1
|
Ning Y, Zheng M, Zhang Y, Jiao Y, Wang J, Zhang S. RhoA-ROCK2 signaling possesses complex pathophysiological functions in cancer progression and shows promising therapeutic potential. Cancer Cell Int 2024; 24:339. [PMID: 39402585 PMCID: PMC11475559 DOI: 10.1186/s12935-024-03519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
The Rho GTPase signaling pathway is responsible for cell-specific processes, including actin cytoskeleton organization, cell motility, cell division, and the transcription of specific genes. The implications of RhoA and the downstream effector ROCK2 in cancer epithelial-mesenchymal transition, migration, invasion, and therapy resistance associated with stem cells highlight the potential of targeting RhoA/ROCK2 signaling in therapy. Tumor relapse can occur due to cancer cells that do not fully respond to adjuvant chemoradiotherapy, targeted therapy, or immunotherapy. Rho signaling-mediated mitotic defects and cytokinesis failure lead to asymmetric cell division, allowing cells to form polyploids to escape cytotoxicity and promote tumor recurrence and metastasis. In this review, we elucidate the significance of RhoA/ROCK2 in the mechanisms of cancer progression and summarize their inhibitors that may improve treatment strategies.
Collapse
Affiliation(s)
- Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R. China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Yue Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Yuqi Jiao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Jiangping Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China.
| |
Collapse
|
2
|
Advedissian T, Frémont S, Echard A. Cytokinetic abscission requires actin-dependent microtubule severing. Nat Commun 2024; 15:1949. [PMID: 38431632 PMCID: PMC10908825 DOI: 10.1038/s41467-024-46062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Cell division is completed by the abscission of the intercellular bridge connecting the daughter cells. Abscission requires the polymerization of an ESCRT-III cone close to the midbody to both recruit the microtubule severing enzyme spastin and scission the plasma membrane. Here, we found that the microtubule and the membrane cuts are two separate events that are regulated differently. Using HeLa cells, we uncovered that the F-actin disassembling protein Cofilin-1 controls the disappearance of a transient pool of branched F-actin which is precisely assembled at the tip of the ESCRT-III cone shortly before the microtubule cut. Functionally, Cofilin-1 and Arp2/3-mediated branched F-actin favor abscission by promoting local severing of the microtubules but do not participate later in the membrane scission event. Mechanistically, we propose that branched F-actin functions as a physical barrier that limits ESCRT-III cone elongation and thereby favors stable spastin recruitment. Our work thus reveals that F-actin controls the timely and local disassembly of microtubules required for cytokinetic abscission.
Collapse
Affiliation(s)
- Tamara Advedissian
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015, Paris, France
| | - Stéphane Frémont
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015, Paris, France
| | - Arnaud Echard
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015, Paris, France.
| |
Collapse
|
3
|
Zhang X, Fang J, Chen S, Wang W, Meng S, Liu B. Nonconserved miR-608 suppresses prostate cancer progression through RAC2/PAK4/LIMK1 and BCL2L1/caspase-3 pathways by targeting the 3'-UTRs of RAC2/BCL2L1 and the coding region of PAK4. Cancer Med 2019; 8:5716-5734. [PMID: 31389670 PMCID: PMC6746107 DOI: 10.1002/cam4.2455] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/27/2019] [Accepted: 07/13/2019] [Indexed: 01/02/2023] Open
Abstract
The aim of this study is to investigate the functions and mechanisms of miR-608 in prostate cancer (PCa). CISH and qRT-PCR analysis demonstrated that miR-608 was low expressed in PCa tissues and cells, which was partly attributed to the methylation of CpG island adjacent to the transcription start site (TSS) of miR-608 gene. Intracellular miR-608 overexpression inhibited in vivo PCa tumor growth, and suppressed PCa cell proliferation, G2/M transition, and migration in vitro, which was independent of EMT-associated mechanisms. Then RAC2, a GTPase previously deemed hematopoiesis-specific but now discovered to exist and play important roles in PCa, was verified by western blot and dual-luciferase reporter assays to mediate the effects of miR-608 through RAC2/PAK4/LIMK1/cofilin pathway. MiR-608 also promoted the apoptosis of PCa cells through BCL2L1/caspase-3 pathway by targeting the 3'-UTR of BCL2L1. Moreover, PAK4, the downstream effector of RAC2, was found to be targeted by miR-608 at the mRNA coding sequence (CDS) instead of the canonical 3'-UTR. Knocking down RAC2, PAK4, or BCL2L1 with siRNAs reproduced the antiproliferative, mitosis-obstructive, antimigratory and proapoptotic effects of miR-608 in PCa cells, which could be attenuated by downregulating miR-608. In conclusion, miR-608 suppresses PCa progression, and its activation provides a new therapeutic option for PCa.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Urologythe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Jiajie Fang
- Department of Urologythe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Shiming Chen
- Department of Urologythe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Weiyu Wang
- Department of Urologythe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Shuai Meng
- Department of UrologyZhejiang Provincial People's HospitalHangzhouChina
| | - Ben Liu
- Department of Urologythe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
4
|
Mousavi S, Safaralizadeh R, Hosseinpour-Feizi M, Azimzadeh-Isfanjani A, Hashemzadeh S. Study of cofilin 1 gene expression in colorectal cancer. J Gastrointest Oncol 2018; 9:791-796. [PMID: 30505577 DOI: 10.21037/jgo.2018.05.17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide. Cofilin is a key regulatory protein in the dynamics of actin filaments. Previous studies have shown cofilin 1's major role in cell migration process and its role in tumor cell migration and invasion. Therefore, cofilin 1 may have the potential as a novel diagnostic tumor marker in various cancers. In this study, differential expression of CFL1 in CRC tissues in comparison with adjacent non-tumor tissues was investigated and the diagnostic value of this protein in CRC was evaluated. Methods Synthesized cDNA from extracted RNAs of 30 patients were subjected to qRT-PCR to quantify relative expression of cofilin 1. The relationship between cofilin 1 expression and clinicopathological features of patients were studied too. Results The study showed significant upregulation of cofilin 1 in CRC tissue samples compared to adjacent non-tumor tissue samples (P<0.05). The receiver operating characteristic curve analysis showed higher area under the curve (0.85). There was no significant correlation between cofilin 1 expression levels and clinicopathological features of patients. Conclusions According to the obtained results, cofilin 1 can serve as a candidate for clinically useful diagnostic biomarker or therapeutic target for CRC.
Collapse
Affiliation(s)
- Samira Mousavi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | | | - Shahryar Hashemzadeh
- Department of General & Vascular Surgery, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Alhadidi Q, Shah ZA. Cofilin Mediates LPS-Induced Microglial Cell Activation and Associated Neurotoxicity Through Activation of NF-κB and JAK-STAT Pathway. Mol Neurobiol 2017; 55:1676-1691. [PMID: 28194647 DOI: 10.1007/s12035-017-0432-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/30/2017] [Indexed: 11/24/2022]
Abstract
Microglial cells are activated in response to different types of injuries or stress in the CNS. Such activation is necessary to get rid of the injurious agents and restore tissue homeostasis. However, excessive activation of microglial cells is harmful and contributes to secondary injury. Pertinently, microglial cell activity was targeted in many preclinical and clinical studies but such strategy failed in clinical trials. The main reason behind the failed attempts is the complexity of the injury mechanisms which needs either a combination therapy or targeting a process that is involved in multiple pathways. Cofilin is a cytoskeleton-associated protein involved in actin dynamics. In our previous study, we demonstrated the role of cofilin in mediating neuronal apoptosis during OGD conditions. Previous studies on microglia have shown the involvement of cofilin in ROS formation and phagocytosis. However, additional studies are needed to delineate the role of cofilin in microglial cell activation. Therefore, in the current study, we investigated the role of cofilin in LPS-induced microglial cell activation using cofilin siRNA knockdown paradigms. The viability of differentiated PC12 cells was used as a measure of the neurotoxic potential of conditioned medium derived from cofilin siRNA-transfected and LPS-activated microglial cells. Cofilin knockdown significantly inhibited LPS-induced microglial cell activation through NF-κB and JAK-STAT pathways. The release of proinflammatory mediators (NO, TNF-α, iNOS, and COX2) as well as microglial proliferation and migration rates were significantly reduced by cofilin knockdown. Furthermore, differentiated PC12 cells were protected from the neurotoxicity induced by conditioned medium derived from cofilin-transfected and LPS-activated microglial cells. In conclusion, we demonstrated that cofilin is involved in the cascade of microglial cell activation and further validates our previous study on cofilin's role in mediating neuronal apoptosis. Together, our results suggest that cofilin could present a common target in neurons and microglial cells and might prove to be a promising therapy for different brain injury mechanisms including stroke.
