1
|
Alam S, Abdullah CS, Aishwarya R, Morshed M, Bhuiyan MS. Molecular Perspectives of Mitochondrial Adaptations and Their Role in Cardiac Proteostasis. Front Physiol 2020; 11:1054. [PMID: 32982788 PMCID: PMC7481364 DOI: 10.3389/fphys.2020.01054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the key to properly functioning energy generation in the metabolically demanding cardiomyocytes and thus essential to healthy heart contractility on a beat-to-beat basis. Mitochondria being the central organelle for cellular metabolism and signaling in the heart, its dysfunction leads to cardiovascular disease. The healthy mitochondrial functioning critical to maintaining cardiomyocyte viability and contractility is accomplished by adaptive changes in the dynamics, biogenesis, and degradation of the mitochondria to ensure cellular proteostasis. Recent compelling evidence suggests that the classical protein quality control system in cardiomyocytes is also under constant mitochondrial control, either directly or indirectly. Impairment of cytosolic protein quality control may affect the position of the mitochondria in relation to other organelles, as well as mitochondrial morphology and function, and could also activate mitochondrial proteostasis. Despite a growing interest in the mitochondrial quality control system, very little information is available about the molecular function of mitochondria in cardiac proteostasis. In this review, we bring together current understanding of the adaptations and role of the mitochondria in cardiac proteostasis and describe the adaptive/maladaptive changes observed in the mitochondrial network required to maintain proteomic integrity. We also highlight the key mitochondrial signaling pathways activated in response to proteotoxic stress as a cellular mechanism to protect the heart from proteotoxicity. A deeper understanding of the molecular mechanisms of mitochondrial adaptations and their role in cardiac proteostasis will help to develop future therapeutics to protect the heart from cardiovascular diseases.
Collapse
Affiliation(s)
- Shafiul Alam
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.,Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
2
|
Diokmetzidou A, Soumaka E, Kloukina I, Tsikitis M, Makridakis M, Varela A, Davos CH, Georgopoulos S, Anesti V, Vlahou A, Capetanaki Y. Desmin and αB-crystallin interplay in the maintenance of mitochondrial homeostasis and cardiomyocyte survival. J Cell Sci 2016; 129:3705-3720. [PMID: 27566162 DOI: 10.1242/jcs.192203] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022] Open
Abstract
The association of desmin with the α-crystallin Β-chain (αΒ-crystallin; encoded by CRYAB), and the fact that mutations in either one of them leads to heart failure in humans and mice, suggests a potential compensatory interplay between the two in cardioprotection. To address this hypothesis, we investigated the consequences of αΒ-crystallin overexpression in the desmin-deficient (Des-/-) mouse model, which possesses a combination of the pathologies found in most cardiomyopathies, with mitochondrial defects as a hallmark. We demonstrated that cardiac-specific αΒ-crystallin overexpression ameliorates all these defects and improves cardiac function to almost wild-type levels. Protection by αΒ-crystallin overexpression is linked to maintenance of proper mitochondrial protein levels, inhibition of abnormal mitochondrial permeability transition pore activation and maintenance of mitochondrial membrane potential (Δψm). Furthermore, we found that both desmin and αΒ-crystallin are localized at sarcoplasmic reticulum (SR)-mitochondria-associated membranes (MAMs), where they interact with VDAC, Mic60 - the core component of mitochondrial contact site and cristae organizing system (MICOS) complex - and ATP synthase, suggesting that these associations could be crucial in mitoprotection at different levels.
Collapse
Affiliation(s)
- Antigoni Diokmetzidou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Elisavet Soumaka
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Ismini Kloukina
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Mary Tsikitis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Manousos Makridakis
- Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Aimilia Varela
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Constantinos H Davos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Spiros Georgopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Vasiliki Anesti
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Antonia Vlahou
- Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| |
Collapse
|
3
|
Intermediate Filaments as Organizers of Cellular Space: How They Affect Mitochondrial Structure and Function. Cells 2016; 5:cells5030030. [PMID: 27399781 PMCID: PMC5040972 DOI: 10.3390/cells5030030] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 12/17/2022] Open
Abstract
Intermediate filaments together with actin filaments and microtubules form the cytoskeleton, which is a complex and highly dynamic 3D network. Intermediate filaments are the major mechanical stress protectors but also affect cell growth, differentiation, signal transduction, and migration. Using intermediate filament-mitochondrial crosstalk as a prominent example, this review emphasizes the importance of intermediate filaments as crucial organizers of cytoplasmic space to support these functions. We summarize observations in different mammalian cell types which demonstrate how intermediate filaments influence mitochondrial morphology, subcellular localization, and function through direct and indirect interactions and how perturbations of these interactions may lead to human diseases.
Collapse
|
4
|
Sewer MB, Li D. Regulation of adrenocortical steroid hormone production by RhoA-diaphanous 1 signaling and the cytoskeleton. Mol Cell Endocrinol 2013; 371. [PMID: 23186810 PMCID: PMC3926866 DOI: 10.1016/j.mce.2012.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The production of glucocorticoids and aldosterone in the adrenal cortex is regulated at multiple levels. Biosynthesis of these hormones is initiated when cholesterol, the substrate, enters the inner mitochondrial membrane for conversion to pregnenolone. Unlike most metabolic pathways, the biosynthesis of adrenocortical steroid hormones is unique because some of the enzymes are localized in mitochondria and others in the endoplasmic reticulum (ER). Although much is known about the factors that control the transcription and activities of the proteins that are required for steroid hormone production, the parameters that govern the exchange of substrates between the ER and mitochondria are less well understood. This short review summarizes studies that have begun to provide insight into the role of the cytoskeleton, mitochondrial transport, and the physical interaction of the ER and mitochondria in the production of adrenocortical steroid hormones.
