences. The field of metabolomics is growing quickly, with the majority of studies concentrating on biomedicine, particularly early disease diagnosis, therapeutic management of human diseases, and mechanistic knowledge of biochemical processes. Multiscale metabolomics is an approach that integrates metabolomics techniques at various scales, including the holistic, tissue, cellular, and organelle scales, to enable more thorough and in-depth studies of metabolic processes in organisms. Multiscale metabolomics can be combined with methods from systems biology and bioinformatics. In recent years, multiscale metabolomics approaches have become increasingly important in neuroscience research due to the nervous system's high metabolic demands. Multiscale metabolomics can offer novel concepts and approaches for the diagnosis, treatment, and development of medication for neurological illnesses in addition to a more thorough understanding of brain metabolism and nervous system function. In this review, we summarize the use of multiscale metabolomics techniques in neuroscience, address the promise and constraints of these techniques, and provide an overview of the metabolome and its applications in neuroscience.
Collapse
Affiliation(s)
- Xiaoya Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Li Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
16
|
Wadood AA, Zhang X. The Omics Revolution in Understanding Chicken Reproduction: A Comprehensive Review. Curr Issues Mol Biol 2024; 46:6248-6266. [PMID: 38921044 PMCID: PMC11202932 DOI: 10.3390/cimb46060373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Omics approaches have significantly contributed to our understanding of several aspects of chicken reproduction. This review paper gives an overview of the use of omics technologies such as genomics, transcriptomics, proteomics, and metabolomics to elucidate the mechanisms of chicken reproduction. Genomics has transformed the study of chicken reproduction by allowing the examination of the full genetic makeup of chickens, resulting in the discovery of genes associated with reproductive features and disorders. Transcriptomics has provided insights into the gene expression patterns and regulatory mechanisms involved in reproductive processes, allowing for a better knowledge of developmental stages and hormone regulation. Furthermore, proteomics has made it easier to identify and quantify the proteins involved in reproductive physiology to better understand the molecular mechanisms driving fertility, embryonic development, and egg quality. Metabolomics has emerged as a useful technique for understanding the metabolic pathways and biomarkers linked to reproductive performance, providing vital insights for enhancing breeding tactics and reproductive health. The integration of omics data has resulted in the identification of critical molecular pathways and biomarkers linked with chicken reproductive features, providing the opportunity for targeted genetic selection and improved reproductive management approaches. Furthermore, omics technologies have helped to create biomarkers for fertility and embryonic viability, providing the poultry sector with tools for effective breeding and reproductive health management. Finally, omics technologies have greatly improved our understanding of chicken reproduction by revealing the molecular complexities that underpin reproductive processes.
Collapse
Affiliation(s)
- Armughan Ahmed Wadood
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China;
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China;
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
Gempo N, Yeshi K, Crayn D, Wangchuk P. Climate-Affected Australian Tropical Montane Cloud Forest Plants: Metabolomic Profiles, Isolated Phytochemicals, and Bioactivities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1024. [PMID: 38611553 PMCID: PMC11013060 DOI: 10.3390/plants13071024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
The Australian Wet Tropics World Heritage Area (WTWHA) in northeast Queensland is home to approximately 18 percent of the nation's total vascular plant species. Over the past century, human activity and industrial development have caused global climate changes, posing a severe and irreversible danger to the entire land-based ecosystem, and the WTWHA is no exception. The current average annual temperature of WTWHA in northeast Queensland is 24 °C. However, in the coming years (by 2030), the average annual temperature increase is estimated to be between 0.5 and 1.4 °C compared to the climate observed between 1986 and 2005. Looking further ahead to 2070, the anticipated temperature rise is projected to be between 1.0 and 3.2 °C, with the exact range depending on future emissions. We identified 84 plant species, endemic to tropical montane cloud forests (TMCF) within the WTWHA, which are already experiencing climate change threats. Some of these plants are used in herbal medicines. This study comprehensively reviewed the metabolomics studies conducted on these 84 plant species until now toward understanding their physiological and metabolomics responses to global climate change. This review also discusses the following: (i) recent developments in plant metabolomics studies that can be applied to study and better understand the interactions of wet tropics plants with climatic stress, (ii) medicinal plants and isolated phytochemicals with structural diversity, and (iii) reported biological activities of crude extracts and isolated compounds.
Collapse
Affiliation(s)
- Ngawang Gempo
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Nguma-bada Campus, McGregor Rd., Cairns, QLD 4878, Australia; (N.G.); (P.W.)
- College of Public Health, Medical and Veterinary Services (CPHMVS), James Cook University, Nguma-bada Campus, McGregor Rd., Cairns, QLD 4878, Australia
| | - Karma Yeshi
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Nguma-bada Campus, McGregor Rd., Cairns, QLD 4878, Australia; (N.G.); (P.W.)
- College of Public Health, Medical and Veterinary Services (CPHMVS), James Cook University, Nguma-bada Campus, McGregor Rd., Cairns, QLD 4878, Australia
| | - Darren Crayn
- Australian Tropical Herbarium (ATH), James Cook University, Nguma-bada Campus, McGregor Rd., Cairns, QLD 4878, Australia;
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Nguma-bada Campus, McGregor Rd., Cairns, QLD 4878, Australia; (N.G.); (P.W.)
- College of Public Health, Medical and Veterinary Services (CPHMVS), James Cook University, Nguma-bada Campus, McGregor Rd., Cairns, QLD 4878, Australia
| |
Collapse
|
18
|
Aspromonte J, Mascrez S, Eggermont D, Purcaro G. Solid-phase microextraction coupled to comprehensive multidimensional gas chromatography for food analysis. Anal Bioanal Chem 2024; 416:2221-2246. [PMID: 37999723 DOI: 10.1007/s00216-023-05048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/22/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Solid-phase microextraction and comprehensive multidimensional gas chromatography represent two milestone innovations that occurred in the field of separation science in the 1990s. They have a common root in their introduction and have found a perfect coupling in their evolution and applications. This review will focus on food analysis, where the paradigm has changed significantly over time, moving from a targeted analysis, focusing on a limited number of analytes at the time, to a more holistic approach for assessing quality in a larger sense. Indeed, not only some major markers or contaminants are considered, but a large variety of compounds and their possible interaction, giving rise to the field of foodomics. In order to obtain such detailed information and to answer more sophisticated questions related to food quality and authenticity, the use of SPME-GC × GC-MS has become essential for the comprehensive analysis of volatile and semi-volatile analytes. This article provides a critical review of the various applications of SPME-GC × GC in food analysis, emphasizing the crucial role this coupling plays in this field. Additionally, this review dwells on the importance of appropriate data treatment to fully harness the results obtained to draw accurate and meaningful conclusions.
Collapse
Affiliation(s)
- Juan Aspromonte
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas (Universidad Nacional de La Plata, CIC-PBA, CONICET), Calle 47 Esq. 115, 1900, La Plata, Argentina
| | - Steven Mascrez
- Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés, 2, B-5030, Gembloux, Belgium
| | - Damien Eggermont
- Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés, 2, B-5030, Gembloux, Belgium
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés, 2, B-5030, Gembloux, Belgium.
| |
Collapse
|
19
|
Camelo ALM, Zamora Obando HR, Rocha I, Dias AC, Mesquita ADS, Simionato AVC. COVID-19 and Comorbidities: What Has Been Unveiled by Metabolomics? Metabolites 2024; 14:195. [PMID: 38668323 PMCID: PMC11051775 DOI: 10.3390/metabo14040195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic has brought about diverse impacts on the global population. Individuals with comorbidities were more susceptible to the severe symptoms caused by the virus. Within the crisis scenario, metabolomics represents a potential area of science capable of providing relevant information for understanding the metabolic pathways associated with the intricate interaction between the viral disease and previous comorbidities. This work aims to provide a comprehensive description of the scientific production pertaining to metabolomics within the specific context of COVID-19 and comorbidities, while highlighting promising areas for exploration by those interested in the subject. In this review, we highlighted the studies of metabolomics that indicated a variety of metabolites associated with comorbidities and COVID-19. Furthermore, we observed that the understanding of the metabolic processes involved between comorbidities and COVID-19 is limited due to the urgent need to report disease outcomes in individuals with comorbidities. The overlap of two or more comorbidities associated with the severity of COVID-19 hinders the comprehension of the significance of each condition. Most identified studies are observational, with a restricted number of patients, due to challenges in sample collection amidst the emergent situation.