Collapse
Affiliation(s)
- Qasim Alhadidi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
- Department of Pharmacy, Diyala Health Directorate, Ministry of Health, Baghdad, Iraq
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
6
|
An equatorial contractile mechanism drives cell elongation but not cell division. PLoS Biol 2014; 12:e1001781. [PMID: 24503569 PMCID: PMC3913557 DOI: 10.1371/journal.pbio.1001781] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
A cytokinesis-like contractile mechanism is co-opted in a different developmental scenario to achieve cell elongation instead of cell division in Ciona intestinalis. Cell shape changes and proliferation are two fundamental strategies for morphogenesis in animal development. During embryogenesis of the simple chordate Ciona intestinalis, elongation of individual notochord cells constitutes a crucial stage of notochord growth, which contributes to the establishment of the larval body plan. The mechanism of cell elongation is elusive. Here we show that although notochord cells do not divide, they use a cytokinesis-like actomyosin mechanism to drive cell elongation. The actomyosin network forming at the equator of each notochord cell includes phosphorylated myosin regulatory light chain, α-actinin, cofilin, tropomyosin, and talin. We demonstrate that cofilin and α-actinin are two crucial components for cell elongation. Cortical flow contributes to the assembly of the actomyosin ring. Similar to cytokinetic cells, membrane blebs that cause local contractions form at the basal cortex next to the equator and participate in force generation. We present a model in which the cooperation of equatorial actomyosin ring-based constriction and bleb-associated contractions at the basal cortex promotes cell elongation. Our results demonstrate that a cytokinesis-like contractile mechanism is co-opted in a completely different developmental scenario to achieve cell shape change instead of cell division. We discuss the occurrences of actomyosin rings aside from cell division, suggesting that circumferential contraction is an evolutionally conserved mechanism to drive cell or tissue elongation. The actomyosin cytoskeleton is the primary force that drives cell shape changes. These fibers are organized in elaborate structures that form sarcomeres in the muscle and the contractile ring during cytokinesis. In cytokinesis, the establishment of an equatorial actomyosin ring is preceded and regulated by many cell cycle events, and the ring itself is a complex and dynamic structure. Here we report the presence of an equatorial circumferential actomyosin structure with remarkable similarities to the cytokinetic ring formed in postmitotic notochord cells of sea squirt Ciona intestinalis. The notochord is a transient rod-like structure found in all embryos that belong to the phylum Chordata, and in Ciona, a simple chordate, it consists of only 40 cylindrical cells arranged in a single file, which elongate individually during development. Our study shows that the activity of the equatorial actomyosin ring is required for the elongation of the notochord cells. We also find that cortical flow contributes significantly to the formation of the ring at the equator. Similar to cytokinetic cells, we observe the formation of membrane blebs outside the equatorial region. Our analyses suggest that cooperation of actomyosin ring-based circumferential constriction and bleb-associated contractions drive cell elongation in Ciona. We conclude that cells can utilize a cytokinesis-like force generation mechanism to promote cell shape change instead of cell division.
Collapse
|
7
|
Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell Signal 2012; 25:457-69. [PMID: 23153585 DOI: 10.1016/j.cellsig.2012.11.001] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/05/2012] [Indexed: 01/12/2023]
Abstract
Cofilin and actin-depolymerizing factor (ADF) are actin-binding proteins that play an essential role in regulating actin filament dynamics and reorganization by stimulating the severance and depolymerization of actin filaments. Cofilin/ADF are inactivated by phosphorylation at the serine residue at position 3 by LIM-kinases (LIMKs) and testicular protein kinases (TESKs) and are reactivated by dephosphorylation by the slingshot (SSH) family of protein phosphatases and chronophin. This review describes recent advances in our understanding of the signaling mechanisms regulating LIMKs and SSHs and the functional roles of cofilin phospho-regulation in cell migration, tumor invasion, mitosis, neuronal development, and synaptic plasticity. Accumulating evidence demonstrates that the phospho-regulation of cofilin/ADF is a key convergence point of cell signaling networks that link extracellular stimuli to actin cytoskeletal dynamics and that spatiotemporal control of cofilin/ADF activity by LIMKs and SSHs plays a crucial role in a diverse array of cellular and physiological processes. Perturbations in the normal control of cofilin/ADF activity underlie many pathological conditions, including cancer metastasis and neurological and cardiovascular disorders.
Collapse
|
8
|
Jönsson F, Gurniak CB, Fleischer B, Kirfel G, Witke W. Immunological responses and actin dynamics in macrophages are controlled by N-cofilin but are independent from ADF. PLoS One 2012; 7:e36034. [PMID: 22558315 PMCID: PMC3338623 DOI: 10.1371/journal.pone.0036034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 03/28/2012] [Indexed: 11/19/2022] Open
Abstract
Dynamic changes in the actin cytoskeleton are essential for immune cell function and a number of immune deficiencies have been linked to mutations, which disturb the actin cytoskeleton. In macrophages and dendritic cells, actin remodelling is critical for motility, phagocytosis and antigen presentation, however the actin binding proteins, which control antigen presentation have been poorly characterized. Here we dissect the specific roles of the family of ADF/cofilin F-actin depolymerizing factors in macrophages and in local immune responses. Macrophage migration, cell polarization and antigen presentation to T-cells require n-cofilin mediated F-actin remodelling. Using a conditional mouse model, we show that n-cofilin also controls MHC class II-dependent antigen presentation. Other cellular processes such as phagocytosis and antigen processing were found to be independent of n-cofilin. Our data identify n-cofilin as a novel regulator of antigen presentation, while ADF on the other hand is dispensable for macrophage motility and antigen presentation.
Collapse
Affiliation(s)
- Friederike Jönsson
- Department of Immunology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Institut Pasteur, Inserm U.760, Paris, France
| | - Christine B. Gurniak
- Institute of Genetics, Cell Motility Unit, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Bernhard Fleischer
- Department of Immunology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Gregor Kirfel
- Institute for Cell Biology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Walter Witke
- Institute of Genetics, Cell Motility Unit, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
- * E-mail:
| |
Collapse
|
9
|
Lu JX, Xiang YF, Zhang JX, Ju HQ, Chen ZP, Wang QL, Chen W, Peng XL, Han B, Wang YF. Cloning, soluble expression, rapid purification and characterization of human Cofilin1. Protein Expr Purif 2012; 82:186-91. [DOI: 10.1016/j.pep.2012.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/03/2012] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
|
10
|
Chen Q, Pollard TD. Actin filament severing by cofilin is more important for assembly than constriction of the cytokinetic contractile ring. ACTA ACUST UNITED AC 2011; 195:485-98. [PMID: 22024167 PMCID: PMC3206353 DOI: 10.1083/jcb.201103067] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
When fission yeast express mutant cofilin that is inefficient at actin filament severing, cytokinetic contractile ring formation is severely impaired, but ring contraction proceeds efficiently. We created two new mutants of fission yeast cofilin to investigate why cytokinesis in many organisms depends on this small actin-binding protein. These mutant cofilins bound actin monomers normally, but bound and severed ADP-actin filaments much slower than wild-type cofilin. Cells depending on mutant cofilins condensed nodes, precursors of the contractile ring, into clumps rather than rings. Starting from clumped nodes, mutant cells slowly assembled rings from diverse intermediate structures including spiral strands containing actin filaments and other contractile ring proteins. This process in mutant cells depended on α-actinin. These slowly assembled contractile rings constricted at a normal rate but with more variability, indicating ring constriction is not very sensitive to defects in severing by cofilin. Computer simulations of the search-capture-pull and release model of contractile ring formation predicted that nodes clump when the release step is slow, so cofilin severing of actin filament connections between nodes likely contributes to the release step.
Collapse
Affiliation(s)
- Qian Chen
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
11
|
Marteil G, Gagné JP, Borsuk E, Richard-Parpaillon L, Poirier GG, Kubiak JZ. Proteomics reveals a switch in CDK1-associated proteins upon M-phase exit during the Xenopus laevis oocyte to embryo transition. Int J Biochem Cell Biol 2011; 44:53-64. [PMID: 21959252 DOI: 10.1016/j.biocel.2011.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/09/2011] [Accepted: 09/14/2011] [Indexed: 02/04/2023]
Abstract
Cyclin-dependent kinase 1 (CDK1) is a major M-phase kinase which requires the binding to a regulatory protein, Cyclin B, to be active. CDK1/Cyclin B complex is called M-phase promoting factor (MPF) for its key role in controlling both meiotic and mitotic M-phase of the cell cycle. CDK1 inactivation is necessary for oocyte activation and initiation of embryo development. This complex process requires both Cyclin B polyubiquitination and proteosomal degradation via the ubiquitin-conjugation pathway, followed by the dephosphorylation of the monomeric CDK1 on Thr161. Previous proteomic analyses revealed a number of CDK1-associated proteins in human HeLa cells. It is, however, unknown whether specific partners are involved in CDK1 inactivation upon M-phase exit. To better understand CDK1 regulation during MII-arrest and oocyte activation, we immunoprecipitated (IPed) CDK1 together with its associated proteins from M-phase-arrested and M-phase-exiting Xenopus laevis oocytes. A mass spectrometry (MS) analysis revealed a number of new putative CDK1 partners. Most importantly, the composition of the CDK1-associated complex changed rapidly during M-phase exit. Additionally, an analysis of CDK1 complexes precipitated with beads covered with p9 protein, a fission yeast suc1 homologue well known for its high affinity for CDKs, was performed to identify the most abundant proteins associated with CDK1. The screen was auto-validated by identification of: (i) two forms of CDK1: Cdc2A and B, (ii) a set of Cyclins B with clearly diminishing number of peptides identified upon M-phase exit, (iii) a number of known CDK1 substrates (e.g. peroxiredoxine) and partners (e.g. HSPA8, a member of the HSP70 family) both in IP and in p9 precipitated pellets. In IP samples we also identified chaperones, which can modulate CDK1 three-dimensional structure, as well as calcineurin, a protein necessary for successful oocyte activation. These results shed a new light on CDK1 regulation via a dynamic change in the composition of the protein complex upon M-phase exit and the oocyte to embryo transition.
