1
|
Ghosh S, Khandelia T, Panigrahi P, Mandal R, Patel BK. Deciphering Co(III)-Catalyzed Oxidative C-H/C-H Annulation Towards Maleimide-Fused Imidazopyridine AEEgens. Chemistry 2025; 31:e202403576. [PMID: 39620910 DOI: 10.1002/chem.202403576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Indexed: 12/13/2024]
Abstract
A cobalt(III)-catalyzed dual C(sp2)-H/C(sp2)-H activation of 2-arylimidazopyridines and its annulation with N-substituted maleimides leads to polycyclic aromatic heterocycles. This sustainable oxidative annulation uses earth-abundant, less toxic, and cost-effective cobalt(III) catalyst that complement expensive 2nd and 3rd-row metals. This oxidative annulation features a broad substrate scope with very good functional group tolerance. These maleimide-fused imidazopyridines display strong fluorescence in the region of 527- 536 nm with a Stokes shift of 83-87 nm and possess an excited state lifetime of 14.6-16.1 ns. Interestingly, such luminescent compounds show aggregation-enhanced emission (AEE) behavior in the iPr-OH/hexane mixed solvent system. Furthermore, field emission scanning microscopy (FESEM) reveals their spherical nano-aggregates with an average diameter of ~216.8 nm. They can also be used as cellular-imaging and picric acid-sensing probes.
Collapse
Affiliation(s)
- Subhendu Ghosh
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Tamanna Khandelia
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Pritishree Panigrahi
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Raju Mandal
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Bhisma K Patel
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
2
|
Li H, Zeng Y, Liang F, Yang Y, Li K, Pang F, Li S. Programmable Synthesis of Cationic Azaperylenes via Rh(III)-Catalyzed Multiple C-H/N-H Bonds Activation and Annulation. Org Lett 2024; 26:11179-11183. [PMID: 39686750 DOI: 10.1021/acs.orglett.4c04269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Rh(III)-catalyzed dual N-H and triple C-H activation/(4 + 2) annulation of 2-aryl-2,3-dihydro-1H-perimidines and alkynes has been disclosed to construct 4,5,14,15-tetrasubstituted cationic azaperylenes with high yields (up to 95%) and broad scope. Tandem (4 + 2) annulation of 1H-perimidines with vinylene carbonate and alkynes affords 4,5-disubstituted azaperylene salts, and ortho-alkynyl 1H-perimidines undergo an intra- and intermolecular annulation cascade to give 4,5,14-trisubstituted targets. Most of the intermediates were detected by ESI-MS, indicating a convincible mechanism including three possible paths. The resultant new cationic azaperylenes generally exhibit yellow to red emissions (540-642 nm), and the disubstituted cations exhibit longer emission wavelengths than their tri- and tetra-substituted partners. This protocol also offers a concise and efficient tool to construct perimidinium-based dications, showing potential applications in electrochromic devices.
Collapse
Affiliation(s)
- Hui Li
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yiling Zeng
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Fangpeng Liang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yanyan Yang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Kaida Li
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Futao Pang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Shiqing Li
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
3
|
Liu B, Lei S, Cheng Z, Zhou L, Deng G, Liang Y, Yang Y. Palladium-Catalyzed Bicycloaromatization of o-(Alkynyl)styrenes with Alkynes: Economical Access to Chrysene Derivatives. Org Lett 2024; 26:8509-8514. [PMID: 39348565 DOI: 10.1021/acs.orglett.4c03056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Herein, a palladium-catalyzed bicycloaromatization of o-(alkynyl)styrenes with alkynes is reported. In this protocol, the 6-endo-dig cyclization of o-(alkynyl)styrenes is followed by deprotonation to complete the first cycloaromatization, and then, a regioselective alkyne insertion/C-H activation occurs to achieve the second cycloaromatization, resulting in atom- and step-economical syntheses of polysubstituted chrysenes. Notably, the products can be further used to construct π-extended arenes using the Scholl reaction.
Collapse
Affiliation(s)
- Bing Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Sen Lei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhendong Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Liwei Zhou
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, College of Pharmacy, Changsha Medical University, Changsha, Hunan 410219, China
| | - Guobo Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yun Liang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuan Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
4
|
Li J, Liu T, Liu J, Zhang C, Yang Y, Tan G, You J. Construction of acenaphthylenes via C-H activation-based tandem penta- and hexaannulation reactions. Nat Commun 2024; 15:8319. [PMID: 39333237 PMCID: PMC11436931 DOI: 10.1038/s41467-024-52652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Acenaphthylene-containing polycyclic aromatic hydrocarbons (AN-PAHs) are noteworthy structural motifs for organic functional materials due to their non-alternant electronic structure, which increases electron affinity. However, the synthesis of AN-PAHs has traditionally required multiple sequential synthetic steps, limiting structural diversity. Herein, we present a tandem C-H penta- and hexaannulation reaction of aryl alkyl ketone with acetylenedicarboxylate. This integrated approach enhances overall efficiency and selectivity, marking a significant advancement in AN-PAH synthesis. Mechanistic studies unveil an orchestrated extension of five- and six-membered rings through C-H activation-annulation and Diels-Alder reaction. Additionally, the tandem annulation reaction can be performed stepwise, further validating the proposed mechanism and increasing the structural diversity of AN-PAHs.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Tao Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Junjie Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Cheng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Guangying Tan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China.
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
5
|
Yadav SK, Jeganmohan M. Ir(III)-Catalyzed Tandem Annulation of Aromatic Amides with 1,6-Diynes via Dual C-H Bond Activation. Org Lett 2024; 26:7809-7816. [PMID: 39255330 DOI: 10.1021/acs.orglett.4c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
An Ir(III)-catalyzed annulation of aryl amides with 1,6-diynes via ortho- as well as meta-dual C-H bond activation reaction is reported. The scope of the annulation reaction was examined with various substituted aryl amides, as well as 1,6-diynes. In this protocol, 1,6-diynes exhibit diverse reactivity compared with internal alkynes. It is important to note that the three C-C bond formation takes place consecutively via ortho followed by meta-dual C-H bond annulation by using a weak chelating group in one pot. A possible catalytic reaction mechanism was proposed to account for the annulation reaction.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
6
|
Yadav SK, Jeganmohan M. Co(III)-catalyzed regioselective benzannulation of substituted pyridones with 1,6-diynes via dual C-H bond activation. Chem Commun (Camb) 2024; 60:8296-8299. [PMID: 39023786 DOI: 10.1039/d4cc01904k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
A Co(III)-catalyzed site-selective C5 and C6 benzannulation of substituted pyridones with 1,6-diynes via dual C-H bond activation has been reported. The scope of the benzannulation reaction was examined with various substituted 2-pyridyl pyridones and 1,6-diynes. The combination of cuprous acetate and silver carbonate plays a crucial role in the success of the reaction. A plausible reaction mechanism was proposed and supported by deuterium labelling studies and radical trapping experiments.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
7
|
Sawano T, Urasawa K, Sugiura R, Aoyama K, Sugahara K, Tanaka K, Hosaka H, Kaneko M, Yoshida Y, Ishikawa E, Yoshikawa T, Sakata K, Takeuchi R. Iridium-Catalyzed [2 + 2 + 2] Cycloaddition of Bithiophen-Linked Diynes with Nitriles: Scope and Mechanistic Study with Quantum Chemical Calculation. J Org Chem 2024; 89:9473-9487. [PMID: 38889001 DOI: 10.1021/acs.joc.4c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We report a simple and atom-efficient method for the synthesis of bithiophene-fused isoquinolines by iridium-catalyzed [2 + 2 + 2] cycloaddition of bithiophene-linked diynes with nitriles. All three structural isomers of bithiophene-linked diynes underwent [2 + 2 + 2] cycloaddition, and the trend in the reactivity for cycloaddition was diyne 1 = diyne 3 > diyne 2. Dibenzothiophene-linked diyne also reacted with nitriles to form a variety of cycloadducts. Cycloaddition of bithiophene-linked diynes with alkynes and an isocyanate formed naphthodithiophenes and a 2-pyridone derivative, respectively. Cycloadducts bearing a 2-aminopyridine moiety and benzothiophene rings showed intense fluorescence at around 530 nm and gave a fluorescence quantum yield of 0.44. Furthermore, quantum chemical calculations provided insight into the origin of the difference in reactivity of three bithiophene-linked diynes. The different reactivities of the three diynes 1-3 are believed to originate from the step where an iridacyclopentadiene reacts with a coordinated nitrile to form azairidabicyclo[3.2.0]heptatriene. HOMOs of iridacyclopentadiene play a decisive role in this step.