Collapse
Affiliation(s)
- André Luiz Melo Camelo
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Hans Rolando Zamora Obando
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Isabela Rocha
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Aline Cristina Dias
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Alessandra de Sousa Mesquita
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Ana Valéria Colnaghi Simionato
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
- National Institute of Science and Technology for Bioanalytics—INCTBio, Institute of Chemistry, Universidade Estadual de (UNICAMP), Campinas 13083-970, São Paulo, Brazil
| |
Collapse
|
20
|
Westhoff P, Weber APM. The role of metabolomics in informing strategies for improving photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1696-1713. [PMID: 38158893 DOI: 10.1093/jxb/erad508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Photosynthesis plays a vital role in acclimating to and mitigating climate change, providing food and energy security for a population that is constantly growing, and achieving an economy with zero carbon emissions. A thorough comprehension of the dynamics of photosynthesis, including its molecular regulatory network and limitations, is essential for utilizing it as a tool to boost plant growth, enhance crop yields, and support the production of plant biomass for carbon storage. Photorespiration constrains photosynthetic efficiency and contributes significantly to carbon loss. Therefore, modulating or circumventing photorespiration presents opportunities to enhance photosynthetic efficiency. Over the past eight decades, substantial progress has been made in elucidating the molecular basis of photosynthesis, photorespiration, and the key regulatory mechanisms involved, beginning with the discovery of the canonical Calvin-Benson-Bassham cycle. Advanced chromatographic and mass spectrometric technologies have allowed a comprehensive analysis of the metabolite patterns associated with photosynthesis, contributing to a deeper understanding of its regulation. In this review, we summarize the results of metabolomics studies that shed light on the molecular intricacies of photosynthetic metabolism. We also discuss the methodological requirements essential for effective analysis of photosynthetic metabolism, highlighting the value of this technology in supporting strategies aimed at enhancing photosynthesis.
Collapse
Affiliation(s)
- Philipp Westhoff
- CEPLAS Plant Metabolomics and Metabolism Laboratory, Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Kumari M, Yagnik KN, Gupta V, Singh IK, Gupta R, Verma PK, Singh A. Metabolomics-driven investigation of plant defense response against pest and pathogen attack. PHYSIOLOGIA PLANTARUM 2024; 176:e14270. [PMID: 38566280 DOI: 10.1111/ppl.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
The advancement of metabolomics has assisted in the identification of various bewildering characteristics of the biological system. Metabolomics is a standard approach, facilitating crucial aspects of system biology with absolute quantification of metabolites using minimum samples, based on liquid/gas chromatography, mass spectrometry and nuclear magnetic resonance. The metabolome profiling has narrowed the wide gaps of missing information and has enhanced the understanding of a wide spectrum of plant-environment interactions by highlighting the complex pathways regulating biochemical reactions and cellular physiology under a particular set of conditions. This high throughput technique also plays a prominent role in combined analyses of plant metabolomics and other omics datasets. Plant metabolomics has opened a wide paradigm of opportunities for developing stress-tolerant plants, ensuring better food quality and quantity. However, despite advantageous methods and databases, the technique has a few limitations, such as ineffective 3D capturing of metabolites, low comprehensiveness, and lack of cell-based sampling. In the future, an expansion of plant-pathogen and plant-pest response towards the metabolite architecture is necessary to understand the intricacies of plant defence against invaders, elucidation of metabolic pathway operational during defence and developing a direct correlation between metabolites and biotic stresses. Our aim is to provide an overview of metabolomics and its utilities for the identification of biomarkers or key metabolites associated with biotic stress, devising improved diagnostic methods to efficiently assess pest and pathogen attack and generating improved crop varieties with the help of combined application of analytical and molecular tools.
Collapse
Affiliation(s)
- Megha Kumari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Kalpesh Nath Yagnik
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Vaishali Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, Republic of Korea
| | - Praveen K Verma
- Plant-Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, India
| |
Collapse
|
22
|
Gherman LM, Chiroi P, Nuţu A, Bica C, Berindan-Neagoe I. Profiling canine mammary tumors: A potential model for studying human breast cancer. Vet J 2024; 303:106055. [PMID: 38097103 DOI: 10.1016/j.tvjl.2023.106055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Despite all clinical progress recorded in the last decades, human breast cancer (HBC) remains a major challenge worldwide both in terms of its incidence and its management. Canine mammary tumors (CMTs) share similarities with HBC and represent an alternative model for HBC. The utility of the canine model in studying HBC relies on their common features, include spontaneous development, subtype classification, mutational profile, alterations in gene expression profile, and incidence/prevalence. This review describes the similarities between CMTs and HBC regarding genomic landscape, microRNA expression alteration, methylation, and metabolomic changes occurring during mammary gland carcinogenesis. The primary purpose of this review is to highlight the advantages of using the canine model as a translational animal model for HBC research and to investigate the challenges and limitations of this approach.
Collapse
Affiliation(s)
- Luciana-Madalina Gherman
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; Experimental Center of Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, 400349 Cluj-Napoca, Romania
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andreea Nuţu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
23
|
Dagar R, Gautam A, Priscilla K, Sharma V, Gupta P, Kumar R. Sample Preparation from Plant Tissue for Gas Chromatography-Mass Spectrometry (GC-MS)we. Methods Mol Biol 2024; 2788:19-37. [PMID: 38656506 DOI: 10.1007/978-1-0716-3782-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metabolites are intermediate products formed during metabolism. Metabolites play different roles, including providing energy, supporting structure, transmitting signals, catalyzing reactions, enhancing defense, and interacting with other species. Plant metabolomics research aims to detect precisely all metabolites found within tissues of plants through GC-MS. This chapter primarily focuses on extracting metabolites using chemicals such as methanol, chloroform, ribitol, MSTFA, and TMCS. The metabolic analysis method is frequently used according to the specific kind of sample or matrix being investigated and the analysis objective. Chromatography (LC, GC, and CE) with mass spectrometry and NMR spectroscopy is used in modern metabolomics to analyze metabolites from plant samples. The most frequently used method for metabolites analysis is the GC-MS. It is a powerful technique that combines gas chromatography's separation capabilities with mass spectrometry, offering detailed information, including structural identification of each metabolite. This chapter contains an easy-to-follow guide to extract plant-based metabolites. The current protocol provides all the information needed for extracting metabolites from a plant, precautions, and troubleshooting.
Collapse
Affiliation(s)
- Rinku Dagar
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Ashish Gautam
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Kagolla Priscilla
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Prateek Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Department of Biological Sciences, SRM University-AP, Mangalagiri, India
| | - Rakesh Kumar
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India.
| |
Collapse
|
24
|
Sharma A, Choudhary P, Chakdar H, Shukla P. Molecular insights and omics-based understanding of plant-microbe interactions under drought stress. World J Microbiol Biotechnol 2023; 40:42. [PMID: 38105277 DOI: 10.1007/s11274-023-03837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The detrimental effects of adverse environmental conditions are always challenging and remain a major concern for plant development and production worldwide. Plants deal with such constraints by physiological, biochemical, and morphological adaptations as well as acquiring mutual support of beneficial microorganisms. As many stress-responsive traits of plants are influenced by microbial activities, plants have developed a sophisticated interaction with microbes to cope with adverse environmental conditions. The production of numerous bioactive metabolites by rhizospheric, endo-, or epiphytic microorganisms can directly or indirectly alter the root system architecture, foliage production, and defense responses. Although plant-microbe interactions have been shown to improve nutrient uptake and stress resilience in plants, the underlying mechanisms are not fully understood. "Multi-omics" application supported by genomics, transcriptomics, and metabolomics has been quite useful to investigate and understand the biochemical, physiological, and molecular aspects of plant-microbe interactions under drought stress conditions. The present review explores various microbe-mediated mechanisms for drought stress resilience in plants. In addition, plant adaptation to drought stress is discussed, and insights into the latest molecular techniques and approaches available to improve drought-stress resilience are provided.
Collapse
Affiliation(s)
- Aditya Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Prassan Choudhary
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
25
|
Chen L, Li L, Wang F, Hu S, Ding T, Wang Y, Huang Y, Fan B, Sun J. Targeted Metabolomics Study on the Effect of Vinegar Processing on the Chemical Changes and Antioxidant Activity of Angelica sinensis. Antioxidants (Basel) 2023; 12:2053. [PMID: 38136173 PMCID: PMC10740601 DOI: 10.3390/antiox12122053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Angelica sinensis (Oliv.) Diels (A. sinensis) has a long processing history. In order to obtain a more valuable composition and higher antioxidant behavior, it is often processed by stir-frying and vinegar treatment. However, the underlying mechanism of chemical changes remains ambiguous. Using UPLC-QQQ-MS/MS alongside targeted metabolomics techniques, this study probed the variances between crude and processed A. sinensis. We identified 1046 chemical components in total, 123 differential components in stir-fried A. sinensis, and 167 in vinegar-treated ones were screened through multivariate statistical analysis. Moreover, 83 significant compounds, encompassing amino acids, phenolic acids, etc., were identified across both processing methods. The in vitro antioxidant activities of these A. sinensis forms were assessed, revealing a positive correlation between most of the unique components emerging after processing and the antioxidant capabilities. Notably, post-processing, the chemical composition undergoes significant alterations, enhancing the antioxidant activity. Specific compounds, including 4-hydroxybenzaldehyde, syringetin-3-O-glucoside, and salicylic acid, greatly influence antioxidant activity during processing.
