1
|
Ma W, Zhang J, Zong J, Ren H, Tu D, Xu Q, Zhong Tang B, Yan H. Luminescence Modulation in Boron-Cluster-Based Luminogens via Boron Isotope Effects. Angew Chem Int Ed Engl 2024; 63:e202410430. [PMID: 39373974 DOI: 10.1002/anie.202410430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Recent advances in luminescent materials highlight the significant impact of hydrogen isotope effects on improving optoelectronic properties. However, the research on the influence of the boron isotope effects on photophysical properties remains underdeveloped. This study focused on exploring the boron isotope effects in boron-cluster-based luminogens. In doing so, we designed and synthesized carborane-based luminogens containing 98 % 10B and 95 % 11B, respectively, and observed distinct photophysical behaviors. Compared to the 10B-enriched luminogens, the 11B-enriched counterparts can significantly enhance luminescence efficiency, prolong emission lifetime, and reduce full-width at half-maximum. Additionally, increased thermal stability, redshifted B-H vibrations, and a fourfold enhanced electrochemiluminescence intensity have also been observed. On the other hand, the biological assessments of a 10B-enriched luminogen reveals low cytotoxicity, high boron uptake, and excellent fluorescence imaging capability, indicating the potential application in boron neutron capture therapy (BNCT). This work presents the first comprehensive exploration on the boron isotope effects in boron clusters, and provides valuable insights into the rational design of organic luminogens for advanced optoelectronic and biomedical applications.
Collapse
Affiliation(s)
- Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianyu Zhang
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Jibo Zong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongyuan Ren
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qinfeng Xu
- Department of Nuclear Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Mahanta CS, Hansdah S, Khuntia K, Jena BB, Swain BR, Acharya S, Dash BP, Debata PR, Satapathy R. Novel carboranyl-BODIPY conjugates: design, synthesis and anti-cancer activity. RSC Adv 2024; 14:34643-34660. [PMID: 39479484 PMCID: PMC11521004 DOI: 10.1039/d4ra07241c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
A series of four carboranyl-BODIPY conjugates (o-CB-10, m-CB-15, Me-o-CB-28, and Me-o-CB-35) and one phenylene-BODIPY conjugate (PB-20) were synthesized. The carboranyl-BODIPY conjugates incorporate boron clusters, specifically ortho- and meta-carboranes, covalently linked to BODIPY fluorophores while the phenylene-BODIPY conjugate features a phenylene ring covalently linked to BODIPY fluorophore. The newly synthesized conjugates were characterized by 1H NMR, 13C NMR, 11B NMR, 19F NMR, FT-IR, and high-resolution mass spectral analysis. In vitro cytotoxicity of the synthesized conjugates has been evaluated against the HeLa cervical cancer cell line. The study reveals that o-CB-10 shows a maximum cell death potential at lower concentrations (12.03 μM) and inhibited cell proliferation and migration in cancer (HeLa) cells. Additionally, flow cytometry study reveals that o-CB-10 and Me-o-CB-28 arrest the cell cycle at the S phase. The results indicate that the carboranyl-BODIPY conjugates have the potential to be effective anticancer agents.
Collapse
Affiliation(s)
| | - Sunitee Hansdah
- Department of Zoology Maharaja Sriram Chandra Bhanja Deo University Sri Ram Chandra Vihar, Takatpur, Mayurbhanj Baripada 757003 Odisha India
| | - Kabita Khuntia
- Department of Zoology Maharaja Sriram Chandra Bhanja Deo University Sri Ram Chandra Vihar, Takatpur, Mayurbhanj Baripada 757003 Odisha India
| | - Bibhuti Bhusan Jena
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| | - Biswa Ranjan Swain
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| | - Subhadeep Acharya
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| | | | - Priya Ranjan Debata
- Department of Zoology Maharaja Sriram Chandra Bhanja Deo University Sri Ram Chandra Vihar, Takatpur, Mayurbhanj Baripada 757003 Odisha India
| | - Rashmirekha Satapathy
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| |
Collapse
|
3
|
Gutiérrez-Gálvez L, García-Mendiola T, Lorenzo E, Nuez-Martinez M, Ocal C, Yan S, Teixidor F, Pinheiro T, Marques F, Viñas C. Compelling DNA intercalation through 'anion-anion' anti-coulombic interactions: boron cluster self-vehicles as promising anticancer agents. J Mater Chem B 2024; 12:9550-9565. [PMID: 39141010 DOI: 10.1039/d4tb01177e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Anticancer drugs inhibit DNA replication by intercalating between DNA base pairs, forming covalent bonds with nucleotide bases, or binding to the DNA groove. To develop safer drugs, novel molecular structures with alternative binding mechanisms are essential. Stable boron hydrides offer a promising alternative for cancer therapy, opening up additional options like boron neutron capture therapy based on 10B and thermal neutron beams or proton boron fusion therapy using 11B and proton beams. These therapies are more efficient when the boron compound is ideally located inside cancer cells, particularly in the nucleus. Current cancer treatments often utilize small, polycyclic, aromatic, planar molecules that intercalate between ds-DNA base pairs, requiring only a spacing of approximately 0.34 nm. In this paper, we demonstrate another type of intercalation. Notably, [3,3'-Fe(1,2-C2B9H11)2]-, ([o-FESAN]-), a compact 3D molecule measuring 1.1 nm × 0.6 nm, can as well intercalate by strong non-bonding interactions preferentially with guanine. Unlike known intercalators, which are positive or neutral, [o-FESAN]- is a negative species and when an [o-FESAN]- molecule approaches the negatively charged DNA phosphate chain an anion-anion interaction consistently anti-electrostatic via Ccluster-H⋯O-P bonds occurs. Then, when more molecules approach, an elongated outstandingly self-assembled structure of [o-FESAN]--[o-FESAN]- forms moving anions towards the interthread region to interact with base pairs and form aggregates of four [o-FESAN]- anions per base pair. These aggregates, in this environment, are generated by Ccluster-H⋯O-C, N-H⋯H-B and Ccluster-H⋯H-B interactions. The ferrabis(dicarbollide) boron-rich small molecules not only effectively penetrate the nucleus but also intercalate with ds-DNA, making them promising for cancer treatment. This amphiphilic anionic molecule, used as a carrier-free drug, can enhance radiotherapy in a multimodal perspective, providing healthcare professionals with improved tools for cancer treatment. This work demonstrates these findings with a plethora of techniques.
Collapse
Affiliation(s)
- Laura Gutiérrez-Gálvez
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Miquel Nuez-Martinez
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Carmen Ocal
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Shunya Yan
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Teresa Pinheiro
- iBB - Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Fernanda Marques
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
4
|
Ma W, Wang Y, Xue Y, Wang M, Lu C, Guo W, Liu YH, Shu D, Shao G, Xu Q, Tu D, Yan H. Molecular engineering of AIE-active boron clustoluminogens for enhanced boron neutron capture therapy. Chem Sci 2024; 15:4019-4030. [PMID: 38487248 PMCID: PMC10935674 DOI: 10.1039/d3sc06222h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
The development of boron delivery agents bearing an imaging capability is crucial for boron neutron capture therapy (BNCT), yet it has been rarely explored. Here we present a new type of boron delivery agent that integrates aggregation-induced emission (AIE)-active imaging and a carborane cluster for the first time. In doing so, the new boron delivery agents have been rationally designed by incorporating a high boron content unit of a carborane cluster, an erlotinib targeting unit towards lung cancer cells, and a donor-acceptor type AIE unit bearing naphthalimide. The new boron delivery agents demonstrate both excellent AIE properties for imaging purposes and highly selective accumulation in tumors. For example, at a boron delivery agent dose of 15 mg kg-1, the boron amount reaches over 20 μg g-1, and both tumor/blood (T/B) and tumor/normal cell (T/N) ratios reach 20-30 times higher than those required by BNCT. The neutron irradiation experiments demonstrate highly efficient tumor growth suppression without any observable physical tissue damage and abnormal behavior in vivo. This study not only expands the application scopes of both AIE-active molecules and boron clusters, but also provides a new molecular engineering strategy for a deep-penetrating cancer therapeutic protocol based on BNCT.