Collapse
Affiliation(s)
- Marion B Sewer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0704, USA.
| | | |
Collapse
|
5
|
Mirzoev TM, Biryukov NS, Veselova OM, Larina IM, Shenkman BS, Ogneva IV. Parameters of fiber cell respiration and desmin content in rat soleus muscle at early stages of gravitational unloading. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912030153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Li D, Sewer MB. RhoA and DIAPH1 mediate adrenocorticotropin-stimulated cortisol biosynthesis by regulating mitochondrial trafficking. Endocrinology 2010; 151:4313-23. [PMID: 20591975 PMCID: PMC2940507 DOI: 10.1210/en.2010-0044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Steroid hormones are formed by the successive action of enzymes that are localized in mitochondria and the endoplasmic reticulum (ER). Compartmentalization of these enzymes in different subcellular organelles dictates the need for efficient transfer of intermediary metabolites between the mitochondrion and ER; however, the molecular determinants that regulate interorganelle substrate exchange are unknown. The objective of this study was to define the molecular mechanism by which adrenocorticotropin (ACTH) signaling regulates communication between mitochondria and the ER during steroidogenesis. Using live cell video confocal microscopy, we found that ACTH and dibutyryl cAMP rapidly increased the rate of mitochondrial movement. Inhibiting tubulin polymerization prevented both basal and ACTH/cAMP-stimulated mitochondrial trafficking and decreased cortisol secretion. This decrease in cortisol secretion evoked by microtubule inhibition was paralleled by an increase in dehydroepiandrosterone production. In contrast, treatment with paclitaxel to stabilize microtubules or latrunculin B to inhibit actin polymerization and disrupt microfilament organization increased both mitochondrial trafficking and cortisol biosynthesis. ACTH-stimulated mitochondrial movement was dependent on RhoA and the RhoA effector, diaphanous-related homolog 1 (DIAPH1). ACTH signaling temporally increased the cellular concentrations of GTP-bound and Ser-188 phosphorylated RhoA, which promoted interaction with DIAPH1. Expression of a dominant-negative RhoA mutant or silencing DIAPH1 impaired mitochondrial trafficking and cortisol biosynthesis and concomitantly increased the secretion of adrenal androgens. We conclude that ACTH regulates cortisol production by facilitating interorganelle substrate transfer via a process that is mediated by RhoA and DIAPH1, which act to coordinate the dynamic trafficking of mitochondria.
Collapse
Affiliation(s)
- Donghui Li
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0704, USA
| | | |
Collapse
|
7
|
Sewer MB, Li D. Regulation of steroid hormone biosynthesis by the cytoskeleton. Lipids 2008; 43:1109-15. [PMID: 18726632 DOI: 10.1007/s11745-008-3221-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Accepted: 07/31/2008] [Indexed: 01/11/2023]
Abstract
Steroid hormones are synthesized in response to signaling cascades initiated by the trophic peptide hormones derived from the anterior pituitary. The mechanisms by which these peptide hormones regulate steroid hormone production are multifaceted and include controlling the transcription of steroidogenic genes, regulating cholesterol (substrate) uptake and transport, modulating steroidogenic enzyme activity, and controlling electron availability. Cytoskeletal polymers such as microfilaments and microtubules have also been implicated in regulating steroidogenesis. Of note, steroidogenesis is a multi-step process that occurs in two organelles, the endoplasmic reticulum (ER) and the mitochondrion. However, the precise mechanism by which substrates are delivered back and forth between these two organelles is unknown. In this review we will discuss the role of components of the cytoskeleton in conferring optimal steroidogenic potential. Finally, we present data that identifying a novel mechanism by which sphingosine-1-phosphate induces mitochondrial trafficking to promote steroidogenesis.
Collapse
Affiliation(s)
- Marion B Sewer
- School of Biology and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| | | |
Collapse
|
8
|
Hwang SI, Lundgren DH, Mayya V, Rezaul K, Cowan AE, Eng JK, Han DK. Systematic Characterization of Nuclear Proteome during Apoptosis. Mol Cell Proteomics 2006; 5:1131-45. [PMID: 16540461 DOI: 10.1074/mcp.m500162-mcp200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Identification and characterization of the nuclear proteome is important for detailed understanding of multiple signaling events in eukaryotic cells. Toward this goal, we extensively characterized the nuclear proteome of human T leukemia cells by sequential extraction of nuclear proteins with different physicochemical properties using three buffer conditions. This large scale proteomic study also tested the feasibility and technical challenges associated with stable isotope labeling by amino acids in cell culture (SILAC) to uncover quantitative changes during apoptosis. Analyzing proteins from three nuclear fractions extracted from naive and apoptotic cells generated 780,530 MS/MS spectra that were used for database searching using the SEQUEST algorithm. This analysis resulted in the identification and quantification of 1,174 putative nuclear proteins. A number of known nuclear proteins involved in apoptosis as well as novel proteins not known to be part of the nuclear apoptotic machinery were identified and quantified. Consistent with SILAC-based quantifications, immunofluorescence staining of nucleus, mitochondria, and some associated proteins from both organelles revealed a dynamic recruitment of mitochondria into nuclear invaginations during apoptosis.
Collapse
Affiliation(s)
- Sun-Il Hwang
- Department of Cell Biology, Center for Vascular Biology, Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut 06030, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Y Capetanaki
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
10
|
Tolstonog GV, Belichenko-Weitzmann IV, Lu JP, Hartig R, Shoeman RL, Traub U, Traub P. Spontaneously Immortalized Mouse Embryo Fibroblasts: Growth Behavior of Wild-Type and Vimentin-Deficient Cells in Relation to Mitochondrial Structure and Activity. DNA Cell Biol 2005; 24:680-709. [PMID: 16274292 DOI: 10.1089/dna.2005.24.680] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Dependent on the presence or absence of vimentin, primary mouse embryo fibroblasts exhibit different growth characteristics in vitro. While most Vim(+/+) fibroblasts stop dividing and die via apoptosis, a substantial fraction of cells immortalize and proliferate almost normally. Vim(-/-) fibroblasts cease to divide earlier, immortalize in vanishingly small numbers and thereafter proliferate extremely slowly. Early after immortalization, Vim(+/+) (imm) fibroblasts appear structurally almost normal, whereas Vim(-/-) (imm) fibroblasts equal postmitotic "crisis" cells, which are characterized by increased cell size, altered cell ultrastructure, nuclear enlargement, genome destabilization, structural degeneration of mitochondria, and diminution of mitochondrial respiratory activity. The differences between immortalized Vim(+/+) (imm) and Vim(-/-) (imm) fibroblasts persist during early cell cloning but disappear during serial subcultivation. At high cell passage, cloned, immortalized vim(-) fibroblasts grow nearly as fast as their cloned vim(+) counterparts, and also resemble them in size, ultrastructure, nuclear volume, and mitochondrial complement; they very likely employ redundancy to cope with the loss of vimentin function when adjusting structure and behavior to that of immortalized vim(+) fibroblasts. Reduction in nuclear size occurs via release of large amounts of filamentous chromatin into extracellular space; because it is complexed with extracellular matrix proteins, it tends to form clusters and to tightly stick to the surface of other cells, thus providing a potential for horizontal gene transfer. On the other hand, cloned vim(+) and vim(-) fibroblasts are equal in showing contact inhibition at young age and becoming anchorage-independent during serial subcultivation, as indicated by the formation of multilayered and -faceted cell sheets and huge spheroids on top of or in soft agar. With this, immortalized vim(-) fibroblasts reduce their adhesiveness to the substratum which, in their precrisis state and early after cloning, is much higher than that of their vim(+) counterparts. In addition, the coupling between the mitochondrial respiratory chain and oxidative phosphorylation is stronger in vim(+) than vim(-) fibroblasts. It appears from these data that after explantation of fibroblasts from the mouse embryo the primary cause of cell and mitochondrial degeneration, including genomic instability, is the mitochondrial production of reactive oxygen species in a vicious circle, and that vimentin provides partial protection from oxidative damage. As a matrix protein with specific in vitro and in vivo affinities for nuclear and mitochondrial, recombinogenic DNA, it may exert this effect preferentially at the genome level via its influence on recombination and repair processes, and in this way also assist the cells in immortalizing. Additional protection of mitochondria by vimentin may occur at the level of mitochondrial fatty acid metabolism.