Collapse
Affiliation(s)
- Linlin Chen
- Key Laboratory of Agricultural Products Quality and Safety Collection, Storage and Transportation Control, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.C.); (L.L.); (F.W.); (T.D.); (Y.W.)
- School of Pharmacy, Harbin University of Commerce, Harbin 150010, China
| | - Long Li
- Key Laboratory of Agricultural Products Quality and Safety Collection, Storage and Transportation Control, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.C.); (L.L.); (F.W.); (T.D.); (Y.W.)
| | - Fengzhong Wang
- Key Laboratory of Agricultural Products Quality and Safety Collection, Storage and Transportation Control, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.C.); (L.L.); (F.W.); (T.D.); (Y.W.)
| | - Shenghai Hu
- Agricultural Product Storage and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (S.H.); (Y.H.)
| | - Tingting Ding
- Key Laboratory of Agricultural Products Quality and Safety Collection, Storage and Transportation Control, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.C.); (L.L.); (F.W.); (T.D.); (Y.W.)
| | - Yongru Wang
- Key Laboratory of Agricultural Products Quality and Safety Collection, Storage and Transportation Control, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.C.); (L.L.); (F.W.); (T.D.); (Y.W.)
| | - Yulong Huang
- Agricultural Product Storage and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (S.H.); (Y.H.)
| | - Bei Fan
- Key Laboratory of Agricultural Products Quality and Safety Collection, Storage and Transportation Control, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.C.); (L.L.); (F.W.); (T.D.); (Y.W.)
| | - Jing Sun
- Key Laboratory of Agricultural Products Quality and Safety Collection, Storage and Transportation Control, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.C.); (L.L.); (F.W.); (T.D.); (Y.W.)
| |
Collapse
|
26
|
Gong F, Yu W, Zeng Q, Dong J, Cao K, Xu H, Zhou X. Rhododendron chrysanthum's Primary Metabolites Are Converted to Phenolics More Quickly When Exposed to UV-B Radiation. Biomolecules 2023; 13:1700. [PMID: 38136571 PMCID: PMC10742171 DOI: 10.3390/biom13121700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The plant defense system is immediately triggered by UV-B irradiation, particularly the production of metabolites and enzymes involved in the UV-B response. Although substantial research on UV-B-related molecular responses in Arabidopsis has been conducted, comparatively few studies have examined the precise consequences of direct UV-B treatment on R. chrysanthum. The ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) methodology and TMT quantitative proteomics are used in this study to describe the metabolic response of R. chrysanthum to UV-B radiation and annotate the response mechanism of the primary metabolism and phenolic metabolism of R. chrysanthum. The outcomes demonstrated that following UV-B radiation, the primary metabolites (L-phenylalanine and D-lactose*) underwent considerable changes to varying degrees. This gives a solid theoretical foundation for investigating the use of precursor substances, such as phenylalanine, to aid plants in overcoming abiotic stressors. The external application of ABA produced a considerable increase in the phenolic content and improved the plants' resistance to UV-B damage. Our hypothesis is that externally applied ABA may work in concert with UV-B to facilitate the transformation of primary metabolites into phenolic compounds. This hypothesis offers a framework for investigating how ABA can increase a plant's phenolic content in order to help the plant withstand abiotic stressors. Overall, this study revealed alterations and mechanisms of primary and secondary metabolic strategies in response to UV-B radiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
27
|
Fuica-Carrasco C, Toro-Núñez Ó, Lira-Noriega A, Pérez AJ, Hernández V. Metabolome expression in Eucryphia cordifolia populations: Role of seasonality and ecological niche centrality hypothesis. JOURNAL OF PLANT RESEARCH 2023; 136:827-839. [PMID: 37486392 DOI: 10.1007/s10265-023-01483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
The ecological niche centrality hypothesis states that population abundance is determined by the position in the ecological niche, expecting higher abundances towards the center of the niche and lower at the periphery. However, the variations in the conditions that favor the persistence of populations between the center and the periphery of the niche can be a surrogate of stress factors that are reflected in the production of metabolites in plants. In this study we tested if metabolomic similarity and diversity in populations of the tree species Eucryphia cordifolia Cav. vary according to their position with respect to the structure of the ecological niche. We hypothesize that populations growing near the centroid should exhibit lower metabolites diversity than plants growing at the periphery of the niche. The ecological niche of the species was modeled using correlative approaches and bioclimatic variables to define central and peripheral localities from which we chose four populations to obtain their metabolomic information using UHPLC-DAD-QTOF-MS. We observed that populations farther away from the centroid tend to have higher metabolome diversity, thus supporting our expectation of the niche centrality hypothesis. Nonetheless, the Shannon index showed a marked variation in metabolome diversity at the seasonal level, with summer and autumn being the periods with higher metabolite diversity compared to winter and spring. We conclude that both the environmental variation throughout the year in combination with the structure of the ecological niche are relevant to understand the variation in expression of metabolites in plants.
Collapse
Affiliation(s)
- Camila Fuica-Carrasco
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, CP 40300000, Chile.
| | - Óscar Toro-Núñez
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, CP 40300000, Chile
| | - Andrés Lira-Noriega
- CONAHCyT Research Fellow, Red de Estudios Moleculares Avanzados, Instituto de Ecología, Mexico City, A.C, México
| | - Andy J Pérez
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Casilla 160-C, Concepción, CP 40300000, Chile
| | - Víctor Hernández
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, CP 40300000, Chile
| |
Collapse
|
28
|
Zhu R, Gao Y, Dong J, Li Z, Ren Z. The changes of gut microbiota and metabolites in different drug-induced liver injuries. J Med Microbiol 2023; 72. [PMID: 38015063 DOI: 10.1099/jmm.0.001778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
The increasing incidence of drug-induced liver injury (DILI) has become a major concern. Gut microbiota, as another organ of the human body, has been studied in various tumors, cardiovascular metabolic diseases, inflammatory bowel disease and human immunity. The studies mentioned above have confirmed its important impact on the occurrence and development of DILI. The gut-liver axis explains the close relationship between the gut and the liver, and it may be a pathway by which gut microbes contribute to DILI. In addition, the interaction between drugs and gut microbes affects both separately, which in turn may have positive or negative effects on the body, including DILI. There are both common and specific changes in liver injury caused by different drugs. The alteration of metabolites in DILI is also a new direction of therapeutic exploration. The application of microbiomics, metabolomics and other multi-omics to DILI has also explored new ideas for DILI. In this review, we conclude the alterations of gut microbes and metabolites under different DILI, and the significance of applying gut microbiome-metabolomics to DILI, so as to explore the metabolic characteristics of DILI and possible novel metabolic biomarkers.
Collapse
Affiliation(s)
- Ruirui Zhu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, PR China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Yinghui Gao
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Jianxia Dong
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Zhiqin Li
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, PR China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| |
Collapse
|
29
|
Loesel H, Shakiba N, Wenck S, Le Tan P, Karstens TO, Creydt M, Seifert S, Hackl T, Fischer M. Food Monitoring: Limitations of Accelerated Storage to Predict Molecular Changes in Hazelnuts ( Corylus avellana L.) under Realistic Conditions Using UPLC-ESI-IM-QTOF-MS. Metabolites 2023; 13:1031. [PMID: 37887356 PMCID: PMC10608644 DOI: 10.3390/metabo13101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Accelerated storage is routinely used with pharmaceuticals to predict stability and degradation patterns over time. The aim of this is to assess the shelf life and quality under harsher conditions, providing crucial insights into their long-term stability and potential storage issues. This study explores the potential of transferring this approach to food matrices for shelf-life estimation. Therefore, hazelnuts were stored under accelerated short-term and realistic long-term conditions. Subsequently, they were analyzed with high resolution mass spectrometry, focusing on the lipid profile. LC-MS analysis has shown that many unique processes take place under accelerated conditions that do not occur or occur much more slowly under realistic conditions. This mainly involved the degradation of membrane lipids such as phospholipids, ceramides, and digalactosyldiacylglycerides, while oxidation processes occurred at different rates in both conditions. It can be concluded that a food matrix is far too complex and heterogeneous compared to pharmaceuticals, so that many more processes take place during accelerated storage, which is why the results cannot be used to predict molecular changes in hazelnuts stored under realistic conditions.
Collapse
Affiliation(s)
- Henri Loesel
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (N.S.); (S.W.); (P.L.T.); (T.-O.K.); (M.C.); (S.S.); (T.H.)
| | - Navid Shakiba
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (N.S.); (S.W.); (P.L.T.); (T.-O.K.); (M.C.); (S.S.); (T.H.)