Collapse
Affiliation(s)
- Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yanyang Wang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University Nanjing 210008 China
| | - Yilin Xue
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University Nanjing 210033 China
| | - Mengmeng Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Wanhua Guo
- Department of Nuclear Medicine, Nanjing Tongren Hospital, the Affiliated Hospital of Southeast University Medical School Nanjing 210033 China
| | - Yuan-Hao Liu
- Neuboron Therapy System Ltd. Xiamen 361028 China
- Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Neuboron Medtech Ltd. Nanjing 211112 China
| | - Diyun Shu
- Neuboron Therapy System Ltd. Xiamen 361028 China
- Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Neuboron Medtech Ltd. Nanjing 211112 China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University Nanjing 210033 China
| | - Qinfeng Xu
- Department of Nuclear Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing 210029 China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
5
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
6
|
Pazderová L, Tüzün EZ, Bavol D, Litecká M, Fojt L, Grűner B. Chemistry of Carbon-Substituted Derivatives of Cobalt Bis(dicarbollide)(1 -) Ion and Recent Progress in Boron Substitution. Molecules 2023; 28:6971. [PMID: 37836814 PMCID: PMC10574808 DOI: 10.3390/molecules28196971] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The cobalt bis(dicarbollide)(1-) anion (1-), [(1,2-C2B9H11)2-3,3'-Co(III)](1-), plays an increasingly important role in material science and medicine due to its high chemical stability, 3D shape, aromaticity, diamagnetic character, ability to penetrate cells, and low cytotoxicity. A key factor enabling the incorporation of this ion into larger organic molecules, biomolecules, and materials, as well as its capacity for "tuning" interactions with therapeutic targets, is the availability of synthetic routes that enable easy modifications with a wide selection of functional groups. Regarding the modification of the dicarbollide cage, syntheses leading to substitutions on boron atoms are better established. These methods primarily involve ring cleavage of the ether rings in species containing an oxonium oxygen atom connected to the B(8) site. These pathways are accessible with a broad range of nucleophiles. In contrast, the chemistry on carbon vertices has remained less elaborated over the previous decades due to a lack of reliable methods that permit direct and straightforward cage modifications. In this review, we present a survey of methods based on metalation reactions on the acidic C-H vertices, followed by reactions with electrophiles, which have gained importance in only the last decade. These methods now represent the primary trends in the modifications of cage carbon atoms. We discuss the scope of currently available approaches, along with the stereochemistry of reactions, chirality of some products, available types of functional groups, and their applications in designing unconventional drugs. This content is complemented with a report of the progress in physicochemical and biological studies on the parent cobalt bis(dicarbollide) ion and also includes an overview of recent syntheses and emerging applications of boron-substituted compounds.
Collapse
Affiliation(s)
- Lucia Pazderová
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Ece Zeynep Tüzün
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
- Department of Inorganic Chemistry, Faculty of Natural Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | - Dmytro Bavol
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Miroslava Litecká
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Lukáš Fojt
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic;
| | - Bohumír Grűner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| |
Collapse
|
7
|
Benito G, D'Agostino I, Carradori S, Fantacuzzi M, Agamennone M, Puca V, Grande R, Capasso C, Carta F, Supuran CT. Erlotinib-containing benzenesulfonamides as anti- Helicobacter pylori agents through carbonic anhydrase inhibition. Future Med Chem 2023; 15:1865-1883. [PMID: 37886837 DOI: 10.4155/fmc-2023-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Aim: Development of dual-acting antibacterial agents containing Erlotinib, a recognized EGFR inhibitor used as an anticancer agent, with differently spaced benzenesulfonamide moieties known to bind and inhibit Helicobacter pylori carbonic anhydrase (HpCA) or the antiviral Zidovudine. Methods & materials: Through rational design, ten derivatives were obtained via a straightforward synthesis including a click chemistry reaction. Inhibitory activity against a panel of pathogenic carbonic anhydrases and antibacterial susceptibility of H. pylori ATCC 43504 were assessed. Docking studies on α-carbonic anhydrase enzymes and EGFR were conducted to gain insight into the binding mode of these compounds. Results & conclusion: Some compounds proved to be strong inhibitors of HpCA and showed good anti-H. pylori activity. Computational studies on the targeted enzymes shed light on the interaction hotspots.
Collapse
Affiliation(s)
- Germán Benito
- Neurofarba Department, University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| | | | - Simone Carradori
- Department of Pharmacy, 'G. d'Annunzio' University of Chieti - Pescara, Chieti, 66100, Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, 'G. d'Annunzio' University of Chieti - Pescara, Chieti, 66100, Italy
| | - Mariangela Agamennone
- Department of Pharmacy, 'G. d'Annunzio' University of Chieti - Pescara, Chieti, 66100, Italy
| | - Valentina Puca
- Department of Pharmacy, 'G. d'Annunzio' University of Chieti - Pescara, Chieti, 66100, Italy
| | - Rossella Grande
- Department of Pharmacy, 'G. d'Annunzio' University of Chieti - Pescara, Chieti, 66100, Italy
- Center for Advanced Studies & Technology, 'G. d'Annunzio' University of Chieti - Pescara, Chieti, 66100, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture & Food Sciences, National Research Council, Institute of Biosciences & Bioresources, Naples, 80131, Italy
| | - Fabrizio Carta
- Neurofarba Department, University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| | - Claudiu T Supuran
- Neurofarba Department, University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| |
Collapse
|
8
|
Flieger S, Takagaki M, Kondo N, Lutz MR, Gupta Y, Ueda H, Sakurai Y, Moran G, Kempaiah P, Hosmane N, Suzuki M, Becker DP. Carborane-Containing Hydroxamate MMP Ligands for the Treatment of Tumors Using Boron Neutron Capture Therapy (BNCT): Efficacy without Tumor Cell Entry. Int J Mol Sci 2023; 24:ijms24086973. [PMID: 37108137 PMCID: PMC10139035 DOI: 10.3390/ijms24086973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
New carborane-bearing hydroxamate matrix metalloproteinase (MMP) ligands have been synthesized for boron neutron capture therapy (BNCT) with nanomolar potency against MMP-2, -9 and -13. New analogs are based on MMP inhibitor CGS-23023A, and two previously reported MMP ligands 1 (B1) and 2 (B2) were studied in vitro for BNCT activity. The boronated MMP ligands 1 and 2 showed high in vitro tumoricidal effects in an in vitro BNCT assay, exhibiting IC50 values for 1 and 2 of 2.04 × 10-2 mg/mL and 2.67 × 10-2 mg/mL, respectively. The relative killing effect of 1 to L-boronophenylalanine (BPA) is 0.82/0.27 = 3.0, and that of 2 is 0.82/0.32 = 2.6, whereas the relative killing effect of 4 is comparable to boronophenylalanine (BPA). The survival fraction of 1 and 2 in a pre-incubation boron concentration at 0.143 ppm 10B and 0.101 ppm 10B, respectively, were similar, and these results suggest that 1 and 2 are actively accumulated through attachment to the Squamous cell carcinoma (SCC)VII cells. Compounds 1 and 2 very effectively killed glioma U87 delta EGFR cells after BNCT. This study is noteworthy in demonstrating BNCT efficacy through binding to MMP enzymes overexpressed at the surface of the tumor cell without tumor cell penetration.
