1
|
Wyndaele PJ, de Marneffe JF, Slaets R, Groven B, Franquet A, Brüner P, Grehl T, Gendt SD. 2D TMDC aging: a case study of monolayer WS 2and mitigation strategies. NANOTECHNOLOGY 2024; 35:475702. [PMID: 39178889 DOI: 10.1088/1361-6528/ad72fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Due to their unique properties, two-dimensional transition metal dichalcogenides (2D TMDCs) are considered for diverse applications in microelectronics, sensing, catalysis, to name a few. A common challenge in 2D TMDC research is the film's inherent instability i.e. spontaneous oxidation upon ambient exposure. The present study systematically explores the effect aging on the film composition and photoluminescent properties of monolayer WS2, synthetically grown by metal-organic chemical vapor deposition. The aging rate is investigated for different oxygen- (i.e. O2gas concentration and humidity) and light-controlled environments. Simple mitigation strategies that do not involve capping the 2D TMDC layer are discussed, and their effectiveness demonstrated by benchmarking the evolution in photoluminescence response against ambient exposed monolayer WS2. These results highlight the need to store 2D TMDCs in controlled environments to preserve the film quality and how future studies can account for the aging effect.
Collapse
Affiliation(s)
- P-J Wyndaele
- Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- imec, 3001 Heverlee, Belgium
| | | | - R Slaets
- Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | | | | | - P Brüner
- IONTOF GmbH, 48149 Münster, Germany
| | - T Grehl
- IONTOF GmbH, 48149 Münster, Germany
| | - S De Gendt
- Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- imec, 3001 Heverlee, Belgium
| |
Collapse
|
2
|
Hao Y, Sun TY, Ye JT, Huang LF, Wang LP. Accurate Simulation for 2D Lubricating Materials in Realistic Environments: From Classical to Quantum Mechanical Methods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312429. [PMID: 38655823 DOI: 10.1002/adma.202312429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Indexed: 04/26/2024]
Abstract
2D materials such as graphene, MoS2, and hexagonal BN are the most advanced solid lubricating materials with superior friction and anti-wear performance. However, as a typical surface phenomenon, the lubricating properties of 2D materials are largely dependent on the surrounding environment, such as temperature, stress, humidity, oxygen, and other environmental substances. Given the technical challenges in experiment for real-time and in situ detection of microscopic environment-material interaction, recent years have witnessed the acceleration of computational research on the lubrication behavior of 2D materials in realistic environments. This study reviews the up-to-date computational studies for the effect of environmental factors on the lubrication performance of 2D materials, summarizes the theoretical methods in lubrication from classical to quantum-mechanics ones, and emphasizes the importance of quantum method in revealing the lubrication mechanism at atomic and electronic level. An effective simulation method based on ab initio molecular dynamics is also proposed to try to provide more ways to accurately reveal the friction mechanisms and reliably guide the lubricating material design. On the basis of current development, future prospects, and challenges for the simulation and modeling in lubrication with realistic environment are outlined.
Collapse
Affiliation(s)
- Yu Hao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Tian-Yu Sun
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jin-Tao Ye
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Liang-Feng Huang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Li-Ping Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
3
|
Bussolotti F, Kawai H, Maddumapatabandi TD, Fu W, Khoo KH, Goh KEJ. Role of S-Vacancy Concentration in Air Oxidation of WS 2 Single Crystals. ACS NANO 2024; 18:8706-8717. [PMID: 38465866 DOI: 10.1021/acsnano.3c10389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Semiconducting transition metal dichalcogenides (TMDs) are a class of two-dimensional materials with potential applications in optoelectronics, spintronics, valleytronics, and quantum information processing. Understanding their stability under ambient conditions is critical for determining their in-air processability during device fabrication and for predicting their long-term device performance stability. While the effects of environmental conditions (i.e., oxygen, moisture, and light) on TMD degradation are well-acknowledged, the role of defects in driving their oxidation remains unclear. We conducted a systematic X-ray photoelectron spectroscopy study on WS2 single crystals with different surface S-vacancy concentrations formed via controlled argon sputtering. Oxidation primarily occurred at defect concentrations ≥ 10%, resulting in stoichiometric WO3 formation, while a stable surface was observed at lower concentrations. Theoretical calculations informed us that single S-vacancies do not spontaneously oxidize, while defect pairing at high vacancy concentrations facilitates O2 dissociation and subsequent oxide formation. Our XPS results also point to vacancy-related structural and electrostatic disorder as the main origin for the p-type characteristics that persists even after oxidation. Despite the complex interplay between defects and TMD oxidation processes, our work unveils scientifically informed guidance for working effectively with TMDs.
Collapse
Affiliation(s)
- Fabio Bussolotti
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Hiroyo Kawai
- Institute of High-Performance Computing (IHPC), Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Thathsara D Maddumapatabandi
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Wei Fu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Khoong Hong Khoo
- Institute of High-Performance Computing (IHPC), Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Kuan Eng Johnson Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| |
Collapse
|
4
|
Li Z, Chen Z, Xiao L, Zhou X, Zhao C, Zhang Y. Extremely Enhanced Photoluminescence in MoS 2-Derived Quantum Sheets. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38470979 DOI: 10.1021/acsami.3c17934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Molybdenum disulfide (MoS2) quantum sheets (QSs) are attractive for applications due to their tunable energy band structures and optical and electronic properties. The photoluminescence quantum yield (PLQY) of MoS2 QSs achieved by mechanical and liquid exfoliation and chemical vapor deposition is low. Some studies have reported that chemical treatment and elemental doping can improve the PLQY of transition metal dichalcogenides (TMDs), but this is limited by complex instruments and reactions. In this study, a heat treatment method based on a polar solvent is reported to improve the PLQY and photoluminescence (PL) intensity of MoS2 QSs at room temperature. The absolute PLQY of treated MoS2 QSs is increased to 18.5%, and the PL intensity is increased by a factor of 64. This method is also effective for tungsten disulfide (WS2) QSs. The PL enhancement of QSs is attributed to oxidation of the edges. Such passivation/deformation of MoS2 QSs facilitates the radiative route rather than the nonradiative route, resulting in extreme enhancement of the PL. Our work could provide novel insights/routes toward the PL enhancement of TMD QSs.
Collapse
Affiliation(s)
- Zhangqiang Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhexue Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liuyang Xiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuanping Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ce Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Dong C, Lai Z, Wang H. Design of MoS 2 edge-anchored single-atom catalysts for propane dehydrogenation driven by DFT and microkinetic modeling. Phys Chem Chem Phys 2024; 26:5303-5310. [PMID: 38268420 DOI: 10.1039/d3cp05197h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The design of efficient catalysts for direct propane dehydrogenation (PDH) to inhibit coke formation and deactivation of traditional Pt-based catalysts are challenging tasks. Herein, by exploiting the unique geometric feature and tunability of single atom catalysts (SACs), a wide range of 3d-5d transition metals anchored on the MoS2 edge in the single atom form (TM1-S4/edge) are comprehensively investigated for the PDH application by first-principles calculations, ab initio molecular dynamics (AIMD) simulations and microkinetic modeling. Five criteria are assessed in terms of the feasibility of preparation, practical stability, feasibility of recovery after air oxidation, activity and selectivity. We identified Ru1-S4/edge SAC as the most promising candidate with activity six times higher than that of the conventional Pt(111) catalyst. Interestingly, AIMD simulations show that the motif region of the highly reactive TM1-S4/edge SACs (such as Ru, Os, Rh, and Ir) exhibits a dynamic change, with a TM-coordinated S atom tending to flutter at reaction temperatures and return to its initial position when the species is adsorbed on TMs, thereby affecting the PDH activities. In addition to identifying the potential PDH catalyst from a practical application point of view, we believe that this study also provides a comprehensive picture for the theoretical screening of low-coordination single-atom catalysts.