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Soeren Wenck
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (N.S.); (S.W.); (P.L.T.); (T.-O.K.); (M.C.); (S.S.); (T.H.)
| | - Phat Le Tan
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (N.S.); (S.W.); (P.L.T.); (T.-O.K.); (M.C.); (S.S.); (T.H.)
| | - Tim-Oliver Karstens
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (N.S.); (S.W.); (P.L.T.); (T.-O.K.); (M.C.); (S.S.); (T.H.)
| | - Marina Creydt
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (N.S.); (S.W.); (P.L.T.); (T.-O.K.); (M.C.); (S.S.); (T.H.)
| | - Stephan Seifert
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (N.S.); (S.W.); (P.L.T.); (T.-O.K.); (M.C.); (S.S.); (T.H.)
| | - Thomas Hackl
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (N.S.); (S.W.); (P.L.T.); (T.-O.K.); (M.C.); (S.S.); (T.H.)
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (H.L.); (N.S.); (S.W.); (P.L.T.); (T.-O.K.); (M.C.); (S.S.); (T.H.)
| |
Collapse
|
30
|
Zou M, Zhang YS, Feng JK, Tu H, Gui MB, Wang YN, Yang ZJ, Yang ZQ, Xu M, Wu WQ, Gao F. Serum metabolomics analysis of biomarkers and metabolic pathways in patients with colorectal cancer associated with spleen-deficiency and qi-stagnation syndrome or damp-heat syndrome: a prospective cohort study. Front Oncol 2023; 13:1190706. [PMID: 37771438 PMCID: PMC10523394 DOI: 10.3389/fonc.2023.1190706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
Objective To profile the serum metabolites and metabolic pathways in colorectal cancer (CRC) patients associated with spleen-deficiency and qi-stagnation syndrome (SDQSS) or damp-heat syndrome (DHS). Methods From May 2020 to January 2021, CRC patients diagnosed with traditional Chinese medicine (TCM) syndromes of SDQSS or DHS were enrolled. The clinicopathological data of the SDQSS and DHS groups were compared. The serum samples were analyzed by liquid chromatography-mass spectrometry (LC-MS). The variable importance in the projection >1, fold change ≥3 or ≤0.333, and P value ≤0.05 were used to identify differential metabolites between the two groups. Furthermore, areas under the receiver operating characteristic (ROC) curve > 0.9 were applied to select biomarkers with good predictive performance. The enrichment metabolic pathways were searched through the database of Kyoto Encyclopedia of Genes and Genomes. Results 60 CRC patients were included (30 SDQSS and 30 DHS). The level of alanine aminotransferase was marginally significantly higher in the DHS group than the SDQSS group (P = 0.051). The other baseline clinicopathological characteristics were all comparable between the two groups. 23 differential serum metabolites were identified, among which 16 were significantly up-regulated and 7 were significantly down-regulated in the SDQSS group compared with the DHS group. ROC curve analysis showed that (S)-3-methyl-2-oxopentanoic acid, neocembrene, 1-aminocyclopropanecarboxylic acid, 3-methyl-3-hydroxypentanedioate, and nicotine were symbolic differential metabolites with higher predictive power. The top five enrichment signalling pathways were valine, leucine and isoleucine biosynthesis; lysosome; nicotine addiction; fructose and mannose metabolism; and pertussis. Conclusion Our study identifies the differential metabolites and characteristic metabolic pathways among CRC patients with SDQSS or DHS, offering the possibility of accurate and objective syndrome differentiation and TCM treatment for CRC patients.
Collapse
Affiliation(s)
- Min Zou
- Department of Colorectal and Anal Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Yan-Sheng Zhang
- Department of Obstetrics and Gynecology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Jin-Kai Feng
- Department of Hepatic Surgery VI, The Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Hao Tu
- Department of Colorectal Surgery, Chongqing Qijiang District People’s Hospital, Chongqing, China
| | - Ming-Bin Gui
- Department of Colorectal and Anal Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Ya-Nan Wang
- Department of Colorectal and Anal Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Zi-Jie Yang
- Department of Colorectal and Anal Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Zeng-Qiang Yang
- Department of Colorectal Surgery, Gansu Provincial Central Hospital, Lanzhou, China
| | - Ming Xu
- Department of Colorectal and Anal Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Wei-Qiang Wu
- Department of Colorectal and Anal Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Feng Gao
- Department of Colorectal and Anal Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| |
Collapse
|
31
|
Mattoli L, Gianni M, Burico M. Mass spectrometry-based metabolomic analysis as a tool for quality control of natural complex products. MASS SPECTROMETRY REVIEWS 2023; 42:1358-1396. [PMID: 35238411 DOI: 10.1002/mas.21773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/16/2021] [Accepted: 02/11/2022] [Indexed: 06/07/2023]
Abstract
Metabolomics is an area of intriguing and growing interest. Since the late 1990s, when the first Omic applications appeared to study metabolite's pool ("metabolome"), to understand new aspects of the global regulation of cellular metabolism in biology, there have been many evolutions. Currently, there are many applications in different fields such as clinical, medical, agricultural, and food. In our opinion, it is clear that developments in metabolomics analysis have also been driven by advances in mass spectrometry (MS) technology. As natural complex products (NCPs) are increasingly used around the world as medicines, food supplements, and substance-based medical devices, their analysis using metabolomic approaches will help to bring more and more rigor to scientific studies and industrial production monitoring. This review is intended to emphasize the importance of metabolomics as a powerful tool for studying NCPs, by which significant advantages can be obtained in terms of elucidation of their composition, biological effects, and quality control. The different approaches of metabolomic analysis, the main and basic techniques of multivariate statistical analysis are also briefly illustrated, to allow an overview of the workflow associated with the metabolomic studies of NCPs. Therefore, various articles and reviews are illustrated and commented as examples of the application of MS-based metabolomics to NCPs.
Collapse
Affiliation(s)
- Luisa Mattoli
- Department of Metabolomics & Analytical Sciences, Aboca SpA Società Agricola, Sansepolcro, AR, Italy
| | - Mattia Gianni
- Department of Metabolomics & Analytical Sciences, Aboca SpA Società Agricola, Sansepolcro, AR, Italy
| | - Michela Burico
- Department of Metabolomics & Analytical Sciences, Aboca SpA Società Agricola, Sansepolcro, AR, Italy
| |
Collapse
|
32
|
Xiang F, Niu H, Yao L, Yang J, Cheng S, Zhou Z, Saimaiti R, Matnur Y, Talifu A, Zhou W, Zeper A. Exploring the effect of the Uyghur medicine Munziq Balgam on a collagen-induced arthritis rat model by UPLC-MS/MS-based metabolomics approach. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116437. [PMID: 36977448 DOI: 10.1016/j.jep.2023.116437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Munziq Balgam (MBm) is a classic preparation of a traditional Uyghur medicine used for many years to treat abnormal body fluid diseases. The formula, as an in-hospital preparation, has already been used in the Hospital of Xinjiang Traditional Uyghur Medicine to treat rheumatoid arthritis (RA) with significant clinical effects. AIM OF THE STUDY This study intends to reveal the intervention effect of MBm on collagen-induced arthritis (CIA) rats, discover the potential biomarkers with efficacy, and explore the mechanisms of metabolic regulation by using metabolomics method. MATERIAL AND METHODS Sprague Dawley (SD) rats were randomly divided into five groups: blank group, CIA model group, Munziq Balgam nomal-dosage, Munziq Balgam high-dosage group and control group. Body weight, paw swelling, arthritis index, immune indices and histopathological experiments were carried out. Plasma from rats were detected by UPLC-MS/MS. Metabolomics of plasma was performed to analyze metabolic profiles, potential biomarkers, and metabolic pathways of MBm for CIA rats. The main metabolic result of Uyghur medicine MBm was compared with that of Zhuang medicine Longzuantongbi granules (LZTBG) to explore the characteristics of two ethnic medicines from different regions for RA. RESULTS MBm could significantly alleviate symptoms of CIA rats by relieving arthritis symptoms on paw redness and swelling, inflammatory cell infiltration, synovial hyperplasia, pannus, cartilage and bone tissue destruction, as well as inhibiting the expression of IL-1β, IL-6, TNF-α, UA and ALP. Linoleic acid, alpha-linolenic acid, pantothenate and CoA biosynthesis, achidonic acid, gycerophospholipid, sphingolipid metabolism, primary bile acid biosynthesis, porphyrin and chlorophyll metabolism and fatty acid degradation served as the main nine pathways of the interventional effect of MBm on CIA rats. Twenty-three different metabolites were screened out and strongly associated with the indicator makes of RA. Eight potential efficacy-related biomarkers were finally discovered in metabolic pathway network (phosphatidylcholine, bilirubin, sphinganine 1-phosphate, phytosphingosine, SM (d18:1/16:0), pantothenic acid, l-palmitoylcarnitine, chenodeoxycholate). Three metabolites (chenodeoxycholate, hyodeoxycholic acid and O-palmitoleoylcarnitine) were changed in both the metabolic study of MBm and LZTBG intervention effects on CIA rats. Additionally, MBm and LZTBG shared the same 6 metabolic pathways including linoleic acid, alpha-linolenic acid, pantothenate and CoA biosynthesis, achidonic acid, gycerophospholipid, and primary bile acid biosynthesis. CONCLUSION The study suggested that MBm may effectively alleviate RA by regulating inflammation, immunity-related pathways and multiple targets. Metabolomics analysis showed that MBm (Xinjiang, the north of China) and LZTBG (Guangxi, the south of China), two ethnic medicines from different regions in China, share common metabolites and pathways but also have distinct differences in their interventions for RA.