Collapse
|
11
|
Mermelstein CS, Andrade LR, Portilho DM, Costa ML. Desmin filaments are stably associated with the outer nuclear surface in chick myoblasts. Cell Tissue Res 2005; 323:351-7. [PMID: 16160856 DOI: 10.1007/s00441-005-0063-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 07/25/2005] [Indexed: 01/23/2023]
Abstract
Eukaryotic cells have highly organized, interconnected intracellular compartments. The nuclear surface and cytoplasmic cytoskeletal filaments represent compartments involved in such an association. Intermediate filaments are the major cytoskeletal elements in this association. Desmin is a muscle-specific structural protein and one of the earliest known muscle-specific genes to be expressed during cardiac and skeletal muscle development. Desmin filaments have been shown to be associated with the nuclear surface in the myogenic cell line C2C12. Previous studies have revealed that mice lacking desmin develop imperfect muscle, exhibiting the loss of nuclear shape and positioning. In the present work, we have analyzed the association between desmin filaments and the outer nuclear surface in nuclei isolated from pectoral skeletal muscle of chick embryos and in primary chick myogenic cell cultures by using immunofluorescence microscopy, negative staining, immunogold, and transmission electron microscopy. We show that desmin filaments remain firmly attached to the outer nuclear surface after the isolation of nuclei. Furthermore, positive localization of desmin persists after gentle washing of the nuclei with high ionic strength solutions. These data suggest that desmin intermediate filaments are stably and firmly connected to the outer nuclear surface in skeletal muscles cells in vivo and in vitro.
Collapse
Affiliation(s)
- Cláudia S Mermelstein
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21949-590, Brazil.
| | | | | | | |
Collapse
|
12
|
Yi M, Weaver D, Hajnóczky G. Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. ACTA ACUST UNITED AC 2004; 167:661-72. [PMID: 15545319 PMCID: PMC2172592 DOI: 10.1083/jcb.200406038] [Citation(s) in RCA: 362] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Mitochondria are dynamic organelles in cells. The control of mitochondrial motility by signaling mechanisms and the significance of rapid changes in motility remains elusive. In cardiac myoblasts, mitochondria were observed close to the microtubular array and displayed both short- and long-range movements along microtubules. By clamping cytoplasmic [Ca2+] ([Ca2+]c) at various levels, mitochondrial motility was found to be regulated by Ca2+ in the physiological range. Maximal movement was obtained at resting [Ca2+]c with complete arrest at 1–2 μM. Movement was fully recovered by returning to resting [Ca2+]c, and inhibition could be repeated with no apparent desensitization. The inositol 1,4,5-trisphosphate– or ryanodine receptor-mediated [Ca2+]c signal also induced a decrease in mitochondrial motility. This decrease followed the spatial and temporal pattern of the [Ca2+]c signal. Diminished mitochondrial motility in the region of the [Ca2+]c rise promotes recruitment of mitochondria to enhance local Ca2+ buffering and energy supply. This mechanism may provide a novel homeostatic circuit in calcium signaling.
Collapse
Affiliation(s)
- Muqing Yi
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
13
|
Abstract
Mitochondria are localized to regions of the cell where ATP consumption is high and are dispersed according to changes in local energy needs. In addition to motion directed by molecular motors, mitochondrial distribution in neuronal cells appears to depend on the docking of mitochondria to microtubules and neurofilaments. We examined interactions between mitochondria and neurofilaments using fluorescence microscopy, dynamic light scattering, atomic force microscopy, and sedimentation assays. Mitochondria-neurofilament interactions depend on mitochondrial membrane potential, as revealed by staining with a membrane potential sensitive dye (JC-1) in the presence of substrates/ADP or uncouplers (valinomycin/carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone) and are affected by the phosphorylation status of neurofilaments and neurofilament sidearms. Antibodies against the neurofilament heavy subunit disrupt binding between mitochondria and neurofilaments, and isolated neurofilament sidearms alone interact with mitochondria, suggesting that they mediate the interactions between the two structures. These data suggest that specific and regulated mitochondrial-neurofilament interactions occur in situ and may contribute to the dynamic distribution of these organelles within the cytoplasm of neurons.