Collapse
Affiliation(s)
- Takahiro Sawano
- Department of Materials for Energy, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258, Japan
| | - Kazuki Urasawa
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258, Japan
| | - Ryosuke Sugiura
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258, Japan
| | - Kaito Aoyama
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258, Japan
| | - Kaito Sugahara
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258, Japan
| | - Koito Tanaka
- Faculty of Pharmaceutical Sciences, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
| | - Hiromi Hosaka
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258, Japan
| | - Masami Kaneko
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258, Japan
| | - Yuzo Yoshida
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258, Japan
| | - Eri Ishikawa
- Department of Applied Chemistry, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan
| | - Takeshi Yoshikawa
- Faculty of Pharmaceutical Sciences, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
| | - Ken Sakata
- Faculty of Pharmaceutical Sciences, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
| | - Ryo Takeuchi
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
8
|
Konwar M, Hazarika N, Sarmah BK, Das A. Ruthenium(II)-Catalyzed Oxidative Annulation of Imidazo[1,5-a]quinolin-2-iums Salts and Internal Alkynes via C-H Bond Activation. Chemistry 2024; 30:e202401133. [PMID: 38593238 DOI: 10.1002/chem.202401133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Ruthenium(II)-catalyzed synthesis of π-conjugated fused imidazo[1,5-a]quinolin-2-ium derivatives have been achieved via C-H activation of quinoline-functionalized NHC (NHC=N-heterocyclic carbene) and oxidative coupling with internal alkynes. The reaction occurred with high efficiency, broad substrate scope, tolerates a wide range of functional groups and utilized into a gram-scale. Synthetic applications of the coupled product have been exemplified in the late-stage derivatization of various highly functionalized scaffolds. Moreover, most of the annulated products exhibit intense fluorescence and have potential applications in optoelectronic devices. Mechanistic studies have provided insights into the spectroscopic characterization of key five-membered ruthenacycle intermediate and Ru(0) sandwich species. Based on several control experiments, deuterium-kinetic isotope effect, and thermodynamic activation parameters the mechanistic finding demonstrated that fused imidazo-[1,5-a]quinolin-2-ium C(2)-H bond cleavage is the rate-determining step and ruling out the possibility of reductive elimination for controlling the rate of reaction.
Collapse
Affiliation(s)
- Monuranjan Konwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nitumoni Hazarika
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Bikash Kumar Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
- Department of Chemistry, Sonari College, Charaideo, 785690, Assam, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
9
|
Bauri S, Ramachandran A, Rit A. (Benz)imidazo[1,2-a]quinolinium Salts: Access via Unprecedented Regiospecific non-AAIPEX Strategy and Study of Their Tunable Properties. Chemistry 2024; 30:e202303744. [PMID: 38226763 DOI: 10.1002/chem.202303744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
An unprecedented non-AAIPEX protocol has been developed to access diverse monosubstituted cationic polycyclic heteroaromatic compounds (cPHACs) from the readily available azolium salts and phenacyl bromides via Ru(II)-catalyzed tandem annulation cum aromatization. This atom-economic protocol executes a range of intermediate steps e. g. double C-H activation, nucleophilic addition, annulation, and dehydration cum aromatization in one-pot manner under the generation of H2O as the sole byproduct. Moreover, the systematic tunability of photo-physical and electrochemical properties of these new class of cPHACs can be authenticated from the DFT calculated frontier molecular orbital energies that might be beneficial for their potential applications in optoelectronics and DNA intercalation.
Collapse
Affiliation(s)
- Somnath Bauri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Arya Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
10
|
Yadav SK, Jeganmohan M. Nickel-Catalyzed Tandem Cyclization of 1,6-Diynes with Indolines/Indoles through Dual C-H Bond Activation. J Org Chem 2023; 88:14454-14469. [PMID: 37791905 DOI: 10.1021/acs.joc.3c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A nickel-catalyzed site-selective tandem cyclization of 1,6-diynes with substituted indolines or indoles through consecutive dual C-H bond activation is described. In the reaction, substituted fused indole and carbazole derivatives were observed in good to excellent yields, in which three consecutive C-C bonds formed in one pot. Later, in the presence of DDQ, the aromatization of the indoline derivative was converted to the indole derivative. A possible reaction mechanism involving dual C-H bond activation as a key step was proposed to account for the present reaction.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu India
| |
Collapse
|
11
|
Izquierdo‐García P, Fernández‐García JM, Perles J, Fernández I, Martín N. Electronic Control of the Scholl Reaction: Selective Synthesis of Spiro vs Helical Nanographenes. Angew Chem Int Ed Engl 2023; 62:e202215655. [PMID: 36495528 PMCID: PMC10107473 DOI: 10.1002/anie.202215655] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Scholl oxidation has become an essential reaction in the bottom-up synthesis of molecular nanographenes. Herein, we describe a Scholl reaction controlled by the electronic effects on the starting substrate (1 a, b). Anthracene-based polyphenylenes lead to spironanographenes under Scholl conditions. In contrast, an electron-deficient anthracene substrate affords a helically arranged molecular nanographene formed by two orthogonal dibenzo[fg,ij]phenanthro-[9,10,1,2,3-pqrst]pentaphene (DBPP) moieties linked through an octafluoroanthracene core. Density Functional Theory (DFT) calculations predict that electronic effects control either the first formation of spirocycles and subsequent Scholl reaction to form spironanographene 2, or the expected dehydrogenation reaction leading solely to the helical nanographene 3. The crystal structures of four of the new spiro compounds (syn 2, syn 9, anti 9 and syn 10) were solved by single crystal X-ray diffraction. The photophysical properties of the new molecular nanographene 3 reveal a remarkable dual fluorescent emission.