Collapse
Affiliation(s)
- Chunguang Dong
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Zhuangzhuang Lai
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Haifeng Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
6
|
Wang X, Zhao X, Guo S, Weller D, Quan S, Wu M, Liu W, Liu R. Visualized and Nondestructive Quality Identification of Two-Dimensional MoS 2 Based on Principal Component Analysis. J Phys Chem Lett 2023; 14:8088-8094. [PMID: 37656910 DOI: 10.1021/acs.jpclett.3c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
To date, the common quality characterizations for MoS2 are inefficient or cause irreversible damage to the samples, which have limited scalability and low throughput. Here, we propose a visualized and nondestructive approach to evaluate the quality of MoS2 based on the PCA machine learning method. Through PCA processing of PL mapping, the CVD grown MoS2 with different edge defect densities can be well distinguished. Furthermore, six twin GBs along the sulfur zigzag direction of the six pointed MoS2 stars are also successfully identified. To verify the correctness of the identification results, we measured the lifetime mapping and thermal expansion coefficient of the synthesized MoS2 samples. It is found that the high quality MoS2 samples have a shorter carrier lifetime (∼0.291 ns) and lower thermal expansion coefficient (∼2.03 × 10-5K-1). Therefore, our work offers a new approach to evaluate the quality of MoS2 to drive their practical application.
Collapse
Affiliation(s)
- Xuefeng Wang
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China
| | - Xiaoyu Zhao
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China
| | - Shuai Guo
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China
| | - Dieter Weller
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Sufeng Quan
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China
| | - Mengxuan Wu
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China
| | - Wenjun Liu
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China
| | - Ruibin Liu
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
7
|
Pace G, Del Rio Castillo AE, Lamperti A, Lauciello S, Bonaccorso F. 2D Materials-based Electrochemical Triboelectric Nanogenerators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211037. [PMID: 36994787 DOI: 10.1002/adma.202211037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/12/2023] [Indexed: 05/17/2023]
Abstract
The integration of 2D materials in triboelectric nanogenerators (TENGs) is known to increase the mechanical-to-electrical power conversion efficiency. 2D materials are used in TENGs with multiple roles as triboelectric material, charge-trapping fillers, or as electrodes. Here, novel TENGs based on few-layers graphene (FLG) electrodes and stable gel electrolytes composed of liquid phase exfoliated 2D-transition metal dichalcogenides and polyvinyl alcohol are developed. TENGs embedding FLG and gel composites show competitive open-circuit voltage (≈ 300 V), instant peak power (530 mW m-2 ), and stability (> 11 months). These values correspond to a seven-fold higher electrical output compared to TENGs embedding bare FLG electrodes. It is demonstrated that such a significant improvement depends on the high electrical double-layer capacitance (EDLC) of FLG electrodes functionalized with the gel composites. The wet encapsulation of the TENGs is shown to be an effective strategy to increase their power output further highlighting the EDLC role. It is also shown that the EDLC is dependent upon the transition metal (W vs Mo) rather than the relative abundance of 1T or 2H phases. Overall, this work lays down the roots for novel sustainable electrochemical-(e)-TENGs developed exploiting strategies typically used in electrochemical capacitors.
Collapse
Affiliation(s)
- Giuseppina Pace
- Institute for Microelectronics and Microsystems - National Research Council (IMM-CNR), Via C. Olivetti 2, Agrate, Milan, 20864, Italy
- Fondazione Istituto Italiano di Tecnologia (IIT), Via Morego, 30, Genova, 16136, Italy
| | | | - Alessio Lamperti
- Institute for Microelectronics and Microsystems - National Research Council (IMM-CNR), Via C. Olivetti 2, Agrate, Milan, 20864, Italy
| | - Simone Lauciello
- Fondazione Istituto Italiano di Tecnologia (IIT), Via Morego, 30, Genova, 16136, Italy
| | - Francesco Bonaccorso
- Fondazione Istituto Italiano di Tecnologia (IIT), Via Morego, 30, Genova, 16136, Italy
- BeDimensional S.p.A, Via Lungotorrente Secca 30R, Genova, 16163, Italy
| |
Collapse
|
8
|
Li S, Nishimura T, Maruyama M, Okada S, Nagashio K. Experimental verification of SO 2 and S desorption contributing to defect formation in MoS 2 by thermal desorption spectroscopy. NANOSCALE ADVANCES 2023; 5:405-411. [PMID: 36756254 PMCID: PMC9846482 DOI: 10.1039/d2na00636g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
The defect-free surface of MoS2 is of high importance for applications in electronic devices. Theoretical calculations have predicted that oxidative etching could be responsible for sulfur vacancy formation. No direct experimental evidence, however, points out the role of adsorbed oxygen on sulfur vacancy formation for MoS2, especially on an insulating SiO2/Si substrate. Herein, by applying thermal desorption spectroscopy, we found that sulfur loss can be tightly coupled to adsorbed oxygen, as confirmed by observation of SO2 desorption. With annealing MoS2, even under ultrahigh vacuum, oxygen molecules adsorbed on MoS2 assist the sulfur atom in dissociating from MoS2, and thus, defects are formed as the result of SO2 desorption from 200 °C to 600 °C. At higher temperatures (over 800 °C), on the other hand, direct sulfur desorption becomes dominant. This finding can be well explained by combining the morphology investigation enabled by atomic layer deposition at defective sites and optical transitions observed by photoluminescence measurements. Moreover, a preannealing treatment prior to exfoliation was found to be an effective method to remove the adsorbed oxygen, thus preventing defect formation.
Collapse
Affiliation(s)
- Shuhong Li
- Department of Materials Engineering, University of Tokyo Tokyo 113-8656 Japan
- Department of Physics, University of Tsukuba Tsukuba Ibaraki 305-8577 Japan
| | - Tomonori Nishimura
- Department of Materials Engineering, University of Tokyo Tokyo 113-8656 Japan
| | - Mina Maruyama
- Department of Physics, University of Tsukuba Tsukuba Ibaraki 305-8577 Japan
| | - Susumu Okada
- Department of Physics, University of Tsukuba Tsukuba Ibaraki 305-8577 Japan
| | - Kosuke Nagashio
- Department of Materials Engineering, University of Tokyo Tokyo 113-8656 Japan
| |
Collapse
|
9
|
Sovizi S, Tosoni S, Szoszkiewicz R. MoS 2 oxidative etching caught in the act: formation of single (MoO 3) n molecules. NANOSCALE ADVANCES 2022; 4:4517-4525. [PMID: 36341303 PMCID: PMC9595104 DOI: 10.1039/d2na00374k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
We report the presence of sub-nm MoO x clusters formed on basal planes of the 2H MoS2 crystals during thermal oxidative etching in air at a temperature of 370 °C. Using high resolution non-contact atomic force microscopy (AFM) we provide a histogram of their preferred heights. The AFM results combined with density functional theory (DFT) simulations show remarkably well that the MoO x clusters are predominantly single MoO3 molecules and their dimers at the sulfur vacancies. Additional Raman spectroscopy, and energy and wavelength dispersive X-ray spectroscopies as well as Kelvin probe AFM investigations confirmed the presence of the MoO3/MoO x species covering the MoS2 surface only sparsely. The X-ray absorption near edge spectroscopy data confirm the MoO3 stoichiometry. Taken together, our results show that oxidative etching and removal of Mo atoms at the atomic level follow predominantly via formation of single MoO3 molecules. Such findings confirm the previously only proposed oxidative etching stoichiometry.