Collapse
|
14
|
Schröder R, Goudeau B, Simon MC, Fischer D, Eggermann T, Clemen CS, Li Z, Reimann J, Xue Z, Rudnik-Schöneborn S, Zerres K, van der Ven PFM, Fürst DO, Kunz WS, Vicart P. On noxious desmin: functional effects of a novel heterozygous desmin insertion mutation on the extrasarcomeric desmin cytoskeleton and mitochondria. Hum Mol Genet 2003; 12:657-69. [PMID: 12620971 DOI: 10.1093/hmg/ddg060] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recent studies in desmin (-/-) mice have shown that the targeted ablation of desmin leads to pathological changes of the extrasarcomeric intermediate filament cytoskeleton, as well as structural and functional abnormalities of mitochondria in striated muscle. Here, we report on a novel heterozygous single adenine insertion mutation (c.5141_5143insA) in a 40-year-old patient with a distal myopathy. The insertion mutation leads to a frameshift and a truncated desmin (K239fs242). Using transfection studies in SW13 and BHK21 cells, we show that the K239fsX242 desmin mutant is incapable of forming a desmin intermediate filament network. Furthermore, it induces the collapse of a pre-existing desmin cytoskeleton, alters the subcellular distribution of mitochondria and leads to abnormal cytoplasmic protein aggregates reminiscent of desmin-immunoreactive granulofilamentous material seen in the ultrastructural analysis of the patient's muscle. Analysis of mitochondrial function in isolated saponin-permeablized skeletal muscle fibres from our patient showed decreased maximal rates of respiration with the NAD-dependent substrate combination glutamate and malate, as well as a higher amytal sensitivity of respiration, indicating an in vivo inhibition of complex I activity. Our findings suggest that the heterozygous K239fsX242 desmin insertion mutation has a dominant negative effect on the polymerization process of desmin intermediate filaments and affects not only the subcellular distribution, but also biochemical properties of mitochondria in diseased human skeletal muscle. As a consequence, the intermediate filament pathology-induced mitochondrial dysfunction may contribute to the degeneration/regeneration process leading to progressive muscle dysfunction in human desminopathies.
Collapse
Affiliation(s)
- Rolf Schröder
- Department of Neurology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Spodnik JH, Wozniak M, Budzko D, Teranishi MA, Karbowski M, Nishizawa Y, Usukura J, Wakabayashi T. Mechanism of leflunomide-induced proliferation of mitochondria in mammalian cells. Mitochondrion 2002; 2:163-79. [PMID: 16120318 DOI: 10.1016/s1567-7249(02)00045-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2001] [Revised: 06/21/2002] [Accepted: 06/28/2002] [Indexed: 12/17/2022]
Abstract
Leflunomide (LFM) is an inhibitor of mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) that catalyzes the conversion of dihydroorotate to orotate coupled with the generation of reactive oxygen species (ROS) from mitochondria. We demonstrate here that LFM causes an unrestrained proliferation of mitochondria both in human osteosarcoma cell line 143B cells and rat liver derived RL-34 cells. Increases in the total mass of mitochondria per cell in LFM-treated cells were evidenced by the application of Green FM or 10-n-nonyl acridine orange to flow cytometry, an enhanced replication of mtDNA and electron microscopy. Externally added uridine improved the disturbance in cell cycle progression in LFM-treated cells, but failed to suppress such unrestrained mitochondrial proliferation. On the contrary, lapacol and 5-fluoroorotate, inhibitors of DHODH besides LFM, suppressed the biogenesis of mitochondria during the cell cycle progression. LFM, but not lapacol or 5-fluoroorotate, caused increases of the intracellular level of acetylated alpha-tubulin. These data suggest that the inhibition of DHODH may not be at least primarily related to the LFM-induced abnormal proliferation of mitochondria, and support our recent published observation that changes in the physicochemical properties of microtubules may be in someway concerned with the biogenesis of mitochondria.
Collapse
Affiliation(s)
- Jan H Spodnik
- Department of Cell Biology and Molecular Pathology, Nagoya University School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Schröder R, Kunz WS, Rouan F, Pfendner E, Tolksdorf K, Kappes-Horn K, Altenschmidt-Mehring M, Knoblich R, van der Ven PFM, Reimann J, Fürst DO, Blümcke I, Vielhaber S, Zillikens D, Eming S, Klockgether T, Uitto J, Wiche G, Rolfs A. Disorganization of the desmin cytoskeleton and mitochondrial dysfunction in plectin-related epidermolysis bullosa simplex with muscular dystrophy. J Neuropathol Exp Neurol 2002; 61:520-30. [PMID: 12071635 DOI: 10.1093/jnen/61.6.520] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations of the human plectin gene (Plec1) cause autosomal recessive epidermolysis bullosa simplex with muscular dystrophy (EBS-MD). Here, we report on molecular mechanisms leading to severe dystrophic muscle alterations in EBS-MD. Analysis of a 25-yr-old EBS-MD patient carrying a novel homozygous 16-bp insertion mutation (13803ins16/13803ins16) close to the intermediate filament (IF) binding site of plectin showed severe disorganization of the myogenic IF cytoskeleton. Intermyofibrillar and subsarcolemmal accumulations of assembled but highly unordered desmin filaments may be attributed to impaired desmin binding capability of the mutant plectin. This IF pathology was also associated with severe mitochondrial dysfunction, suggesting that the muscle pathology of EBS-MD caused by IF disorganization leads not only to defects in mechanical force transduction but also to metabolic dysfunction. Beyond EBS-MD, our data may contribute to the understanding of other myopathies characterized by sarcoplasmic IF accumulations such as desminopathies or alpha-B-crystallinopathies.
Collapse
Affiliation(s)
- Rolf Schröder
- Department of Neurology, University of Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lindén M, Li Z, Paulin D, Gotow T, Leterrier JF. Effects of desmin gene knockout on mice heart mitochondria. J Bioenerg Biomembr 2001; 33:333-41. [PMID: 11710808 DOI: 10.1023/a:1010611408007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In heart tissue from mice lacking the intermediate filament (IF) desmin, mitochondria show an abnormal shape and distribution (Thornell et al., 1997). In the present study we have isolated heart mitochondria from desmin null (D-/-) and control (D+/+) mice, and analyzed their composition by SDS-PAGE, immunoblotting, and enzyme measurements. We found both in vitro and in situ that the conventional kinesin, the microtubule-associated plus-end directed motor, was frequently associated with D+/+ heart mitochondria, but not with D-/- heart mitochondria, suggesting that the positioning of mitochondria in heart is a dynamic event involving the IF desmin, the molecular motor kinesin, and, most likely, the microtubules (MT) network. Furthermore, an increased capacity in energy production was found, as indicated by a threefold higher creatine kinase activity in heart mitochondria from D-/- compared to D+/+ mice. We also observed a significantly lower amount of cytochrome c in heart mitochondria from D-/- mice, and a relocalization of Bcl-2, which may indicate an apoptotic condition in the cell leading to the earlier reported pathological events, such as cardiomyocytes degeneration and calcinosis of the heart (Thornell et al., 1997).