Collapse
Affiliation(s)
- Patricia Izquierdo‐García
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridAvd. de la Complutense, S/N28040MadridSpain
| | - Jesús M. Fernández‐García
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridAvd. de la Complutense, S/N28040MadridSpain
| | - Josefina Perles
- Laboratorio de Difracción de Rayos X de MonocristalSIdIUniversidad Autónoma de Madridc/Francisco Tomás y Valiente, 7 Campus de Cantoblanco28049MadridSpain
| | - Israel Fernández
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridAvd. de la Complutense, S/N28040MadridSpain
| | - Nazario Martín
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridAvd. de la Complutense, S/N28040MadridSpain
- IMDEA-NanocienciaC/Faraday, 9, Campus de Cantoblanco28049MadridSpain
| |
Collapse
|
12
|
Construction of Benzo-Fused Polycyclic Heteroaromatic Compounds through Palladium-Catalyzed Intramolecular C-H/C-H Biaryl Coupling. Catalysts 2022. [DOI: 10.3390/catal13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dibenzo-fused five-membered heteroaromatic compounds, including dibenzofuran, carbazole, and dibenzothiophene, are fundamental structural units in various important polycyclic heteroaromatic compounds. The intramolecular C-H/C-H biaryl coupling of diaryl (thio)ethers and amines based on palladium(II) catalysis under oxidative conditions is known to be one of the most effective, step-economic methods for their construction. Representative examples for the construction of structurally intriguing π-extended polycyclic heteroaromatics through catalytic coupling reactions are briefly summarized in this mini-review.
Collapse
|
13
|
Guo Z, Zhang J, Zhang J, Xie M. Electrochemical Rhodium-Catalyzed C-H Cyclodimerization of Alkynes to Access Diverse Functionalized Naphthalenes: Involvement of Rh IV/V and Rh I Dual Catalysis. Org Lett 2022; 24:7784-7789. [PMID: 36250597 DOI: 10.1021/acs.orglett.2c03122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first electrochemical rhodium-catalyzed C-H cyclodimerization of alkynes for the direct construction of functionalized naphthalenes was reported. The practicality and synthetic value of this strategy were demonstrated by the readily accessible scale-up synthesis and transformation of the products. Detailed mechanistic studies evidenced that electricity played an important role during the electrochemical disproportionation (ECD) process to generate and maintain the catalytically active RhIV/V and RhI species, which conducted the direct C-H activation.
Collapse
Affiliation(s)
- Ziyi Guo
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Junjie Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
14
|
Hsu CY, Zheng CJ, Wu YY, Fan WH, Lin CH. Exploring the Acid-Catalyzed Reactions of 10,11-Epoxy-Dibenzo[ a, d]cycloheptan-5-ol as the Synthetic Modules toward Polycyclic Aromatic Scaffolds. ACS OMEGA 2022; 7:21505-21527. [PMID: 35785270 PMCID: PMC9244947 DOI: 10.1021/acsomega.2c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The structural diversity of polycyclic aromatic hydrocarbons (PAHs) offers exciting opportunities for their applications. Yet, selective synthesis of such conjugated networks poses a formidable challenge. Compared to the prominence of transition-metal-catalyzed cross-coupling and oxidative Scholl reactions, cationic rearrangement in the synthesis of polycyclic aromatic hydrocarbon is an underexplored subject. In this study, we reveal that cationic intermediate generated from epoxy dibenzocycloheptanol can be transformed into acenes, azulene-embedded PAHs, and dibenzocycloheptanone derivatives. Reactive patterns, including Meinwald rearrangement, Nazarov cyclization, transannular aryl migration, and transannular Friedel-Crafts cyclization were identified. Both substrate structures and reaction temperature affect the reaction pathways in predictable and manageable manners. A mechanistic scheme was postulated as the working model to guide the reactivity for further application. Substrates containing heterocyclic and ferrocenyl groups exhibit similar reactivity profiles. The inquiry culminates in the selective synthesis of 5, 7, 12, 14-tetrasubstituted C 2h and C 2v pentacene derivatives. Our results demonstrate that polycyclic aromatic hydrocarbons can be selectively prepared with this cation-initiated strategy by methodically tuning the reactivity.
Collapse
|
15
|
Huang L, Xie R, Wen C, Yang Y, Wang Y, Ren S, Huang B, Li S. Decarbonylative/decarboxylative [4 + 2] annulation of phthalic anhydrides and cyclic iodoniums towards triphenylenes. Org Biomol Chem 2022; 20:3913-3916. [PMID: 35507316 DOI: 10.1039/d2ob00500j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A palladium-catalyzed decarbonylative/decarboxylative [4 + 2] annulation of phthalic anhydrides with cyclic diaryliodonium salts to synthesize triphenylenes has been developed. The reaction shows broad substrate scope with a high yield of up to 99%, and it provides an efficient and fast way to access functionalized triphenylenes in only one hour.
Collapse
Affiliation(s)
- Lingyu Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Rongrong Xie
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Chaoying Wen
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Yanyan Yang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Yiwen Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Shiyan Ren
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Bin Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Shiqing Li
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
16
|
Bergman HM, Beattie DD, Kiel GR, Handford RC, Liu Y, Tilley TD. A sequential cyclization/π-extension strategy for modular construction of nanographenes enabled by stannole cycloadditions. Chem Sci 2022; 13:5568-5573. [PMID: 35694352 PMCID: PMC9116291 DOI: 10.1039/d2sc00397j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/29/2022] [Indexed: 01/16/2023] Open
Abstract
The synthesis of polycyclic aromatic hydrocarbons (PAHs) and related nanographenes requires the selective and efficient fusion of multiple aromatic rings. For this purpose, the Diels–Alder cycloaddition has proven especially useful; however, this approach currently faces significant limitations, including the lack of versatile strategies to access annulated dienes, the instability of the most commonly used dienes, and difficulties with aromatization of the [4 + 2] adduct. In this report we address these limitations via the marriage of two powerful cycloaddition strategies. First, a formal Cp2Zr-mediated [2 + 2 + 1] cycloaddition is used to generate a stannole-annulated PAH. Secondly, the stannoles are employed as diene components in a [4 + 2] cycloaddition/aromatization cascade with an aryne, enabling π-extension to afford a larger PAH. This discovery of stannoles as highly reactive – yet stable for handling – diene equivalents, and the development of a modular strategy for their synthesis, should significantly extend the structural scope of PAHs accessible by a [4 + 2] cycloaddition approach. Stannoles are introduced as a new, spontaneously aromatizing diene for [4 + 2] cycloadditions that can be easily introduced into diverse conjugated systems, facilitating the efficient synthesis of complex PAHs and their π-extension.![]()
Collapse
Affiliation(s)
- Harrison M Bergman
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - D Dawson Beattie
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Gavin R Kiel
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Rex C Handford
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Yi Liu
- Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - T Don Tilley
- Department of Chemistry, University of California Berkeley California 94720 USA
| |
Collapse
|
17
|
Sahu S, Banerjee A, Kundu S, Bhattacharyya A, Maji MS. Synthesis of functionalized indoles via cascade benzannulation strategies: a decade's overview. Org Biomol Chem 2022; 20:3029-3042. [PMID: 35332905 DOI: 10.1039/d2ob00187j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Indoles are one of the most prominent aromatic heterocycles in the organic chemistry field. Due to their widespread presence in various natural products, alkaloids, drugs, approved medicines, etc. the synthesis and functionalization of indoles are of great interest. This review emphasizes recent developments and techniques in the domino cascade cyclization process in the last decade starting from the various building blocks. In particular, this review depicts several intriguing benzannulation methods of creating a benzene ring on a pre-existing pyrrole nucleus in an inter/intramolecular fashion under metal-catalyzed/metal-free approaches. Different subsections focus on gradual timely developments in this complementary area and a detailed analysis of the mechanisms and reactivity patterns. As a complementary method, this review gives a significant incentive to various annulation strategies and also gives an overview of the remaining challenges and upcoming possibilities.