Collapse
Affiliation(s)
- Saeed Sovizi
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki I Wigury 101 02-089 Warsaw Poland
| | - Sergio Tosoni
- Dipartimento di Scienza dei materiali, Università di Milano-Bicocca via Roberto Cozzi 55 20125 Milan Italy
| | - Robert Szoszkiewicz
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki I Wigury 101 02-089 Warsaw Poland
| |
Collapse
|
10
|
Kirubasankar B, Won YS, Adofo LA, Choi SH, Kim SM, Kim KK. Atomic and structural modifications of two-dimensional transition metal dichalcogenides for various advanced applications. Chem Sci 2022; 13:7707-7738. [PMID: 35865881 PMCID: PMC9258346 DOI: 10.1039/d2sc01398c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) and their heterostructures have attracted significant interest in both academia and industry because of their unusual physical and chemical properties. They offer numerous applications, such as electronic, optoelectronic, and spintronic devices, in addition to energy storage and conversion. Atomic and structural modifications of van der Waals layered materials are required to achieve unique and versatile properties for advanced applications. This review presents a discussion on the atomic-scale and structural modifications of 2D TMDs and their heterostructures via post-treatment. Atomic-scale modifications such as vacancy generation, substitutional doping, functionalization and repair of 2D TMDs and structural modifications including phase transitions and construction of heterostructures are discussed. Such modifications on the physical and chemical properties of 2D TMDs enable the development of various advanced applications including electronic and optoelectronic devices, sensing, catalysis, nanogenerators, and memory and neuromorphic devices. Finally, the challenges and prospects of various post-treatment techniques and related future advanced applications are addressed.
Collapse
Affiliation(s)
- Balakrishnan Kirubasankar
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Department of Chemistry, Sookmyung Women's University Seoul 14072 South Korea
| | - Yo Seob Won
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| | - Laud Anim Adofo
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| | - Soo Ho Choi
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| | - Soo Min Kim
- Department of Chemistry, Sookmyung Women's University Seoul 14072 South Korea
| | - Ki Kang Kim
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| |
Collapse
|
11
|
Karmodak N, Bursi L, Andreussi O. Oxygen Evolution and Reduction on Two-Dimensional Transition Metal Dichalcogenides. J Phys Chem Lett 2022; 13:58-65. [PMID: 34958230 DOI: 10.1021/acs.jpclett.1c03431] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Motivated by the need to find good electrocatalysts for water oxidation and O2 reduction, composed of nontoxic and earth-abundant elements, a systematic screening of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is performed. To identify compounds that are intrinsically active and can fully take advantage of the high surface area of 2D catalysts, this study focuses on the properties of the ideal basal planes of 2D TMDCs, in the 2H, 1T, and 1T' phases. Over two hundred materials proposed in computational databases are studied by means of first-principles-based simulations coupled with continuum embedding models to account for the presence of electrochemical environments. The best candidates with overpotentials for the oxygen evolution and reduction reactions (OER and ORR) lower than 0.5 V under acidic conditions and higher stability against degradation in electrochemical environments are selected. For OER, the designed workflow identifies one active and thermodynamically stable material, and seven materials that are metastable at the oxidative potentials and acidic pH. On the other hand, for ORR, we identify 20 materials with overpotentials less than 0.5 V. Among these compounds, six bifunctional materials have been experimentally reported, with 1T-NbTe2 and 1T'-MoTe2 being the best performing catalysts for OER and ORR, respectively.
Collapse
Affiliation(s)
- Naiwrit Karmodak
- Department of Physics, University of North Texas, Denton, Texas 76 203, United States
| | - Luca Bursi
- Department of Physics, University of North Texas, Denton, Texas 76 203, United States
| | - Oliviero Andreussi
- Department of Physics, University of North Texas, Denton, Texas 76 203, United States
| |
Collapse
|
12
|
Hua X, Axenie T, Goldaraz MN, Kang K, Yang EH, Watanabe K, Taniguchi T, Hone J, Kim B, Herman IP. Improving the Optical Quality of MoSe 2 and WS 2 Monolayers with Complete h-BN Encapsulation by High-Temperature Annealing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2255-2262. [PMID: 34969239 DOI: 10.1021/acsami.1c18991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We improved the optical quality and stability of an exfoliated monolayer (ML) MoSe2 and chemical vapor deposition (CVD)-grown WS2 MLs by encapsulating and sealing them with both top and bottom few-layer h-BN, as tested by subsequent high-temperature annealing up to 873 K and photoluminescence (PL) measurements. These transition-metal dichalcogenide (TMD) MLs remained stable up to this maximum temperature, as seen visually. After the heating/cooling cycle, the integrated photoluminescence (PL) intensity at 300 K in the MoSe2 ML was ∼4 times larger than that before heating and that from exciton and trion PL in the analogous WS2 ML sample was ∼14 times and ∼2.5 times larger at 77 K and the exciton peak was ∼9.5 times larger at 300 K. This is attributed to the reduction of impurities, the lateral expulsion of contamination leading to clean and atomically flat surfaces, and the sealing provided by the h-BN layers that prevents the diffusion of molecules such as trace O2 and H2O to the TMD ML. Stability and optical performance are much improved compared to that in earlier work using top h-BN only, in which the WS2 ML PL intensity decreased even for an optimal gas environment. This complete encapsulation is particularly promising for CVD-grown TMD MLs because they have relatively more charge and other impurities than do exfoliated MLs. These results open a new route for improving the optical properties of TMD MLs and their performance and applications both at room and higher temperatures.
Collapse
Affiliation(s)
- Xiang Hua
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Theodor Axenie
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Mateo Navarro Goldaraz
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Kyungnam Kang
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Eui-Hyeok Yang
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Bumho Kim
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Irving P Herman
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
13
|
Zhu H, Jin R, Chang YC, Zhu JJ, Jiang D, Lin Y, Zhu W. Understanding the Synergistic Oxidation in Dichalcogenides through Electrochemiluminescence Blinking at Millisecond Resolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105039. [PMID: 34561901 DOI: 10.1002/adma.202105039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/08/2021] [Indexed: 05/28/2023]
Abstract
The oxidation of transition metal dichalcogenides (TMDCs) has been extensively studied and applied in electronics, optics, and energy sources because of its tunable structure and performance. However, due to the lack of appropriate technology, dynamically observe the oxidation process remains an arduous task. Herein, the synergistic oxidation between edge and basal plane in molybdenum disulfide (MoS2 ) is observed through electrogenerated chemiluminescence (ECL) blinking with a millisecond resolution. In addition, the ECL method provides a simple, convenient, and quick way to judge structural changes. The transient elevation of the ECL intensity proved the intermittent doping of oxygen at MoS2 , which generates O-atom active sites. High ECL intensity enhanced from the produced hydroperoxide intermediates eases the monitoring of MoS2 particles. Further study shows that the formation of sulfur vacancies at MoS2 , by the edge activation of hydrogen peroxide and the migration of oxygen to the basal plane, is more conducive to oxygen doping that favors the formation of MoOMo as new active sites to induce bursts. The revealing of sulfur vacancy-governed blinking from MoS2 indicates a complex interaction between oxygen and MoS2 . The same phenomenon is observed on tungsten disulfide (WS2 ), which provides new information about the oxidation feature of 2D dichalcogenides.
Collapse
Affiliation(s)
- Hui Zhu
- School of the Environment, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Rong Jin
- School of the Environment, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yu-Chung Chang
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Jun-Jie Zhu
- School of the Environment, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Dechen Jiang
- School of the Environment, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Wenlei Zhu
- School of the Environment, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
14
|
Szoszkiewicz R. Local Interactions of Atmospheric Oxygen with MoS 2 Crystals. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5979. [PMID: 34683567 PMCID: PMC8540515 DOI: 10.3390/ma14205979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022]
Abstract
Thin and single MoS2 flakes are envisioned to contribute to the flexible nanoelectronics, particularly in sensing, optoelectronics and energy harvesting. Thus, it is important to study their stability and local surface reactivity. Their most straightforward surface reactions in this context pertain to thermally induced interactions with atmospheric oxygen. This review focuses on local and thermally induced interactions of MoS2 crystals and single MoS2 flakes. First, experimentally observed data for oxygen-mediated thermally induced morphological and chemical changes of the MoS2 crystals and single MoS2 flakes are presented. Second, state-of-the-art mechanistic insight from computer simulations and arising open questions are discussed. Finally, the properties and fate of the Mo oxides arising from thermal oxidation are reviewed, and future directions into the research of the local MoS2/MoOx interface are provided.