Collapse
Affiliation(s)
- Fangfang Xiang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Hongjuan Niu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Lan Yao
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Jing Yang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Shuohan Cheng
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Zhi Zhou
- Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, 100081, Beijing, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing, 100081, China
| | - Refuhati Saimaiti
- Hospital of Xinjiang Traditional Uyghur Medicine, Urumqi, 830049, China
| | - Yusup Matnur
- Hospital of Xinjiang Traditional Uyghur Medicine, Urumqi, 830049, China
| | - Ainiwaer Talifu
- Hospital of Xinjiang Traditional Uyghur Medicine, Urumqi, 830049, China
| | - Wenbin Zhou
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, 100081, Beijing, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing, 100081, China.
| | - Abliz Zeper
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, 100081, Beijing, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing, 100081, China.
| |
Collapse
|
33
|
Li Z, Cheng Y, Chen J, Xu W, Ma W, Li S, Du E. Widely Targeted HPLC-MS/MS Metabolomics Analysis Reveals Natural Metabolic Insights in Insects. Metabolites 2023; 13:735. [PMID: 37367893 DOI: 10.3390/metabo13060735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Insect metabolites play vital roles in regulating the physiology, behavior, and numerous adaptations of insects, which has contributed to them becoming the largest class of Animalia. However, systematic metabolomics within the insects is still unclear. The present study performed a widely targeted metabolomics analysis based on the HPLC-MS/MS technology to construct a novel integrated metabolic database presenting comprehensive multimetabolite profiles from nine insect species across three metamorphosis types. A total of 1442 metabolites were identified, including amino acids and their metabolites, organic acids and their derivatives, fatty acids (FAs), glycerophospholipids (GPs), nucleotides and their metabolites, and benzene and its substituted derivatives. Among them, 622 metabolites were used to generate a 0 and 1 matrix based on their presence or absence, and these metabolites were enriched in arachidonic acid metabolism, tyrosine metabolism, phenylalanine metabolism, and insect hormone biosynthesis pathways. Our study revealed that there is a high coincidence between the evolutionary relationships of the species and the hierarchical cluster based on the types of metabolites, while the quantities of the metabolites show a high diversity among species. The metabolome of the nine representative insects provides an important platform for implementing the analysis of insect systemic metabolites and biological events at the metabolic level.
Collapse
Affiliation(s)
- Zhaoxin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Yunlong Cheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jinxin Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Weijun Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wentao Ma
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Erxia Du
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| |
Collapse
|
34
|
Kontou EE, Walter A, Alka O, Pfeuffer J, Sachsenberg T, Mohite OS, Nuhamunada M, Kohlbacher O, Weber T. UmetaFlow: an untargeted metabolomics workflow for high-throughput data processing and analysis. J Cheminform 2023; 15:52. [PMID: 37173725 PMCID: PMC10176759 DOI: 10.1186/s13321-023-00724-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Metabolomics experiments generate highly complex datasets, which are time and work-intensive, sometimes even error-prone if inspected manually. Therefore, new methods for automated, fast, reproducible, and accurate data processing and dereplication are required. Here, we present UmetaFlow, a computational workflow for untargeted metabolomics that combines algorithms for data pre-processing, spectral matching, molecular formula and structural predictions, and an integration to the GNPS workflows Feature-Based Molecular Networking and Ion Identity Molecular Networking for downstream analysis. UmetaFlow is implemented as a Snakemake workflow, making it easy to use, scalable, and reproducible. For more interactive computing, visualization, as well as development, the workflow is also implemented in Jupyter notebooks using the Python programming language and a set of Python bindings to the OpenMS algorithms (pyOpenMS). Finally, UmetaFlow is also offered as a web-based Graphical User Interface for parameter optimization and processing of smaller-sized datasets. UmetaFlow was validated with in-house LC-MS/MS datasets of actinomycetes producing known secondary metabolites, as well as commercial standards, and it detected all expected features and accurately annotated 76% of the molecular formulas and 65% of the structures. As a more generic validation, the publicly available MTBLS733 and MTBLS736 datasets were used for benchmarking, and UmetaFlow detected more than 90% of all ground truth features and performed exceptionally well in quantification and discriminating marker selection. We anticipate that UmetaFlow will provide a useful platform for the interpretation of large metabolomics datasets.
Collapse
Affiliation(s)
- Eftychia E Kontou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark
| | - Axel Walter
- Applied Bioinformatics, Department of Computer Science, Eberhard Karls University Tübingen, Sand 14, 72076, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Oliver Alka
- Applied Bioinformatics, Department of Computer Science, Eberhard Karls University Tübingen, Sand 14, 72076, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Julianus Pfeuffer
- Visual and Data-Centric Computing, Zuse Institute Berlin, Takustr. 7, 14195, Berlin, Germany
- Algorithmic Bioinformatics, Freie Universität Berlin, Takustr. 9, 14195, Berlin, Germany
| | - Timo Sachsenberg
- Applied Bioinformatics, Department of Computer Science, Eberhard Karls University Tübingen, Sand 14, 72076, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Omkar S Mohite
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark
| | - Matin Nuhamunada
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, Eberhard Karls University Tübingen, Sand 14, 72076, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
- Translational Bioinformatics, University Hospital Tübingen, Schaffhausenstr. 77, 72072, Tübingen, Germany
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
35
|
Squara S, Manig F, Henle T, Hellwig M, Caratti A, Bicchi C, Reichenbach SE, Tao Q, Collino M, Cordero C. Extending the breadth of saliva metabolome fingerprinting by smart template strategies and effective pattern realignment on comprehensive two-dimensional gas chromatographic data. Anal Bioanal Chem 2023; 415:2493-2509. [PMID: 36631574 PMCID: PMC10149478 DOI: 10.1007/s00216-023-04516-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC-TOFMS) is one the most powerful analytical platforms for chemical investigations of complex biological samples. It produces large datasets that are rich in information, but highly complex, and its consistency may be affected by random systemic fluctuations and/or changes in the experimental parameters. This study details the optimization of a data processing strategy that compensates for severe 2D pattern misalignments and detector response fluctuations for saliva samples analyzed across 2 years. The strategy was trained on two batches: one with samples from healthy subjects who had undergone dietary intervention with high/low-Maillard reaction products (dataset A), and the second from healthy/unhealthy obese individuals (dataset B). The combined untargeted and targeted pattern recognition algorithm (i.e., UT fingerprinting) was tuned for key process parameters, the signal-to-noise ratio (S/N), and MS spectrum similarity thresholds, and then tested for the best transform function (global or local, affine or low-degree polynomial) for pattern realignment in the temporal domain. Reliable peak detection achieved its best performance, computed as % of false negative/positive matches, with a S/N threshold of 50 and spectral similarity direct match factor (DMF) of 700. Cross-alignment of bi-dimensional (2D) peaks in the temporal domain was fully effective with a supervised operation including multiple centroids (reference peaks) and a match-and-transform strategy using affine functions. Regarding the performance-derived response fluctuations, the most promising strategy for cross-comparative analysis and data fusion included the mass spectral total useful signal (MSTUS) approach followed by Z-score normalization on the resulting matrix.
Collapse
Affiliation(s)
- Simone Squara
- Dipartimento Di Scienza E Tecnologia del Farmaco, Università Degli Studi Di Torino, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Friederike Manig
- Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Thomas Henle
- Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Michael Hellwig
- Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Andrea Caratti
- Dipartimento Di Scienza E Tecnologia del Farmaco, Università Degli Studi Di Torino, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Carlo Bicchi
- Dipartimento Di Scienza E Tecnologia del Farmaco, Università Degli Studi Di Torino, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Stephen E Reichenbach
- Computer Science and Engineering Department, University of Nebraska, Lincoln, NE, USA
- GC Image LLC, Lincoln, NE, USA
| | | | - Massimo Collino
- Dipartimento Di Neuroscienze "Rita Levi Montalcini", University of Turin, Turin, Italy.
| | - Chiara Cordero
- Dipartimento Di Scienza E Tecnologia del Farmaco, Università Degli Studi Di Torino, Via Pietro Giuria 9, 10125, Turin, Italy.
| |
Collapse
|
36
|
Huidobro-López B, León C, López-Heras I, Martínez-Hernández V, Nozal L, Crego AL, de Bustamante I. Untargeted metabolomic analysis to explore the impact of soil amendments in a non-conventional wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161890. [PMID: 36731565 DOI: 10.1016/j.scitotenv.2023.161890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
As non-conventional wastewater treatment, vegetation filters make the most of the natural attenuation processes that occur in soil to remove contaminants, while providing several environmental benefits. However, this practice may introduce contaminants of emerging concern (CECs) and their transformation products (TPs) into the environment. A potential improvement to the system was tested using column experiments containing soil (S) and soil amended with woodchips (SW) or biochar (SB) irrigated with synthetic wastewater that included 11 selected CECs. This study evaluated: i) known CECs attenuation and ii) unknown metabolites formation. Known CECs attenuation was assessed by total mass balance by considering both water and soil media. An untargeted metabolomic strategy was developed to assess the formation of unknown metabolites and to identify them in water samples. The results indicated that SB enhanced CECs attenuation and led to the formation of fewer metabolites. Sorption and biodegradation processes were favored by the bigger surface area of particles in SB column, especially for compounds with negative charges. Incorporating woodchips into soil shortened retention times in the column, which reduced attenuation phenomena and resulted in the formation of significantly more metabolites. Incomplete biodegradation reactions, fostered by shorter retention times in SW column could mainly explain these results.