Collapse
Affiliation(s)
- M Lindén
- Groupe de Biologie des Interactions Cellulaires, UMR CNRS 6558, Poitiers, France.
| | | | | | | | | |
Collapse
|
18
|
Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 2000; 150:1283-98. [PMID: 10995435 PMCID: PMC2150713 DOI: 10.1083/jcb.150.6.1283] [Citation(s) in RCA: 282] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2000] [Accepted: 08/02/2000] [Indexed: 12/28/2022] Open
Abstract
Ultrastructural studies have previously suggested potential association of intermediate filaments (IFs) with mitochondria. Thus, we have investigated mitochondrial distribution and function in muscle lacking the IF protein desmin. Immunostaining of skeletal muscle tissue sections, as well as histochemical staining for the mitochondrial marker enzymes cytochrome C oxidase and succinate dehydrogenase, demonstrate abnormal accumulation of subsarcolemmal clumps of mitochondria in predominantly slow twitch skeletal muscle of desmin-null mice. Ultrastructural observation of desmin-null cardiac muscle demonstrates in addition to clumping, extensive mitochondrial proliferation in a significant fraction of the myocytes, particularly after work overload. These alterations are frequently associated with swelling and degeneration of the mitochondrial matrix. Mitochondrial abnormalities can be detected very early, before other structural defects become obvious. To investigate related changes in mitochondrial function, we have analyzed ADP-stimulated respiration of isolated muscle mitochondria, and ADP-stimulated mitochondrial respiration in situ using saponin skinned muscle fibers. The in vitro maximal rates of respiration in isolated cardiac mitochondria from desmin-null and wild-type mice were similar. However, mitochondrial respiration in situ is significantly altered in desmin-null muscle. Both the maximal rate of ADP-stimulated oxygen consumption and the dissociation constant (K(m)) for ADP are significantly reduced in desmin-null cardiac and soleus muscle compared with controls. Respiratory parameters for desmin-null fast twitch gastrocnemius muscle were unaffected. Additionally, respiratory measurements in the presence of creatine indicate that coupling of creatine kinase and the adenine translocator is lost in desmin-null soleus muscle. This coupling is unaffected in cardiac muscle from desmin-null animals. All of these studies indicate that desmin IFs play a significant role in mitochondrial positioning and respiratory function in cardiac and skeletal muscle.
Collapse
Affiliation(s)
- D J Milner
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Proteins that control mitochondrial dynamics in yeast are being identified at a rapid pace. These proteins include cytoskeletal elements that regulate organelle distribution and inheritance and several outer membrane proteins that are required to maintain the branched, mitochondrial reticulum. Interestingly, three of the high molecular weight GTPases encoded by the yeast genome are required for mitochondrial integrity and are potential regulators of mitochondrial branching, distribution, and membrane fusion. The recent finding that mtDNA mixing is restricted in the mitochondrial matrix has stimulated the hunt for the molecular machinery that anchors mitochondrial nucleoids in the organelle. Considering that many aspects of mitochondrial structure and behavior are strikingly similar in different cell types, the functional analyses of these yeast proteins should provide general insights into the mechanisms governing mitochondrial dynamics in all eukaryotes.
Collapse
Affiliation(s)
- G J Hermann
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | |
Collapse
|
20
|
Paulin-Levasseur M, Chen G, Larivière C. The 2G2 antibody recognizes an acidic 110-kDa human mitochondrial protein. THE HISTOCHEMICAL JOURNAL 1998; 30:617-25. [PMID: 9870762 DOI: 10.1023/a:1003577609799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using fluorescence microscopy, the mouse monoclonal antibody 2G2 was found to label mitochondria in human cells, as assessed by double staining with either Rhodamine 123 or a polyclonal antibody to mitochondrial matrix HSP-60 proteins. No reactivity to the 2G2 antibody was detected in cells from mouse, rat and chicken. Immunoblotting analysis demonstrated that the 2G2 antigen corresponds to a human protein with a relative mobility of 110kDa and an approximate isoelectric point of 6.5 that co-partitions with HSP-60 proteins during isolation of mitochondria from HeLa cells. Close examination of the 2G2 staining pattern in HeLa and Fanconi's anaemia cells revealed differences in the morphology and organization of mitochondria in these two cell types. In HeLa cells, mitochondria appear as individual tubular compartments of variable length and are closely associated with vimentin filaments, particularly at the periphery of the nucleus. In Fanconi's anaemia cells, mitochondria have a filamentous shape and form an interconnected cytoplasmic reticulum running in parallel with both vimentin filaments and microtubules. After stabilization with aldehyde- or alcohol-based fixation protocols that optimize the preservation of cytoskeletal components, the epitope targeted by the 2G2 antibody may serve as a valuable marker in the investigation of relationships between mitochondria and other cellular structures in human cells.
Collapse
|
21
|
Velasco G, Geelen MJ, Gómez del Pulgar T, Guzmán M. Malonyl-CoA-independent acute control of hepatic carnitine palmitoyltransferase I activity. Role of Ca2+/calmodulin-dependent protein kinase II and cytoskeletal components. J Biol Chem 1998; 273:21497-504. [PMID: 9705278 DOI: 10.1074/jbc.273.34.21497] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of malonyl-CoA-independent acute control of hepatic carnitine palmitoyltransferase I (CPT-I) activity was investigated. In a first series of experiments, the possible involvement of the cytoskeleton in the control of CPT-I activity was studied. The results of these investigations can be summarized as follows. (i) Very mild treatment of permeabilized hepatocytes with trypsin produced around 50% stimulation of CPT-I activity. This effect was absent in cells that had been pretreated with okadaic acid (OA) and seemed to be due to the action of trypsin on cell component(s) distinct from CPT-I. (ii) Incubation of intact hepatocytes with 3, 3'-iminodipropionitrile, a disruptor of intermediate filaments, increased CPT-I activity in a non-additive manner with respect to OA. Taxol, a stabilizer of the cytoskeleton, prevented the OA- and 3, 3'-iminodipropionitrile-induced stimulation of CPT-I. (iii) CPT-I activity in isolated mitochondria was depressed in a dose-dependent fashion by the addition of a total cytoskeleton fraction and a cytokeratin-enriched cytoskeletal fraction, the latter being 3 times more potent than the former. In a second series of experiments, the possible link between Ca2+/calmodulin-dependent protein kinase II (Ca2+/CM-PKII) and the cytoskeleton was studied in the context of CPT-I regulation. The data of these experiments indicate that (i) purified Ca2+/CM-PKII activated CPT-I in permeabilized hepatocytes but not in isolated mitochondria, (ii) purified Ca2+/CM-PKII abrogated the inhibition of CPT-I of isolated mitochondria induced by a cytokeratin-enriched fraction, and (iii) the Ca2+/CM-PKII inhibitor KN-62 prevented the OA-induced phosphorylation of cytokeratins in intact hepatocytes. Results thus support a novel mechanism of short-term control of hepatic CPT-I activity which may rely on the cascade Ca2+/CM-PKII activation --> cytokeratin phosphorylation --> CPT-I de-inhibition.