Collapse
Affiliation(s)
- Robert Szoszkiewicz
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
15
|
Karger L, Synnatschke K, Settele S, Hofstetter YJ, Nowack T, Zaumseil J, Vaynzof Y, Backes C. The Role of Additives in Suppressing the Degradation of Liquid-Exfoliated WS 2 Monolayers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102883. [PMID: 34477255 PMCID: PMC11469120 DOI: 10.1002/adma.202102883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Group VI transition metal dichalcogenides (TMDs) are considered to be chemically widely inert, but recent reports point toward an oxidation of monolayered sheets in ambient conditions, due to defects. To date, the degradation of monolayered TMDs is only studied on individual, substrate-supported nanosheets with varying defect type and concentration, strain, and in an inhomogeneous environment. Here, degradation kinetics of WS2 nanosheet ensembles in the liquid phase are investigated through photoluminescence measurements, which selectively probe the monolayers. Monolayer-enriched WS2 dispersions are produced with varying lateral sizes in the two common surfactant stabilizers sodium cholate (SC) and sodium dodecyl sulfate (SDS). Well-defined degradation kinetics are observed, which enable the determination of activation energies of the degradation and decouple photoinduced and thermal degradation. The thermal degradation is slower than the photoinduced degradation and requires higher activation energy. Using SC as surfactant, it is sufficiently suppressed. The photoinduced degradation can be widely prevented through chemical passivation achieved through the addition of cysteine which, on the one hand, coordinates to defects on the nanosheets and, on the other hand, stabilizes oxides on the surface, which shield the nanosheets from further degradation.
Collapse
Affiliation(s)
- Leonhard Karger
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Kevin Synnatschke
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Simon Settele
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Yvonne J. Hofstetter
- Integrated Center for Applied Photophysics and Photonic MaterialsTU DresdenNöthnitzer Straße 6101187DresdenGermany
- Center for Advancing Electronics Dresden (cfaed)TU DresdenHelmhotzstraße 1801069DresdenGermany
| | - Tim Nowack
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Jana Zaumseil
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht‐Karls‐Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Yana Vaynzof
- Integrated Center for Applied Photophysics and Photonic MaterialsTU DresdenNöthnitzer Straße 6101187DresdenGermany
- Center for Advancing Electronics Dresden (cfaed)TU DresdenHelmhotzstraße 1801069DresdenGermany
| | - Claudia Backes
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| |
Collapse
|
16
|
Chamlagain B, Khondaker SI. Rapid Degradation of the Electrical Properties of 2D MoS 2 Thin Films under Long-Term Ambient Exposure. ACS OMEGA 2021; 6:24075-24081. [PMID: 34568686 PMCID: PMC8459407 DOI: 10.1021/acsomega.1c03522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 06/08/2023]
Abstract
The MoS2 thin film has attracted a lot of attention due to its potential applications in flexible electronics, sensors, catalysis, and heterostructures. Understanding the effect of long-term ambient exposure on the electrical properties of the thin film is important for achieving many overreaching goals of this material. Here, we report for the first time a systematic study of electrical property variation and stability of MoS2 thin films under ambient exposure of up to a year. The MoS2 thin films were grown via the sulfurization of 6 nm thick molybdenum films. We found that the resistance of the samples increases by 114% just in 4 weeks and 430% in 4 months and they become fully insulated in a year of ambient exposure. The dual-sweep current-voltage (I-V) characteristic shows hysteretic behavior for a 4-month-old sample which further exhibits pronounced nonlinear I-V curves and hysteretic behavior after 8 months. The X-ray photoelectron spectroscopy measurements show that the MoS2 thin film gradually oxidizes and 13.1% of MoO3 and 11.8% oxide of sulfur were formed in 4 months, which further increased to 23.1 and 12.7% in a year, respectively. The oxide of the sulfur peak was not reported in any previous stability studies of exfoliated and chemical vapor deposition-grown MoS2, suggesting that the origin of this peak is related to the distinct crystallinity of the MoS2 thin film due to its smaller grain sizes, abundant grain boundaries, and exposed edges. Raman studies show the broadening of E2g 1 and A1g peaks with increasing exposure time, suggesting an increase in the disorder in MoS2. It is also found that coating the MoS2 thin film with polymethylmethacrylate can effectively prevent the electrical property degradation, showing only a 6% increase in resistance in 4 months and 40% over a year of ambient exposure.
Collapse
Affiliation(s)
- Bhim Chamlagain
- NanoScience
Technology Center and Department of Physics, University of Central Florida, Orlando, Florida 32826, United States
| | - Saiful I. Khondaker
- NanoScience
Technology Center and Department of Physics, University of Central Florida, Orlando, Florida 32826, United States
- School
of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida 32826, United States
| |
Collapse
|
17
|
Hua X, Zhang D, Kim B, Seo D, Kang K, Yang EH, Hu J, Chen X, Liang H, Watanabe K, Taniguchi T, Hone J, Kim YD, Herman IP. Stabilization of Chemical-Vapor-Deposition-Grown WS 2 Monolayers at Elevated Temperature with Hexagonal Boron Nitride Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31271-31278. [PMID: 34170658 DOI: 10.1021/acsami.1c06348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemical vapor deposition (CVD)-grown flakes of high-quality monolayers of WS2 can be stabilized at elevated temperatures by encapsulation with several layer hexagonal boron nitride (h-BN), but to different degrees in the presence of ambient air, flowing N2, and flowing forming gas (95% N2, 5% H2). The best passivation of WS2 at elevated temperature occurs for h-BN-covered samples with flowing N2 (after heating to 873 K), as judged by optical microscopy and photoluminescence (PL) intensity after a heating/cooling cycle. Stability is worse for uncovered samples, but best with flowing forming gas. PL from trions, in addition to that from excitons, is seen for covered WS2 only for forming gas, during cooling below ∼323 K; the trion has an estimated binding energy of ∼28 meV. It might occur because of doping level changes caused by charge defect generation by H2 molecules diffusing between the h-BN and the SiO2/Si substrate. The decomposition of uncovered WS2 flakes in air suggests a dissociation and chemisorption energy barrier of O2 on the WS2 surface of ∼1.6 eV. Fitting the high-temperature PL intensities in air gives a binding energy of a free exciton of ∼229 meV.
Collapse
Affiliation(s)
- Xiang Hua
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Datong Zhang
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Bumho Kim
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Dongjea Seo
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Department of Electrical and Computer Engineering, University of Minnesota,Minneapolis, Minnesota 55455, United States
| | - Kyungnam Kang
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030 United States
| | - Eui-Hyeok Yang
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030 United States
| | - Jiayang Hu
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Xianda Chen
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Haoran Liang
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Kenji Watanabe
- Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Young Duck Kim
- Department of Physics, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Information Display, Kyung Hee University, Seoul 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Irving P Herman
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
18
|
Shaw ZL, Kuriakose S, Cheeseman S, Dickey MD, Genzer J, Christofferson AJ, Crawford RJ, McConville CF, Chapman J, Truong VK, Elbourne A, Walia S. Antipathogenic properties and applications of low-dimensional materials. Nat Commun 2021; 12:3897. [PMID: 34162835 PMCID: PMC8222221 DOI: 10.1038/s41467-021-23278-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/14/2021] [Indexed: 01/31/2023] Open
Abstract
A major health concern of the 21st century is the rise of multi-drug resistant pathogenic microbial species. Recent technological advancements have led to considerable opportunities for low-dimensional materials (LDMs) as potential next-generation antimicrobials. LDMs have demonstrated antimicrobial behaviour towards a variety of pathogenic bacterial and fungal cells, due to their unique physicochemical properties. This review provides a critical assessment of current LDMs that have exhibited antimicrobial behaviour and their mechanism of action. Future design considerations and constraints in deploying LDMs for antimicrobial applications are discussed. It is envisioned that this review will guide future design parameters for LDM-based antimicrobial applications.
Collapse
Affiliation(s)
- Z L Shaw
- School of Engineering, RMIT University, Melbourne, Australia
| | - Sruthi Kuriakose
- School of Engineering, RMIT University, Melbourne, Australia
- Functional Materials and Microsystems Research Group, MicroNano Research Facility, RMIT University, Melbourne, Australia
| | | | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | | - Chris F McConville
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3220, Australia
| | - James Chapman
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Vi Khanh Truong
- School of Science, RMIT University, Melbourne, VIC, Australia
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC, Australia.