Collapse
Affiliation(s)
- Sebastian Flieger
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| | - Mao Takagaki
- Research Center for Nuclear Physics, Osaka University, 10-1 Mihoga-oka, Ibaraki-City 567-0047, Osaka, Japan
| | - Natsuko Kondo
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-Nishi, Kumatori, Sennan-gun 590-0494, Osaka, Japan
| | - Marlon R Lutz
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| | - Yash Gupta
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Hiroki Ueda
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-Nishi, Kumatori, Sennan-gun 590-0494, Osaka, Japan
| | - Yoshinori Sakurai
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-Nishi, Kumatori, Sennan-gun 590-0494, Osaka, Japan
| | - Graham Moran
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| | - Prakasha Kempaiah
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Narayan Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Minoru Suzuki
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-Nishi, Kumatori, Sennan-gun 590-0494, Osaka, Japan
| | - Daniel P Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| |
Collapse
|
9
|
Ren H, Zhang P, Xu J, Ma W, Tu D, Lu CS, Yan H. Direct B-H Functionalization of Icosahedral Carboranes via Hydrogen Atom Transfer. J Am Chem Soc 2023; 145:7638-7647. [PMID: 36946888 DOI: 10.1021/jacs.3c01314] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The efficient and selective functionalization of icosahedral carboranes (C2B10H12) at the boron vertexes is a long-standing challenge owing to the presence of 10 inert B-H bonds in a similar chemical environment. Herein, we report a new reaction paradigm for direct B-H functionalization of icosahedral carboranes via B-H homolysis enabled by a nitrogen-centered radical-mediated hydrogen atom transfer (HAT) strategy. Both the HAT process of the carborane B-H bond and the resulting boron-centered carboranyl radical intermediate have been confirmed experimentally. The reaction occurs at the most electron-rich boron vertex with the lowest B-H bond dissociation energy (BDE). Using this strategy, diverse carborane derivatization, including thiolation, selenation, alkynylation, alkenylation, cyanation, and halogenation, have been achieved in satisfactory yields under a photoinitiated condition in a metal-free and redox-neutral fashion. Moreover, the synthetic utility of the current protocol was also demonstrated by both the scale-up reaction and the construction of carborane-based functional molecules. Therefore, this methodology opens a radical pathway to carborane functionalization, which is distinct from the B-H heterolytic mechanism in the traditional strategies.
Collapse
Affiliation(s)
- Hongyuan Ren
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ping Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Sun F, Tan S, Cao HJ, Lu CS, Tu D, Poater J, Solà M, Yan H. Facile Construction of New Hybrid Conjugation via Boron Cage Extension. J Am Chem Soc 2023; 145:3577-3587. [PMID: 36744315 DOI: 10.1021/jacs.2c12526] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aromatic polycyclic systems have been extensively utilized as structural subunits for the preparation of various functional molecules. Currently, aromatics-based polycyclic systems are predominantly generated from the extension of two-dimensional (2D) aromatic rings. In contrast, polycyclic compounds based on the extension of three-dimensional (3D) aromatics such as boron clusters are less studied. Here, we report three types of boron cluster-cored tricyclic molecular systems, which are constructed from a 2D aromatic ring, a 3D aromatic nido-carborane, and an alkyne. These new tricyclic compounds can be facilely accessed by Pd-catalyzed B-H activation and the subsequent cascade heteroannulation of carborane and pyridine with an alkyne in an isolated yield of up to 85% under mild conditions without any additives. Computational results indicate that the newly generated ring from the fusion of the 3D carborane, the 2D pyridyl ring, and an alkyne is non-aromatic. However, such fusion not only leads to a 1H chemical shift considerably downfield shifted owing to the strong diatropic ring current of the embedded carborane but also devotes to new/improved physicochemical properties including increased thermal stability, the emergence of a new absorption band, and a largely red-shifted emission band and enhanced emission efficiency. Besides, a number of bright, color-tunable solid emitters spanning over all visible light are obtained with absolute luminescence efficiency of up to 61%, in contrast to aggregation-caused emission quenching of, e.g., Rhodamine B containing a 2D-aromatics-fused structure. This work demonstrates that the new hybrid conjugated tricyclic systems might be promising structural scaffolds for the construction of functional molecules.
Collapse
Affiliation(s)
- Fangxiang Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuaimin Tan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hou-Ji Cao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain.,ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany, 69, Girona 17003, Catalonia, Spain
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Alamón C, Dávila B, Cerecetto H, Couto M. Exploring the cell death mechanisms of cytotoxic [1,2,3]triazolylcarborane lead compounds against U87 MG human glioblastoma cells. Chem Biol Drug Des 2023; 101:1435-1445. [PMID: 36746676 DOI: 10.1111/cbdd.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Moving towards high-grade glioma drug discovery, this study aimed to detect the mechanism of cellular death (apoptosis, necrosis and/or autophagy) induced by three carboranyl-based lead compounds. For that, we performed in U87 MG cells, flow cytometry experiments, as the gold standard technique, as well as confocal microscopy and 1 H-NMR experiments as non-invasive assays. We selected three hybrid leads (1-3) from the in-house-library and the corresponding parent compounds, and recognized tyrosine kinase inhibitors (lapatinib, sunitinib and erlotinib) to put to the test in these experiments. Flow cytometry with Annexin V-FITC/DAPI staining showed that leads 1 and 3 and lapatinib mainly induced necrosis in U87 MG upon a 24 h treatment at IC50 dose; meanwhile, hybrid 2, sunitinib and erlotinib seem to induce apoptosis in such cells. In general, confocal microscopy studies were in agreement with flow cytometry observing loss of cell membrane integrity in necrotic cells and features of apoptosis, that is, chromatin condensation, in apoptotic cells. Finally, NMR results showed that glioblastoma cells treated with hybrid 1, 3 or lapatinib displayed changes in CH2 /CH3 signal ratio and choline signals that could indicate necrotic cell death mechanism: meanwhile, 2-, sunitinib- or erlotinib-treated cells showed apoptotic characteristic behaviors. Additionally, carboranyl-hybrid 2 also produced autophagy in U87 MG cells.
Collapse
Affiliation(s)
- Catalina Alamón
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Belén Dávila
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Hugo Cerecetto
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Marcos Couto
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
12
|
A Simple Way to Obtain a Decachloro Derivative of Cobalt Bis(dicarbollide). REACTIONS 2023. [DOI: 10.3390/reactions4010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A simple synthetic way to obtain a decachloro derivative of cobalt bis(dicarbollide) has been found. The reaction of cesium salt of cobalt bis(dicarbollide) anion with aluminum chloride in chloroform under reflux conditions results in Cs[3,3′-Co(4,7,8,9,12-Cl5-1,2-C2B9H6)2] of high purity and good yield.
Collapse
|
13
|
Lee K, Harper JL, Kim TH, Chan Noh H, Kim D, Ha-Yeon Cheong P, Lee PH. Regiodivergent metal-catalyzed B(4)- and C(1)-selenylation of o-carboranes. Chem Sci 2023; 14:643-649. [PMID: 36741533 PMCID: PMC9847680 DOI: 10.1039/d2sc05590b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022] Open
Abstract
Regiodivergent transition metal-catalyzed B(4)- and C(1)-selenylation reactions of o-carboranes have been demonstrated. Namely, Ru(ii)-catalysis selectively generated B(4)-selenylated o-carboranes from the reaction of o-carborane acids with arylselenyl bromides with the release of carbon dioxide. In contrast, Pd(ii) catalysis provided exclusively C(1)-selenylated o-carboranes from the decarboxylative reaction of o-carborane acids with diaryl diselenides. In contrast to previous milestones in this area, these reactions demonstrate broad substrate scope with excellent yields. Combination of these methods leads to the formation of B(4)-C(1)-diselenylated o-carboranes. DFT studies revealed the mechanism of the Ru-process, with initial selenylation of the carborane cluster discovered to be essential for an energetically reasonable decarboxylation. This results in selenylation on the B(4) position prior to the decarboxylation event at C(1). This contrasted with the Pd-process in which the ready decarboxylation at C(1) leads to selenylation at C(1).