Collapse
Affiliation(s)
- Samrat Sahu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Ankush Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Arya Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| |
Collapse
|
18
|
Saha A, Shankar M, Sau S, Sahoo AK. Multiple annulations of inert C(sp 2)-H bonds with alkynes. Chem Commun (Camb) 2022; 58:4561-4587. [PMID: 35303048 DOI: 10.1039/d2cc00172a] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transition-metal catalyzed directing group (DG) assisted annulation of inert C-H bonds leads to the formation of complex molecular frameworks from readily accessible substrates. Thus, multiple annulation of less functionalized substrates with unsaturated species leads to the construction of structurally diverse fused poly(hetero)cycles. The directed inert C(arene)-H bond activation and the mode of TM-migration in this process could enabled obatining L-type [involves DG heteroatom, o-C(arene)-H bond, and C(arene)-H bond of aryl-motif in alkyne], Y-type [involves two heteroatoms of the DG and o-,o'-C(arene)-H bonds], and B-type [involves o-C(arene)-H bond and m-C(arene)-H bond] π-extended annulation products. The coordination preference of the DG heteroatom makes the transformation chemo- and regio-selective. This article underlines the conceptual development of unsymmetrical multiple annulation of arene C(sp2)-H bonds with alkynes, which is exceedingly appealing and highly important.
Collapse
Affiliation(s)
- Arijit Saha
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana - 500046, India.
| | - Majji Shankar
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana - 500046, India.
| | - Somratan Sau
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana - 500046, India.
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana - 500046, India.
| |
Collapse
|
19
|
Karak P, Rana SS, Choudhury J. Cationic π-extended heteroaromatics via a catalytic C-H activation annulative alkyne-insertion sequence. Chem Commun (Camb) 2021; 58:133-154. [PMID: 34849515 DOI: 10.1039/d1cc05590a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cationic π-conjugated organic molecules have broad applications in materials science as next-generation organic materials. The annulative alkyne-insertion π-extension (AAIPEX) strategy has emerged as a promising synthetic approach for the rapid synthesis of cationic polycyclic heteroaromatic compounds (cPHACs) in a single step. The AAIPEX reaction provides a synthetic shortcut to achieve complex organic molecules from simple (hetero)arene templates and alkynes as π-extending partners, which would otherwise be difficult to achieve using traditional methods. In general, a step-economic AAIPEX protocol proceeds via C-H activation of unfunctionalized heteroarene templates, followed by alkyne insertion-annulation to furnish cPHACs. In this Feature Article, recent progress in the AAIPEX strategy to construct cPHACs is described along with brief illustrations of the resulting cPHACs in luminescence-related applications.
Collapse
Affiliation(s)
- Pirudhan Karak
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India.
| | - Samim Sohel Rana
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India.
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India.
| |
Collapse
|
20
|
Jin T, Suzuki S, Ho HE, Matsuyama H, Kawata M, Terada M. Pd-Catalyzed Indolization/ peri-C-H Annulation/ N-Dealkylation Cascade to Cyclopenta-Fused Acenaphtho[1,2- b]indole Scaffold. Org Lett 2021; 23:9431-9435. [PMID: 34851130 DOI: 10.1021/acs.orglett.1c03575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel Pd-catalyzed cascade reaction of N,N-dialkyl-substituted o-alkynylanilines involving an indolization/peri-C-H annulation/N-dealkylation sequence has been developed to construct a cyclopenta-fused acenaphtho[1,2-b]indole (ANI) scaffold. A variety of aromatic hydrocarbons having a peri-C-H bond at the alkynyl terminus, such as naphthalene, phenanthrene, pyrene, and fluoranthene, were employed, affording the corresponding π-extended ANI derivatives. The ANI molecules showed relatively narrow energy gaps by increasing HOMOs and lowering LUMOs, implying their potential applications as π-segments in low-band-gap materials.
Collapse
Affiliation(s)
- Tienan Jin
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Shin Suzuki
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Hon Eong Ho
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Hidenori Matsuyama
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Masaki Kawata
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
21
|
Hoshikawa S, Yanai H, Martín-Mejías I, Lázaro-Milla C, Aragoncillo C, Almendros P, Matsumoto T. Synthesis of Polycyclic Aromatic Hydrocarbons Decorated by Fluorinated Carbon Acids/Carbanions. Chemistry 2021; 27:16112-16116. [PMID: 34542205 DOI: 10.1002/chem.202103188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 11/07/2022]
Abstract
The carboarylation reaction of biphenyl-alkynes was successfully triggered by electrophilic attack of 1,1-bis(triflyl)ethylene on the alkyne moiety to give polycyclic aromatic hydrocarbons (PAHs) decorated by superacidic carbon acid functionality. Neutralisation of thus obtained acids with NaHCO3 yielded the corresponding sodium salts, which showed improved solubility in both aqueous and organic solvents.
Collapse
Affiliation(s)
- Shoki Hoshikawa
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hikaru Yanai
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Irene Martín-Mejías
- Instituto de Química Orgánica General, IQOG, Consejo Superior de Investigaciones Científicas, CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Carlos Lázaro-Milla
- Grupo de Lactamas y Heterociclos Bioactivos, Unidad Asociada al CSIC, Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Cristina Aragoncillo
- Grupo de Lactamas y Heterociclos Bioactivos, Unidad Asociada al CSIC, Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Pedro Almendros
- Instituto de Química Orgánica General, IQOG, Consejo Superior de Investigaciones Científicas, CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Takashi Matsumoto
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
22
|
Liang Y, Kan C, Barve BD, Kuo Y, Fang H, Li W. Metal‐Free, Base‐Promoted, Tandem Pericyclic Reaction: A One‐Pot Approach for Cycloheptane‐Annelated Chromones from γ‐Alkynyl‐1,3‐Diketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yi‐En Liang
- National Research Institute of Chinese Medicine Ministry of Health and Welfare Taipei 11221 Taiwan, R.O.C
- Department of Chemical Engineering and Biotechnology National Taipei University of Technology Taipei 10608 Taiwan, R.O.C
| | - Chih‐Yu Kan
- National Research Institute of Chinese Medicine Ministry of Health and Welfare Taipei 11221 Taiwan, R.O.C
| | - Balaji D. Barve
- National Research Institute of Chinese Medicine Ministry of Health and Welfare Taipei 11221 Taiwan, R.O.C
- Department of Chemistry National Taiwan Normal University Taipei 10610 Taiwan, R.O.C
| | - Yao‐Haur Kuo
- National Research Institute of Chinese Medicine Ministry of Health and Welfare Taipei 11221 Taiwan, R.O.C
| | - Hsu‐Wei Fang
- Department of Chemical Engineering and Biotechnology National Taipei University of Technology Taipei 10608 Taiwan, R.O.C
| | - Wen‐Tai Li
- National Research Institute of Chinese Medicine Ministry of Health and Welfare Taipei 11221 Taiwan, R.O.C
| |
Collapse
|
23
|
Chaolumen, Stepek IA, Yamada KE, Ito H, Itami K. Construction of Heptagon-Containing Molecular Nanocarbons. Angew Chem Int Ed Engl 2021; 60:23508-23532. [PMID: 33547701 DOI: 10.1002/anie.202100260] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Molecular nanocarbons containing heptagonal rings have attracted increasing interest due to their dynamic behavior, electronic properties, aromaticity, and solid-state packing. Heptagon incorporation can not only induce negative curvature within nanocarbon scaffolds, but also confer significantly altered properties through interaction with adjacent non-hexagonal rings. Despite the disclosure of several beautiful examples in recent years, synthetic strategies toward heptagon-embedded molecular nanocarbons remain relatively limited due to the intrinsic challenges of heptagon formation and incorporation into polyarene frameworks. In this Review, recent advances in solution-mediated and surface-assisted synthesis of heptagon-containing molecular nanocarbons, as well as the intriguing properties of these frameworks, will be discussed.