Collapse
Affiliation(s)
- G Velasco
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Song J, Rolfe BE, Campbell JH, Campbell GR. Changes in three-dimensional architecture of microfilaments in cultured vascular smooth muscle cells during phenotypic modulation. Tissue Cell 1998; 30:324-33. [PMID: 10091337 DOI: 10.1016/s0040-8166(98)80045-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To investigate changes in the three-dimensional microfilament architecture of vascular smooth muscle cells (SMC) during the process of phenotypic modulation, rabbit aortic SMCs cultured under different conditions and at different time points were either labelled with fluorescein-conjugated probes to cytoskeletal and contractile proteins for observation by confocal laser scanning microscopy, or extracted with Triton X-100 for scanning electron microscopy. Densely seeded SMCs in primary culture, which maintain a contractile phenotype, display prominent linear myofilament bundles (stress fibres) that are present throughout the cytoplasm with alpha-actin filaments predominant in the central part and beta-actin filaments in the periphery of the cell. Intermediate filaments form a meshed network interconnecting the stress fibres and linking directly to the nucleus. Moderately and sparsely seeded SMCs, which modulate toward the synthetic phenotype during the first 5 days of culture, undergo a gradual redistribution of intermediate filaments from the perinuclear region toward the peripheral cytoplasm and a partial disassembly of stress fibres in the central part of the upper cortex of the cytoplasm, with an obvious decrease in alpha-actin and myosin staining. These changes are reversed in moderately seeded SMCs by day 8 of culture when they have reached confluence. The results reveal two changes in microfilament architecture in SMCs as they undergo a change in phenotype: the redistribution of intermediate filaments probably due to an increase in synthetic organelles in the perinuclear area, and the partial disassembly of stress fibres which may reflect a degradation of contractile components.
Collapse
Affiliation(s)
- J Song
- Department of Anatomical Sciences, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
23
|
Wang R, Stromer MH, Huiatt TW. Integrin expression in developing smooth muscle cells. J Histochem Cytochem 1998; 46:119-26. [PMID: 9405501 DOI: 10.1177/002215549804600115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We studied the specific expression patterns and distributions of alpha1 and beta1 integrin subunits, the major cell adhesion receptors in smooth muscle, in developing smooth muscle cells from 16-, 18-, and 20-day embryonic gizzards and from 1- and 7-day post hatch chick gizzards by SDS-PAGE, immunoblotting, and immunoelectron microscopy. Antibodies raised against alpha1 and beta1 integrins isolated from avian gizzards were used as probes. Gels and blots showed that the amount of alpha1 and beta1 integrins increased as age increased, with major increases at 1 and 7 days post hatch. Image analysis of immunoelectron micrographs demonstrated that statistically significant labeling increases occurred between embryonic Days 16 and 18, between embryonic Day 20 and 1 day post hatch, and between 1 day and 7 days post hatch. Immunolabeling with both anti-alpha1 and anti-beta1 integrin was prominent at membrane-associated dense plaques (MADPs) and at filament anchoring regions at cell ends. This indicates that alpha1 and beta1 integrin expression coincides temporally with the intracellular proliferation and reorientation of myofilaments. The similarity in distribution patterns of alpha1 and beta1 integrins during development suggests that the two integrin subunits are synchronously expressed during development and do not appear sequentially. (J Histochem Cytochem 46:119-125, 1998)
Collapse
Affiliation(s)
- R Wang
- Muscle Biology Group, Department of Animal Science and Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011-3260, USA
| | | | | |
Collapse
|
24
|
Hermann GJ, King EJ, Shaw JM. The yeast gene, MDM20, is necessary for mitochondrial inheritance and organization of the actin cytoskeleton. J Cell Biol 1997; 137:141-53. [PMID: 9105043 PMCID: PMC2139847 DOI: 10.1083/jcb.137.1.141] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In Saccharomyces cerevisiae, the growing bud inherits a portion of the mitochondrial network from the mother cell soon after it emerges. Although this polarized transport of mitochondria is thought to require functions of the cytoskeleton, there are conflicting reports concerning the nature of the cytoskeletal element involved. Here we report the isolation of a yeast mutant, mdm20, in which both mitochondrial inheritance and actin cables (bundles of actin filaments) are disrupted. The MDM20 gene encodes a 93-kD polypeptide with no homology to other characterized proteins. Extra copies of TPM1, a gene encoding the actin filament-binding protein tropomyosin, suppress mitochondrial inheritance defects and partially restore actin cables in mdm20 delta cells. Synthetic lethality is also observed between mdm20 and tpm1 mutant strains. Overexpression of a second yeast tropomyosin, Tpm2p, rescues mutant phenotypes in the mdm20 strain to a lesser extent. Together, these results provide compelling evidence that mitochondrial inheritance in yeast is an actin-mediated process. MDM20 and TPM1 also exhibit the same pattern of genetic interactions; mutations in MDM20 are synthetically lethal with mutations in BEM2 and MYO2 but not SAC6. Although MDM20 and TPM1 are both required for the formation and/or stabilization of actin cables, mutations in these genes disrupt mitochondrial inheritance and nuclear segregation to different extents. Thus, Mdm20p and Tpm1p may act in vivo to establish molecular and functional heterogeneity of the actin cytoskeleton.