Collapse
Affiliation(s)
- Gaëlle Marteil
- CNRS, UMR 6061, Institute of Genetics and Development of Rennes, Rennes, France
| | | | | | | | | | | |
Collapse
|
12
|
Kostyak JC, Naik UP. Calcium- and integrin-binding protein 1 regulates endomitosis and its interaction with Polo-like kinase 3 is enhanced in endomitotic Dami cells. PLoS One 2011; 6:e14513. [PMID: 21264284 PMCID: PMC3021501 DOI: 10.1371/journal.pone.0014513] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 12/15/2010] [Indexed: 12/24/2022] Open
Abstract
Endomitosis is a form of mitosis in which both karyokinesis and cytokinesis are interrupted and is a hallmark of megakaryocyte differentiation. Very little is known about how such a dramatic alteration of the cell cycle in a physiological setting is achieved. Thrombopoietin-induced signaling is essential for induction of endomitosis. Here we show that calcium- and integrin-binding protein 1 (CIB1), a known regulator of platelet integrin αIIbβ3 outside-in signaling, regulates endomitosis. We observed that CIB1 expression is increased in primary mouse megakaryocytes compared to mononuclear bone marrow cells as determined by Western blot analysis. Following PMA treatment of Dami cells, a megakaryoblastic cell line, we found that CIB1 protein expression increased concomitant with cell ploidy. Overexpression of CIB1 in Dami cells resulted in multilobated nuclei and led to increased time for a cell to complete cytokinesis as well as increased incidence of furrow regression as observed by time-lapse microscopy. Additionally, we found that surface expression of integrin αIIbβ3, an important megakaryocyte marker, was enhanced in CIB1 overexpressing cells as determined by flow cytometry. Furthermore, PMA treatment of CIB1 overexpressing cells led to increased ploidy compared to PMA treated control cells. Interestingly, expression of Polo-like kinase 3 (Plk3), an established CIB1-interacting protein and a key regulator of the mitotic process, decreased upon PMA treatment of Dami cells. Furthermore, PMA treatment augmented the interaction between CIB1 and Plk3, which depended on the duration of treatment. These data suggest that CIB1 is involved in regulating endomitosis, perhaps through its interaction with Plk3.
Collapse
Affiliation(s)
- John C Kostyak
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | | |
Collapse
|
13
|
Ferreira GB, van Etten E, Lage K, Hansen DA, Moreau Y, Workman CT, Waer M, Verstuyf A, Waelkens E, Overbergh L, Mathieu C. Proteome analysis demonstrates profound alterations in human dendritic cell nature by TX527, an analogue of vitamin D. Proteomics 2009; 9:3752-64. [PMID: 19639594 DOI: 10.1002/pmic.200800848] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Structural analogues of vitamin D have been put forward as therapeutic agents able to exploit the immunomodulatory effects of vitamin D, without its undesired calcemic side effects. We have demonstrated that TX527 affects dendritic cell (DC) maturation in vitro, resulting in the generation of a tolerogenic cell. In the present study, we aimed to explore the global protein changes induced by the analogue in immature DC (iDC) and mature human DC and to correlate them with alterations in DC morphology and function. Human CD14(+) monocytes were differentiated toward iDC or mature DCs, in the presence or absence of TX527 (10(-8) M) (n=4). Protein samples were separated into two different pH ranges (pH4-7 and 6-9), analyzed by 2-D DIGE and differentially expressed spots (p<0.01) were identified by MALDI-TOF/TOF (76.3 and 70.7% in iDC and mature DCs, respectively). Differential protein expression revealed three protein groups predominantly affected by TX527 treatment, namely proteins involved in cytoskeleton structure, in protein biosynthesis/proteolysis and in metabolism. Moreover, protein interactome-network analysis demonstrated close interaction between these different groups (p<0.001) and morphological and functional analyses confirmed the integrated effect of TX527 on human DCs, resulting in a cell with altered morphology, cell surface marker expression, endocytic and migratory capacity.
Collapse
Affiliation(s)
- Gabriela Bomfim Ferreira
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Thoms JAI, Loch HM, Bamburg JR, Gunning PW, Weinberger RP. A tropomyosin 1 induced defect in cytokinesis can be rescued by elevated expression of cofilin. ACTA ACUST UNITED AC 2008; 65:979-90. [DOI: 10.1002/cm.20320] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Van Troys M, Huyck L, Leyman S, Dhaese S, Vandekerkhove J, Ampe C. Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol 2008; 87:649-67. [PMID: 18499298 DOI: 10.1016/j.ejcb.2008.04.001] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/25/2008] [Accepted: 04/02/2008] [Indexed: 12/15/2022] Open
Abstract
The actin-binding proteins of the actin-depolymerisation factor (ADF)/cofilin family were first described more than three decades ago, but research on these proteins still occupies a front role in the actin and cell migration field. Moreover, cofilin activity is implicated in the malignant, invasive properties of cancer cells. The effects of ADF/cofilins on actin dynamics are diverse and their regulation is complex. In stimulated cells, multiple signalling pathways can be initiated resulting in different activation/deactivation switches that control ADF/cofilin activity. The output of this entire regulatory system, in combination with spatial and temporal segregation of the activation mechanisms, underlies the contribution of ADF/cofilins to various cell migration/invasion phenotypes. In this framework, we describe current views on how ADF/cofilins function in migrating and invading cells.
Collapse
|
16
|
Kuhn TB, Bamburg JR. Tropomyosin and ADF/cofilin as collaborators and competitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:232-49. [PMID: 19209826 DOI: 10.1007/978-0-387-85766-4_18] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dynamics of actin filaments is pivotal to many fundamental cellular processes such as Dcytokinesis, motility, morphology, vesicle and organelle transport, gene transcription and senescence. In vivo kinetics of actin filament dynamics is far from the equilibrium in vitro and these profound differences are attributed to large number of regulatory proteins. In particular, proteins of the ADF/cofilin family greatly increase actin filament dynamics by severing filaments and enhancing depolymerization of ADP-actin monomers from their pointed ends. Cofilin binds cooperatively to a minor conformer of F-actin in which the subunits are slightly under rotated along the filament helical axis. At high stoichiometry of cofilin to actin subunits, cofilin actually stabilizes actin filaments. Many isoforms oftropomyosin appear to compete with ADF/cofilin proteins for binding to actin filaments. Tropomyosin isoforms studied to date prefer binding to the "untwisted" conformer of F-actin and through their protection and stabilization of F-actin, recruit myosin II and assemble different actin superstructures from the cofilin-actin filaments. However, some tropomyosin isoforms may synergize with ADF/cofilin to enhance filament dynamics, suggesting that the different isoforms of tropomyosins, many of which show developmental or tissue specific expression profiles, play major roles in the assembly and turnover of actin superstructures. Different actin superstructures can overlap both spatially and temporally within a cell, but can be differentiated from each other based upon their kinetic and kinematic properties. Furthermore, local regulation of ADF/cofilin activity through signal transduction pathways could be one mechanism to alter the dynamic balance in F-actin-binding of certain tropomyosin isoforms in subcellular domains.