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne, Australia.
- Functional Materials and Microsystems Research Group, MicroNano Research Facility, RMIT University, Melbourne, Australia.
| |
Collapse
|
19
|
Martincová J, Otyepka M, Lazar P. Atomic-Scale Edge Morphology, Stability, and Oxidation of Single-Layer 2H-TaS 2. Chempluschem 2020; 85:2557-2564. [PMID: 33258307 DOI: 10.1002/cplu.202000599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/13/2020] [Indexed: 01/02/2023]
Abstract
Tantalum disulphide belongs to the group of transition metal dichalcogenides (TMDs) and has attracted attention for its unique structural, electronic, and catalytic properties. Herein, we report the edge properties of single-layer 2H-TaS2 studied by using density functional theory calculations, because the knowledge of the edge morphology, stability, and surface energy is essential for the determination of nanoparticle shapes and understanding the nature of catalytically active sites. We calculate the grand canonical potential of TaS2 clusters having various edge morphologies to evaluate the edge energies of the Ta-edge and S-edge terminated surfaces. Under S-rich conditions, the most likely shape of TaS2 is a deformed hexagon dominated by the Ta-edge covered by S monomers, while the triangular shape is preferred under S-poor conditions. Exposed edges of the single-layer TaS2 are susceptible to oxidation in air because both oxygen adsorption and substitution at the edge are strongly exothermic, -0.96 and -2.20 eV for single O atom, respectively. The XPS calculation shows that specific initial steps of oxidative process (adsorption, vacancy creation, substitution) are unlikely to be distinguished in the XPS spectra due to small shift of respective binding energies, but initial edge oxidation of TaS2 should be observable by an asymmetry of the Ta 4f doublet towards higher binding energies.
Collapse
Affiliation(s)
- Jana Martincová
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, tř. 17. Listopadu 12, 771 46, Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, tř. 17. Listopadu 12, 771 46, Olomouc, Czech Republic
| | - Petr Lazar
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, tř. 17. Listopadu 12, 771 46, Olomouc, Czech Republic
| |
Collapse
|
20
|
Pan D, Fang Z, Yang E, Ning Z, Zhou Q, Chen K, Zheng Y, Zhang Y, Shen Y. Facile Preparation of WO 3-x Dots with Remarkably Low Toxicity and Uncompromised Activity as Co-reactants for Clinical Diagnosis by Electrochemiluminescence. Angew Chem Int Ed Engl 2020; 59:16747-16754. [PMID: 32524717 DOI: 10.1002/anie.202007451] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Indexed: 01/26/2023]
Abstract
The exceptional nature of WO3-x dots has inspired widespread interest, but it is still a significant challenge to synthesize high-quality WO3-x dots without using unstable reactants, expensive equipment, and complex synthetic processes. Herein, the synthesis of ligand-free WO3-x dots is reported that are highly dispersible and rich in oxygen vacancies by a simple but straightforward exfoliation of bulk WS2 and a mild follow-up chemical conversion. Surprisingly, the WO3-x dots emerged as co-reactants for the electrochemiluminescence (ECL) of Ru(bpy)3 2+ with a comparable ECL efficiency to the well-known Ru(bpy)3 2+ /tripropylamine (TPrA) system. Moreover, compared to TPrA, whose toxicity remains a critical issue of concern, the WO3-x dots were ca. 300-fold less toxic. The potency of WO3-x dots was further explored in the detection of circulating tumor cells (CTCs) with the most competitive limit of detection so far.
Collapse
Affiliation(s)
- Deng Pan
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China.,Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhengzou Fang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Erli Yang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Zhenqiang Ning
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Qing Zhou
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Kaiyang Chen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yongjun Zheng
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| |
Collapse
|
21
|
Pan D, Fang Z, Yang E, Ning Z, Zhou Q, Chen K, Zheng Y, Zhang Y, Shen Y. Facile Preparation of WO
3−
x
Dots with Remarkably Low Toxicity and Uncompromised Activity as Co‐reactants for Clinical Diagnosis by Electrochemiluminescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Deng Pan
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Zhengzou Fang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Erli Yang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Zhenqiang Ning
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Qing Zhou
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Kaiyang Chen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Yongjun Zheng
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Yuanjian Zhang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Yanfei Shen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| |
Collapse
|
22
|
Yoo C, Kaium MG, Hurtado L, Li H, Rassay S, Ma J, Ko TJ, Han SS, Shawkat MS, Oh KH, Chung HS, Jung Y. Wafer-Scale Two-Dimensional MoS 2 Layers Integrated on Cellulose Substrates Toward Environmentally Friendly Transient Electronic Devices. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25200-25210. [PMID: 32400153 DOI: 10.1021/acsami.0c06198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We explored the feasibility of wafer-scale two-dimensional (2D) molybdenum disulfide (MoS2) layers toward futuristic environmentally friendly electronics that adopt biodegradable substrates. Large-area (> a few cm2) 2D MoS2 layers grown on silicon dioxide/silicon (SiO2/Si) wafers were delaminated and integrated onto a variety of cellulose-based substrates of various components and shapes in a controlled manner; examples of the substrates include planar papers, cylindrical natural rubbers, and 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose nanofibers. The integrated 2D layers were confirmed to well preserve their intrinsic structural and chemical integrity even on such exotic substrates. Proof-of-concept devices employing large-area 2D MoS2 layers/cellulose substrates were demonstrated for a variety of applications, including photodetectors, pressure sensors, and field-effect transistors. Furthermore, we demonstrated the complete "dissolution" of the integrated 2D MoS2 layers in a buffer solution composed of baking soda and deionized water, confirming their environmentally friendly transient characteristics. Moreover, the approaches to delaminate and integrate them do not demand any chemicals except for water, and their original substrates can be recycled for subsequent growths, ensuring excellent chemical benignity and process sustainability.
Collapse
Affiliation(s)
- Changhyeon Yoo
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Md Golam Kaium
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Luis Hurtado
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Hao Li
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Sushant Rassay
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Jinwoo Ma
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Tae-Jun Ko
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Sang Sub Han
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Mashiyat Sumaiya Shawkat
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Kyu Hwan Oh
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Hee-Suk Chung
- Analytical Research Division, Korea Basic Science Institute, Jeonju 54907, South Korea
| | - Yeonwoong Jung
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
23
|
Wang X, Long R. Oxidation Notably Accelerates Nonradiative Electron-Hole Recombination in MoS 2 by Different Mechanisms: Time-Domain Ab Initio Analysis. J Phys Chem Lett 2020; 11:4086-4092. [PMID: 32354209 DOI: 10.1021/acs.jpclett.0c01056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) experience degradation in optoelectronic properties under ambient conditions. By performing nonadiabatic (NA) molecular dynamics simulations, we demonstrate that the MoS2 monolayer containing substitutional oxygen and oxygen adatom accelerates nonradiative electron-hole recombination by a factor of about 1.5 compared to perfect film but operates by different mechanisms. The substitutional oxygen creates no midgap states while enhancing NA coupling by increasing the overlap between electron and hole wave functions, accelerating electron-hole recombination. In contrast, electrons significantly populate the deep trap state created by the oxygen adatom because the trap is modestly delocalized and coupled strongly to free charges. The trap mediated instead of the direct pathway dominates the electron-hole recombination. The generated insights uncover the mechanisms for different types of defects on influencing charge dynamics in TMDs and suggest that the oxygen defects should be avoided for the design of high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Xiaoli Wang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
24
|
Chen X, Denninger P, Stimpel-Lindner T, Spiecker E, Duesberg GS, Backes C, Knirsch KC, Hirsch A. Defect Engineering of Two-Dimensional Molybdenum Disulfide. Chemistry 2020; 26:6535-6544. [PMID: 32141636 PMCID: PMC7317841 DOI: 10.1002/chem.202000286] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 01/06/2023]
Abstract
Two‐dimensional (2D) molybdenum disulfide (MoS2) holds great promise in electronic and optoelectronic applications owing to its unique structure and intriguing properties. The intrinsic defects such as sulfur vacancies (SVs) of MoS2 nanosheets are found to be detrimental to the device efficiency. To mitigate this problem, functionalization of 2D MoS2 using thiols has emerged as one of the key strategies for engineering defects. Herein, we demonstrate an approach to controllably engineer the SVs of chemically exfoliated MoS2 nanosheets using a series of substituted thiophenols in solution. The degree of functionalization can be tuned by varying the electron‐withdrawing strength of substituents in thiophenols. We find that the intensity of 2LA(M) peak normalized to A1g peak strongly correlates to the degree of functionalization. Our results provide a spectroscopic indicator to monitor and quantify the defect engineering process. This method of MoS2 defect functionalization in solution also benefits the further exploration of defect‐free MoS2 for a wide range of applications.