Collapse
Affiliation(s)
- Blanca Huidobro-López
- IMDEA Water, Avenida Punto Com 2, E-28805 Madrid, Spain; Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, E-28871 Madrid, Spain.
| | - Carlos León
- Carlos III University, Department of Bioengineering, E-28911 Madrid, Spain
| | | | | | - Leonor Nozal
- Alcalá University and General Foundation of Alcalá University, Center of Applied Chemistry and Biotechnology, E-28871 Madrid, Spain
| | - Antonio L Crego
- Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, E-28871 Madrid, Spain.
| | - Irene de Bustamante
- IMDEA Water, Avenida Punto Com 2, E-28805 Madrid, Spain; Alcalá University, Department of Geology, Geography and Environment, E-28871 Madrid, Spain
| |
Collapse
|
37
|
Porto VA, da Rocha Júnior ER, Ursulino JS, Porto RS, da Silva M, de Jesus LWO, Oliveira JMD, Crispim AC, Santos JCC, Aquino TMD. NMR-based metabolomics applied to ecotoxicology with zebrafish (Danio rerio) as a prominent model for metabolic profiling and biomarker discovery: Overviewing the most recent approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161737. [PMID: 36693575 DOI: 10.1016/j.scitotenv.2023.161737] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/28/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Metabolomics is an innovative approach used in the medical, toxicological, and biological sciences. As an interdisciplinary topic, metabolomics and its relation with the environment and toxicological research are extensive. The use of substances, such as drugs and pesticides, contributes to the continuous releasing of xenobiotics into the environment, harming organisms and their habitats. In this context, fish are important bioindicators of the environmental condition and have often been used as model species. Among them, zebrafish (Danio rerio) presents itself as a versatile and straightforward option due to its unique attributes for research. Zebrafish proves to be a valuable model for toxicity assays and also for metabolomics profiling by analytical tools. Thus, NMR-based metabolomics associated with statistical analysis can reasonably assist researchers in critical factors related to discovering and validating biomarkers through accurate diagnosis. Therefore, this review aimed to report the studies that applied zebrafish as a model for (eco)toxicological assays and essentially utilized NMR-based metabolomics analysis to assess the biochemical profile and thus suggest the potential biological marker.
Collapse
Affiliation(s)
- Viviane Amaral Porto
- Research Group on Therapeutic Strategies, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil.
| | | | - Jeferson Santana Ursulino
- Research Group on Therapeutic Strategies, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Ricardo Silva Porto
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Marciliano da Silva
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, Brazil
| | - Lázaro Wender Oliveira de Jesus
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, Brazil
| | | | - Alessandre Carmo Crispim
- Research Group on Therapeutic Strategies, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | | | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| |
Collapse
|
38
|
Floros DJ, Xu K, Berthiller F, Schwartz-Zimmermann H. Comparison of chromatographic conditions for the targeted tandem mass spectrometric determination of 354 mammalian metabolites. J Chromatogr A 2023; 1697:463985. [PMID: 37062154 DOI: 10.1016/j.chroma.2023.463985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/22/2023] [Accepted: 04/08/2023] [Indexed: 04/18/2023]
Abstract
Metabolomics is becoming increasingly popular in livestock research, but no single analytical method can cover the entire metabolome. As such, we compared similar and complementary chromatographic methods with respect to analyte coverage and chromatographic properties of mammalian metabolites. We investigated 354 biologically relevant primary metabolites from 19 compound classes including amino acids, bile acids, biogenic amines, carboxylic acids, lipids, nucleotides and sugars. A total of 2063 selected reaction monitoring transitions were optimized on a triple quadrupole mass spectrometer. We then determined the retention profiles and peak parameters of our compounds using an anion exchange chromatography (AIC), three reversed-phase (RP) and three hydrophilic interaction liquid chromatography (HILIC) methods. On average, HILIC methods covered 54% of all metabolites with retention factors >1, while average RP coverage was 41%. In contrast to RP, HILIC methods could also retain polar metabolites such as amino acids and biogenic amines. Carboxylic acids, nucleotides, and sugar related compounds were best separated by AIC or zwitterionic pHILIC with alkaline eluents. Combining two complementary HILIC and RP methods increased the library coverage to 92%. By further including important short chain fatty acids, a combination of HILIC, RP and AIC methods achieved a coverage of 97%. The resulting dataset of LC and MS/MS parameters will facilitate the development of tailor-made quantitative targeted LC-MS/MS methods to investigate the mammalian metabolome.
Collapse
Affiliation(s)
- Dimitrios J Floros
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Kangkang Xu
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria.
| | - Heidi Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| |
Collapse
|
39
|
Aharoni A, Goodacre R, Fernie AR. Plant and microbial sciences as key drivers in the development of metabolomics research. Proc Natl Acad Sci U S A 2023; 120:e2217383120. [PMID: 36930598 PMCID: PMC10041103 DOI: 10.1073/pnas.2217383120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
This year marks the 25th anniversary of the coinage of the term metabolome [S. G. Oliver et al., Trends Biotech. 16, 373-378 (1998)]. As the field rapidly advances, it is important to take stock of the progress which has been made to best inform the disciplines future. While a medical-centric perspective on metabolomics has recently been published [M. Giera et al., Cell Metab. 34, 21-34 (2022)], this largely ignores the pioneering contributions made by the plant and microbial science communities. In this perspective, we provide a contemporary overview of all fields in which metabolomics is employed with particular emphasis on both methodological and application breakthroughs made in plant and microbial sciences that have shaped this evolving research discipline from the very early days of its establishment. This will not cover all types of metabolomics assays currently employed but will focus mainly on those utilizing mass spectrometry-based measurements since they are currently by far the most prominent. Having established the historical context of metabolomics, we will address the key challenges currently facing metabolomics and offer potential approaches by which these can be faced. Most salient among these is the fact that the vast majority of mass features are as yet not annotated with high confidence; what we may refer to as definitive identification. We discuss the potential of both standard compound libraries and artificial intelligence technologies to address this challenge and the use of natural variance-based approaches such as genome-wide association studies in attempt to assign specific functions to the myriad of structurally similar and complex specialized metabolites. We conclude by stating our contention that as these challenges are epic and that they will need far greater cooperative efforts from biologists, chemists, and computer scientists with an interest in all kingdoms of life than have been made to date. Ultimately, a better linkage of metabolome and genome data will likely also be needed particularly considering the Earth BioGenome Project.
Collapse
Affiliation(s)
- Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot76100, Israel
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7BE, UK
| | - Alisdair R. Fernie
- Max-Planck-Institute for Molecular Plant Physiology, Potsdam14476, Germany
| |
Collapse
|
40
|
Adobor S, Banniza S, Vandenberg A, Purves RW. Untargeted profiling of secondary metabolites and phytotoxins associated with stemphylium blight of lentil. PLANTA 2023; 257:73. [PMID: 36864322 DOI: 10.1007/s00425-023-04105-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Stemphylium botryosum alters lentil secondary metabolism and differentially affects resistant and susceptible genotypes. Untargeted metabolomics identifies metabolites and their potential biosynthetic pathways that play a crucial role in resistance to S. botryosum. The molecular and metabolic processes that mediate resistance to stemphylium blight caused by Stemphylium botryosum Wallr. in lentil are largely unknown. Identifying metabolites and pathways associated with Stemphylium infection may provide valuable insights and novel targets to breed for enhanced resistance. The metabolic changes following infection of four lentil genotypes by S. botryosum were investigated by comprehensive untargeted metabolic profiling employing reversed-phase or hydrophilic interaction liquid chromatography (HILIC) coupled to a Q-Exactive mass spectrometer. At the pre-flowering stage, plants were inoculated with S. botryosum isolate SB19 spore suspension and leaf samples were collected at 24, 96 and 144 h post-inoculation (hpi). Mock-inoculated plants were used as negative controls. After analyte separation, high-resolution mass spectrometry data was acquired in positive and negative ionization modes. Multivariate modeling revealed significant treatment, genotype and hpi effects on metabolic profile changes that reflect lentil response to Stemphylium infection. In addition, univariate analyses highlighted numerous differentially accumulated metabolites. By contrasting the metabolic profiles of SB19-inoculated and mock-inoculated plants and among lentil genotypes, 840 pathogenesis-related metabolites were detected including seven S. botryosum phytotoxins. These metabolites included amino acids, sugars, fatty acids and flavonoids in primary and secondary metabolism. Metabolic pathway analysis revealed 11 significant pathways including flavonoid and phenylpropanoid biosynthesis, which were affected upon S. botryosum infection. This research contributes to ongoing efforts toward a comprehensive understanding of the regulation and reprogramming of lentil metabolism under biotic stress, which will provide targets for potential applications in breeding for enhanced disease resistance.