Collapse
Affiliation(s)
- Thomas B Kuhn
- Department of Chemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | | |
Collapse
|
17
|
Ono S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:1-82. [PMID: 17338919 DOI: 10.1016/s0074-7696(07)58001-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The actin cytoskeleton is one of the major structural components of the cell. It often undergoes rapid reorganization and plays crucial roles in a number of dynamic cellular processes, including cell migration, cytokinesis, membrane trafficking, and morphogenesis. Actin monomers are polymerized into filaments under physiological conditions, but spontaneous depolymerization is too slow to maintain the fast actin filament dynamics observed in vivo. Gelsolin, actin-depolymerizing factor (ADF)/cofilin, and several other actin-severing/depolymerizing proteins can enhance disassembly of actin filaments and promote reorganization of the actin cytoskeleton. This review presents advances as well as a historical overview of studies on the biochemical activities and cellular functions of actin-severing/depolymerizing proteins.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
18
|
Bunai F, Ando K, Ueno H, Numata O. Tetrahymena Eukaryotic Translation Elongation Factor 1A (eEF1A) Bundles Filamentous Actin through Dimer Formation. ACTA ACUST UNITED AC 2006; 140:393-9. [PMID: 16877446 DOI: 10.1093/jb/mvj169] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryotic translation elongation factor 1A (eEF1A) is known to be a multifunctional protein. In Tetrahymena, eEF1A is localized to the division furrow and has the character to bundle filamentous actin (F-actin). eEF1A binds F-actin and the ratio of eEF1A and actin is approximately 1:1 (Kurasawa et al., 1996). In this study, we revealed that eEF1A itself exists as monomer and dimer, using gel filtration column chromatography. Next, eEF1A monomer and eEF1A dimer were separated using gel filtration column, and their interaction with F-actin was examined with cosedimentation assay and electron microscopy. In the absence of Ca2+/calmodulin (CaM), eEF1A dimer bundled F-actin and coprecipitated with F-actin at low-speed centrifugation, but eEF1A monomer did not. In the presence of Ca2+/CaM, eEF1A monomer increased, while dimer decreased. To examine that Ca2+/CaM alters eEF1A dimer into monomer and inhibits bundle formation of F-actin, Ca2+/CaM was added to F-actin bundles formed by eEF1A dimer. Ca2+/CaM separated eEF1A dimer to monomer, loosened F-actin bundles and then dispersed actin filaments. Simultaneously, Ca2+/CaM/ eEF1A monomer complexes were dissociated from actin filaments. Therefore, Ca2+/CaM reversibly regulates the F-actin bundling activity of eEF1A.
Collapse
Affiliation(s)
- Fumihide Bunai
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572
| | | | | | | |
Collapse
|
19
|
Tanaka K, Okubo Y, Abe H. Involvement of slingshot in the Rho-mediated dephosphorylation of ADF/cofilin during Xenopus cleavage. Zoolog Sci 2006; 22:971-84. [PMID: 16219977 DOI: 10.2108/zsj.22.971] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ADF/cofilin is a key regulator for actin dynamics during cytokinesis. Its activity is suppressed by phosphorylation and reactivated by dephosphorylation. Little is known, however, about regulatory mechanisms of ADF/cofilin function during formation of contractile ring actin filaments. Using Xenopus cycling extracts, we found that ADF/cofilin was dephosphorylated at prophase and telophase. In addition, constitutively active Rho GTPase induced dephosphorylation of ADF/cofilin in the egg extracts. This dephosphorylation was inhibited by Na(3)VO (4) but not by other conventional phosphatase-inhibitors. We cloned a Xenopus homologue of Slingshot phosphatase (XSSH), originally identified in Drosophila and human as an ADF/cofilin phosphatase, and raised antibody specific for the catalytic domain of XSSH. This inhibitory antibody significantly suppressed the Rho-induced dephosphorylation of ADF/cofilin in extracts, suggesting that the dephosphorylation at telophase is dependent on XSSH. XSSH bound to actin filaments with a dissociation constant of 0.4 microM, and the ADF/cofilin phosphatase activity was increased in the presence of F-actin. When latrunculin A, a G-actin-sequestering drug, was added to extracts, both Rho-induced actin polymerization and dephosphorylation of ADF/cofilin were markedly inhibited. Jasplakinolide, an actin-stabilizing drug, alone induced actin polymerization in the extracts and lead to dephosphorylation of ADF/cofilin. These results suggest that Rho-induced dephosphorylation of ADF/cofilin is dependent on the XSSH activation that is caused by increase in the amount of F-actin induced by Rho signaling. XSSH colocalized with both actin filaments and ADF/cofilin in the actin patches formed on the surface of the early cleavage furrow. Injection of inhibitory antibody blocked cleavage of blastomeres. Thus, XSSH may reorganize actin filaments through dephosphorylation and reactivation of ADF/cofilin at early stage of contractile ring formation.
Collapse
|
20
|
Nakano K, Mabuchi I. Actin-depolymerizing protein Adf1 is required for formation and maintenance of the contractile ring during cytokinesis in fission yeast. Mol Biol Cell 2006; 17:1933-45. [PMID: 16467379 PMCID: PMC1415287 DOI: 10.1091/mbc.e05-09-0900] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The role of the actin-depolymerizing factor (ADF)/cofilin-family protein Adf1 in cytokinesis of fission yeast cells was studied. Adf1 was required for accumulation of actin at the division site by depolymerizing actin at the cell ends, assembly of the contractile ring through severing actin filaments, and maintenance of the contractile ring once formed. Genetic and cytological analyses suggested that it collaborates with profilin and capping protein in the mitotic reorganization of the actin cytoskeleton. Furthermore, it was unexpectedly found that Adf1 and myosin-II also collaborate in assembling the contractile ring. Tropomyosin was shown to antagonize the function of Adf1 in the contractile ring. We propose that formation and maintenance of the contractile ring are achieved by a balanced collaboration of these proteins.
Collapse
Affiliation(s)
- Kentaro Nakano
- Division of Biology, Department of Life Sciences, Graduate Program in Interdisciplinary Sciences, School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan.
| | | |
Collapse
|
21
|
Gohla A, Birkenfeld J, Bokoch GM. Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat Cell Biol 2004; 7:21-9. [PMID: 15580268 DOI: 10.1038/ncb1201] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 11/08/2004] [Indexed: 11/08/2022]
Abstract
Cofilin is a key regulator of actin cytoskeletal dynamics whose activity is controlled by phosphorylation of a single serine residue. We report the biochemical isolation of chronophin (CIN), a unique cofilin-activating phosphatase of the haloacid dehalogenase (HAD) superfamily. CIN directly dephosphorylates cofilin with high specificity and colocalizes with cofilin in motile and dividing cells. Loss of CIN activity blocks phosphocycling of cofilin, stabilizes F-actin structures and causes massive cell division defects. Our findings identify a physiological phospho-serine protein substrate for a mammalian HAD-type phosphatase and demonstrate that CIN is an important novel regulator of cofilin-mediated actin reorganization.
Collapse
Affiliation(s)
- Antje Gohla
- The Scripps Research Institute, Departments of Immunology and Cell Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
22
|
Hotulainen P, Paunola E, Vartiainen MK, Lappalainen P. Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol Biol Cell 2004; 16:649-64. [PMID: 15548599 PMCID: PMC545901 DOI: 10.1091/mbc.e04-07-0555] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Actin-depolymerizing factor (ADF)/cofilins are small actin-binding proteins found in all eukaryotes. In vitro, ADF/cofilins promote actin dynamics by depolymerizing and severing actin filaments. However, whether ADF/cofilins contribute to actin dynamics in cells by disassembling "old" actin filaments or by promoting actin filament assembly through their severing activity is a matter of controversy. Analysis of mammalian ADF/cofilins is further complicated by the presence of multiple isoforms, which may contribute to actin dynamics by different mechanisms. We show that two isoforms, ADF and cofilin-1, are expressed in mouse NIH 3T3, B16F1, and Neuro 2A cells. Depleting cofilin-1 and/or ADF by siRNA leads to an accumulation of F-actin and to an increase in cell size. Cofilin-1 and ADF seem to play overlapping roles in cells, because the knockdown phenotype of either protein could be rescued by overexpression of the other one. Cofilin-1 and ADF knockdown cells also had defects in cell motility and cytokinesis, and these defects were most pronounced when both ADF and cofilin-1 were depleted. Fluorescence recovery after photobleaching analysis and studies with an actin monomer-sequestering drug, latrunculin-A, demonstrated that these phenotypes arose from diminished actin filament depolymerization rates. These data suggest that mammalian ADF and cofilin-1 promote cytoskeletal dynamics by depolymerizing actin filaments and that this activity is critical for several processes such as cytokinesis and cell motility.
Collapse
Affiliation(s)
- Pirta Hotulainen
- Program in Cellular Biotechnology, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
23
|
Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS. Cofilin promotes actin polymerization and defines the direction of cell motility. Science 2004; 304:743-6. [PMID: 15118165 DOI: 10.1126/science.1094561] [Citation(s) in RCA: 521] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A general caging method for proteins that are regulated by phosphorylation was used to study the in vivo biochemical action of cofilin and the subsequent cellular response. By acute and local activation of a chemically engineered, light-sensitive phosphocofilin mimic, we demonstrate that cofilin polymerizes actin, generates protrusions, and determines the direction of cell migration. We propose a role for cofilin that is distinct from its role as an actin-depolymerizing factor.