Collapse
Affiliation(s)
- Kyungsup Lee
- Department of Chemistry, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Jordan L Harper
- Department of Chemistry, Oregon State University Corvallis Oregon 97331 USA
| | - Tae Hyeon Kim
- Department of Chemistry, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Hee Chan Noh
- Department of Chemistry, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | | | - Phil Ho Lee
- Department of Chemistry, Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
14
|
Carboranes in drug discovery, chemical biology and molecular imaging. Nat Rev Chem 2022; 6:486-504. [PMID: 37117309 DOI: 10.1038/s41570-022-00400-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/08/2022]
Abstract
There exists a paucity of structural innovation and limited molecular diversity associated with molecular frameworks in drug discovery and biomolecular imaging/chemical probe design. The discovery and exploitation of new molecular entities for medical and biological applications will necessarily involve voyaging into previously unexplored regions of chemical space. Boron clusters, notably the carboranes, offer an alternative to conventional (poly)cyclic organic frameworks that may address some of the limitations associated with the use of novel molecular frameworks in chemical biology or medicine. The high thermal stability, unique 3D structure and aromaticity, kinetic inertness to metabolism and ability to engage in unusual types of intermolecular interactions, such as dihydrogen bonds, with biological receptors make carboranes exquisite frameworks in the design of probes for chemical biology, novel drug candidates and biomolecular imaging agents. This Review highlights the key developments of carborane derivatives made over the last decade as new design tools in medicinal chemistry and chemical biology, showcasing the versatility of this unique family of boron compounds.
Collapse
|
15
|
Chen Y, Du F, Tang L, Xu J, Zhao Y, Wu X, Li M, Shen J, Wen Q, Cho CH, Xiao Z. Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol Ther Oncolytics 2022; 24:400-416. [PMID: 35141397 PMCID: PMC8807988 DOI: 10.1016/j.omto.2022.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carborane is a carbon-boron molecular cluster that can be viewed as a 3D analog of benzene. It features special physical and chemical properties, and thus has the potential to serve as a new type of pharmacophore for drug design and discovery. Based on the relative positions of two cage carbons, icosahedral closo-carboranes can be classified into three isomers, ortho-carborane (o-carborane, 1,2-C2B10H12), meta-carborane (m-carborane, 1,7-C2B10H12), and para-carborane (p-carborane, 1,12-C2B10H12), and all of them can be deboronated to generate their nido- forms. Cage compound carborane and its derivatives have been demonstrated as useful chemical entities in antitumor medicinal chemistry. The applications of carboranes and their derivatives in the field of antitumor research mainly include boron neutron capture therapy (BNCT), as BNCT/photodynamic therapy dual sensitizers, and as anticancer ligands. This review summarizes the research progress on carboranes achieved up to October 2021, with particular emphasis on signaling transduction pathways, chemical structures, and mechanistic considerations of using carboranes.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jinrun Xu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
16
|
Biegański P, Godel M, Riganti C, Kawano DF, Kopecka J, Kowalski K. Click ferrocenyl-erlotinib conjugates active against erlotinib-resistant non-small cell lung cancer cells in vitro. Bioorg Chem 2021; 119:105514. [PMID: 34864281 DOI: 10.1016/j.bioorg.2021.105514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/21/2021] [Indexed: 01/22/2023]
Abstract
Thanks to development of erlotinib and other target therapy drugs the lung cancer treatment have improved a lot in recent years. However, erlotinib-resistant lung cancer remains an unsolved clinical problem which demands for new therapeutics to be developed. Herein we report the synthesis of a library of 1,4- and 1,5-triazole ferrocenyl derivatives of erlotinib together with their anticancer activity studies against erlotinib-sensitive A549 and H1395 as well as erlotinib-resistant H1650 and H1975 cells. Studies showed that extend of anticancer activity is mainly related to the length of the spacer between the triazole and the ferrocenyl entity. Among the series of investigated compounds two isomers commonly bearing C(O)CH2CH2 spacer have shown superior to erlotinib activity against erlotinib-resistant H1650 and H1975 cells whereas compound with short methylene spacer devoid of any activity. In-depth biological studies for the most active compound showed differences in its mechanism of action in compare to erlotinib. The latter is known EGFR inhibitor whereas their ferrocenyl congener exerts anticancer activity mainly as ROS-inducer which activates mitochondrial pathway of apoptosis in cancer cells. However, docking studies suggested that the most active compound can also binds to the active site of EGFR TK in a similar way as erlotinib.
Collapse
Affiliation(s)
- Przemysław Biegański
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| | - Martina Godel
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Turin, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Turin, Italy.
| | - Daniel Fábio Kawano
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, 200 Cândido Portinari Street, Campinas, SP 13083-871, Brazil.
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Turin, Italy.
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| |
Collapse
|
17
|
Tu D, Li J, Sun F, Yan H, Poater J, Solà M. Cage -···Cage - Interaction: Boron Cluster-Based Noncovalent Bond and Its Applications in Solid-State Materials. JACS AU 2021; 1:2047-2057. [PMID: 34841417 PMCID: PMC8611790 DOI: 10.1021/jacsau.1c00348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Carboranes are boron-carbon clusters with important applications in the fields of materials, catalysis, pharmaceuticals, etc. However, the noncovalent interactions that could determine the solid-state structures and properties of such boron clusters have rarely been investigated. Herein, inspired by the coordinate bond in metallacarborane or ferrocene, the boron cluster-based noncovalent interaction (denoted as cage-···cage- interaction) between two nido-carborane clusters was successfully realized by using a pyridinium-based molecular barrier. The X-ray diffraction studies uncover that the cage-···cage- interaction has a contacting distance of 5.4-7.0 Å from centroid to centroid in the systems reported here. Theoretical calculations validate the formation of the noncovalent interaction and disclose its repulsive bonding nature that is overcome thanks to the positively charged pyridinium-based framework. Interestingly, such bulk crystalline materials containing the cage-···cage- interaction show relevant properties such as full-color absorption in the visible light range and important photothermal effect, which are absent for the control compound without carboranes. This study may offer fundamental insights into the boron cluster-based noncovalent interactions and open a new research avenue to rationally design boron cluster-based materials.
Collapse
Affiliation(s)
- Deshuang Tu
- State
Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of
Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jiaxin Li
- State
Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of
Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Fangxiang Sun
- State
Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of
Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hong Yan
- State
Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of
Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jordi Poater
- Departament
de Química Inorgànica i Orgànica & Institut
de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Miquel Solà
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, C/Maria Aurèlia Capmany,
69, Girona 17003, Catalonia Spain
| |
Collapse
|
18
|
Buades AB, Viñas C, Fontrodona X, Teixidor F. 1.3 V Inorganic Sequential Redox Chain with an All-Anionic Couple 1-/2- in a Single Framework. Inorg Chem 2021; 60:16168-16177. [PMID: 34693711 PMCID: PMC9180739 DOI: 10.1021/acs.inorgchem.1c01822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The relatively low symmetry of [3,3′-Co(1,2-C2B9H11)2]− ([1]−), along with the high number
of available
substitution sites, 18 on the boron atoms and 4 on the carbon atoms,
allows a fairly regioselective and stepwise chlorination of the platform
and therefore a very controlled tuning of the electrochemical potential
tuning. This is not so easily found in other systems, e.g., ferrocene.
In this work, we show how a single platform with boron and carbon
in the ligand, and only cobalt can produce a tuning of potentials
in a stepwise manner in the 1.3 V range. The platform used is made
of two icosahedra sharing one vertex. The E1/2 tuning has been achieved from [1]− by sequential chlorination, which has given potentials whose values
increase sequentially and linearly with the number of chloro groups
in the platform. [Cl8-1]−, [Cl10-1]−, and [Cl12-1]− have been obtained, which
are added to the existing [Cl-1]−,
[Cl2-1]−, [Cl4-1]−, and [Cl6-1]− described earlier to give the 1.3 V range. It is envisaged
to extend this range also sequentially by changing the metal from
cobalt to iron. The last successful synthesis of the highest chlorinated
derivatives of cobaltabis(dicarbollide) dates back to 1982, and since
then, no more advances have occurred toward more substituted metallacarborane
chlorinated compounds. [Cl8-1]−, [Cl10-1]−, and [Cl12-1]− are made
with an easy and fast method. The key point of the reaction is the
use of the protonated form of [Co(C2B9H11)2]−, as a starting material,
and the use of sulfuryl chloride, a less hazardous and easier to use
chlorinating agent. In addition, we present a complete, spectroscopic,
crystallographic, and electrochemical characterization, together with
a study of the influence of the chlorination position in the electrochemical
properties. By sequential halogenation of [Co(C2B9H11)2]− ([1]−) with chlorine, the [Cl8-1]−, [Cl10-1]−, and [Cl12-1]− derivatives
of [1]− have been prepared and isolated.