Collapse
Affiliation(s)
- G J Hermann
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
25
|
Georgatos SD, Maison C. Integration of intermediate filaments into cellular organelles. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 164:91-138. [PMID: 8575894 DOI: 10.1016/s0074-7696(08)62385-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intermediate filaments represent core components of the cytoskeleton and are known to interact with several membranous organelles. Classic examples of this are the attachment of keratin filaments to the desmosomes and the association of the lamin filament meshwork with the inner nuclear membrane. At this point, the molecular mechanisms by which the filaments link to membranes are not clearly understood. However, since a substantial body of information has been amassed, the time is now ripe for comparing notes and formulating working hypotheses. With this objective in mind, we review here pioneering studies on this subject, together with work that has appeared more recently in the literature.
Collapse
Affiliation(s)
- S D Georgatos
- Program of Cell Biology, European Molecular Biology Laboratory, Germany
| | | |
Collapse
|
26
|
Abstract
The muscle cell cytoskeleton is defined for this review as any structure or protein primarily involved in linking or connecting protein filaments to each other or to anchoring sites. In striated muscle, the M line connects thick filaments at their centers to adjacent thick filaments. Titin forms elastic filaments that extend from the M line to the Z line and may contribute to the resting tension properties of striated muscle. Nebulin forms inextensible filaments in skeletal muscle that are closely associated with thin filaments and that may provide a length template for thin filaments. Z lines anchor thin filaments from adjacent sarcomeres via the actin-binding function of alpha-actinin. Other proteins located at the Z line include Cap Z, Z-nin, Z protein, and zeugmatin. Intermediate filaments connect myofibrils to each other at the level of the Z line and to the sarcolemma at the Z- and possibly the M-line levels. Immunolocalization has identified the adhesion plaque proteins spectrin, vinculin, dystrophin, ankyrin, and talin at subsarcolemmal sites where they may be involved with filament attachment. Smooth muscle cell cytoskeletons are believed to include membrane associated dense bodies (MADBs), intermediate filaments, cytoplasmic dense bodies (CDBs), and perhaps a subset of actin filaments. MADBs contain a menu of attachment plaque proteins and anchor both thin filaments and intermediate filaments to the sarcolemma. CDBs are intracellular analogs of striated muscle Z lines and anchor thin filaments and intermediate filaments.
Collapse
Affiliation(s)
- M H Stromer
- Department of Animal Science, Iowa State University, Ames 50011-3260, USA
| |
Collapse
|
27
|
Bereiter-Hahn J, Vöth M. Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 1994; 27:198-219. [PMID: 8204911 DOI: 10.1002/jemt.1070270303] [Citation(s) in RCA: 601] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mitochondria are semi-autonomous organelles which are endowed with the ability to change their shape (e.g., by elongation, shortening, branching, buckling, swelling) and their location inside a living cell. In addition they may fuse or divide. These dynamics are discussed. Dislocation of mitochondria may result from their interaction with elements of the cytoskeleton, with microtubules in particular, and from processes intrinsic to the mitochondria themselves. Morphological criteria and differences in the fate of some mitochondria argue for the presence of more than one mitochondrial population in some animal cells. Whether these reflect genetic differences remains obscure. Emphasis is laid on the methods for visualizing mitochondria in cells and following their behaviour. Fluorescence methods provide unique possibilities because of their high resolving power and because some of the mitochondria-specific fluorochromes can be used to reveal the membrane potential. Fusion and fission often occur in short time intervals within the same group of mitochondria. At sites of fusion of two mitochondria material of the inner membrane, the matrix compartment seems to accumulate. The original arrangement of the fusion partners is maintained for some minutes. Fission is a dynamic event which, like fusion, in most cases observed in vertebrate cell cultures is not a straight forward process but rather requires several "trials" until the division finally occurs. Regarding fusion and fission hitherto unpublished phase contrast micrographs, and electron micrographs have been included.
Collapse
Affiliation(s)
- J Bereiter-Hahn
- Cinematic Cell Research Group, Johann Wolfgang Goethe Universität, Frankfurt am Main, Germany
| | | |
Collapse
|
28
|
Chou RG, Stromer MH, Robson RM, Huiatt TW. Substructure of cytoplasmic dense bodies and changes in distribution of desmin and alpha-actinin in developing smooth muscle cells. CELL MOTILITY AND THE CYTOSKELETON 1994; 29:204-14. [PMID: 7895284 DOI: 10.1002/cm.970290303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The substructure of assembling cytoplasmic dense bodies (CDBs) and changes in the distribution of desmin and alpha-actinin during development of smooth muscle were studied in gizzard samples from 10- and 16-day embryos and from 1- and 7-day post-hatch chickens. CDBs in these cells lack the density of CDBs in mature or adult smooth muscle cells and, thus, allow observations of the changes inside CDBs. The random filament orientation seen in younger embryonic cells is first modified to include relatively small patches of IFs that are somewhat straighter and are approaching a side-by-side arrangement. As development proceeds, the IFs in these arrays become straighter, are parallel over longer lengths of the IFs and later acquire the density characteristic of mature CDBs. Anti-desmin labeling in embryonic 10- and 16-day cells showed that desmin intermediate filaments (IFs) were located in the myofilament compartment but were concentrated in or near assembling CDBs. Anti-desmin labeling shifted to the perimeter of CDBs after hatching. Cross sections, longitudinal sections, and stereo pairs all show that IF profiles are present inside unlabeled assembling CDBs. Anti-alpha-actinin labeling was directly on CDBs and was often associated with the cross-connecting filaments (CCFs) (average diameter of 2-3nm) inside CDBs. We propose, based on these data, that desmin IFs, alpha-actinin-containing CCFs, and actin filaments are the principal components of the substructure of assembling CDBs. We also present a proposed model for CDB assembly.
Collapse
Affiliation(s)
- R G Chou
- Department of Animal Science, Iowa State University, Ames 50011
| | | | | | | |
Collapse
|
29
|
Abstract
Intermediate filaments (IFs) have always been considered as the most static and 'skeletal' cellular elements. This view is now changing: new information reveals that IFs exchange subunits at steady-state, that IF networks can be assembled de novo, and that IF proteins are subject to elaborate chemical modification and de-modification during mitosis. I describe below some of the key observations which have made us realize that IFs are dynamic structures. I also discuss some of the remaining questions pertinent to the pathways of IF assembly under in vivo conditions.