Collapse
Affiliation(s)
- Mousumi Ghosh
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
24
|
Shah YM, Basrur V, Rowan BG. Selective estrogen receptor modulator regulated proteins in endometrial cancer cells. Mol Cell Endocrinol 2004; 219:127-39. [PMID: 15149734 DOI: 10.1016/j.mce.2004.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 12/12/2003] [Accepted: 01/06/2004] [Indexed: 02/07/2023]
Abstract
Tamoxifen is the primary hormonal therapy for breast cancer and is also used as a breast cancer chemopreventative agent. A major problem with tamoxifen therapy is undesirable endometrial proliferation. To identify proteins associated with the growth stimulatory effects of tamoxifen in an ER-positive model, the present study profiled total cellular and secreted proteins regulated by estradiol and selective estrogen receptor modifiers (SERMs) in the Ishikawa endometrial adenocarcinoma cell line using two-dimensional gel electrophoresis. Following 24 h incubation with 10(-8) M estradiol, 10(-7) M 4-hydroxytamoxifen, or 10(-7) M EM-652 (Acolbifene), nine proteins exhibited significant increase in expression. The proteins identified were heat shock protein 90-alpha, and -beta, heterogeneous nuclear ribonucleoprotein F, RNA polymerase II-mediating protein, cytoskeletal keratin 8, cytoskeletal keratin 18, ubiquitin-conjugating enzyme E2-18 kDa and nucleoside diphosphate kinase B. These protein profiles may serve as novel indices of SERM response and may also provide insight into novel mechanisms of SERM-mediated growth.
Collapse
Affiliation(s)
- Yatrik M Shah
- Department of Biochemistry & Molecular Biology, Medical College of Ohio, 3035 Arlington Avenue, Toledo, OH 43614-5804, USA
| | | | | |
Collapse
|
25
|
Ono K, Parast M, Alberico C, Benian GM, Ono S. Specific requirement for two ADF/cofilin isoforms in distinct actin-dependent processes in Caenorhabditis elegans. J Cell Sci 2003; 116:2073-85. [PMID: 12679387 DOI: 10.1242/jcs.00421] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actin depolymerizing factor (ADF)/cofilin is an essential enhancer of actin turnover. Multicellular organisms express multiple ADF/cofilin isoforms in different patterns of tissue distribution. However, the functional significance of different ADF/cofilin isoforms is not understood. The Caenorhabditis elegans unc-60 gene generates two ADF/cofilins, UNC-60A and UNC-60B, by alternative splicing. These two ADF/cofilin proteins have different effects on actin dynamics in vitro, but their functional difference in vivo remains unclear. Here, we demonstrate that the two isoforms are expressed in different tissues and are required for distinct morphogenetic processes. UNC-60A was ubiquitously expressed in most embryonic cells and enriched in adult gonads, intestine and oocytes. In contrast, UNC-60B was specifically expressed in the body wall muscle, vulva and spermatheca. RNA interference of UNC-60A caused embryonic lethality with variable defects in cytokinesis and developmental patterning. In severely affected embryos, a cleavage furrow was formed and progressed but reversed before completion of the cleavage. Also, in some affected embryos, positioning of the blastomeres became abnormal, which resulted in embryonic arrest. In contrast, an unc-60B-null mutant was homozygous viable, underwent normal early embryogenesis and caused disorganization of actin filaments specifically in body wall muscle. These results suggest that the ADF/cofilin isoforms play distinct roles in specific aspects of actin reorganization in vivo.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology, Emory University, Whitehead IO5N, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
26
|
dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 2003; 83:433-73. [PMID: 12663865 DOI: 10.1152/physrev.00026.2002] [Citation(s) in RCA: 706] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The actin cytoskeleton is a complex structure that performs a wide range of cellular functions. In 2001, significant advances were made to our understanding of the structure and function of actin monomers. Many of these are likely to help us understand and distinguish between the structural models of actin microfilaments. In particular, 1) the structure of actin was resolved from crystals in the absence of cocrystallized actin binding proteins (ABPs), 2) the prokaryotic ancestral gene of actin was crystallized and its function as a bacterial cytoskeleton was revealed, and 3) the structure of the Arp2/3 complex was described for the first time. In this review we selected several ABPs (ADF/cofilin, profilin, gelsolin, thymosin beta4, DNase I, CapZ, tropomodulin, and Arp2/3) that regulate actin-driven assembly, i.e., movement that is independent of motor proteins. They were chosen because 1) they represent a family of related proteins, 2) they are widely distributed in nature, 3) an atomic structure (or at least a plausible model) is available for each of them, and 4) each is expressed in significant quantities in cells. These ABPs perform the following cellular functions: 1) they maintain the population of unassembled but assembly-ready actin monomers (profilin), 2) they regulate the state of polymerization of filaments (ADF/cofilin, profilin), 3) they bind to and block the growing ends of actin filaments (gelsolin), 4) they nucleate actin assembly (gelsolin, Arp2/3, cofilin), 5) they sever actin filaments (gelsolin, ADF/cofilin), 6) they bind to the sides of actin filaments (gelsolin, Arp2/3), and 7) they cross-link actin filaments (Arp2/3). Some of these ABPs are essential, whereas others may form regulatory ternary complexes. Some play crucial roles in human disorders, and for all of them, there are good reasons why investigations into their structures and functions should continue.
Collapse
Affiliation(s)
- C G dos Remedios
- Institute for Biomedical Research, Muscle Research Unit, Department of Anatomy and Histology, University of Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Jung J, Yoon T, Choi EC, Lee K. Interaction of cofilin with triose-phosphate isomerase contributes glycolytic fuel for Na,K-ATPase via Rho-mediated signaling pathway. J Biol Chem 2002; 277:48931-7. [PMID: 12359716 DOI: 10.1074/jbc.m208806200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported previously that cofilin, an actin-binding protein, interacts with Na,K-ATPase and enhances its activity (Lee, K., Jung, J., Kim, M., and Guidotti, G. (2001) Biochem. J. 353, 377-385). To understand the nature of this interaction and the role of cofilin in the regulation of Na,K-ATPase activity, we searched for cofilin-binding proteins in the rat skeletal muscle cDNA library using the yeast two-hybrid system. Several cDNA clones were isolated, some of which coded for triose-phosphate isomerase, a glycolytic enzyme. The interaction of cofilin with triose-phosphate isomerase as well as Na,K-ATPase was confirmed by immunoprecipitation and confocal microscopy in HeLa cells. Cofilin was translocated to the plasma membrane along with triose-phosphate isomerase by the Rho activator lysophosphatidic acid but not by the p160 Rho-associated kinase inhibitor Y-27632, suggesting that the phosphorylated form of cofilin bound to TPI interacts with Na,K-ATPase. Ouabain-sensitive (86)Rb(+) uptake showed that Na,K-ATPase activity was increased by the overexpression of cofilin and lysophosphatidic acid treatment, but not by the overexpression of mutant cofilin S3A and Y-27632 treatment. Pretreatment with the glycolytic inhibitor iodoacetic acid caused a remarkable reduction of Na,K-ATPase activity, whereas pretreatment with the oxidative inhibitor carbonyl cyanide m-chlorophenylhydrazone caused no detectable changes, suggesting that the phosphorylated cofilin is involved in feeding glycolytic fuel for Na,K-ATPase activity. These findings provide a novel molecular mechanism for the regulation of Na,K-ATPase activity and for the nature of the functional coupling of cellular energy transduction.
Collapse
Affiliation(s)
- Jaehoon Jung
- College of Pharmacy, Center for Cell Signaling Research and Division of Molecular Life Sciences, Ewha Woman's University, Seoul 120-750, Korea
| | | | | | | |
Collapse
|
28
|
Abstract
Actin is the principal component of the cytoskeleton, a structure that can be disassembled and reassembled in a matter of seconds in vivo. The state of assembly of actin in vivo is primarily regulated by one or more actin binding proteins (ABPs). Typically, the actions of ABPs have been studied one by one, however, we propose that multiple ABPs, acting cooperatively, may be involved in the control of actin filament length. Cofilin and DNase I are two ABPs that have previously been demonstrated to form a ternary complex with actin in vitro. This is the first report to demonstrate their co-localisation in vivo, and differences in their distributions. Our observations strongly suggest a physiological role for higher order complexes of actin in regulation of cytoskeletal assembly during processes such as cell division.
Collapse
|
29
|
Amano T, Kaji N, Ohashi K, Mizuno K. Mitosis-specific activation of LIM motif-containing protein kinase and roles of cofilin phosphorylation and dephosphorylation in mitosis. J Biol Chem 2002; 277:22093-102. [PMID: 11925442 DOI: 10.1074/jbc.m201444200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin filament dynamics play a critical role in mitosis and cytokinesis. LIM motif-containing protein kinase 1 (LIMK1) regulates actin reorganization by phosphorylating and inactivating cofilin, an actin-depolymerizing and -severing protein. To examine the role of LIMK1 and cofilin during the cell cycle, we measured cell cycle-associated changes in the kinase activity of LIMK1 and in the level of cofilin phosphorylation. Using synchronized HeLa cells, we found that LIMK1 became hyperphosphorylated and activated in prometaphase and metaphase, then gradually returned to the basal level as cells entered into telophase and cytokinesis. Although Rho-associated kinase and p21-activated protein kinase phosphorylate and activate LIMK1, they are not likely to be involved in mitosis-specific activation and phosphorylation of LIMK1. Immunoblot and immunofluorescence analyses using an anti-phosphocofilin-specific antibody revealed that the level of cofilin phosphorylation, similar to levels of LIMK1 activity, increased during prometaphase and metaphase then gradually declined in telophase and cytokinesis. Ectopic expression of LIMK1 increased the level of cofilin phosphorylation throughout the cell cycle and induced the formation of multinucleate cells. These results suggest that LIMK1 is involved principally in control of mitosis-specific cofilin phosphorylation and that dephosphorylation and reactivation of cofilin at later stages of mitosis play a critical role in cytokinesis of mammalian cells.