The E1/2 values increase sequentially
and linearly with the number of chloro groups in the platform. If
these potentials are added to the existing E1/2 values due to [Cl-1]−, [Cl2-1]−, [Cl4-1]−, and [Cl6-1]− described earlier, a 1.3 V range is obtained. This
allows tuning of the desired potentials for the purposes of nature.
Collapse
Affiliation(s)
- Ana B Buades
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus Universitat Autonòma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus Universitat Autonòma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Xavier Fontrodona
- Departamento de Química and Serveis Tècnics de Recerca, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus Universitat Autonòma de Barcelona (UAB), 08193 Bellaterra, Spain
| |
Collapse
|
19
|
Druzina AA, Shmalko AV, Sivaev IB, Bregadze VI. Cyclic oxonium derivatives of cobalt and iron bis(dicarbollides) and their use in organic synthesis. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Drača D, Marković M, Gozzi M, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Ruthenacarborane and Quinoline: A Promising Combination for the Treatment of Brain Tumors. Molecules 2021; 26:molecules26133801. [PMID: 34206482 PMCID: PMC8270330 DOI: 10.3390/molecules26133801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/08/2023] Open
Abstract
Gliomas and glioblastomas are very aggressive forms of brain tumors, prone to the development of a multitude of resistance mechanisms to therapeutic treatments, including cytoprotective autophagy. In this work, we investigated the role and mechanism of action of the combination of a ruthenacarborane derivative with 8-hydroxyquinoline (8-HQ), linked via an ester bond (complex 2), in rat astrocytoma C6 and human glioma U251 cells, in comparison with the two compounds alone, i.e., the free carboxylic acid (complex 1) and 8-HQ, and their non-covalent combination ([1 + 8-HQ], in 1:1 molar ratio). We found that only complex 2 was able to significantly affect cellular viability in glioma U251 cells (IC50 11.4 μM) via inhibition of the autophagic machinery, most likely acting at the early stages of the autophagic cascade. Contrary to 8-HQ alone, complex 2 was also able to impair cellular viability under conditions of glucose deprivation. We thus suggest different mechanisms of action of ruthenacarborane complex 2 than purely organic quinoline-based drugs, making complex 2 a very attractive candidate for evading the known resistances of brain tumors to chloroquine-based therapies.
Collapse
Affiliation(s)
- Dijana Drača
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (M.M.)
| | - Milan Marković
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (M.M.)
| | - Marta Gozzi
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany;
- Medical Faculty, Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16–18, 04107 Leipzig, Germany
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (M.M.)
- Correspondence: (S.M.); (D.M.-I.); (E.H.-H.); Tel.: +381-11-2078-452 (S.M. & D.M.-I.); Tel.: +49-341-9736151 (E.H.-H.)
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (M.M.)
- Correspondence: (S.M.); (D.M.-I.); (E.H.-H.); Tel.: +381-11-2078-452 (S.M. & D.M.-I.); Tel.: +49-341-9736151 (E.H.-H.)
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany;
- Correspondence: (S.M.); (D.M.-I.); (E.H.-H.); Tel.: +381-11-2078-452 (S.M. & D.M.-I.); Tel.: +49-341-9736151 (E.H.-H.)
| |
Collapse
|
21
|
Abstract
"There's plenty of room at the bottom" (Richard Feynman, 1959): an invitation for (metalla)carboranes to enter the (new) field of nanomedicine. For two decades, the number of publications on boron cluster compounds designed for potential applications in medicine has been constantly increasing. Hundreds of compounds have been screened in vitro or in vivo for a variety of biological activities (chemotherapeutics, radiotherapeutics, antiviral, etc.), and some have shown rather promising potential for further development. However, until now, no boron cluster compounds have made it to the clinic, and even clinical trials have been very sparse. This review introduces a new perspective in the field of medicinal boron chemistry, namely that boron-based drugs should be regarded as nanomedicine platforms, due to their peculiar self-assembly behaviour in aqueous solutions, and treated as such. Examples for boron-based 12- and 11-vertex clusters and appropriate comparative studies from medicinal (in)organic chemistry and nanomedicine, highlighting similarities, differences and gaps in physicochemical and biological characterisation methods, are provided to encourage medicinal boron chemists to fill in the gaps between chemistry laboratory and real applications in living systems by employing bioanalytical and biophysical methods for characterising and controlling the aggregation behaviour of the clusters in solution.
Collapse
Affiliation(s)
- Marta Gozzi
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
- Institute of Analytical ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityLinnéstr. 304103LeipzigGermany
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Benedikt Schwarze
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Evamarie Hey‐Hawkins
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
22
|
Lee SH, Mun MS, Lee JH, Im S, Lee W, Hwang H, Lee KM. Impact of the Electronic Environment in Carbazole-Appended o-Carboranyl Compounds on the Intramolecular-Charge-Transfer-Based Radiative Decay Efficiency. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Seok Ho Lee
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Min Sik Mun
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji Hye Lee
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sehee Im
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Wonchul Lee
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyonseok Hwang
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Kang Mun Lee
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
23
|
Sunitinib-Containing Carborane Pharmacophore with the Ability to Inhibit Tyrosine Kinases Receptors FLT3, KIT and PDGFR-β, Exhibits Powerful In Vivo Anti-Glioblastoma Activity. Cancers (Basel) 2020; 12:cancers12113423. [PMID: 33218150 PMCID: PMC7698965 DOI: 10.3390/cancers12113423] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Glioblastoma is one of the most aggressive central nervous system tumors. Combinations of therapies, such as tyrosine kinase receptor inhibition and boron neutron capture therapy (BNCT), could offer greater patients benefits over single-therapies. The aim of our study was to assess the potential of sunitinib-carborane hybrid compound 1 as an anti-glioblastoma agent. We confirmed for 1 the ability to inhibit tyrosine kinase receptors, which could promote canonical and non-canonical effects, absence of mutagenicity, ability to cross the blood–brain barrier, and powerful in vivo anti-glioblastoma activity. The overall attractive profile of 1 makes it an interesting compound for a bimodal therapeutic strategy against high grade gliomas. Abstract Malignant gliomas are the most common malignant and aggressive primary brain tumors in adults, the prognosis being—especially for glioblastomas—extremely poor. There are no effective treatments yet. However, tyrosine kinase receptor (TKR) inhibitors and boron neutron capture therapy (BNCT), together, have been proposed as future therapeutic strategies. In this sense in our ongoing project of developing new anti-glioblastoma drugs, we identified a sunitinib-carborane hybrid agent, 1, with both in vitro selective cytotoxicity and excellent BNCT-behavior. Consequently, we studied the ability of compound 1 to inhibit TKRs, its promotion of cellular death processes, and its effects on the cell cycle. Moreover, we analyzed some relevant drug-like properties of 1, i.e., mutagenicity and ability to cross the blood–brain barrier. These results encouraged us to perform an in vivo anti-glioblastoma proof of concept assay. It turned out to be a selective FLT3, KIT, and PDGFR-β inhibitor and increased the apoptotic glioma-cell numbers and arrested sub-G1-phase cell cycle. Its in vivo activity in immunosuppressed mice bearing U87 MG human glioblastoma evidenced excellent anti-tumor behavior.