Collapse
Affiliation(s)
- Xin Chen
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Peter Denninger
- Center for Nanoanalysis and Electron Microscopy (CENEM) &, Institute of Micro- and Nanostructure Research (IMN), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Tanja Stimpel-Lindner
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr, 85579, Neubiberg, Germany
| | - Erdmann Spiecker
- Center for Nanoanalysis and Electron Microscopy (CENEM) &, Institute of Micro- and Nanostructure Research (IMN), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Georg S Duesberg
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr, 85579, Neubiberg, Germany
| | - Claudia Backes
- Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Kathrin C Knirsch
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| |
Collapse
|
25
|
Interface Engineering of MoS
2
‐Modified Graphitic Carbon Nitride Nano‐photocatalysts for an Efficient Hydrogen Evolution Reaction. Chempluschem 2020; 85:1379-1388. [DOI: 10.1002/cplu.202000096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/25/2020] [Indexed: 11/07/2022]
|
26
|
Zhang Z, Zhao Q, Chen K, Huang M, Ouyang X. Effects of phase, strain, pressure, vacancy, and doping on the adsorption of metallic radionuclides on monolayer 2H-MoS2. ADSORPTION 2020. [DOI: 10.1007/s10450-020-00216-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Le OK, Chihaia V, Pham-Ho MP, Son DN. Electronic and optical properties of monolayer MoS2 under the influence of polyethyleneimine adsorption and pressure. RSC Adv 2020; 10:4201-4210. [PMID: 35495219 PMCID: PMC9049067 DOI: 10.1039/c9ra09042h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/19/2020] [Indexed: 11/22/2022] Open
Abstract
MoS2 is one of the well-known transition metal dichalcogenides. The moderate bandgap of monolayer MoS2 is fascinating for the new generation of optoelectronic devices. Unfortunately, MoS2 is sensitive to gases in the environment causing its original electronic properties to be modified unexpectedly. This problem has been solved by coating MoS2 with polymers such as polyethyleneimine (PEI). Furthermore, the application of pressure is also an effective method to modify the physical properties of MoS2. However, the effects of polyethyleneimine and pressure on the electronic and optical properties of monolayer MoS2 remain unknown. Therefore, we elucidated this matter by using density functional theory calculations. The results showed that the adsorption of the PEI molecule significantly reduces the width of the direct bandgap of the monolayer MoS2 to 0.55 eV because of the occurrence of the new energy levels in the bandgap region due to the contribution of the N-2pz state of the PEI molecule. Remarkably, the transition from semiconductor to metal of the monolayer MoS2 and the MoS2/PEI system occurs at the tensile pressure of 24.95 and 21.79 GPa, respectively. The bandgap of these systems approaches 0 eV at the corresponding pressures. Importantly, new peaks in the optical spectrum of the clean MoS2 and MoS2/PEI appear in the ultraviolet region under compressive pressures and the infrared region under tensile strains. Pressure modifies both electronic and optical properties; however, PEI adsorption only alters the electronic structure of monolayer MoS2.![]()
Collapse
Affiliation(s)
- Ong Kim Le
- Ho Chi Minh City University of Technology
- VNU-HCM
- Ho Chi Minh City
- Vietnam
| | - Viorel Chihaia
- Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy
- 060021 Bucharest
- Romania
| | - My-Phuong Pham-Ho
- Ho Chi Minh City University of Technology
- VNU-HCM
- Ho Chi Minh City
- Vietnam
- Institute for Computational Science and Technology
| | - Do Ngoc Son
- Ho Chi Minh City University of Technology
- VNU-HCM
- Ho Chi Minh City
- Vietnam
| |
Collapse
|
28
|
Li W, He L, Bai X, Liu L, Ikram M, Lv H, Ullah M, Khan M, Kan K, Shi K. Enhanced NO2 sensing performance of S-doped biomorphic SnO2 with increased active sites and charge transfer at room temperature. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00119h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
S-Doped biomorphic SnO2 with active S-terminations and S–Sn–O chemical bonds has significantly improved gas sensing performance to NO2 at room temperature.
Collapse
|
29
|
Rho Y, Pei J, Wang L, Su Z, Eliceiri M, Grigoropoulos CP. Site-Selective Atomic Layer Precision Thinning of MoS 2 via Laser-Assisted Anisotropic Chemical Etching. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39385-39393. [PMID: 31553575 DOI: 10.1021/acsami.9b14306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various exotic optoelectronic properties of two-dimensional (2D) transition metal dichalcogenides (TMDCs) strongly depend on their number of layers, and typically manifest in ultrathin few-layer or monolayer formats. Thus, precise manipulation of thickness and shape is essential to fully access their potential in optoelectronic applications. Here, we demonstrate site-selective atomic layer precision thinning of exfoliated MoS2 flake by laser. The oxidation mediated anisotropic chemical etching initiated from edge defects and progressed by controlled scanning of the laser beam. Thereby, the topmost layer can be preferentially removed in designed patterns without damaging the bottom flake. In addition, we could monitor the deceleration of the thinning by in situ reflectance measurement. The apparent slow down of the thinning rate is attributed to the sharp reduction in the temperature of the flake due to thickness dependent optical properties. Fabrication of monolayer stripes by laser thinning suggests potential applications in nonlinear optical gratings. The proposed thinning method would offer a unique and rather straightforward way to obtain arbitrary shape and thickness of a TMDCs flake for various optoelectronic applications.
Collapse
Affiliation(s)
- Yoonsoo Rho
- Laser Thermal Lab, Department of Mechanical Engineering , University of California , Berkeley , California 94720 , United States
| | - Jiayun Pei
- Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Letian Wang
- Laser Thermal Lab, Department of Mechanical Engineering , University of California , Berkeley , California 94720 , United States
| | - Zhengliang Su
- Laser Thermal Lab, Department of Mechanical Engineering , University of California , Berkeley , California 94720 , United States
| | - Matthew Eliceiri
- Laser Thermal Lab, Department of Mechanical Engineering , University of California , Berkeley , California 94720 , United States
| | - Costas P Grigoropoulos
- Laser Thermal Lab, Department of Mechanical Engineering , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
30
|
Ardekani H, Younts R, Yu Y, Cao L, Gundogdu K. Reversible Photoluminescence Tuning by Defect Passivation via Laser Irradiation on Aged Monolayer MoS 2. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38240-38246. [PMID: 31502823 DOI: 10.1021/acsami.9b10688] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atomically thin (1L)-MoS2 emerged as a direct band gap semiconductor with potential optical applications. The photoluminescence (PL) of 1L-MoS2 degrades due to aging-related defect formation. The passivation of these defects leads to substantial improvement in optical properties. Here, we report the enhancement of PL on aged 1L-MoS2 by laser treatment. Using photoluminescence and Raman spectroscopy in a gas-controlled environment, we show that the enhancement is associated with efficient adsorption of oxygen on existing sulfur vacancies preceded by removal of adsorbates from the sample's surface. Oxygen adsorption depletes negative charges, resulting in suppression of trions and improved neutral exciton recombination. The result is a 6- to 8-fold increase in PL emission. The laser treatment in this work does not cause any measurable damage to the sample as verified by Raman spectroscopy, which is important for practical applications. Surprisingly, the observed PL enhancement is reversible by both vacuum and ultrafast femtosecond excitation. While the former approach allows switching a designed micropattern on the sample ON and OFF, the latter provides a controllable mean for accurate PL tuning, which is highly desirable for optoelectronic and gas sensing applications.