Collapse
Affiliation(s)
- Stanley Adobor
- Pulse Crop Breeding and Genetics, Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Sabine Banniza
- Pulse Crop Breeding and Genetics, Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Albert Vandenberg
- Pulse Crop Breeding and Genetics, Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Randy W Purves
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
- Centre for Veterinary Drug Residues, Canadian Food Inspection Agency, Saskatoon, SK, Canada.
| |
Collapse
|
41
|
O'Hara L, Longstaffe JG. 1 H-Nuclear Magnetic Resonance Metabolomics Analysis of Arabidopsis thaliana Exposed to Perfluorooctanoic Acid and Perfluoroctanesulfonic Acid. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:663-672. [PMID: 36541334 DOI: 10.1002/etc.5547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/28/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Perfluorinated alkyl substances (PFAS) are ubiquitous environmental contaminants that are widely used in consumer products and fire suppression foams. The presence of PFAS in ground and surface water can create a route for PFAS to enter the soil, exposing ecosystems (including agroecosystems), where they will move through the food web via biomagnification. The toxicity of PFAS to plants, particularly in agricultural ecosystems, is of emerging concern due to the application of biosolids that are often contaminated with PFAS. Nevertheless, due to the low concentrations of PFAS in most agricultural soils, the direct impact of PFAS on plant health is not well understood. We used 1 H-nuclear magnetic resonance (NMR) metabolomics to explore the effects of exposure of two key PFAS, perfluorooctanoic acid and perfluorooctanesulfonic acid, on Arabidopsis thaliana, a model organism. We found that Arabidopsis exhibited an accumulation of multiple metabolites, including soluble sugars (glucose and sucrose), multiple amino acids, and tri-carboxylic acid (TCA) cycle intermediates, suggesting that PFAS exposure impacts the metabolism of plants by causing an accumulation of stress-related amino acids and soluble sugars that drives increased activity of the TCA cycle. The present study shows that 1 H-NMR metabolomics is a viable tool for investigating changes in the metabolic profile of plants exposed to PFAS and can be used to illuminate the stress response of plants in a high-throughput, nonbiased manner. Environ Toxicol Chem 2023;42:663-672. © 2022 SETAC.
Collapse
Affiliation(s)
- Liam O'Hara
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - James G Longstaffe
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
42
|
Dasgupta S, Ghosh N, Bhattacharyya P, Roy Chowdhury S, Chaudhury K. Metabolomics of asthma, COPD, and asthma-COPD overlap: an overview. Crit Rev Clin Lab Sci 2023; 60:153-170. [PMID: 36420874 DOI: 10.1080/10408363.2022.2140329] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The two common progressive lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are the leading causes of morbidity and mortality worldwide. Asthma-COPD overlap, referred to as ACO, is another complex pulmonary disease that manifests itself with features of both asthma and COPD. The disease has no clear diagnostic or therapeutic guidelines, thereby making both diagnosis and treatment challenging. Though a number of studies on ACO have been documented, gaps in knowledge regarding the pathophysiologic mechanism of this disorder exist. Addressing this issue is an urgent need for improved diagnostic and therapeutic management of the disease. Metabolomics, an increasingly popular technique, reveals the pathogenesis of complex diseases and holds promise in biomarker discovery. This comprehensive narrative review, comprising 99 original research articles in the last five years (2017-2022), summarizes the scientific advances in terms of metabolic alterations in patients with asthma, COPD, and ACO. The analytical tools, nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS), commonly used to study the expression of the metabolome, are discussed. Challenges frequently encountered during metabolite identification and quality assessment are highlighted. Bridging the gap between phenotype and metabotype is envisioned in the future.
Collapse
Affiliation(s)
- Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Nilanjana Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
43
|
Fabrile MP, Ghidini S, Conter M, Varrà MO, Ianieri A, Zanardi E. Filling gaps in animal welfare assessment through metabolomics. Front Vet Sci 2023; 10:1129741. [PMID: 36925610 PMCID: PMC10011658 DOI: 10.3389/fvets.2023.1129741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Sustainability has become a central issue in Italian livestock systems driving food business operators to adopt high standards of production concerning animal husbandry conditions. Meat sector is largely involved in this ecological transition with the introduction of new label claims concerning the defense of animal welfare (AW). These new guarantees referred to AW provision require new tools for the purpose of authenticity and traceability to assure meat supply chain integrity. Over the years, European Union (EU) Regulations, national, and international initiatives proposed provisions and guidelines for assuring AW introducing requirements to be complied with and providing tools based on scoring systems for a proper animal status assessment. However, the comprehensive and objective assessment of the AW status remains challenging. In this regard, phenotypic insights at molecular level may be investigated by metabolomics, one of the most recent high-throughput omics techniques. Recent advances in analytical and bioinformatic technologies have led to the identification of relevant biomarkers involved in complex clinical phenotypes of diverse biological systems suggesting that metabolomics is a key tool for biomarker discovery. In the present review, the Five Domains model has been employed as a vademecum describing AW. Starting from the individual Domains-nutrition (I), environment (II), health (III), behavior (IV), and mental state (V)-applications and advances of metabolomics related to AW setting aimed at investigating phenotypic outcomes on molecular scale and elucidating the biological routes most perturbed from external solicitations, are reviewed. Strengths and weaknesses of the current state-of-art are highlighted, and new frontiers to be explored for AW assessment throughout the metabolomics approach are argued. Moreover, a detailed description of metabolomics workflow is provided to understand dos and don'ts at experimental level to pursue effective results. Combining the demand for new assessment tools and meat market trends, a new cross-strategy is proposed as the promising combo for the future of AW assessment.
Collapse
Affiliation(s)
| | - Sergio Ghidini
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Mauro Conter
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | - Adriana Ianieri
- Department of Food and Drug, University of Parma, Parma, Italy
| | | |
Collapse
|
44
|
Avramidou E, Sarri E, Ganopoulos I, Madesis P, Kougiteas L, Papadopoulou EA, Aliferis KA, Abraham EM, Tani E. Genetic and Metabolite Variability among Commercial Varieties and Advanced Lines of Vicia faba L. PLANTS (BASEL, SWITZERLAND) 2023; 12:908. [PMID: 36840256 PMCID: PMC9967272 DOI: 10.3390/plants12040908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Vicia faba L. (faba bean) is one of the most promising pulse crops due to its nutritional value and high nitrogen fixation capacity. The aim of the present study was to compare the genetic diversity and the seed metabolite profiles of five genetic materials of faba bean. Specifically, three newly developed advanced lines (KK18, KK14 and KK10) and two commercial cultivars (POLIKARPI and TANAGRA), were evaluated for this purpose. Genetic diversity among populations was assessed by SCoT molecular markers. Through UPGMA dendrogram, genetic distances between populations were estimated. Untargeted metabolomics analysis of the seeds was performed employing GC/EI/MS. The cultivar POLYKARPI exhibited the highest polymorphism. All varieties showed a higher within-cultivars and advanced lines variability than between. POLYKARPI and KK14 had the lowest genetic distances, while KK18 and TANAGRA presented the highest ones. The advanced line KK18 displayed the best nutritional profile, the highest concentration of desirable metabolites (lactic acid and trehalose), the lowest concentration of anti-nutritional factors (oxalic acid) and the lowest concentration of saturated fatty acids (palmitic and stearic acid). According to the results of the present study, KK18 line is a very promising material for further exploration and utilization in breeding programs.