Collapse
Affiliation(s)
- Chaolumen
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Iain A Stepek
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Keigo E Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Institute of Chemistry, Academia Sinica, Nankang, Taipei, 115, Taiwan, R.O.C
| |
Collapse
|
24
|
Hussain WA, Plunkett KN. Benzodithiophene-Fused Cyclopentannulated Aromatics via a Palladium-Catalyzed Cyclopentannulation and Scholl Cyclodehydrogenation Strategy. J Org Chem 2021; 86:12569-12576. [PMID: 34464132 DOI: 10.1021/acs.joc.1c01004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the synthesis of a new class of cyclopenta-fused polyaromatic hydrocarbon (CP-PAH) incorporating fused benzodithiophene subunits. These CP-PAHs were prepared utilizing a two-step process involving a palladium catalyzed cyclopentannulation followed by a Scholl cyclodehydrogenation. This work broadens the scope of annulation chemistry by employing 1,2-bis(5-hexylthiophen-3-yl)ethyne and dibromoaryl derivatives based on anthracene, pyrene, and perylene to give 4,4',4'',4'''-(cyclopenta[hi]aceanthrylene-1,2,6,7-tetrayl)tetrakis(2-hexylthiophene), 4,4',4'',4'''-(dicyclopenta[cd,jk]pyrene-1,2,6,7-tetrayl)tetrakis(2-hexylthiophene), and 1,2,7,8-tetrakis(5-hexylthiophen-3-yl)-1,2,7,8-tetrahydrodicyclopenta[cd,lm]perylene. Scholl cyclodehydrogenation of the pendant thiophene units provided access to the π-extended polyaromatic systems 2,5,11,14-tetrahexylrubiceno[5,4-b:6,7-b':12,11-b'':13,14-b''']tetrathiophene, 2,5,11,14-tetrahexyldithieno-[4,5:6,7]indeno[1,2,3-cd]dithieno[4,5:6,7]indeno-[1,2,3-jk]pyrenes, and 2,9,12,19-tetrahexyldithieno[4,5:6,7]indaceno[1,2,3-cd]dithieno[4,5:6,7]indaceno[1,2,3-lm]perylene that possess helicene-like fragments. The anthracene-based CP-PAH was contorted owing to [5]helicene-like arrangements, while the pyrene- and perylene-based systems were essentially planar. The fully conjugated small molecules give low optical gaps (1.7-2.1 eV) with broad light absorption. The HOMO and LUMO energies of the CP-PAHs were found to be in the range of -5.48 to -5.05 eV and -3.48 to -3.14 eV, respectively. Finally, the anthracene-based CP-PAH was found to be a p-type semiconductor when tested in an organic field effect transistor.
Collapse
Affiliation(s)
- Waseem A Hussain
- Department of Chemistry and Biochemistry and the Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901 United States
| | - Kyle N Plunkett
- Department of Chemistry and Biochemistry and the Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901 United States
| |
Collapse
|
25
|
|
26
|
Zou Y, Han Y, Wu S, Hou X, Chow CHE, Wu J. Scholl Reaction of Perylene-Based Polyphenylene Precursors under Different Conditions: Formation of Hexagon or Octagon? Angew Chem Int Ed Engl 2021; 60:17654-17663. [PMID: 34002913 DOI: 10.1002/anie.202105427] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 12/19/2022]
Abstract
A planar dibenzo-peri-hexacene derivative (2) was synthesized via FeCl3 -mediated Scholl reaction from a cyclopenta-fused perylene (CP) based polyphenylene precursor (1). However, an unexpected octagon-containing, negatively curved molecule (3) was obtained in nearly quantitative yield when 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and methanesulfonic acid (MeSO3 H) were used. Similar results were observed when two smaller-sized precursors containing one (4) or two CP units (5) were tested. X-ray crystallographic analysis also revealed that there is no close π-π stacking between neighboring π-conjugated skeletons. DFT calculations suggest a radical cation mechanism in the presence of FeCl3 while an arenium ion pathway for the DDQ/MeSO3 H mediated Scholl reaction, which can well explain the selective formation of hexagons and octagons under different conditions. The obtained compounds showed tunable optical and electrochemical properties.
Collapse
Affiliation(s)
- Ya Zou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Shaofei Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Xudong Hou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Chi Hao Eugene Chow
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
27
|
Zou Y, Han Y, Wu S, Hou X, Chow CHE, Wu J. Scholl Reaction of Perylene‐Based Polyphenylene Precursors under Different Conditions: Formation of Hexagon or Octagon? Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ya Zou
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yi Han
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Shaofei Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Xudong Hou
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Chi Hao Eugene Chow
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Jishan Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
28
|
Guo Z, Zhao Y, Wang Y, Xie M, Zhang J. Construction of 3-Sulfonyl Naphthalenes via Tandem Reaction of 1,4-Diyn-3-yl Esters with Sodium Sulfinates. J Org Chem 2021; 86:6247-6258. [PMID: 33874722 DOI: 10.1021/acs.joc.1c00038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polysubstituted 3-sulfonyl naphthalenes were constructed in good to high yields by AlCl3-mediated tandem reaction of 1,4-diyn-3-yl esters and sodium sulfinates. This reaction proceeded under mild reaction conditions and tolerated a variety of functional groups. Moreover, the mechanistic studies indicated that the initial formation of allene under DBU from 1,4-diyn-3-yl ester and a sequence of nucleophilic addition of sodium sulfinate, the formation of allene, and intramolecular cyclization might be involved.
Collapse
Affiliation(s)
- Ziyi Guo
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yiming Zhao
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yu Wang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
29
|
Shankar M, Saha A, Sau S, Ghosh A, Gandon V, Sahoo AK. Harnessing sulfur and nitrogen in the cobalt(iii)-catalyzed unsymmetrical double annulation of thioamides: probing the origin of chemo- and regio-selectivity. Chem Sci 2021; 12:6393-6405. [PMID: 34084439 PMCID: PMC8115082 DOI: 10.1039/d1sc00765c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/19/2021] [Indexed: 12/27/2022] Open
Abstract
An unconventional cobalt(iii)-catalyzed one-pot domino double annulation of aryl thioamides with unactivated alkynes is presented. Sulfur (S), nitrogen (N), and o,o'-C-H bonds of aryl thioamides are involved in this reaction, enabling access to rare 6,6-fused thiopyrano-isoquinoline derivatives. A reverse 'S' coordination over a more conventional 'N' coordination of thioamides to the Co-catalyst specifically regulates the formation of four [C-C and C-S at first and then C-N and C-C] bonds in a single operation, a concept which is uncovered for the first time. The power of the N-masked methyl phenyl sulfoximine (MPS) directing group in this annulation sequence is established. The transformation is successfully developed, building a novel chemical space of structural diversity (56 examples). In addition, the late-stage annulation of biologically relevant motifs and drug candidates is disclosed (17 examples). The preliminary photophysical properties of thiopyrano-isoquinoline derivatives are discussed. Density functional theory (DFT) studies authenticate the participation of a unique 6π-electrocyclization of a 7-membered S-chelated cobaltacycle in the annulation process.