Collapse
|
31
|
Jain A, Szabó Á, Parzefall M, Bonvin E, Taniguchi T, Watanabe K, Bharadwaj P, Luisier M, Novotny L. One-Dimensional Edge Contacts to a Monolayer Semiconductor. NANO LETTERS 2019; 19:6914-6923. [PMID: 31513426 DOI: 10.1021/acs.nanolett.9b02166] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Integration of electrical contacts into van der Waals (vdW) heterostructures is critical for realizing electronic and optoelectronic functionalities. However, to date no scalable methodology for gaining electrical access to buried monolayer two-dimensional (2D) semiconductors exists. Here we report viable edge contact formation to hexagonal boron nitride (hBN) encapsulated monolayer MoS2. By combining reactive ion etching, in situ Ar+ sputtering and annealing, we achieve a relatively low edge contact resistance, high mobility (up to ∼30 cm2 V-1 s-1) and high on-current density (>50 μA/μm at VDS = 3V), comparable to top contacts. Furthermore, the atomically smooth hBN environment also preserves the intrinsic MoS2 channel quality during fabrication, leading to a steep subthreshold swing of 116 mV/dec with a negligible hysteresis. Hence, edge contacts are highly promising for large-scale practical implementation of encapsulated heterostructure devices, especially those involving air sensitive materials, and can be arbitrarily narrow, which opens the door to further shrinkage of 2D device footprint.
Collapse
Affiliation(s)
- Achint Jain
- Photonics Laboratory , ETH Zürich , 8093 Zürich , Switzerland
| | - Áron Szabó
- Integrated Systems Laboratory , ETH Zürich , 8092 Zürich , Switzerland
| | | | - Eric Bonvin
- Photonics Laboratory , ETH Zürich , 8093 Zürich , Switzerland
| | - Takashi Taniguchi
- National Institute for Material Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Kenji Watanabe
- National Institute for Material Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Palash Bharadwaj
- Department of Electrical and Computer Engineering , Rice University , Houston , Texas 77005 , United States
| | - Mathieu Luisier
- Integrated Systems Laboratory , ETH Zürich , 8092 Zürich , Switzerland
| | - Lukas Novotny
- Photonics Laboratory , ETH Zürich , 8093 Zürich , Switzerland
| |
Collapse
|
32
|
Levinas R, Tsyntsaru N, Cesiulis H. Insights into electrodeposition and catalytic activity of MoS2 for hydrogen evolution reaction electrocatalysis. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Li Q, Shi L, Wu R, Lin C, Bai X, Ouyang Y, Baraiya BA, Jha PK, Wang J. Unveiling chemical reactivity and oxidation of 1T-phased group VI disulfides. Phys Chem Chem Phys 2019; 21:17010-17017. [PMID: 31347649 DOI: 10.1039/c9cp02985k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal dichalcogenides (TMDs) are of particular interest because of their unique electrical and optical properties that evolve from the quantum confinement and surface effects. However, their long-term stability in air is proved to be a main concern for practical applications of the ultrathin materials, especially for TMDs with 1T phased structures. Here, we provide an in-depth understanding of the oxidation and degradation mechanisms of monolayers of group VIB disulfides, including TiS2, ZrS2, and HfS2. As the atomic radius of the transitional metals increases, their air stability significantly decreases and the oxidation mechanisms are quite different from one another. In particular, the oxygen induced oxidations initiated at both the surface vacancy sites and edges of ZrS2 and HfS2 are studied, while the oxidation of TiS2 starts at the edges and water plays a crucial role in the continuous oxidation process. Moreover, the defective sites expose the metals for activation and dissociation of either oxygen or water, causing the breakdown of the systems eventually. Meanwhile, these sites can be used as active centers for specific applications in catalysts and surface functionalized materials.
Collapse
Affiliation(s)
- Qiang Li
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Li Shi
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Ruchun Wu
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning, Guangxi 530006, China.
| | - Chongyi Lin
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Xiaowan Bai
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Yixin Ouyang
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Bhumi A Baraiya
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390 002, India
| | - Prafulla K Jha
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390 002, India
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China.
| |
Collapse
|
34
|
Kwon KC, Suh JM, Lee TH, Choi KS, Hong K, Song YG, Shim YS, Shokouhimehr M, Kang CY, Kim SY, Jang HW. SnS 2 Nanograins on Porous SiO 2 Nanorods Template for Highly Sensitive NO 2 Sensor at Room Temperature with Excellent Recovery. ACS Sens 2019; 4:678-686. [PMID: 30799610 DOI: 10.1021/acssensors.8b01526] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to develop high performance chemoresistive gas sensors for Internet of Everything applications, low power consumption should be achieved due to the limited battery capacity of portable devices. One of the most efficient ways to reduce power consumption is to lower the operating temperature to room temperature. Herein, we report superior gas sensing properties of SnS2 nanograins on SiO2 nanorods toward NO2 at room temperature. The gas response is as high as 701% for 10 ppm of NO2 with excellent recovery characteristics and the theoretical detection limit is evaluated to be 408.9 ppb at room temperature, which has not been reported for SnS2-based gas sensors to the best of our knowledge. The SnS2 nanograins on the template used in this study have excessive sulfur component (Sn:S = 1:2.33) and exhibit p-type conduction behavior. These results will provide a new perspective of nanostructured two-dimensional materials for gas sensor applications on demand.
Collapse
Affiliation(s)
- Ki Chang Kwon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical Engineering and Materials Science, Integrative Research Center for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul 06974, Republic of Korea
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jun Min Suh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Hyung Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Soon Choi
- Advanced Nano-Surface Research Group, Korea Basic Science Institute (KBSI), Daejeon 34133, Republic of Korea
| | - Kootak Hong
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Geun Song
- Center for Electronic Materials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Display and Nanosystem Laboratory, College of Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young-Seok Shim
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Chong-Yun Kang
- Center for Electronic Materials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Soo Young Kim
- School of Chemical Engineering and Materials Science, Integrative Research Center for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
35
|
Bodík M, Annušová A, Hagara J, Mičušík M, Omastová M, Kotlár M, Chlpík J, Cirák J, Švajdlenková H, Anguš M, Roldán AM, Veis P, Jergel M, Majkova E, Šiffalovič P. An elevated concentration of MoS2 lowers the efficacy of liquid-phase exfoliation and triggers the production of MoOx nanoparticles. Phys Chem Chem Phys 2019; 21:12396-12405. [DOI: 10.1039/c9cp01951k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The oxidation of MoS2 with a simultaneous decrease of MoS2 content.
Collapse
|
36
|
Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions. Nat Chem 2018; 10:1246-1251. [DOI: 10.1038/s41557-018-0136-2] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 08/10/2018] [Indexed: 11/08/2022]
|
37
|
Bertolazzi S, Gobbi M, Zhao Y, Backes C, Samorì P. Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides. Chem Soc Rev 2018; 47:6845-6888. [PMID: 30043037 DOI: 10.1039/c8cs00169c] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two-dimensional (2D) semiconductors, such as ultrathin layers of transition metal dichalcogenides (TMDs), offer a unique combination of electronic, optical and mechanical properties, and hold potential to enable a host of new device applications spanning from flexible/wearable (opto)electronics to energy-harvesting and sensing technologies. A critical requirement for developing practical and reliable electronic devices based on semiconducting TMDs consists in achieving a full control over their charge-carrier polarity and doping. Inconveniently, such a challenging task cannot be accomplished by means of well-established doping techniques (e.g. ion implantation and diffusion), which unavoidably damage the 2D crystals resulting in degraded device performances. Nowadays, a number of alternatives are being investigated, including various (supra)molecular chemistry approaches relying on the combination of 2D semiconductors with electroactive donor/acceptor molecules. As yet, a large variety of molecular systems have been utilized for functionalizing 2D TMDs via both covalent and non-covalent interactions. Such research endeavours enabled not only the tuning of the charge-carrier doping but also the engineering of the optical, electronic, magnetic, thermal and sensing properties of semiconducting TMDs for specific device applications. Here, we will review the most enlightening recent advancements in experimental (supra)molecular chemistry methods for tailoring the properties of atomically-thin TMDs - in the form of substrate-supported or solution-dispersed nanosheets - and we will discuss the opportunities and the challenges towards the realization of novel hybrid materials and devices based on 2D semiconductors and molecular systems.