Collapse
|
24
|
Couto M, Alamón C, Nievas S, Perona M, Dagrosa MA, Teixidor F, Cabral P, Viñas C, Cerecetto H. Bimodal Therapeutic Agents Against Glioblastoma, One of the Most Lethal Forms of Cancer. Chemistry 2020; 26:14335-14340. [PMID: 32738078 DOI: 10.1002/chem.202002963] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/26/2020] [Indexed: 12/17/2022]
Abstract
About 95 % of people diagnosed with glioblastoma die within five years. Glioblastoma is the most aggressive central nervous system tumour. It is necessary to make progress in the glioblastoma treatment so that advanced chemotherapy drugs or radiation therapy or, ideally, two-in-one hybrid systems should be implemented. Tyrosine kinase receptors-inhibitors and boron neutron capture therapy (BNCT), together, could provide a therapeutic strategy. In this work, sunitinib decorated-carborane hybrids were prepared and biologically evaluated identifying excellent antitumoral- and BNCT-agents. One of the selected hybrids was studied against glioma-cells and found to be 4 times more cytotoxic than sunitinib and 1.7 times more effective than 10 B-boronophenylalanine fructose complex when the cells were irradiated with neutrons.
Collapse
Affiliation(s)
- Marcos Couto
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.,Institut de Ciències dels Materials de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Catalina Alamón
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Susana Nievas
- Department of Boron Neutron Capture Therapy, National Atomic Energy Commission (CNEA), Buenos Aires, Argentina
| | - Marina Perona
- Department of Radiobiology, CNEA, Buenos Aires, Argentina
| | | | - Francesc Teixidor
- Institut de Ciències dels Materials de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Pablo Cabral
- Área de Radiofarmacia, Centro de Investigaciones Nucleares (CIN), Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400, Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciències dels Materials de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Hugo Cerecetto
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.,Área de Radiofarmacia, Centro de Investigaciones Nucleares (CIN), Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400, Montevideo, Uruguay
| |
Collapse
|
25
|
Swain BR, Mahanta CS, Jena BB, Beriha SK, Nayak B, Satapathy R, Dash BP. Preparation of dendritic carboranyl glycoconjugates as potential anticancer therapeutics. RSC Adv 2020; 10:34764-34774. [PMID: 35514375 PMCID: PMC9056817 DOI: 10.1039/d0ra07264h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/10/2020] [Indexed: 01/22/2023] Open
Abstract
A series of carborane-appended glycoconjugates containing three and six glucose and galactose moieties have been synthesized via Cu(i)-catalyzed azide-alkyne [3 + 2] click cycloaddition reaction. The carboranyl glycoconjugates containing three glucose and galactose moieties were found to be partially water soluble whereas increasing the number to six made them completely water soluble. The evaluation of cytotoxicities and IC50 values of newly synthesized carboranyl glycoconjugates was carried out using two cancerous cell lines (MCF-7 breast cancer cells and A431 skin cancer cells) and one normal cell line (HaCaT skin epidermal cell line). All carboranyl glycoconjugates showed higher cytotoxicities towards cancerous cell lines than the normal cell line. Carboranyl glycoconjugates containing three glucose and galactose moieties (compounds 15 and 17) were found to be more cytotoxic than the glycoconjugates containing six glucose and galactose moieties (compounds 19 and 21). Moreover, administration of 100 μM concentrations of compounds 15 and 17 inhibited up to 83% of MCF-7 breast cancer cells and up to 79% A431 skin cancer cells. However, administration of similar concentrations of carboranyl glycoconjugates could inhibit only up to 35-45% of HaCaT normal epidermal cells. Thus, due to the higher cytotoxicities of dendritic carboranyl glycoconjugates towards cancer cells over healthy cells, they could potentially be useful for bimodal treatment of cancer such as chemotherapy agents and boron neutron capture therapy (BNCT) agents as well.
Collapse
Affiliation(s)
- Biswa Ranjan Swain
- Department of Chemistry, Ravenshaw University Cuttack Odisha 753 003 India
- Department of Chemistry, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar Odisha 751030 India
| | | | | | - Swaraj Kumar Beriha
- Department of Chemistry, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar Odisha 751030 India
| | - Bismita Nayak
- Department of Life Science, National Institute of Technology Rourkela Odisha 769 008 India
| | | | - Barada P Dash
- Department of Chemistry, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar Odisha 751030 India
| |
Collapse
|
26
|
Jena BB, Jena SR, Swain BR, Mahanta CS, Samanta L, Dash BP, Satapathy R. Triazine‐cored dendritic molecules containing multiple
o
‐carborane clusters. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Biswa Ranjan Swain
- Department of ChemistryRavenshaw University Cuttack Odisha 753 003 India
| | | | - Luna Samanta
- Department of ZoologyRavenshaw University Cuttack Odisha 753 003 India
| | - Barada P. Dash
- Department of ChemistrySiksha 'O' Anusandhan (Deemed to be University) Bhubaneswar Odisha 751 030 India
| | | |
Collapse
|
27
|
Lutz MR, Flieger S, Colorina A, Wozny J, Hosmane NS, Becker DP. Carborane-Containing Matrix Metalloprotease (MMP) Ligands as Candidates for Boron Neutron-Capture Therapy (BNCT). ChemMedChem 2020; 15:1897-1908. [PMID: 32720425 DOI: 10.1002/cmdc.202000470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/11/2022]
Abstract
Based on the previously reported potent and selective sulfone hydroxamate inhibitors SC-76276, SC-78080 (SD-2590), and SC-77964, potent MMP inhibitors have been designed and synthesized to append a boron-rich carborane cluster by employing click chemistry to target tumor cells that are known to upregulate gelatinases. Docking against MMP-2 suggests binding involving the hydroxamate zinc-binding group, key H-bonds by the sulfone moiety with the peptide backbone residues Leu82 and Leu83, and a hydrophobic interaction with the deep P1' pocket. The more potent of the two triazole regioisomers exhibits an IC50 of 3.7 nM versus MMP-2 and IC50 of 46 nM versus MMP-9.
Collapse
Affiliation(s)
- Marlon R Lutz
- Biosynthetic Technologies, 6320 Intech Way, Indianapolis, IN 46278, USA
| | - Sebastian Flieger
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| | - Andre Colorina
- Regis Technologies, Inc., 8210 Austin Ave., Morton Grove, Illinois 60053, USA
| | - John Wozny
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Daniel P Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| |
Collapse
|
28
|
Closo-Carboranyl- and Metallacarboranyl [1,2,3]triazolyl-Decorated Lapatinib-Scaffold for Cancer Therapy Combining Tyrosine Kinase Inhibition and Boron Neutron Capture Therapy. Cells 2020; 9:cells9061408. [PMID: 32517054 PMCID: PMC7349914 DOI: 10.3390/cells9061408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
One of the driving forces of carcinogenesis in humans is the aberrant activation of receptors; consequently, one of the most promising mechanisms for cancer treatment is receptor inhibition by chemotherapy. Although a variety of cancers are initially susceptible to chemotherapy, they eventually develop multi-drug resistance. Anti-tumor agents overcoming resistance and acting through two or more ways offer greater therapeutic benefits over single-mechanism entities. In this study, we report on a new family of bifunctional compounds that, offering the possibility of dual action (drug + radiotherapy combinations), may result in significant clinical benefits. This new family of compounds combines two fragments: the drug fragment is a lapatinib group, which inhibits the tyrosine kinase receptor activity, and an icosahedral boron cluster used as agents for neutron capture therapy (BNCT). The developed compounds were evaluated in vitro against different tyrosine kinase receptors (TKRs)-expressing tumoral cells, and in vitro–BNCT experiments were performed for two of the most promising hybrids, 19 and 22. We identified hybrid 19 with excellent selectivity to inhibit cell proliferation and ability to induce necrosis/apoptosis of glioblastoma U87 MG cell line. Furthermore, derivative 22, bearing a water-solubility-enhancing moiety, showed moderate inhibition of cell proliferation in both U87 MG and colorectal HT-29 cell lines. Additionally, the HT-29 cells accumulated adequate levels of boron after hybrids 19 and 22 incubations rendering, and after neutron irradiation, higher BNCT-effects than BPA. The attractive profile of developed hybrids makes them interesting agents for combined therapy.
Collapse
|
29
|
Chen Y, Quan Y, Xie Z. 8-Aminoquinoline as a bidentate traceless directing group for Cu-catalyzed selective B(4,5)–H disulfenylation of o-carboranes. Chem Commun (Camb) 2020; 56:12997-13000. [DOI: 10.1039/d0cc05207h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A traceless bidentate directing group guided copper catalyzed cage B(4,5)–H disulfenylation of o-carboranes has been achieved, where the in situ departure of 8-aminoquinoline circumvents additional process for directing group removal.