Collapse
Affiliation(s)
- Majji Shankar
- School of Chemistry, University of Hyderabad Hyderabad India
| | - Arijit Saha
- School of Chemistry, University of Hyderabad Hyderabad India
| | - Somratan Sau
- School of Chemistry, University of Hyderabad Hyderabad India
| | - Arghadip Ghosh
- School of Chemistry, University of Hyderabad Hyderabad India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay Bâtiment 420 91405 Orsay cedex France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris route de Saclay 91128 Palaiseau cedex France
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad Hyderabad India
| |
Collapse
|
30
|
Hindenberg P, Rominger F, Romero‐Nieto C. Hin zur Kontrolle lumineszenter, optisch‐aktiver 3D‐Architekturen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Philip Hindenberg
- Ruprecht-Karls-Universität Heidelberg Organisch-Chemisches Institut Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Frank Rominger
- Ruprecht-Karls-Universität Heidelberg Organisch-Chemisches Institut Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Carlos Romero‐Nieto
- Ruprecht-Karls-Universität Heidelberg Organisch-Chemisches Institut Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
- Universidad de Castilla-La Mancha Pharmazeutische Fakultät Calle Almansa 14 – Edif. Bioincubadora 02008 Albacete Spanien
| |
Collapse
|
31
|
Hindenberg P, Rominger F, Romero‐Nieto C. En Route Towards the Control of Luminescent, Optically-Active 3D Architectures. Angew Chem Int Ed Engl 2021; 60:766-773. [PMID: 32985792 PMCID: PMC7820950 DOI: 10.1002/anie.202011368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 12/22/2022]
Abstract
π-Extended systems are key components for the development of future organic electronic technologies. While conceiving molecules with improved properties is fundamental for the evolution of materials science, keeping control over the 3D arrangement of molecules represents an ever-expanding challenge. Herein, a synthetic protocol to replace carbon atoms of π-systems by dissymmetric phosphorus atoms is reported; in particular, it allowed for conceiving new fused phosphapyrene derivatives with improved properties. The presence of dissymmetric phosphorus atoms precluded the formation of excimers. X-ray diffraction revealed that, meanwhile, strong intermolecular interactions are taking place in the solid state. The phosphapyrenes photoluminesce in the visible region with high quantum yields; importantly, they are CD-active. In addition, the unique non-planar features of phosphorus atoms allowed for the control of the 3D arrangement of molecules, rendering lemniscate-like structures. Based on our discoveries, we envisage the possibility to construct higher-order, chiral 3D architectures from larger phosphorus-containing π-systems.
Collapse
Affiliation(s)
- Philip Hindenberg
- Ruprecht-Karls-Universität HeidelbergOrganisch-Chemisches InstitutIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Rominger
- Ruprecht-Karls-Universität HeidelbergOrganisch-Chemisches InstitutIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Carlos Romero‐Nieto
- Ruprecht-Karls-Universität HeidelbergOrganisch-Chemisches InstitutIm Neuenheimer Feld 27069120HeidelbergGermany
- Universidad de Castilla-La ManchaFaculty of PharmacyCalle Almansa 14 – Edif. Bioincubadora02008AlbaceteSpain
| |
Collapse
|
32
|
Banerjee A, Kundu S, Bhattacharyya A, Sahu S, Maji MS. Benzannulation strategies for the synthesis of carbazoles, indolocarbazoles, benzocarbazoles, and carbolines. Org Chem Front 2021. [DOI: 10.1039/d1qo00092f] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review presents a critical and authoritative analysis of several exciting benzannulation approaches developed in the past decade for the construction of carbazoles, indolocarbazoles, benzocarbazoles, and carbolines.
Collapse
Affiliation(s)
- Ankush Banerjee
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Samrat Kundu
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Arya Bhattacharyya
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Samrat Sahu
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Modhu Sudan Maji
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|
33
|
Zhao Q, Choy PY, Li L, Kwong FY. Recent explorations of palladium-catalyzed regioselective aromatic extension processes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Yang L, Gridnev ID, Terada M, Jin T. Intermolecular Oxidative Friedel-Crafts Reaction Triggered Ring Expansion Affording 9,10-Diarylphenanthrenes. Org Lett 2020; 22:8920-8924. [PMID: 33147023 DOI: 10.1021/acs.orglett.0c03283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel intermolecular tandem oxidative aromatic coupling between arylidene fluorenes and unfunctionalized aromatics mediated by a DDQ/TFA oxidation system has been developed for the construction of 9,10-diarylphenanthrenes (DAPs). The formation of a benzylic carbocation species possessing a quaternary sp3-carbon center on the fluorene moiety by an intermolecular oxidative Friedel-Crafts reaction of two different arenes successfully triggered the subsequent ring expansion to afford DAPs.
Collapse
Affiliation(s)
- Lu Yang
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Ilya D Gridnev
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Tienan Jin
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
35
|
Song L, Van der Eycken EV. Transition Metal-Catalyzed Intermolecular Cascade C-H Activation/Annulation Processes for the Synthesis of Polycycles. Chemistry 2020; 27:121-144. [PMID: 32530508 DOI: 10.1002/chem.202002110] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Polycycles are abundantly present in numerous advanced chemicals, functional materials, bioactive molecules and natural products. However, the strategies for the synthesis of polycycles are limited to classical reactions and transition metal-catalyzed cross-coupling reactions, requiring pre-functionalized starting materials and lengthy synthetic operations. The emergence of novel approaches shows great promise for the fields of organic/medicinal/materials chemistry. Among them, transition metal-catalyzed C-H activation followed by intermolecular annulation reactions prevail, due to their straightforward manner with high atom- and step-economy, providing rapid, concise and efficient methods for the construction of diverse polycycles. Several strategies have been developed for the synthesis of polycycles, relying on sequential multiple C-H activation/annulation, or combination of C-H activation/annulation and further interaction with a proximal group, or merger of C-H activation with a cycloaddition reaction, or in situ formation of the directing group. These are attractive, efficient, step- and atom-economic methods starting from commercially available materials. This Minireview will provide an introduction to transition metal-catalyzed C-H activation for the synthesis of polycycles, helping researchers to discover indirect connections and reveal hidden opportunities. It will also promote the discovery of novel synthetic strategies relying on C-H activation.