Collapse
Affiliation(s)
- S D Georgatos
- Cell Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
30
|
Morris RL, Hollenbeck PJ. The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J Cell Sci 1993; 104 ( Pt 3):917-27. [PMID: 8314882 DOI: 10.1242/jcs.104.3.917] [Citation(s) in RCA: 251] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although small molecules such as ATP diffuse freely in the cytosol, many types of cells nonetheless position their mitochondria in regions of intense ATP consumption. We reasoned that in the highly elongated axonal processes of growing neurons in culture, the active growth cone would form a focus of ATP consumption so distant from the cell body as to require the positioning of mitochondria nearby via regulated axonal transport. To test this hypothesis, we quantified the distribution and transport behavior of mitochondria in live, aerobically respiring chick sympathetic neurons. We found that in the distal region of actively growing axons, the distribution of mitochondria was highly skewed toward the growth cone, with a sevenfold higher density in the region immediately adjacent to the growth cone than in the region 100 microns away. When axonal outgrowth was blocked by substratum-associated barriers or mild cytochalasin E treatment, the gradient of mitochondrial distribution collapsed as mitochondria exited retrogradely from the distal region, becoming uniformly distributed along the axon within one hour. Analysis of individual mitochondrial behaviors revealed that mitochondrial movement everywhere was bidirectional but balanced so that net transport was anterograde in growing axons and retrograde in blocked axons. This reversal in net transport derived from two separate modulations of mitochondrial movement. First, moving mitochondria underwent a transition to a persistently stationary state in the region of active growth cones that was reversed when growth cone activity was halted. Second, the fraction of time that mitochondria spent moving anterogradely was sharply reduced in non-growing axons. Together, these could account for the formation of gradients of mitochondria in growing axons and their dissipation when outgrowth was blocked. This regulated transport behavior was not dependent upon the ability of mitochondria to produce ATP. Our data indicate that mitochondria possess distinct motor activities for both directions of movement and that mitochondrial transport in axons is regulated by both recruitment between stationary and moving states, and direct regulation of the anterograde motor.
Collapse
Affiliation(s)
- R L Morris
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
31
|
Abstract
The metabolic activities of mitochondria have been extensively characterized. However, there is much less known about the morphogenic changes of the mitochondrial compartment during growth, development and aging of the cell and the consequences of those structural changes on cellular metabolism. There is a growing body of evidence for interactions of mitochondria with cytoskeletal components and changes of mitochondrial structure during development and in response to changing environmental conditions. Segregation and recombination of mitochondrial genomes are also processes dependent upon the dynamic nature of the mitochondrial compartment. These regulatory and structural aspects of mitochondrial compartment dynamics will play an important role in the analysis of mitochondrial function and pathology.
Collapse
Affiliation(s)
- P E Thorsness
- Department of Molecular Biology, University of Wyoming, Laramie 82071-3944
| |
Collapse
|
32
|
Stirling JW. Unfixed tissue for electron immunocytochemistry: a simple preparation method for colloidal gold localization of sensitive epitopes using ethanediol dehydration. THE HISTOCHEMICAL JOURNAL 1992; 24:190-206. [PMID: 1375208 DOI: 10.1007/bf01046789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A quick, simple protocol is described for the preparation of tissue for electron immunocytochemistry without the use of fixatives or deleterious solvents. Fresh, normal human colon was rapidly dehydrated in ethanediol (ethylene glycol) then embedded directly in low-acid glycol methacrylate. Using both mono- and polyclonal antibodies, in conjunction with colloidal gold probes, a range of intra- and extracellular epitopes were localized; these epitopes included lysozyme, chromogranin, desmin and collagen IV. Overall, the tissue compared well with material fixed in glutaraldehyde, partially dehydrated and embedded in LR White acrylic resin. Ultrastructural detail was good and was further enhanced, without affecting probe density and epitope localization, by the addition of 1% tannic acid or 1% uranyl acetate to the dehydrant. The technique is applicable to a wide range of tissues, allowing excellent antigen retention which might prove useful for the immunolocalization of sensitive epitopes.
Collapse
Affiliation(s)
- J W Stirling
- Department of Pathology, Flinders Medical Centre, Bedford Park, Australia
| |
Collapse
|
33
|
Chou RG, Stromer MH, Robson RM, Huiatt TW. Assembly of contractile and cytoskeletal elements in developing smooth muscle cells. Dev Biol 1992; 149:339-48. [PMID: 1309709 DOI: 10.1016/0012-1606(92)90289-s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specific developmental changes in smooth muscle were studied in gizzards obtained from 6-, 8-, 10-, 12-, 14-, 16-, 18-, and 20-day chick embryos and from 1- and 7-day posthatch chicks. Myoblasts were actively replicating in tissue from 6-day embryos. Cytoplasmic dense bodies (CDBs) first appeared at Embryonic Day 8 (E8) and were recognized as patches of increased electron density that consisted of actin filaments (AFs), intermediate filaments (IFs), and cross-connecting filaments (CCFs). Although the assembly of CDBs was not synchronized within a cell, the number, size, and electron density of CDBs increased as age increased. Membrane-associated dense bodies (MADBs) also could be recognized at E8. The number and size of MADBs increased as age increased, especially after E16. Filaments with the diameter of thick filaments first appeared at E12. Smooth muscle cells were able to divide as late as E20. The axial intermediate filament bundle (IFB) could first be identified in 1-day posthatch cells and became larger and more prominent in 7-day posthatch cells. Immunogold labeling of 1- and 7-day posthatch cells with anti-desmin showed that the IFB contained desmin IFs. The developmental events during this 23-day period were classified into seven stages, based primarily on the appearance and the growth of contractile and cytoskeletal elements. These stages are myoblast proliferation, dense body appearance, thick filament appearance, dense body growth, muscle cell replication, IFB appearance, and appearance of adult type cells. Smooth muscle cells in each stage express similar developmental characteristics. The mechanism of assembly of myofilaments and cytoskeletal elements in smooth muscle in vivo indicates that myofilaments (AFs and thick filaments) and filament attachment sites (CDBs and MADBs) are assembled before the axial IFB, a major cytoskeletal element.
Collapse
Affiliation(s)
- R G Chou
- Department of Animal Science, Iowa State University, Ames 50011
| | | | | | | |
Collapse
|
34
|
Raats JM, Bloemendal H. The role of protein domains in the assembly process of intermediate filaments. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1992; 43:67-86. [PMID: 1410448 DOI: 10.1016/s0079-6603(08)61044-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J M Raats
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | |
Collapse
|