Collapse
Affiliation(s)
- Yu Chen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The Chinese University of Hong Kong
- Shatin, N.T
- China
| | - Yangjian Quan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The Chinese University of Hong Kong
- Shatin, N.T
- China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The Chinese University of Hong Kong
- Shatin, N.T
- China
| |
Collapse
|
30
|
Teixeira RG, Marques F, Robalo MP, Fontrodona X, Garcia MH, Geninatti Crich S, Viñas C, Valente A. Ruthenium carboranyl complexes with 2,2′-bipyridine derivatives for potential bimodal therapy application. RSC Adv 2020; 10:16266-16276. [PMID: 35498822 PMCID: PMC9053089 DOI: 10.1039/d0ra01522a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/06/2020] [Indexed: 11/21/2022] Open
Abstract
The substituents at the bipyridine lead to different cell uptake and stability.
Collapse
Affiliation(s)
- Ricardo G. Teixeira
- Centro de Química Estrutural
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares
- Instituto Superior Técnico
- Universidade de Lisboa
- 2695-006 Bobadela LRS
- Portugal
| | - M. Paula Robalo
- Área Departamental de Engenharia Química
- Instituto Superior de Engenharia de Lisboa
- Instituto Politécnico de Lisboa
- 1959-007 Lisboa
- Portugal
| | - Xavier Fontrodona
- Departament de Química and Serveis Tècnics de Recerca
- Universitat de Girona
- 17071 Girona
- Spain
| | - M. Helena Garcia
- Centro de Química Estrutural
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| | - Simonetta Geninatti Crich
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute
- Università di Torino
- 10126 Torino
- Italy
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- 08193 Bellaterra
- Spain
| | - Andreia Valente
- Centro de Química Estrutural
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| |
Collapse
|
31
|
Gozzi M, Murganic B, Drača D, Popp J, Coburger P, Maksimović‐Ivanić D, Mijatović S, Hey‐Hawkins E. Quinoline-Conjugated Ruthenacarboranes: Toward Hybrid Drugs with a Dual Mode of Action. ChemMedChem 2019; 14:2061-2074. [PMID: 31675152 PMCID: PMC6973020 DOI: 10.1002/cmdc.201900349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/19/2019] [Indexed: 12/26/2022]
Abstract
The role of autophagy in cancer is often complex, ranging from tumor-promoting to -suppressing effects. In this study, two novel hybrid molecules were designed, containing a ruthenacarborane fragment conjugated with a known modulator of autophagy, namely a quinoline derivative. The complex closo-[3-(η6 -p-cymene)-1-(quinolin-8-yl-acetate)-3,1,2-RuC2 B9 H10 ] (4) showed a dual mode of action against the LN229 (human glioblastoma) cell line, where it inhibited tumor-promoting autophagy, and strongly inhibited cell proliferation, de facto blocking cellular division. These results, together with the tendency to spontaneously form nanoparticles in aqueous solution, make complex 4 a very promising drug candidate for further studies in vivo, for the treatment of autophagy-prone glioblastomas.
Collapse
Affiliation(s)
- Marta Gozzi
- Institute of Inorganic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Blagoje Murganic
- National Institute of Republic of Serbia Department of Immunology Institute for Biological Research “Siniša Stanković”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Dijana Drača
- National Institute of Republic of Serbia Department of Immunology Institute for Biological Research “Siniša Stanković”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - John Popp
- Institute of Inorganic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Peter Coburger
- Institute of Inorganic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Danijela Maksimović‐Ivanić
- National Institute of Republic of Serbia Department of Immunology Institute for Biological Research “Siniša Stanković”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Sanja Mijatović
- National Institute of Republic of Serbia Department of Immunology Institute for Biological Research “Siniša Stanković”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Evamarie Hey‐Hawkins
- Institute of Inorganic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
32
|
Stogniy MY, Erokhina SA, Druzina AA, Sivaev IB, Bregadze VI. Synthesis of novel carboranyl azides and “click” reactions thereof. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.121007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Carboranylanilinoquinazoline EGFR-inhibitors: toward ‘lead-to-candidate’ stage in the drug-development pipeline. Future Med Chem 2019; 11:2273-2285. [DOI: 10.4155/fmc-2019-0060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Carboranylanilinoquinazoline-hybrids, developed for boron neutron capture therapy, have demonstrated cytotoxicity against murine-glioma cells with EGFR-inhibition ability. In addition, their adequate aqueous/metabolic stabilities and ability to cross blood–brain barrier make them good leads as to become antiglioma drugs. Aim: Analyze drug-like properties of representative carboranylanilinoquinazolines. Materials & methods: To expand carboranylanilinoquinazolines therapeutic spectrum, we studied their ability to act against glioma-mammal cells, U-87 MG and other tyrosine kinase-overexpress cells, HT-29. Additionally, we predicted theoretically and studied experimentally drug-like properties, in other words, organization for economic cooperation and development-recommended toxicity-studies and, due to some aqueous-solubility problems, and vehicularization for oral and intravenous administrations. Conclusion: We have identified a promising drug-candidate with broad activity spectrum, appropriate drug-like properties, adequate toxicological behavior and able ability to be loaded in suitable vehicles.
Collapse
|
34
|
Stockmann P, Gozzi M, Kuhnert R, Sárosi MB, Hey-Hawkins E. New keys for old locks: carborane-containing drugs as platforms for mechanism-based therapies. Chem Soc Rev 2019; 48:3497-3512. [PMID: 31214680 DOI: 10.1039/c9cs00197b] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Icosahedral carboranes in medicine are still an emerging class of compounds with potential beneficial applications in drug design. These highly hydrophobic clusters are potential "new keys for old locks" which open up an exciting field of research for well-known, but challenging important therapeutic substrates, as demonstrated by the numerous examples discussed in this review.
Collapse
Affiliation(s)
- Philipp Stockmann
- Universität Leipzig, Fakultät für Chemie und Mineralogie, Institut für Anorganische Chemie, Johannisallee 29, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
35
|
Tang X, He H, Fang X, Chang Z, Antilla JC. Design and synthesis of new alkyl-based chiral phosphoric acid catalysts. Chirality 2019; 31:592-602. [PMID: 31197898 DOI: 10.1002/chir.23101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/25/2019] [Accepted: 05/04/2019] [Indexed: 11/06/2022]
Abstract
Using chiral BINOL-derived phosphoric acids (PA's) to activate substrates for enhanced reactivity is now regarded as a powerful strategy to control enantioselectivity in asymmetric synthesis. Generally, most substituents at the 3,3'-positions of BINOL PA's are aryl derivatives. These derivatives are pivotal in attaining high selectivity. PA's with alkyl substituents in these positions have rarely been reported. Herein, we introduced alkyl-based substituents at the 3,3'-position of PA's. These new potential catalysts, if applied in reactions, may allow altered noncovalent interactions (as opposed to the typical aryl substituents in these positions) with substrates used in chiral PA-catalyzed chemistry in the future.