Collapse
Affiliation(s)
- Liangliang Song
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya street, Moscow, 117198, Russia
| |
Collapse
|
36
|
Kiel GR, Bergman HM, Tilley TD. Site-selective [2 + 2 + n] cycloadditions for rapid, scalable access to alkynylated polycyclic aromatic hydrocarbons. Chem Sci 2020; 11:3028-3035. [PMID: 34122806 PMCID: PMC8157499 DOI: 10.1039/c9sc06102a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are attractive synthetic building blocks for more complex conjugated nanocarbons, but their use for this purpose requires appreciable quantities of a PAH with reactive functional groups. Despite tremendous recent advances, most synthetic methods cannot satisfy these demands. Here we present a general and scalable [2 + 2 + n] (n = 1 or 2) cycloaddition strategy to access PAHs that are decorated with synthetically versatile alkynyl groups and its application to seven structurally diverse PAH ring systems (thirteen new alkynylated PAHs in total). The critical discovery is the site-selectivity of an Ir-catalyzed [2 + 2 + 2] cycloaddition, which preferentially cyclizes tethered diyne units with preservation of other (peripheral) alkynyl groups. The potential for generalization of the site-selectivity to other [2 + 2 + n] reactions is demonstrated by identification of a Cp2Zr-mediated [2 + 2 + 1]/metallacycle transfer sequence for synthesis of an alkynylated, selenophene-annulated PAH. The new PAHs are excellent synthons for macrocyclic conjugated nanocarbons. As a proof of concept, four were subjected to alkyne metathesis catalysis to afford large, PAH-containing arylene ethylene macrocycles, which possess a range of cavity sizes reaching well into the nanometer regime. Notably, these high-yielding macrocyclizations establish that synthetically convenient pentynyl groups can be effective for metathesis since the 4-octyne byproduct is sequestered by 5 Å MS. Most importantly, this work is a demonstration of how site-selective reactions can be harnessed to rapidly build up structural complexity in a practical, scalable fashion. An orthogonal [2 + 2 + n] cycloaddition/alkyne metathesis reaction sequence enables streamlined access to conjugated macrocyclic nanocarbons.![]()
Collapse
Affiliation(s)
- Gavin R Kiel
- Department of Chemistry, University of California, Berkeley Berkeley California 94720 USA
| | - Harrison M Bergman
- Department of Chemistry, University of California, Berkeley Berkeley California 94720 USA
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley Berkeley California 94720 USA
| |
Collapse
|
37
|
|
38
|
Di Giovannantonio M, Keerthi A, Urgel JI, Baumgarten M, Feng X, Ruffieux P, Narita A, Fasel R, Müllen K. On-Surface Dehydro-Diels-Alder Reaction of Dibromo-bis(phenylethynyl)benzene. J Am Chem Soc 2020; 142:1721-1725. [PMID: 31931559 DOI: 10.1021/jacs.9b11755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
On-surface synthesis under ultrahigh vacuum conditions is a powerful tool to achieve molecular structures that cannot be accessed via traditional wet chemistry. Nevertheless, only a very limited number of chemical reactions out of the wide variety known from solution chemistry have been reported to proceed readily on atomically flat substrates. Cycloadditions are a class of reactions that are particularly important in the synthesis of sp2-hybridized carbon-based nanostructures. Here, we report on a specific type of [4 + 2] cycloaddition, namely, a dehydro-Diels-Alder (DDA) reaction, performed between bis(phenylethynyl)-benzene precursors on Au(111). Unlike a Diels-Alder reaction, DDA exploits ethynyl groups to achieve the formation of an extra six-membered ring. Despite its extensive use in solution chemistry for more than a century, this reaction has never been reported to occur on surfaces. The specific choice of our precursor molecule has led to the successful synthesis of benzo- and naphtho-fused tetracene and heptacene products bearing styryl groups, as confirmed by scanning tunneling microscopy and noncontact atomic force microscopy. The two products arise from dimerization and trimerization of the precursor molecules, respectively, and their observation opens perspectives to use DDA reactions as a novel on-surface synthesis tool.
Collapse
Affiliation(s)
- Marco Di Giovannantonio
- nanotech@surfaces Laboratory , Swiss Federal Laboratories for Materials Science and Technology (Empa) , 8600 Dübendorf , Switzerland
| | - Ashok Keerthi
- Max Planck Institute for Polymer Research , 55128 Mainz , Germany.,Department of Chemistry , The University of Manchester , M13 9PL Manchester , U.K
| | - José I Urgel
- nanotech@surfaces Laboratory , Swiss Federal Laboratories for Materials Science and Technology (Empa) , 8600 Dübendorf , Switzerland
| | | | - Xinliang Feng
- Center for Advancing Electronics Dresden, Department of Chemistry and Food Chemistry , Technische Universität Dresden , 01062 Dresden , Germany
| | - Pascal Ruffieux
- nanotech@surfaces Laboratory , Swiss Federal Laboratories for Materials Science and Technology (Empa) , 8600 Dübendorf , Switzerland
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research , 55128 Mainz , Germany.,Okinawa Institute of Science and Technology Graduate University , 904-0495 Okinawa , Japan
| | - Roman Fasel
- nanotech@surfaces Laboratory , Swiss Federal Laboratories for Materials Science and Technology (Empa) , 8600 Dübendorf , Switzerland.,Department of Chemistry and Biochemistry , University of Bern , 3012 Bern , Switzerland
| | - Klaus Müllen
- Max Planck Institute for Polymer Research , 55128 Mainz , Germany
| |
Collapse
|
39
|
Gao G, Chen M, Roberts J, Feng M, Xiao C, Zhang G, Parkin S, Risko C, Zhang L. Rational Functionalization of a C70 Buckybowl To Enable a C70:Buckybowl Cocrystal for Organic Semiconductor Applications. J Am Chem Soc 2020; 142:2460-2470. [DOI: 10.1021/jacs.9b12192] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Josiah Roberts
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
- Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511-0055, United States
| | | | | | | | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Chad Risko
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
- Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511-0055, United States
| | | |
Collapse
|
40
|
Gońka E, Yang L, Steinbock R, Pesciaioli F, Kuniyil R, Ackermann L. π-Extended Polyaromatic Hydrocarbons by Sustainable Alkyne Annulations through Double C-H/N-H Activation. Chemistry 2019; 25:16246-16250. [PMID: 31820511 PMCID: PMC6973059 DOI: 10.1002/chem.201905023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 12/12/2022]
Abstract
The widespread applications of substituted diketopyrrolopyrroles (DPPs) call for the development of efficient methods for their modular assembly. Herein, we present a π-expansion strategy for polyaromatic hydrocarbons (PAHs) by C-H activation in a sustainable fashion. Thus, twofold C-H/N-H activations were accomplished by versatile ruthenium(II)carboxylate catalysis, providing step-economical access to diversely decorated fluorogenic DPPs that was merged with late-stage palladium-catalyzed C-H arylation on the thus-assembled DPP motif.
Collapse
Affiliation(s)
- Elżbieta Gońka
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Long Yang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Ralf Steinbock
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Fabio Pesciaioli
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
41
|
Kawase A, Omura H, Doi T, Tsukamoto H. Palladium(0)-catalyzed [4+2] Annulation of Salicylaldehydes and Propargyl Carbonates to Produce 3,4-Dihydro-2-methylene-2H-1-benzopyran-4-ols. CHEM LETT 2019. [DOI: 10.1246/cl.190642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ayumu Kawase
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hirotaka Omura
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Takayuki Doi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hirokazu Tsukamoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Department of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa 245-0066, Japan
| |
Collapse
|
42
|
Hagui W, Doucet H, Soulé JF. Application of Palladium-Catalyzed C(sp2)–H Bond Arylation to the Synthesis of Polycyclic (Hetero)Aromatics. Chem 2019. [DOI: 10.1016/j.chempr.2019.06.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
|
44
|
Liu S, Huang C, Zhang J, Tian S, Li C, Fu N, Wang L, Zhao B, Huang W. Synthesis of Sulfur-Hybridized Pyracylene and the Unexpected Phenyl Shift Mediated Rearrangement of Scholl Reaction. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shuli Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors; Institute of Advanced Materials; National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts & Telecommunications; 9 Wenyuan Road 210023 Nanjing China
| | - Chengting Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors; Institute of Advanced Materials; National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts & Telecommunications; 9 Wenyuan Road 210023 Nanjing China
| | - Jing Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors; Institute of Advanced Materials; National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts & Telecommunications; 9 Wenyuan Road 210023 Nanjing China
| | - Siyu Tian
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors; Institute of Advanced Materials; National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts & Telecommunications; 9 Wenyuan Road 210023 Nanjing China
| | - Chang Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors; Institute of Advanced Materials; National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts & Telecommunications; 9 Wenyuan Road 210023 Nanjing China
| | - Nina Fu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors; Institute of Advanced Materials; National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts & Telecommunications; 9 Wenyuan Road 210023 Nanjing China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors; Institute of Advanced Materials; National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts & Telecommunications; 9 Wenyuan Road 210023 Nanjing China
| | - Baomin Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors; Institute of Advanced Materials; National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts & Telecommunications; 9 Wenyuan Road 210023 Nanjing China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors; Institute of Advanced Materials; National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts & Telecommunications; 9 Wenyuan Road 210023 Nanjing China
- Shaanxi Institute of Flexible Electronics (SIFE); Northwestern Polytechnical University (NPU); 710072 Xi'an China
| |
Collapse
|
45
|
Liao X, Wang D, Huang Y, Yang Y, You J. Highly Chemo-, Regio- and E/Z-Selective Intermolecular Heck-Type Dearomative [2 + 2 + 1] Spiroannulation of Alkyl Bromoarenes with Internal Alkynes. Org Lett 2019; 21:1152-1155. [PMID: 30693773 DOI: 10.1021/acs.orglett.9b00099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Described herein is a palladium-catalyzed dearomative annulation of alkyl bromoarenes with internal alkynes. Challenges in this spiroannulation include the chemoselectivity among [2 + 2 + 1], [2 + 2 + 2], and [3 + 2] annulations and the E/ Z-selectivity associated with the generated exocyclic double bond. In the presence of Pd(OAc)2 and a phosphine ligand, a variety of highly functionalized spirocyclopentadienes with an exocyclic carbon-carbon double bond are provided in good to excellent yields with high chemo-, regio-, and E/ Z-selectivity via a Heck-type pathway.