Collapse
Affiliation(s)
- Eleni Avramidou
- Department of Forestry and Natural Environment, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Institute of Applied Bioscience, CERTH, Thermi, 57001 Thessaloniki, Greece
| | - Efi Sarri
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, HAO-Dimitra, Thermi, 57001 Thessaloniki, Greece
| | - Panagiotis Madesis
- Institute of Applied Bioscience, CERTH, Thermi, 57001 Thessaloniki, Greece
- School of Agricultural Sciences, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Leonidas Kougiteas
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Evgenia-Anna Papadopoulou
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantinos A. Aliferis
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
- Department of Plant Science, McGill University, Macdonald Campus, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Eleni M. Abraham
- Department of Forestry and Natural Environment, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
45
|
Feussner K, Abreu IN, Klein M, Feussner I. Metabolite fingerprinting: A powerful metabolomics approach for marker identification and functional gene annotation. Methods Enzymol 2023; 680:325-350. [PMID: 36710017 DOI: 10.1016/bs.mie.2022.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Non-targeted metabolome approaches aim to detect metabolite markers related to stress, disease, developmental or genetic perturbation. In the later context, it is also a powerful means for functional gene annotation. A prerequisite for non-targeted metabolome analyses are methods for comprehensive metabolite extraction. We present three extraction protocols for a highly efficient extraction of metabolites from plant material with a very broad metabolite coverage. The presented metabolite fingerprinting workflow is based on liquid chromatography high resolution accurate mass spectrometry (LC-HRAM-MS), which provides suitable separation of the complex sample matrix for the analysis of compounds of different polarity by positive and negative electrospray ionization and mass spectrometry. The resulting data sets are then analyzed with the software suite MarVis and the web-based interface MetaboAnalyst. MarVis offers a straightforward workflow for statistical analysis, data merging as well as visualization of multivariate data, while MetaboAnalyst is used in our hands as complementary software for statistics, correlation networks and figure generation. Finally, MarVis provides access to species-specific metabolite and pathway data bases like KEGG and BioCyc and to custom data bases tailored by the user to connect the identified markers or features with metabolites. In addition, identified marker candidates can be interactively visualized and inspected in metabolic pathway maps by KEGG pathways for a more detailed functional annotation and confirmed by mass spectrometry fragmentation experiments or coelution with authentic standards. Together this workflow is a valuable toolbox to identify novel metabolites, metabolic steps or regulatory principles and pathways.
Collapse
Affiliation(s)
- Kirstin Feussner
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Goettingen, Germany.
| | - Ilka N Abreu
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | - Moritz Klein
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | - Ivo Feussner
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Goettingen, Germany.
| |
Collapse
|
46
|
Li Y, Wang C, Chen M. Metabolomics-based study of potential biomarkers of sepsis. Sci Rep 2023; 13:585. [PMID: 36631483 PMCID: PMC9834301 DOI: 10.1038/s41598-022-24878-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/22/2022] [Indexed: 01/13/2023] Open
Abstract
The purpose of our study was to explore potential characteristic biomarkers in patients with sepsis. Peripheral blood specimens from sepsis patients and normal human volunteers were processed by liquid chromatography-mass spectrometry-based analysis. Outlier data were excluded by principal component analysis and orthogonal partial least squares-discriminant analysis using the metabolomics R software package metaX and MetaboAnalyst 5.0 ( https://www.metaboanalyst.ca/home.xhtml ) online analysis software, and differential metabolite counts were identified by using volcano and heatmaps. The obtained differential metabolites were combined with KEGG (Kyoto Gene and Kyoto Encyclopedia) analysis to screen out potential core differential metabolites, and ROC curves were drawn to analyze the changes in serum metabolites in sepsis patients and to explore the potential value of the metabolites in the diagnosis of sepsis patients. By metabolomic analysis, nine differential metabolites were screened for their significance in guiding the diagnosis and differential diagnosis of sepsis namely: 3-phenyl lactic acid, N-phenylacetylglutamine, phenylethylamine, traumatin, xanthine, methyl jasmonate, indole, l-tryptophan and 1107116. In this study, nine metabolites were finally screened based on metabolomic analysis and used as potential characteristic biomarkers for the diagnosis of sepsis.
Collapse
Affiliation(s)
- Yang Li
- grid.488387.8Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Chenglin Wang
- grid.488387.8Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Muhu Chen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
47
|
Lasica N, Raicevic V, Stojanovic NM, Djilvesi D, Horvat I, Jelaca B, Pajicic F, Vulekovic P. Metabolomics as a potential tool for monitoring patients with aneurysmal subarachnoid hemorrhage. Front Neurol 2023; 13:1101524. [PMID: 36698893 PMCID: PMC9868237 DOI: 10.3389/fneur.2022.1101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Metabolomics has evolved into a particularly useful tool to study interactions between metabolites and serves as an aid in unraveling the complexity of entire metabolomes. Nonetheless, it is increasingly viewed as a methodology with practical applications in the clinical setting, where identifying and quantifying biomarkers of interest could prove useful for diagnostics. Starting from a concise overview of the most prominent analytical techniques employed in metabolomics, herein we present a review of its application in studies of brain metabolism and cerebrovascular diseases, paying most attention to its uses in researching aneurysmal subarachnoid hemorrhage. Both animal models and human studies are considered, and metabolites identified as potential biomarkers are highlighted.
Collapse
Affiliation(s)
- Nebojsa Lasica
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia,Clinic of Neurosurgery, University Clinical Center of Vojvodina, Novi Sad, Serbia,*Correspondence: Nebojsa Lasica ✉
| | - Vidak Raicevic
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | | | - Djula Djilvesi
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia,Clinic of Neurosurgery, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Igor Horvat
- Clinic of Neurosurgery, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Bojan Jelaca
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia,Clinic of Neurosurgery, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Filip Pajicic
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia,Clinic of Neurosurgery, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Petar Vulekovic
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia,Clinic of Neurosurgery, University Clinical Center of Vojvodina, Novi Sad, Serbia
| |
Collapse
|
48
|
Accelerated Solvent Extraction of Phenols from Lyophilised Ground Grape Skins and Seeds. BEVERAGES 2023. [DOI: 10.3390/beverages9010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The efficient extraction of phenols from grapes is an important step for their reliable quantification. The aim was to optimise the lyophilisation process and the extraction of phenols from grape skins and seeds. The phenol extraction yield from lyophilised tissues was investigated with different accelerated solvent extraction (ASE) operating conditions. Skins and seeds were separated from frozen berries and lyophilised without being ground. The weight loss during lyophilisation was followed daily. Phenols were extracted from lyophilised, cryo-ground seeds and skins with ASE at room temperature and 10.3 MPa using 80% aqueous acetone and 60% aqueous methanol. The effects of ASE operational parameters (the number of extraction cycles (ECs) and static time (ST) duration) were investigated. The yield of extracted phenols was evaluated spectrophotometrically by determining total phenolic index at 280 nm (TPI). The weight of skins and seeds significantly dropped after 24 h of lyophilisation and continued to decrease, although not significantly, up until the 9th day. The optimal lyophilisation time was estimated to be 3 days and 5 days for skins and seeds, respectively. The phenol extraction yield was significantly affected after changes of ASE conditions. Based on TPI, the optimal ASE conditions were as follows: (i) lyophilised seeds—eight ECs with 10 min ST using aqueous acetone and then four ECs with 20 min ST using aqueous methanol; (ii) lyophilised skins—eight ECs with 1 min ST using aqueous acetone and then one EC with 20 min ST using aqueous methanol.
Collapse
|
49
|
de Moraes Pontes JG, da Silva Pinheiro MS, Fill TP. Unveiling Chemical Interactions Between Plants and Fungi Using Metabolomics Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:1-20. [PMID: 37843803 DOI: 10.1007/978-3-031-41741-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Metabolomics has been extensively used in clinical studies in the search for new biomarkers of human diseases. However, this approach has also been highlighted in agriculture and biological sciences, once metabolomics studies have been assisting researchers to deduce new chemical mechanisms involved in biological interactions that occur between microorganisms and plants. In this sense, the knowledge of the biological role of each metabolite (virulence factors, signaling compounds, antimicrobial metabolites, among others) and the affected biochemical pathways during the interaction contribute to a better understand of different ecological relationships established in nature. The current chapter addresses five different applications of the metabolomics approach in fungal-plant interactions research: (1) Discovery of biomarkers in pathogen-host interactions, (2) plant diseases diagnosis, (3) chemotaxonomy, (4) plant defense, and (5) plant resistance; using mass spectrometry and/or nuclear magnetic resonance spectroscopy, which are the techniques most used in metabolomics.
Collapse
Affiliation(s)
- João Guilherme de Moraes Pontes
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Laboratório de Biologia Química Microbiana (LaBioQuiMi), Campinas, SP, Brazil
| | - Mayra Suelen da Silva Pinheiro
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Laboratório de Biologia Química Microbiana (LaBioQuiMi), Campinas, SP, Brazil
| | - Taícia Pacheco Fill
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Laboratório de Biologia Química Microbiana (LaBioQuiMi), Campinas, SP, Brazil.
| |
Collapse
|
50
|
Plumb RS, Gethings LA, Rainville PD, Isaac G, Trengove R, King AM, Wilson ID. Advances in high throughput LC/MS based metabolomics: A review. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|