Collapse
Affiliation(s)
- Xiaoxue Tang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin, China
| | - Hualing He
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin, China
| | - Xiantao Fang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin, China
| | - Zexu Chang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin, China
| | - Jon C Antilla
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin, China
| |
Collapse
|
36
|
Jena BB, Satish L, Mahanta CS, Swain BR, Sahoo H, Dash BP, Satapathy R. Interaction of carborane-appended trimer with bovine serum albumin: A spectroscopic investigation. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.03.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Penkal’ AM, Somov NV, Shchegravina ES, Grishin ID. Ruthenium Diphosphine Closo-C2B9-Carborane Clusters with Nitrile Ligands: Synthesis and Structure Determination. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01605-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Nar I, Bortolussi S, Postuma I, Atsay A, Berksun E, Viola E, Ferrari C, Cansolino L, Ricciardi G, Donzello MP, Hamuryudan E. A Phthalocyanine‐
ortho
‐Carborane Conjugate for Boron Neutron Capture Therapy: Synthesis, Physicochemical Properties, and in vitro Tests. Chempluschem 2019; 84:345-351. [DOI: 10.1002/cplu.201800560] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/14/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Ilgın Nar
- Department of ChemistryIstanbul Technical University 34469, Maslak Istanbul Turkey
| | - Silva Bortolussi
- Dipartimento di FisicaUniversità of Pavia Via Bassi 6 27100 Pavia Italy
- Istituto Nazionale Di Fisica Nucleare (INFN)Unit of Pavia Italy
| | - Ian Postuma
- Dipartimento di FisicaUniversità of Pavia Via Bassi 6 27100 Pavia Italy
| | - Armağan Atsay
- Department of ChemistryIstanbul Technical University 34469, Maslak Istanbul Turkey
| | - Ekin Berksun
- Department of ChemistryIstanbul Technical University 34469, Maslak Istanbul Turkey
| | - Elisa Viola
- Dipartimento di ChimicaUniversità di Roma Sapienza Piazzale A. Moro 5 I-00185 Roma Italy
| | - Cinzia Ferrari
- Dipartimento di Scienze Clinico-ChirurgicheLaboratorio di Chirurgia SperimentaleUniversità di Pavia Via Ferrata 9 27100 Pavia Italy
| | - Laura Cansolino
- Dipartimento di Scienze Clinico-ChirurgicheLaboratorio di Chirurgia SperimentaleUniversità di Pavia Via Ferrata 9 27100 Pavia Italy
| | - Giampaolo Ricciardi
- Scuola di Scienze Agrarie, Alimentari, Forestali e Ambientali (SAFE)Università della Basilicata Viale dell'Ateneo Lucano 10 85100 Potenza Italy
| | - Maria Pia Donzello
- Dipartimento di ChimicaUniversità di Roma Sapienza Piazzale A. Moro 5 I-00185 Roma Italy
| | - Esin Hamuryudan
- Department of ChemistryIstanbul Technical University 34469, Maslak Istanbul Turkey
| |
Collapse
|
39
|
Cao HJ, Dai H, Zhang X, Yan H, Lu C. Synthesis and characterization of Cp*Ir-dithiolene-o-carborane phosphine complexes: A continuous investigation of B−H⋯π interaction. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1539257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Hou-ji Cao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Huimin Dai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Xiaolei Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Hong Yan
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Changsheng Lu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
- National Demonstration Center for Experimental Chemistry Education, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
40
|
Nucleophilic addition of hydrazine and benzophenone hydrazone to 2-acetonitrilium closo-decaborate cluster: Structural and photophysical study. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.07.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Burianova VK, Mikherdov AS, Bolotin DS, Novikov AS, Mokolokolo PP, Roodt A, Boyarskiy VP, Suslonov VV, Zhdanov AP, Zhizhin KY, Kuznetsov NT. Electrophilicity of aliphatic nitrilium closo -decaborate clusters: Hyperconjugation provides an unexpected inverse reactivity order. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Nar I, Atsay A, Gümrükçü S, Karazehir T, Hamuryudan E. Low‐Symmetry Phthalocyanine Cobalt Bis(dicarbollide) Conjugate for Hydrogen Reduction. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ilgın Nar
- Department of Chemistry Istanbul Technical University 34469 Maslak, Istanbul Turkey
| | - Armağan Atsay
- Department of Chemistry Istanbul Technical University 34469 Maslak, Istanbul Turkey
| | - Selin Gümrükçü
- Department of Chemistry Istanbul Technical University 34469 Maslak, Istanbul Turkey
| | - Tolga Karazehir
- Department of Energy System Engineering Adana Science and Technology University 01250 Saricam, Adana Turkey
| | - Esin Hamuryudan
- Department of Chemistry Istanbul Technical University 34469 Maslak, Istanbul Turkey
| |
Collapse
|
43
|
Push-pull alkenes bearing closo-decaborate cluster generated via nucleophilic addition of carbanions to borylated nitrilium salts. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.11.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Burianova VK, Bolotin DS, Mikherdov AS, Novikov AS, Mokolokolo PP, Roodt A, Boyarskiy VP, Dar’in D, Krasavin M, Suslonov VV, Zhdanov AP, Zhizhin KY, Kuznetsov NT. Mechanism of generation of closo-decaborato amidrazones. Intramolecular non-covalent B–H⋯π(Ph) interaction determines stabilization of the configuration around the amidrazone CN bond. NEW J CHEM 2018. [DOI: 10.1039/c8nj01018h] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Three types of N(H)-nucleophiles were used to study the nucleophilic addition to the CN group of the 2-propanenitrilium closo-decaborate cluster giving N-closo-decaborato amidrazones.
Collapse
|
45
|
Guo X, Huang C, Yang H, Shao Z, Gao K, Qin N, Li G, Wu J, Hou H. Cu(i) coordination polymers (CPs) as tandem catalysts for three-component sequential click/alkynylation cycloaddition reaction with regiocontrol. Dalton Trans 2018; 47:16895-16901. [DOI: 10.1039/c8dt04067b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Two synthesized Cu(i)-based CPs could catalyze the three-component sequential click/alkynylation cycloaddition reaction with high regioselectivity.
Collapse
Affiliation(s)
- Xiaoqing Guo
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Chao Huang
- Center for Advanced Materials Research
- Zhongyuan University of Technology
- Zhengzhou 450007
- P. R. China
| | - Haiyan Yang
- Center for Advanced Materials Research
- Zhongyuan University of Technology
- Zhengzhou 450007
- P. R. China
| | - Zhichao Shao
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Kuan Gao
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Na Qin
- Center for Advanced Materials Research
- Zhongyuan University of Technology
- Zhengzhou 450007
- P. R. China
| | - Gaoxiang Li
- Center for Advanced Materials Research
- Zhongyuan University of Technology
- Zhengzhou 450007
- P. R. China
| | - Jie Wu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Hongwei Hou
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
46
|
Couto M, García MF, Alamón C, Cabrera M, Cabral P, Merlino A, Teixidor F, Cerecetto H, Viñas C. Discovery of Potent EGFR Inhibitors through the Incorporation of a 3D-Aromatic-Boron-Rich-Cluster into the 4-Anilinoquinazoline Scaffold: Potential Drugs for Glioma Treatment. Chemistry 2017; 24:3122-3126. [PMID: 29194843 DOI: 10.1002/chem.201705181] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 11/06/2022]
Abstract
New 1,7-closo-carboranylanilinoquinazoline hybrids have been identified as EGFR inhibitors, one of them with higher affinity than the parent compound erlotinib. The comparative docking analysis with compounds bearing bioisoster-substructures, demonstrated the relevance of the 3D aromatic-boron-rich moiety for interacting into the EGFR ATP binding region. The capability to accumulate in glioma cells, the ability to cross the blood-brain barrier and the stability on simulated biological conditions, render these molecules as lead compounds for further structural modifications to obtain dual action drugs to treat glioblastoma.
Collapse
Affiliation(s)
- Marcos Couto
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.,Institut de Ciències dels Materials de Barcelona-CSIC, Campus UAB, 08193, Bellaterra, Spain.,Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400, Montevideo, Uruguay
| | - María Fernanda García
- Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400, Montevideo, Uruguay
| | - Catalina Alamón
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Mauricio Cabrera
- Laboratorio de I + D de Moléculas Bioactivas, Centro Universitario Paysandú, CenUR Litoral Norte, Universidad de la República, 60000, Paysandú, Uruguay
| | - Pablo Cabral
- Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400, Montevideo, Uruguay
| | - Alicia Merlino
- Laboratorio de Química TeóricayComputacional, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Francesc Teixidor
- Institut de Ciències dels Materials de Barcelona-CSIC, Campus UAB, 08193, Bellaterra, Spain
| | - Hugo Cerecetto
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.,Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400, Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciències dels Materials de Barcelona-CSIC, Campus UAB, 08193, Bellaterra, Spain
| |
Collapse
|