Collapse
Affiliation(s)
- Xingrong Liao
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , P.R. China
| | - Deping Wang
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , P.R. China
| | - Yueyuan Huang
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , P.R. China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , P.R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , P.R. China
| |
Collapse
|
46
|
Karak P, Dutta C, Dutta T, Koner AL, Choudhury J. Orchestrated catalytic double rollover annulation: rapid access to N-enriched cationic and neutral PAHs. Chem Commun (Camb) 2019; 55:6791-6794. [DOI: 10.1039/c9cc02710f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Disclosed herein is a rhodium(iii)-catalyzed novel one-step back-to-back double rollover annulation on pyridine and pyrazine backbones leading to structurally and optoelectronically diverse class of nicely decorated multi-ring-fused, extensively π-conjugated, N-enriched PAH molecules by virtue of orchestrated quadruple C–H activation events.
Collapse
Affiliation(s)
- Pirudhan Karak
- Organometallics & Smart Materials Laboratory
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| | - Champak Dutta
- Organometallics & Smart Materials Laboratory
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| | - Tanoy Dutta
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| | - Apurba Lal Koner
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| |
Collapse
|
47
|
Murai M, Ogita T, Takai K. Regioselective arene homologation through rhenium-catalyzed deoxygenative aromatization of 7-oxabicyclo[2.2.1]hepta-2,5-dienes. Chem Commun (Camb) 2019; 55:2332-2335. [DOI: 10.1039/c9cc00270g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A facile approach to PAHs with an arm-chair edge via regioselective bromination, Diels–Alder reaction, and rhenium-catalyzed deoxygenative aromatization is described.
Collapse
Affiliation(s)
- Masahito Murai
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology, and Research Institute for Interdisciplinary Science
- Okayama University
- Okayama 700-8530
- Japan
| | - Takuya Ogita
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology, and Research Institute for Interdisciplinary Science
- Okayama University
- Okayama 700-8530
- Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology, and Research Institute for Interdisciplinary Science
- Okayama University
- Okayama 700-8530
- Japan
| |
Collapse
|
48
|
Kasun ZA, Sato H, Nie J, Mori Y, Bender JA, Roberts ST, Krische MJ. Alternating oligo( o, p-phenylenes) via ruthenium catalyzed diol-diene benzannulation: orthogonality to cross-coupling enables de novo nanographene and PAH construction. Chem Sci 2018; 9:7866-7873. [PMID: 30429996 PMCID: PMC6194800 DOI: 10.1039/c8sc03236j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 08/17/2018] [Indexed: 01/05/2023] Open
Abstract
Ruthenium(0) catalyzed diol-diene benzannulation is applied to the conversion of oligo(p-phenylene vinylenes) 2a-c, 5 and 6 to alternating oligo(o,p-phenylenes) 10a-c, 11-13. Orthogonality with respect to conventional palladium catalyzed biaryl cross-coupling permits construction of p-bromo-terminated alternating oligo(o,p-phenylenes) 10b, 11-13, which can be engaged in Suzuki cross-coupling and Scholl oxidation. In this way, structurally homogeneous nanographenes 16a-f are prepared. Nanographene 16a, which incorporates 14 fused benzene rings, was characterized by single crystal X-ray diffraction. In a similar fashion, p-bromo-terminated oligo(p-phenylene ethane diol) 9, which contains a 1,3,5-trisubstituted benzene core, is converted to the soluble, structurally homogeneous hexa-peri-hexabenzocoronene 18. A benzothiophene-terminated pentamer 10c was prepared and subjected to Scholl oxidation to furnish the helical bis(benzothiophene)-fused picene derivative 14. The steady-state absorption and emission properties of nanographenes 14, 16a,b,d,e,h and 18 were characterized. These studies illustrate how orthogonality of ruthenium(0) catalyzed diol-diene benzannulation with respect to classical biaryl cross-coupling streamlines oligophenylene and nanographene construction.
Collapse
Affiliation(s)
- Zachary A Kasun
- University of Texas at Austin , Department of Chemistry , Austin , TX 78712 , USA . ;
| | - Hiroki Sato
- University of Texas at Austin , Department of Chemistry , Austin , TX 78712 , USA . ;
| | - Jing Nie
- University of Texas at Austin , Department of Chemistry , Austin , TX 78712 , USA . ;
| | - Yasuyuki Mori
- University of Texas at Austin , Department of Chemistry , Austin , TX 78712 , USA . ;
| | - Jon A Bender
- University of Texas at Austin , Department of Chemistry , Austin , TX 78712 , USA . ;
| | - Sean T Roberts
- University of Texas at Austin , Department of Chemistry , Austin , TX 78712 , USA . ;
| | - Michael J Krische
- University of Texas at Austin , Department of Chemistry , Austin , TX 78712 , USA . ;
| |
Collapse
|
49
|
Kumar KS, Meesa SR, Naikawadi PK. Palladium-Catalyzed [2 + 2 + 2] Annulation via Transformations of Multiple C–H Bonds: One-Pot Synthesis of Diverse Indolo[3,2-a]carbazoles. Org Lett 2018; 20:6079-6083. [DOI: 10.1021/acs.orglett.8b02465] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K. Shiva Kumar
- Department of Chemistry, Osmania University, Hyderabad-500 007, India
| | | | | |
Collapse
|
50
|
Zhu D, Wu Z, Luo B, Du Y, Liu P, Chen Y, Hu Y, Huang P, Wen S. Heterocyclic Iodoniums for the Assembly of Oxygen-Bridged Polycyclic Heteroarenes with Water as the Oxygen Source. Org Lett 2018; 20:4815-4818. [DOI: 10.1021/acs.orglett.8b01969] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daqian Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, China
| | - Zhouming Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yongliang Du
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Panpan Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yunyun Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, China
| | - Yumin Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, China
| |
Collapse
|