Collapse
Affiliation(s)
- Simone Bertolazzi
- Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, 67000 Strasbourg, France.
| | | | | | | | | |
Collapse
|
38
|
Abstract
The potential of the combination of hard and soft coating on elastomers was investigated. Diamond-like carbon (DLC), molybdenum disulfide (MoS2) and composite coatings of these two materials with various DLC/MoS2 ratios were deposited on four elastomeric substrates by means of the magnetron sputtering method. The microstructures, surface energy of the coatings, and substrates were characterized by scanning electron microscopy (SEM) and contact angle, respectively. The chemical composition was identified by X-ray Photoelectron Spectroscopy (XPS). A ball on disc configuration was used as the model test, which was performed under dry and lubricated conditions. Based on the results from the model tests, the best coating was selected for each substrate and subsequently verified in component-like test. There is not one coating that is optimal for all substrates. Many factors can affect the coatings performance. The topography and the rigidity of the substrates are the key factors. However, the adhesion between coatings and substrates, and also the coating processes, can impact significantly on the coatings performance.
Collapse
|
39
|
Zhu C(R, Gao D, Ding J, Chao D, Wang J. TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. Chem Soc Rev 2018; 47:4332-4356. [DOI: 10.1039/c7cs00705a] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A thorough review on combined computational and experimental approaches to develop TMD-based highly efficient electrocatalysts by site doping, phase modulation, control of growth morphology and construction of heterostructures.
Collapse
Affiliation(s)
- Changrong (Rose) Zhu
- Department of Material Science and Engineering
- National University of Singapore
- Singapore
| | - Daqiang Gao
- Department of Material Science and Engineering
- National University of Singapore
- Singapore
- Key Laboratory for Magnetism and Magnetic Materials of MOE
- Key Laboratory of Special Function Materials and Structure Design of MOE
| | - Jun Ding
- Department of Material Science and Engineering
- National University of Singapore
- Singapore
| | - Dongliang Chao
- School of Physical and Mathematical Science
- Nanyang Technological University
- Singapore
| | - John Wang
- Department of Material Science and Engineering
- National University of Singapore
- Singapore
| |
Collapse
|
40
|
Gao X, Dai J, Zhao H, Zhu J, Luo L, Zhang R, Zhang Z, Li L. Synthesis of MoS2 nanosheets for mercury speciation analysis by HPLC-UV-HG-AFS. RSC Adv 2018; 8:18364-18371. [PMID: 35541115 PMCID: PMC9080583 DOI: 10.1039/c8ra01891j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/11/2018] [Indexed: 11/25/2022] Open
Abstract
Mercury species have aroused wide concern in the past several decades due to their high toxicity. However, it is still difficult to detect ultra-trace mercury species due to their biochemical transformation in complex samples. To establish a simpler and more sensitive method for pre-concentration and determination of trace mercury species, molybdenum disulfide (MoS2) nanosheets with sulfur-rich characteristics and enlarged interlayer spacing were prepared by a hydrothermal method coupled with a sonication-assisted liquid exfoliation method and acted as solid-phase extraction adsorbent. The nano-MoS2 had high adsorption capacity, fast adsorption rate and excellent selectivity towards mercury ions (Hg2+), methyl mercury (MeHg+) and ethyl mercury (EtHg+) in a wide pH range and complex matrices. And it could be easily regenerated by 4 mol L−1 HCl and reused several times. After optimizing HPLC-UV-HG-AFS conditions, a great linearity (1.0–10.0 μg L−1, R2 = 0.999 for Hg2+, MeHg+ and EtHg+), lower detection limits (0.017, 0.037 and 0.021 ng mL−1 for Hg2+, MeHg+ and EtHg+, respectively), relative standard deviations (<5%) and addition recoveries of the samples within 82.75–113.38% were observed. In summary, trace inorganic and organic mercury species in environmental and biological samples could be selectively enriched by the prepared nano-MoS2 and efficiently seperated and detected by HPLC-UV-HG-AFS. The present study will help provide a better strategy for environmental monitoring and health assessment of mercury pollutants. As-synthesized few-layered molybdenum disulfide nanosheets were used as solid-phase extraction absorbent for ultra-trace mercury speciation analysis by HPLC-UV-HG-AFS.![]()
Collapse
Affiliation(s)
- Xingsu Gao
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Jiayong Dai
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Hongyan Zhao
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Jun Zhu
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Lan Luo
- Nanjing Entry-exit Inspection and Quarantine Bureau
- Nanjing 211106
- P. R. China
| | - Rui Zhang
- Nanjing Entry-exit Inspection and Quarantine Bureau
- Nanjing 211106
- P. R. China
| | - Zhan Zhang
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Lei Li
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| |
Collapse
|
41
|
Otyepková E, Lazar P, Luxa J, Berka K, Čépe K, Sofer Z, Pumera M, Otyepka M. Surface properties of MoS 2 probed by inverse gas chromatography and their impact on electrocatalytic properties. NANOSCALE 2017; 9:19236-19244. [PMID: 29188849 PMCID: PMC5774430 DOI: 10.1039/c7nr07342a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Layered transition metal dichalcogenides (TMDs) are at the forefront of materials research. One of the most important applications of these materials is their electrocatalytic activity towards hydrogen evolution, and these materials are suggested to replace scarce platinum. Whilst there are significant efforts towards this goal, there are various reports of electrocatalysis of MoS2 (which is the most commonly tested TMD) with large variations of the reported electrocatalytic effect of the material, with overpotential varying by several hundreds of millivolts. Here, we analyzed surface properties of various bulk as well as single layer MoS2 samples using inverse gas chromatography. All samples displayed significant variations in surface energies and their heterogeneities. The surface energy ranged from 50 to 120 mJ m-2 depending on the sample and surface coverage. We correlated the surface properties and previously reported structural features of MoS2 with their electrochemical activities. We concluded that the observed differences in electrochemistry are caused by the surface properties. This is an important finding with an enormous impact on the whole field of electrocatalysis of layered materials.
Collapse
Affiliation(s)
- Eva Otyepková
- Regional Centre of Advanced Technologies and Materials , Department of Physical Chemistry , Palacký University Olomouc , tř. 17. listopadu 12 , 771 46 Olomouc , Czech Republic .
| | - Petr Lazar
- Regional Centre of Advanced Technologies and Materials , Department of Physical Chemistry , Palacký University Olomouc , tř. 17. listopadu 12 , 771 46 Olomouc , Czech Republic .
| | - Jan Luxa
- Department of Inorganic Chemistry , University of Chemistry and Technology , 166 28 Prague 6 , Czech Republic
| | - Karel Berka
- Regional Centre of Advanced Technologies and Materials , Department of Physical Chemistry , Palacký University Olomouc , tř. 17. listopadu 12 , 771 46 Olomouc , Czech Republic .
| | - Klára Čépe
- Regional Centre of Advanced Technologies and Materials , Department of Physical Chemistry , Palacký University Olomouc , tř. 17. listopadu 12 , 771 46 Olomouc , Czech Republic .
| | - Zdeněk Sofer
- Department of Inorganic Chemistry , University of Chemistry and Technology , 166 28 Prague 6 , Czech Republic
| | - Martin Pumera
- Division of Chemistry & Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore , 637371 , Singapore .
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials , Department of Physical Chemistry , Palacký University Olomouc , tř. 17. listopadu 12 , 771 46 Olomouc , Czech Republic .
| |
Collapse
|