Collapse
Affiliation(s)
- Toru Amano
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miagi 980-8578, Japan
| | | | | | | |
Collapse
|
30
|
Gonda K, Numata O. p85 binds to G-actin in a Ca(2+)/calmodulin-dependent manner, thus regulating the initiation of cytokinesis in tetrahymena. Biochem Biophys Res Commun 2002; 292:1098-103. [PMID: 11944929 DOI: 10.1006/bbrc.2002.6777] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tetrahymena p85 is localized to the presumptive division plane before the formation of contractile ring microfilaments. p85 binds to calmodulin in a Ca(2+)-dependent manner and both proteins colocalize to the division furrow. Inhibition of the binding of p85 and Ca(2+)/calmodulin prevents both the localization of p85 and calmodulin to the division plane and the formation of the contractile ring, suggesting that the interaction of p85 and Ca(2+)/calmodulin is important in the formation of the contractile ring. We investigated the mechanisms of the formation of contractile ring, and the relationship among p85, CaM, and actin using co-sedimentation assay: p85 binds to G-actin in a Ca(2+)/calmodulin-dependent manner, but does not bind to F-actin. Therefore, we propose that a Ca(2+)/calmodulin signal and its target protein p85 are cooperatively involved in the recruitment of G-actin to the division plane and the formation of the contractile ring.
Collapse
Affiliation(s)
- Kohsuke Gonda
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, Tsukuba, 305-8572, Japan
| | | |
Collapse
|
31
|
Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 2002; 108:233-46. [PMID: 11832213 DOI: 10.1016/s0092-8674(01)00638-9] [Citation(s) in RCA: 534] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The ADF (actin-depolymerizing factor)/cofilin family is a stimulus-responsive mediator of actin dynamics. In contrast to the mechanisms of inactivation of ADF/cofilin by kinases such as LIM-kinase 1 (LIMK1), much less is known about its reactivation through dephosphorylation. Here we report Slingshot (SSH), a family of phosphatases that have the property of F actin binding. In Drosophila, loss of ssh function dramatically increased levels of both F actin and phospho-cofilin (P cofilin) and disorganized epidermal cell morphogenesis. In mammalian cells, human SSH homologs (hSSHs) suppressed LIMK1-induced actin reorganization. Furthermore, SSH and the hSSHs dephosphorylated P cofilin in cultured cells and in cell-free assays. Our results strongly suggest that the SSH family plays a pivotal role in actin dynamics by reactivating ADF/cofilin in vivo.
Collapse
Affiliation(s)
- Ryusuke Niwa
- Department of Molecular Genetics, The Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
32
|
Abstract
The ADF/cofilins are a family of actin-binding proteins expressed in all eukaryotic cells so far examined. Members of this family remodel the actin cytoskeleton, for example during cytokinesis, when the actin-rich contractile ring shrinks as it contracts through the interaction of ADF/cofilins with both monomeric and filamentous actin. The depolymerizing activity is twofold: ADF/cofilins sever actin filaments and also increase the rate at which monomers leave the filament's pointed end. The three-dimensional structure of ADF/cofilins is similar to a fold in members of the gelsolin family of actin-binding proteins in which this fold is typically repeated three or six times; although both families bind polyphosphoinositide lipids and actin in a pH-dependent manner, they share no obvious sequence similarity. Plants and animals have multiple ADF/cofilin genes, belonging in vertebrates to two types, ADF and cofilins. Other eukaryotes (such as yeast, Acanthamoeba and slime moulds) have a single ADF/cofilin gene. Phylogenetic analysis of the ADF/cofilins reveals that, with few exceptions, their relationships reflect conventional views of the relationships between the major groups of organisms.
Collapse
Affiliation(s)
- Sutherland K Maciver
- Genes and Development Interdisciplinary Group, Department of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XD, Scotland, UK.
| | | |
Collapse
|
33
|
Pfannstiel J, Cyrklaff M, Habermann A, Stoeva S, Griffiths G, Shoeman R, Faulstich H. Human cofilin forms oligomers exhibiting actin bundling activity. J Biol Chem 2001; 276:49476-84. [PMID: 11679578 DOI: 10.1074/jbc.m104760200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human cofilin possesses the tendency for self-association, as indicated by the rapid formation of dimers and oligomers when reacted with water-soluble carbodiimide, Ellman's reagent, or glutathione disulfide. Intermolecular disulfide bonds involve Cys(39) and probably Cys(147) of two adjacent cofilin units. The disulfide-linked dimers and oligomers exhibit a biological activity distinct from the monomer. While monomeric cofilin decreased viscosity and light-scattering of F-actin solutions, dimers and oligomers caused an increase in viscosity and light scattering. Electron microscopy revealed that cofilin oligomers induce the formation of highly ordered actin bundles with occasionally blunt ends similar to actin-cofilin rods observed in cells under oxidative stress. Bundling activity of the disulfide-linked oligomers could be completely reversed into severing activity by dithiothreitol. Formation of cofilin oligomers occurred also in the presence of actin at pH 8, but not at pH 6.6, and was significantly enhanced in the presence of phosphatidylinositol 4,5-bisphosphate. Our data are consistent with the idea that cofilin exists in two forms in vivo also: as monomers exhibiting the known severing activity and as oligomers exhibiting actin bundling activity. However, stabilization of cofilin oligomers in cytoplasm is probably achieved not by disulfide bonds but by a local increase in cofilin concentration and/or binding of regulatory proteins.
Collapse
Affiliation(s)
- J Pfannstiel
- Max-Planck-Institute for Medical Research, Heidelberg 69120, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Bernstein BW, Painter WB, Chen H, Minamide LS, Abe H, Bamburg JR. Intracellular pH modulation of ADF/cofilin proteins. CELL MOTILITY AND THE CYTOSKELETON 2000; 47:319-36. [PMID: 11093252 DOI: 10.1002/1097-0169(200012)47:4<319::aid-cm6>3.0.co;2-i] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ADF/cofilin (AC) proteins are necessary for the high rates of actin filament turnover seen in vivo. Their regulation is complex enough to underlie the precision in filament dynamics needed by stimulated cells. Disassembly of actin by AC proteins is inhibited in vitro by phosphorylation of ser3 and pH<7.1. This study of Swiss 3T3 cells demonstrates that pH also affects AC behavior in vivo: (1) Wounded cells show pH-dependent AC translocation to alkaline-induced ruffling membrane; (2) The Triton extractable (soluble) ADF from Swiss 3T3 cells decreases from 42+/-4% to 23+/-4% when the intracellular pH (pH(i)) is reduced from 7.4 to 6.6; (3) Covariance and colocalization analyses of immunostained endogenous proteins show that ADF partitions more with monomeric actin and less with polymeric actin when pH(i) increases. However, the distribution of cofilin, a less pH-sensitive AC in vitro, does not change with pH; (4) Only the unphosphorylatable AC mutant (A3), when overexpressed as a GFP chimera, uniquely produces aberrant cellular phenotypes and only if the pH is shifted from 7.1 to 6.6 or 7.4. A mechanism is proposed that explains why AC(A3)-GFP and AC(wt)-GFP chimeras generate different phenotypes in response to pH changes. Phospho-AC levels increase with cell density, and in motile cells, phospho-AC increases with alkalization, suggesting a homeostatic mechanism that compensates for increased AC activity and filament turnover. These results show that the behavior of AC proteins with pH-sensitivity in vitro is affected by pH in vivo.
Collapse
Affiliation(s)
- B W Bernstein
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Manandhar G, Moreno RD, Simerly C, Toshimori K, Schatten G. Contractile apparatus of the normal and abortive cytokinetic cells during mouse male meiosis. J Cell Sci 2000; 113 Pt 23:4275-86. [PMID: 11069772 DOI: 10.1242/jcs.113.23.4275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse male meiotic cytokinesis was studied using immunofluorescent probes against various elements of cytokinetic apparatus and electron microscopy. In normal mice, some spermatocytes fail to undergo cytokinesis after meiotic I or II nuclear divisions, forming syncytial secondary spermatocytes and spermatids. Abnormal cytokinetic cells develop sparse and dispersed midzone spindles during the early stage. However, during late stages, single and compact midzone spindles are formed as in normal cells, but localize asymmetrically and attach to the cortex. Myosin and f-actin were observed in the midzone spindle and midbody regions of normally cleaving cells as well as in those cells that failed to develop a cytokinetic furrow, implying that cytokinetic failure is unlikely to be due to defect in myosin or actin assembly. Depolymerization of microtubules by nocodazole resulted in the loss of the midbody-associated f-actin and myosin. These observations suggest that actin-myosin localization in the midbody could be a microtubule-dependent process that may not play a direct role in cytokinetic furrowing. Anti-centrin antibody labels the putative centrioles while anti-(gamma)-tubulin antibody labels the minus-ends of the midzone spindles of late-stage normal and abnormal cytokinetic cells, suggesting that the centrosome and midzone spindle nucleation in abnormal cytokinetic cells is not different from those of normally cleaving cells. Possible use of mouse male meiotic cells as a model system to study cytokinesis has been discussed.
Collapse
Affiliation(s)
- G Manandhar
- Departments of Obstetrics & Gynecology and Cell & Developmental Biology, Oregon Regional Primate Research Center, Oregon Health Sciences University, Beaverton, OR 97006, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
In this review, we focus on recent discoveries regarding the molecular basis of cleavage furrow positioning and contractile ring assembly and contraction during cytokinesis. However, some of these mechanisms might have different degrees of importance in different organisms. This synthesis attempts to uncover common themes and to reveal potential relationships that might contribute to the biochemical and mechanical aspects of cytokinesis. Because the information about cytokinesis is still fairly rudimentary, our goal is not to present a definitive model but to present testable hypotheses that might lead to a better mechanistic understanding of the process.
Collapse
Affiliation(s)
- D N Robinson
- Dept of Biochemistry, Beckman Center, Stanford University, CA 94305-5307, USA.
| | | |
Collapse
|
37
|
Abstract
Ubiquitous among eukaryotes, the ADF/cofilins are essential proteins responsible for the high turnover rates of actin filaments in vivo. In vertebrates, ADF and cofilin are products of different genes. Both bind to F-actin cooperatively and induce a twist in the actin filament that results in the loss of the phalloidin-binding site. This conformational change may be responsible for the enhancement of the off rate of subunits at the minus end of ADF/cofilin-decorated filaments and for the weak filament-severing activity. Binding of ADF/cofilin is competitive with tropomyosin. Other regulatory mechanisms in animal cells include binding of phosphoinositides, phosphorylation by LIM kinases on a single serine, and changes in pH. Although vertebrate ADF/cofilins contain a nuclear localization sequence, they are usually concentrated in regions containing dynamic actin pools, such as the leading edge of migrating cells and neuronal growth cones. ADF/cofilins are essential for cytokinesis, phagocytosis, fluid phase endocytosis, and other cellular processes dependent upon actin dynamics.
Collapse
Affiliation(s)
- J R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523, USA.
| |
Collapse
|
38
|
Gonda K, Katoh M, Hanyu K, Watanabe Y, Numata O. Ca(2+)/calmodulin and p85 cooperatively regulate an initiation of cytokinesis in Tetrahymena. J Cell Sci 1999; 112 ( Pt 21):3619-26. [PMID: 10523498 DOI: 10.1242/jcs.112.21.3619] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tetrahymena p85 differs in mobility in two-dimensional SDS-polyacrylamide gel electrophoresis between wild-type and temperature-sensitive cell-division-arrest mutant cdaA1 cell extracts, and is localized to the presumptive division plane before the formation of the division furrow. The p85 contained three identical sequences which show homology to the calmodulin binding site of Ca(2+)/calmodulin dependent protein kinase Type II in Saccharomyces cerevisiae. We found the p85 directly interacts with Tetrahymena calmodulin in a Ca(2+)-dependent manner, using a co-sedimentation assay. We next examined the localization of p85 and calmodulin during cytokinesis using indirect immunofluorescence. The results showed that both proteins colocalize in the division furrow. This is the first observation that calmodulin is localized in the division furrow. Moreover, the direct interaction between p85 and Ca(2+)/calmodulin was inhibited by Ca(2+)/calmodulin inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide HCl. When the cells were treated with the drug just before the beginning of cytokinesis, the drug also inhibited the localization of p85 and calmodulin to the division plane, and the formation of the contractile ring and division furrow. Therefore, we propose that the Ca(2+)/calmodulin signal and its target protein p85 cooperatively regulate an initiation of cytokinesis and may be also concerned with the progression of cytokinesis in Tetrahymena.
Collapse
Affiliation(s)
- K Gonda
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | |
Collapse
|
39
|
Bellissent-Waydelich A, Vanier MT, Albigès-Rizo C, Simon-Assmann P. Talin concentrates to the midbody region during mammalian cell cytokinesis. J Histochem Cytochem 1999; 47:1357-68. [PMID: 10544209 DOI: 10.1177/002215549904701102] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study we investigated the cellular distribution of talin, a cytoskeletal protein, during mammalian cell cytokinesis. Immunohistochemical experiments on various carcinoma cell lines and mesenchyme-derived cells reveal that talin displays a cell cycle-dependent cellular localization. During metaphase, talin is located in the centromeric region of the chromosome, like the TD-60 protein and intrinsic centromere components detected by a CREST serum. From anaphase to telophase, talin is present in the cleavage furrow. As the cells progress to cytokinesis, when the furrow is complete, talin is concentrated in the midbody structures, as assessed by immunofluorescence and confirmed by Western blot experiments on purified midbodies. Double staining experiments reveal that alpha-tubulin, TD-60 protein, and talin co-localize in the midbodies. These results suggest that talin, in addition to its implication in focal adhesion organization and signaling, may play a critical role in cytokinesis. (J Histochem Cytochem 47:1357-1367, 1999)
Collapse
|
40
|
Gonda K, Nishibori K, Ohba H, Watanabe A, Numata O. Molecular cloning of the gene for p85 that regulates the initiation of cytokinesis in Tetrahymena. Biochem Biophys Res Commun 1999; 264:112-8. [PMID: 10527850 DOI: 10.1006/bbrc.1999.1354] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tetrahymena p85 is localized to the presumptive division plane before division furrow formation; its molecular weight in SDS-polyacrylamide gel electrophoresis differs in wild-type and temperature-sensitive cell-division-arrest mutant cdaA1 cells. At the restrictive temperature, p85 localization and division furrow formation are not observed in cdaA1 cells. In this study, we purified p85 and cloned a wild-type p85 cDNA. The deduced amino acid sequence of p85 was composed mainly of two kinds of repeat sequences. One of these contained regions homologous to a calmodulin-binding site and a part of actin, and the other contained a region homologous to a part of a cdc2 kinase homologue. Moreover, we cloned a cDNA encoding the cdaA1 p85. There was no difference in the predicted amino acid sequences of wild-type and cdaA1 p85, suggesting that the difference in molecular weight between p85 in wild-type and mutant cells is caused by a disorder of posttranslational-modification mechanisms of p85 in the cdaA1 cell.
Collapse
Affiliation(s)
- K Gonda
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | | | | | | | | |
Collapse
|
41
|
Ressad F, Didry D, Egile C, Pantaloni D, Carlier MF. Control of actin filament length and turnover by actin depolymerizing factor (ADF/cofilin) in the presence of capping proteins and ARP2/3 complex. J Biol Chem 1999; 274:20970-6. [PMID: 10409644 DOI: 10.1074/jbc.274.30.20970] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of Arabidopsis thaliana ADF1 and human ADF on the number of filaments in F-actin solutions has been examined using a seeded polymerization assay. ADF did not sever filaments in a catalytic fashion, but decreased the steady-state length distribution of actin filaments in correlation with its effect on actin dynamics. The increase in filament number was modest as compared with the large increase in filament turnover. ADF did not decrease the length of filaments shorter than 1 micrometer. ADF promoted the rapid turnover of gelsolin-capped filaments in a manner dependent on the number of pointed ends. To explain these results, we propose that, as a consequence of the cooperative binding of ADF to F-actin, two populations of energetically different filaments coexist in solution pending a flux of subunits from one to the other. The ADF-decorated filaments depolymerize rapidly from their pointed ends, while undecorated filaments polymerize. ADF also promotes rapid turnover of gelsolin-capped filaments in the presence of the pointed end capper Arp2/3 complex. It is shown that the Arp2/3 complex steadily generates new barbed ends in solutions of gelsolin-capped filaments, which represents an important aspect of its function in actin-based motility.
Collapse
Affiliation(s)
- F Ressad
- Dynamique du Cytosquelette, Laboratoire díEnzymologie et Biochimie Structurales, CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
42
|
Ashworth SL, Molitoris BA. Pathophysiology and functional significance of apical membrane disruption during ischemia. Curr Opin Nephrol Hypertens 1999; 8:449-58. [PMID: 10491740 DOI: 10.1097/00041552-199907000-00009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The characteristic structure of polarized proximal tubule cells is drastically altered by the onset of ischemic acute renal failure. Distinctive apical brush border microvilli disruption occurs rapidly and in a duration-dependent fashion. Microvillar membranes internalize into the cytosol of the cell or are shed into the lumen as blebs. The microvillar actin core disassembles concurrent with or preceding these membrane changes. Actin and its associated binding proteins no longer interact to form these highly regulated apical membrane structures necessary for microvilli. The resultant epithelial cells have a reduced apical membrane surface that is not polarized either structurally, biochemically or physiologically. Furthermore, the changes in the apical microvilli result in tubular obstruction, reduced Na+ absorption, and partly explain the reduction in glomerular filtration rate. Recent evidence suggests these actin surface membrane alterations induced by ischemia are secondary to activation and relocation of the actin-associated protein, actin depolymerizing factor/cofilin, to the apical membrane domain. Activated (dephosphorylated) actin depolymerizing factor/cofilin proteins bind filamentous actin, increasing subunit treadmilling rates and filament severing. Once activated, the diffuse cytoplasmic distribution of the actin depolymerizing factor/cofilin protein relocalizes to the luminal membrane blebs. During recovery the actin depolymerizing factor/cofilin proteins are again phosphorylated and reassume their normal diffuse cytoplasmic localization. This evidence strongly supports the hypothesis that actin depolymerizing factor/cofilin proteins play a significant role in ischemia-induced injury in the proximal tubule cells.
Collapse
|
43
|
Okada K, Obinata T, Abe H. XAIP1: a Xenopus homologue of yeast actin interacting protein 1 (AIP1), which induces disassembly of actin filaments cooperatively with ADF/cofilin family proteins. J Cell Sci 1999; 112 ( Pt 10):1553-65. [PMID: 10212149 DOI: 10.1242/jcs.112.10.1553] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We carried out affinity column chromatography using Xenopus ADF/cofilin (XAC), identified several polypeptides in oocytes specifically bound to this column with actin, and isolated a full-length cDNA clone for a 65 kDa protein in this fraction. The predicted amino acid sequence revealed that the 65 kDa protein has seven obvious WD repeats and exhibits striking homology with yeast actin interacting protein 1 (AIP1). Thus, we designated this protein Xenopus AIP1 (XAIP1). We purified XAIP1 from Xenopus oocytes, and its interaction with actin was characterized by a pelleting assay, photometrical analysis and electron microscopy. Although XAIP1 itself cosedimented with F-actin and increased unsedimented actin to some extent, it induced a rapid, drastic disassembly of actin filaments associated with XAC. Electron microscopic observation revealed that XAIP1 severs actin filaments in the presence of XAC. To elucidate the in vivo effects of XAIP1, the purified protein was injected into blastomeres at the two-cell stage. Although the localization of XAIP1 was similar to that of XAC, at the cortical cytoskeleton and diffusely in the cytoplasm, injection of a large amount of XAIP1 arrested development and abolished the strong cortical staining of both actin and XAC. From these results, we concluded that XAIP1 regulates the dynamics of the cortical actin cytoskeleton cooperatively with XAC in eggs.
Collapse
Affiliation(s)
- K Okada
- Department of Biology, Faculty of Science, Chiba University, Yayoi-cho, Chiba 263-8522, Japan
| | | | | |
Collapse
|
44
|
Theriot JA. Accelerating on a treadmill: ADF/cofilin promotes rapid actin filament turnover in the dynamic cytoskeleton. J Biophys Biochem Cytol 1997; 136:1165-8. [PMID: 9087434 PMCID: PMC2132515 DOI: 10.1083/jcb.136.6.1165] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- J A Theriot
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02160, USA.
| |
Collapse
|
45
|
Rosenblatt J, Agnew BJ, Abe H, Bamburg JR, Mitchison TJ. Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails. J Cell Biol 1997; 136:1323-32. [PMID: 9087446 PMCID: PMC2132508 DOI: 10.1083/jcb.136.6.1323] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/1996] [Revised: 12/12/1996] [Indexed: 02/04/2023] Open
Abstract
In contrast to the slow rate of depolymerization of pure actin in vitro, populations of actin filaments in vivo turn over rapidly. Therefore, the rate of actin depolymerization must be accelerated by one or more factors in the cell. Since the actin dynamics in Listeria monocytogenes tails bear many similarities to those in the lamellipodia of moving cells, we have used Listeria as a model system to isolate factors required for regulating the rapid actin filament turnover involved in cell migration. Using a cell-free Xenopus egg extract system to reproduce the Listeria movement seen in a cell, we depleted candidate depolymerizing proteins and analyzed the effect that their removal had on the morphology of Listeria tails. Immunodepletion of Xenopus actin depolymerizing factor (ADF)/cofilin (XAC) from Xenopus egg extracts resulted in Listeria tails that were approximately five times longer than the tails from undepleted extracts. Depletion of XAC did not affect the tail assembly rate, suggesting that the increased tail length was caused by an inhibition of actin filament depolymerization. Immunodepletion of Xenopus gelsolin had no effect on either tail length or assembly rate. Addition of recombinant wild-type XAC or chick ADF protein to XAC-depleted extracts restored the tail length to that of control extracts, while addition of mutant ADF S3E that mimics the phosphorylated, inactive form of ADF did not reduce the tail length. Addition of excess wild-type XAC to Xenopus egg extracts reduced the length of Listeria tails to a limited extent. These observations show that XAC but not gelsolin is essential for depolymerizing actin filaments that rapidly turn over in Xenopus extracts. We also show that while the depolymerizing activities of XAC and Xenopus extract are effective at depolymerizing normal filaments containing ADP, they are unable to completely depolymerize actin filaments containing AMPPNP, a slowly hydrolyzible ATP analog. This observation suggests that the substrate for XAC is the ADP-bound subunit of actin and that the lifetime of a filament is controlled by its nucleotide content.
Collapse
Affiliation(s)
- J Rosenblatt
- Department of Biochemistry, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
46
|
Tsukita S, Yonemura S, Tsukita S. ERM proteins: head-to-tail regulation of actin-plasma membrane interaction. Trends Biochem Sci 1997; 22:53-8. [PMID: 9048483 DOI: 10.1016/s0968-0004(96)10071-2] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ERM (ezrin/radixin/moesin) proteins crosslink actin filaments with plasma membranes. The carboxyl termini of these proteins bind actin filaments, while the amino termini bind plasma membranes using a binding partner, such as CD44. Specific signals activate ERM proteins to bind actin filaments and the plasma membrane; these include phosphoinositides and/or phosphorylation mechanisms, which might be located downstream from the Rho-dependent pathway.
Collapse
Affiliation(s)
- S Tsukita
- College of Medical Technology, Kyoto University, Japan.
| | | | | |
Collapse
|
47
|
Nagaoka R, Abe H, Obinata T. Site-directed mutagenesis of the phosphorylation site of cofilin: its role in cofilin-actin interaction and cytoplasmic localization. CELL MOTILITY AND THE CYTOSKELETON 1996; 35:200-9. [PMID: 8913641 DOI: 10.1002/(sici)1097-0169(1996)35:3<200::aid-cm3>3.0.co;2-c] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It has been demonstrated that the activity of ADF and cofilin, which constitute a functionally related protein family, is markedly altered by phosphorylation, and that the phosphorylation site is Ser 3 in their amino acid sequences [Agnew et al., 1995: J. Biol. Chem. 270:17582-17587; Moriyama et al., 1996: Genes Cells 1:73-86]. In order to clarify the function of the phosphorylated and unphosphorylated forms of cofilin in living cells especially in the process of cytokinesis, we generated analogs of the unphosphorylated form (A3-cofilin) and phosphorylated form (D3-cofilin) by converting the phosphorylation site (Ser 3) of cofilin to Ala and Asp, respectively. The mutated proteins were produced in an Escherichia coli expression system, and conjugated with fluorescent dyes. In in vitro functional assay, labeled A3-cofilin retained the authentic ability to bind to and sever F-actin, while labeled D3-cofilin failed to interact with actin. They were then injected into living cells to examine their cellular distribution. They exhibited distinct localization patterns in the cytoplasm; A3-cofilin was highly concentrated at the membrane ruffles and cleavage furrow, where endogenous cofilin is also known to be enriched. In contrast, D3-cofilin showed only diffuse distribution both in the cytoplasm and nucleus. These results suggest that the subcellular distribution of cofilin as well as its interacting with actin in vivo is regulated by its phosphorylation and dephosphorylation.
Collapse
Affiliation(s)
- R Nagaoka
- Department of Biology, Faculty of Science, Chiba University, Japan
| | | | | |
Collapse
|
48
|
Moon A, Drubin DG. The ADF/cofilin proteins: stimulus-responsive modulators of actin dynamics. Mol Biol Cell 1995; 6:1423-31. [PMID: 8589446 PMCID: PMC301301 DOI: 10.1091/mbc.6.11.1423] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- A Moon
- Onyx Pharmaceuticals, Richmond, California 94806-5206, USA
| | | |
Collapse
|
49
|
Affiliation(s)
- K G Miller
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|